专题10 等差数列与等比数列—三年高考(2015-2017)数学(文)真题汇编

合集下载

近三年数列全国卷高考真题

近三年数列全国卷高考真题

2015-2017年全国卷数列真题1、(2015全国1卷17题)n S 为数列{n a }的前n 项和.已知n a >0,2n n a a +=43n S +.(Ⅰ)求{n a }的通项公式; (Ⅱ)设11n n n b a a +=,求数列{n b }的前n 项和。

2、(2015全国2卷4题)已知等比数列{}n a 满足a 1=3,135a a a ++ =21,则357a a a ++= ( )A .21B .42C .63D .843、(2015全国2卷16题)设n S 是数列{}n a 的前n 项和,且11a =-,11n n n a S S ++=,则n S =________.4、(2016全国1卷3题)已知等差数列{}n a 前9项的和为27,108a =,则100a = ( ) (A)100 (B )99 (C )98 (D)975、(2016全国2卷15题)设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2 …a n 的最大值为 .6、(2016全国2卷17题)n S 为等差数列{}n a 的前n 项和,且11a =,728S =.记[]lg n n b a =,其中[]x 表示不超过x 的最大整数,如[]0.90=,[]lg991=.(Ⅰ)求1b ,11b ,101b ;(Ⅱ)求数列{}n b 的前1000项和. 7、(2016全国3卷17题)已知数列{}n a 的前n 项和1n nS a λ=+,其中0λ≠.(I )证明{}n a 是等比数列,并求其通项公式;(II )若53132S =,求λ.8、(2017年国1卷4题)记n S 为等差数列{}n a 的前n 项和,若4562448a a S +==,,则{}n a 的公差为()A .1B .2C .4D .8 9、(2017年国1卷12题)几位大学生响应国家的创业号召,开发了一款应用软件,为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动,这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是02,接下来的两项是02,12,在接下来的三项式62,12,22,依次类推,求满足如下条件的最小整数N :100N >且该数列的前N 项和为2的整数幂.那么该款软件的激活码是( )A .440B .330C .220D .110 10、(2017全国2卷3题)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( ) A .1盏 B .3盏 C .5盏 D .9盏 11、(2017全国2卷15题)等差数列{}n a 的前n 项和为n S ,33a =,410S =,则11nk kS ==∑ . 12、(2017全国3卷9题)等差数列{}na 的首项为1,公差不为0.若2a ,3a ,6a 成等比数列,则{}n a 前6项的和为() A .24- B .3- C .3 D .813、(2017全国3卷14题)设等比数列{}n a 满足121a a +=-,133a a -=-,则4a =________.。

等差数列等比数列高考历年真题

等差数列等比数列高考历年真题

温馨提示:高考题库为Word 版,请按住Ctrl ,滑动鼠标滚轴,调节合适的观看比例,点击右上角的关闭按钮可返回目录。

【考点16】等差数列、等比数列2009年考题1.(2009安徽高考)已知{}n a 为等差数列,1a +3a +5a =105,246a a a ++=99,以n S 表示{}n a 的前n 项和,则使得n S 达到最大值的n 是( )(A )21 (B )20 (C )19 (D ) 18【解析】选B.由1a +3a +5a =105得33105,a =即335a =,由246a a a ++=99得4399a =即433a = ,∴2d =-,4(4)(2)412n a a n n =+-⨯-=-,由10n n a a +≥⎧⎨<⎩得20n =.2.(2009安徽高考)已知为等差数列,,则等于( )A. -1B. 1C. 3 D .7【解析】选B.∵135105a a a ++=即33105a =∴335a =同理可得433a =∴公差432d a a =-=-. ∴204(204)1a a d =+-⨯=.3.(2009福建高考)等差数列{}n a 的前n 项和为n S ,且3S =6,1a =4, 则公差d 等于( )A .1B 53C.- 2 D 3 【解析】选C.∵31336()2S a a ==+且3112 =4 d=-2a a d a =+∴.4.(2009海南宁夏高考)等差数列{}n a 的前n 项和为n S ,已知2110m m ma a a -++-=,2138m S -=,则m =( )(A )38 (B )20 (C )10 (D )9【解析】选C.因为{}n a 是等差数列,所以,112m m m a a a -++=,由2110m m ma a a -++-=,得:2m a -2m a =0,所以,m a =2,又2138m S -=,即2))(12(121-+-m a a m =38,即(2m -1)×2=38,解得m =10.5.(2009广东高考)已知等比数列{}n a 满足0,1,2,n a n >=,且25252(3)n n a a n -⋅=≥,则当1n ≥时,2123221log log log n a a a -+++= ( )w.w.w.k.s.5.u.c.o.mA. (21)n n -B. 2(1)n +C. 2nD. 2(1)n -【解析】选C.由25252(3)n n a a n -⋅=≥得n n a 222=,0>n a ,则n n a 2=, +⋅⋅⋅++3212log log a a2122)12(31log n n a n =-+⋅⋅⋅++=-.6.(2009广东高考)已知等比数列}{n a 的公比为正数,且3a ·9a =225a ,2a =1,则1a = ( )A. 21B.22C. 2D.2 【解析】选B.设公比为q ,由已知得()22824111a q a q q a q ⋅=,即22q =,因为等比数列}{n a 的公比为正数,所以2q =故21222a a q ===. 7.(2009辽宁高考)设等比数列{ n a }的前n 项和为n S ,若 63S S =3 ,则 69SS =( )(A ) 2 (B ) 73 (C ) 83(D )3【解析】选B.设公比为q ,则36333(1)S q S S S +==1+q 3=3 Þ q 3=2于是63693112471123S q q S q ++++===++. 8.(2009辽宁高考)已知{}n a 为等差数列,且7a -24a =-1, 3a =0,则公差d =( )(A )-2 (B )-12 (C )12(D )2【解析】选B. a 7-2a 4=a 3+4d -2(a 3+d)=2d =-1 Þ d =-12.9.(2009湖南高考)设n S 是等差数列{}n a 的前n 项和,已知23a =,611a =,则7S 等于( ).A .13B .35C .49D . 63 【解析】选C.172677()7()7(311)49.222a a a a S +++====故选C. 或由21161315112a a d a a a d d =+==⎧⎧⇒⎨⎨=+==⎩⎩, 716213.a =+⨯= 所以1777()7(113)49.22a a S ++=== 10.(2009四川高考)等差数列{n a }的公差不为零,首项1a =1,2a 是1a 和5a 的等比中项,则数列的前10项之和是( )A. 90B. 100C. 145D. 190【解析】选B.设公差为d ,则)41(1)1(2d d +⋅=+.∵d ≠0,解得d =2,∴10S =100.11.(2009辽宁高考)等差数列{}n a 的前n 项和为n S ,且53655,S S -=则4a = 【解析】∵S n =na 1+12n(n -1)d ∴S 5=5a 1+10d,S 3=3a 1+3d∴6S 5-5S 3=30a 1+60d -(15a 1+15d)=15a 1+45d =15(a 1+3d)=15a 4 答案:3112.(2009山东高考)在等差数列}{n a 中,6,7253+==a a a ,则____________6=a .【解析】设等差数列}{n a 的公差为d ,则由已知得⎩⎨⎧++=+=+6472111d a d a d a 解得132a d =⎧⎨=⎩,所以61513a a d =+=.答案:13.13.(2009海南宁夏高考)等比数列{n a }的公比0q >, 已知2a =1,216n n n a a a +++=,则{n a }的前4项和4S =【解析】由216n n n a a a +++=得:116-+=+n n n q q q ,即062=-+q q ,0q >,解得q =2,又2a =1,所以,112a =,21)21(2144--=S =152。

三年高考(2015-2017)高考数学试题解析13数列小题理

三年高考(2015-2017)高考数学试题解析13数列小题理

专题13数列小题1。

【2017课标1,理4】记nS 为等差数列{}na 的前项和.若4524a a +=,648S =,则{}na 的公差为A .1B .2C .4D .8 【答案】C 【解析】试题分析:设公差为d ,45111342724a a a d a d a d +=+++=+=,611656615482S ad a d ⨯=+=+=,联立112724,61548a d a d +=⎧⎨+=⎩解得4d =,故选C.秒杀解析:因为166346()3()482a a S a a +==+=,即3416aa +=,则4534()()24168a a a a +-+=-=,即5328a a d -==,解得4d =,故选C 。

【考点】等差数列的基本量求解【名师点睛】求解等差数列基本量问题时,要多多使用等差数列的性质,如{}na 为等差数列,若m np q +=+,则mnpqa a a a +=+。

2。

【2017课标3,理9】等差数列{}na 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}na 前6项的和为A .24-B .3-C .3D .8 【答案】A 【解析】故选A 。

【考点】等差数列求和公式;等差数列基本量的计算【名师点睛】(1)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.(2)数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a1和d是等差数列的两个基本量,用它们表示已知和未知是常用方法.3。

【2017课标II,理3】我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏B.3盏C.5盏D.9盏【答案】B【解析】试题分析:设塔的顶层共有灯x盏,则各层的灯数构成一个首项为x,公比为2的等比数列,结合等比数列的求和公式有:()712381 12x⨯-=-,解得3x=,即塔的顶层共有灯3盏,故选B。

等差数列和等比数列-2017年高考数学(文)母题题源系列(新课标2专版)含解析

等差数列和等比数列-2017年高考数学(文)母题题源系列(新课标2专版)含解析

【母题原题1】【2017全国Ⅱ,文17】已知等差数列{}n a 的前n 项和为n S ,等比数列{}n b 的前n 项和为n T ,11221,1,2a b a b =-=+=.(1)若335a b +=,求{}n b 的通项公式;(2)若321T=,求3S .【答案】(1)b n =2n−1;(2)当q =−5 时,S 3=21.当q =4时,S 3=−6.试题解析:设{a n }的公差为d ,{b n }的公比为q ,则a n =−1+(n −1)d ,b n =q n−1.由a 2+b 2=2得d +q =3.①(1)由a 3+b 3=5得2d +q 2=6.②联立①和②解得{d =3,q =0(舍去),{d =1,q =2.因此{b n }的通项公式为b n =2n−1. (2)由b 1=1,T 3=21得q 2+q −20=0. 解得q =−5,q =4.当q =−5时,由①得d =8,则S 3=21. 当q =4时,由①得d =−1,则S 3=−6.【考点】等差、等比数列通项与求和【名师点睛】在解决等差、等比数列的运算问题时,有两种处理思路:一是利用基本量,将多元问题简化为一元问题,虽有一定量的运算,但思路简洁,目标明确;二是利用等差、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形. 在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法. 【母题原题2】【2016全国Ⅱ,文17】等差数列{na }中,34574,6aa a a +=+=.(Ⅰ)求{na }的通项公式;(Ⅱ) 设[]nn ba =,求数列{}nb 的前10项和,其中[]x 表示不超过x的最大整数,如=0,=2. 【答案】(Ⅰ)235n n a +=;(Ⅱ)24. 【解析】试题分析:(Ⅰ) 根据等差数列的通项公式及已知条件求1a ,d,从而求得na ;(Ⅱ)由(Ⅰ)求nb ,再求数列{}n b 的前10项和.(Ⅱ)由(Ⅰ)知235nn b +⎡⎤=⎢⎥⎣⎦. 当n =1,2,3时,2312,15n n b +≤<=; 当n =4,5时,2323,25n n b +≤<=; 当n =6,7,8时,2334,35n n b +≤<=;当n=9,10时,2345,45n n b +≤<=. 所以数列{}n b 的前10项和为1322334224⨯+⨯+⨯+⨯=. 【考点】等差数列的通项公式,数列的求和【名师点睛】求解本题时常出现以下错误:对“[]x 表示不超过x 的最大整数”理解出错.【母题原题3】【2015全国Ⅱ,文5】设nS 是等差数列{}na 的前n项和,若1353a aa ++=,则5S =( )A .B .C .D .11 【答案】A【考点定位】本题主要考查等差数列的性质及前n 项和公式的应用.【名师点睛】本题解答过程中用到了的等差数列的一个基本性质即等差中项的性质,利用此性质可得1532.a aa +=高考中数列客观题大多具有小、巧、活的特点,在解答时要注意数列相关性质的应用,尽量避免小题大做.【2015全国Ⅱ,文9】已知等比数列{}na 满足114a=,()35441a a a =-,则2a =( )A.2B.11C.21D.8【答案】C 【解析】试题分析:由题意可得()235444412a a a a a ==-⇒=,所以34182a q q a ==⇒= ,故2112a a q ==,选C .【考点定位】本题主要考查等比数列性质及基本运算. 【名师点睛】解决本题的关键是利用等比数列性质211n n n aaa -+=得到一个关于4a 的一元二次方程,再通过解方程求4a 的值,我们知道,等差、等比数列各有五个基本量,两组基本公式,而这两组公式可看作多元方程,利用这些方程可将等差、等比数列中的运算问题转化解关于基本量的方程(组),因此可以说数列中的绝大部分运算题可看作方程应用题,所以用方程思想解决数列问题是一种行之有效的方法.【命题意图】考查特殊数列的通项及前n 项和或通项与前n 项和nS 间的递推关系,通过转化为等差数列或等比数列,考查数列运算及转化能力.【命题规律】由递推关系求数列通项公式或特定项问题,有时以小题形式来考,主要以考查,nna S 间的关系为主,通过转化为特殊数列求解;以解答题形式考查,会多步设问,通过提示或其他方式构造特殊数列求解.【答题模板】作答数列问题,一般四个步骤:1、判断所求解数列问题是否为等差等比数列问题;2、利用等差、等比数列通项公式及前n 项和公式列出等式或方程;3、利用等差、等比定义将非等差、等比数列经过变形、构造等方法转化为等差、等比数列问题;4、运用特殊方法求数列的前n 项和,如错位相减法,分组求和或裂项求和法等. 【方法总结】关于通项公式与前n 项和nS 间的递推关系问题,可以转化为项na 与1n a 的递推式,进而求na ;或者转化为nS 与1n S 的递推式,先求nS ,再求na ,其中转化关键为11,1,, 2.nn n S n aS S n -=⎧=⎨-≥⎩,通过转化为特殊数列或易求通项公式的递推式求解. (一)主要知识:有关等差、等比数列的结论 1.(1)等差数列证明方法:1nn a a d 或112n n n a a a ;(2)等比数列的证明方法:)0(1≠=-q q a a n n 或112+-=n n n a a a . 2. 等差数列的通项公式:d n a an)1(1-+=,d m n a a m n )(-+=)1(11≠--=n n a a d n 或mn a a d m n --=.3. 等差数列的前项和公式(由倒序相加法推得):2)(1n n a a n s +=,d n n na sn2)1(1-+=. 4.数列n a 是等差数列na pn q (,p q 为常数)3.数列na 是等差数列2nS an bn (,a b 为常数)6.等差数列{}na 的任意连续m项的和构成的数列232,,,m m m m m S S S S S --仍为等差数列.7.等差数列{}na 中,若m n p q +=+,则q p n ma a a a +=+8.等比数列的通项公式:11-=n nq a am n m n q a a -=(m n >). 9.当1≠q 时:qq a s n n --=1)1(1或qqa a s n n --=11当1=q 时:1na sn=(有关等比数列的求和问题,当不能确定“1≠q ”时,应分1,1≠=q q 来讨论). 10.等比数列{}na 中,若m n p q +=+,则mn p q aa a a ⋅=⋅11.等比数列{a n }的任意连续m 项的和构成的数列232,,,m m m m m S S S S S --仍为等比数列.12.两个等差数列{}na 与{}nb 的和差的数列{}nn a b ±仍为等差数列.13.两个等比数列{}na 与{}nb 的积、商、倒数的数列{}n nab ⋅、⎭⎬⎫⎩⎨⎧n n b a 、⎭⎬⎫⎩⎨⎧n b 1仍为等比数列. (二)主要方法:1.解决等差数列和等比数列的问题时,通常考虑两类方法:①基本量法:即运用条件转化为关于1a 和()d q 的方程;②巧妙运用等差数列和等比数列的性质,一般地运用性质可以化繁为简,减少运算量.2.深刻领会两类数列的性质,弄清通项和前n 项和公式的内在联系是解题的关键.1.【2017安徽阜阳二模】等比数列{}n a 中, 132410,30a a a a +=+=,则数列{}n a 前项和5S = ( )A . 81B . 90C . 100D . 121【答案】D2.【2017江西九江三模】已知数列{}n a 为等比数列,若2102,8a a ==,则6a =()A . 4±B . 4-C .D .【答案】C【解析】由题意可得:844106284,2,224a q q a a q a ==∴===⨯=.本题选择C 选项.3.【2017广西5月考前联考】已知等差数列{}n a 的前项和为nS ,8430S S =-≠,则412S S 的值为( )A .13-B . 112- C .112D .13【答案】B 【解析】因为844444216S S S d S d =++⨯=+,即4441632165d S S d S -=+⇒=-,所以12844192483485d S S S d S d =++⨯=+=,则4121651519212Sd S d =-⨯=-,应选答案B .4.【2017江西九江三模】已知数列{}n a 的前项和为n S ,且满足111,2n n n a a a S +=⋅=,设213nn n a a b -=,则数列{}n b 的前项和为__________. 【答案】113nn +-数列{}n b 的前n 项和为:0112112231113333333n n n n nn n T -++⎛⎫⎛⎫⎛⎫=-+-++-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.点睛:使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.5.【2017河北唐山三模】{}n a 是公差不为0的等差数列, {}n b 是公比为正数的等比数列, 111a b ==, 43a b =,84a b =,则数列{}n n a b 的前项和等于__________.【答案】()121n n -+所以12212nn n S n --=-⋅-,整理得: ()121n n S n =-⋅-. 方法点睛:用错位相减法求和时,要注意以下几个问题:(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“nS ”与“nqS ”的表达式时应特别注意将两式“错项对齐”,以便下一步准确写出“nn SqS -”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.6.【2017广东佛山二模】已知{}n a 是等差数列, {}n b 是各项均为正数的等比数列,且111b a==, 34b a =, 12334b b b a a ++=+.(Ⅰ)求数列{}n a , {}n b 的通项公式; (Ⅱ)设nn n ca b =,求数列{}n c 的前项和n T .【答案】(Ⅰ)nan =, 12n n b -=;(Ⅱ)()121n n T n =-⋅+.【解析】试题分析:(1)根据条件列出关于公差与公比的方程组,解方程组可得1d =, 2q =,再代入等差与等比数列通项公式,(2)利用错位相减法求和,注意相减时项的符号变化,中间部分利用等比数列求和时注意项数,最后要除以1q - 试题解析:(Ⅰ)设数列{}n a 的公差为d , {}n b 的公比为,依题意得2213{125d q q q d+=++=+解得1d =, 2q =,所以()11n a n n =+-=,11122n n n b --=⨯=点睛:用错位相减法求和应注意的问题(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“nS ”与“nqS ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“nn SqS -”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.7.【2017重庆二诊】已知等差数列{}n a 的前项和为nS ,49a =,315S =.(1)求nS ;(2)设数列1n S ⎧⎫⎨⎬⎩⎭的前项和为nT ,证明:34n T <. 【答案】(Ⅰ)()2n S n n =+; (Ⅱ)见解析.【解析】(1)由已知,根据等差数列的通项公式()11n a a n d =+-、前项公式()112nn n Sna d-=+,建立关于,a d 的方程,进行求解即可;(2)由(1)求出数列1n S ⎧⎫⎨⎬⎩⎭的通项公式,根据其表达式的特点,利用裂项求和的方法求出nT ,由数列极限,从而不等式可得证.试题解析:(Ⅰ)3223155S a a ==⇒=, 4222a a d -∴==, 21n a n ∴=+, ()32122n n S n n n ++=⋅=+; (Ⅱ)()111111111111132422324352nTn n n n ⎛⎫=+++=-+-+-++- ⎪⨯⨯++⎝⎭11113122+124n n ⎛⎫=+--< ⎪+⎝⎭.8.【2017安徽马鞍山二模】已知数列{}n a 是公差不为0的等差数列, 23a =,且3a , 5a , 8a 成等比数列.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设cos2nnn a ba π=,求数列{}nb 的前2017项和.【答案】(Ⅰ)1n a n =+(Ⅱ)1010.-【解析】试题分析:(Ⅰ)等差数列{}n a 的公差为d ,根据提议列出关于首项1a 和公差d 的方程组,解方程组即可得到结果;(Ⅱ) 根据数列{}n b 每相邻四项的和为常数,可得数列{}n b 的前2017项和.9.【2017河北唐山二模】数列{}n a 的前项和为nS ,()21n n n S a =-,且11a=.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)若nn bna =,求数列{}n b 的前项和n T .【答案】(Ⅰ)112n n a -⎛⎫= ⎪⎝⎭;(Ⅱ)1242nn n T-+=-. 【解析】试题分析:(Ⅰ)对已知等式()21nnn S a =-利用1n n nS S a --=化简整理得()1122n n a n a -=≥,进而可推断出数列{}n a 是一个以1为首项, 12为公比的等比数列,根据等比数列的通项公式求得答案;(Ⅱ)利用错位相减法求结果. 试题解析:(Ⅰ)由()21nnn S a =-,可得()11121n n n S a ---=-(2n ≥),两式相减,得()()1112121n n nn n n SS a a ----=---,()()112221nn n n a a ---=-,即()1122n n a n a -=≥, 故{}n a 是一个以1为首项, 12为公比的等比数列,所以112n n a -⎛⎫= ⎪⎝⎭.点睛:本题主要考查了等比数列的概念,以及数列的求和,属于高考中常考知识点,难度不大;常见的数列求和的方法有公式法即等差等比数列求和公式,分组求和类似于n n n c a b =+,其中{}n a 和{}nb 分别为特殊数列,裂项相消法类似于()11n a n n =+,错位相减法类似于n n n c a b =⋅,其中{}na 为等差数列,{}n b 为等比数列等.10.【2017福建三明5月质检】已知数列{}n a 的前项和为nS ,且22nn Sa =-.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设1nnn ba +=,求数列{}n b 前项和n T . 【答案】(I )2n n a =;(II )()1332nn T n ⎛⎫=-+ ⎪⎝⎭.试题解析:(Ⅰ) 22n n S a =-,当1n =时, 1122a a =-,则12a =, 当2n ≥时,22n n S a =-, 1122n n S a --=-,两式相减,得122nn n a a a -=-,所以12n n a a -=.所以{}n a 是以首项为2,公比为2的等比数列,所以2n na=.(Ⅱ)因为()11122nn n n b n +⎛⎫==+ ⎪⎝⎭,()23111123412222nn T n ⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯+++⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,()234111111234122222n n T n +⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯+++⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,两式相减,即得()123111111121222222n n n T n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯++++-+ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,11211112222n T ⎛⎫⎛⎫⎛⎫=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ()311111222nn n +⎛⎫⎛⎫⎛⎫++-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()1111221111122212nn n T n +⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦=+-+ ⎪⎝⎭-,()11111112222nn n T n +⎛⎫⎛⎫=+--+ ⎪ ⎪⎝⎭⎝⎭,所以()1332nn T n ⎛⎫=-+ ⎪⎝⎭.。

2015《数列》高考真题总结及答案

2015《数列》高考真题总结及答案

2015《数列》高考真题总结1.(2015·新课标I 卷13)在数列{a n }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和.若S n =126,则n =________.2.(2015·浙江卷10)已知{a n }是等差数列,公差d 不为零.若a 2,a 3,a 7成等比数列,且2a 1+a 2=1,则a 1=__________________,d =__________________.3.(2015·安徽卷13)已知数列{a n }中,a 1=1,a n =a n -1+12(n ≥2),则数列{a n }的前9项和等于________.4.(2015·新课标I 卷7)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 8=4S 4,则a 10=( ) A.172 B.192C .10 D .12 5.(2015·新课标Ⅱ卷5)设S n 是等差数列{a n }的前n 项和,若a 1+a 3+a 5=3,则S 5=( )A .5B .7C .9D .116.(2015·北京卷16)已知等差数列{a n }满足a 1+a 2=10,a 4-a 3=2.(1)求{a n }的通项公式;(2)设等比数列{b n }满足b 2=a 3,b 3=a 7,问:b 6与数列{a n }的第几项相等?7.(2015四川文科16)设数列{a n }的前n 项和S n 满足S n =2a n -a 1,且a 1,a 2+1,a 3成等差数列.(1)求数列{a n }的通项公式.(2)设数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为T n ,求T n .8.(2015·重庆卷16)已知等差数列{a n }满足a 3=2,前3项和S 3=92.(1)求{a n }的通项公式;(2)设等比数列{b n }满足b 1=a 1,b 4=a 15,求{b n }的前n 项和T n .9.(2015·浙江卷17)已知数列{a n }和{b n }满足a 1=2,b 1=1,a n +1=2a n (n∈N *),b 1+12b 2+13b 3+…+1n b n =b n +1-1(n ∈N *).(1)求a n 与b n ;(2)记数列{a n b n }的前n 项和为T n ,求T n .10.(2015·福建卷17)等差数列{a n }中,a 2=4,a 4+a 7=15.(1)求数列{a n }的通项公式;(2)设b n =2a n -2+n ,求b 1+b 2+b 3+…+b 10的值.11.(2015·安徽卷18)已知数列{a n }是递增的等比数列,且a 1+a 4=9,a 2a 3=8.(1)求数列{a n }的通项公式;(2)设S n 为数列{a n }的前n 项和,b n =a n +1S n S n +1,求数列{b n }的前n 项和T n .12.(2015·天津卷18)已知{a n }是各项均为正数的等比数列,{b n }是等差数列,且a 1=b 1=1,b 2+b 3=2a 3,a 5-3b 2=7.(1)求{a n }和{b n }的通项公式;(2)设c n =a n b n ,n ∈N *,求数列{c n }的前n 项和.13.(2015·广东卷19)设数列{a n }的前n 项和为S n ,n ∈N *.已知a 1=1,a 2=32,a 3=54,且当n ≥2时,4S n +2+5S n =8S n +1+S n -1.(1)求a 4的值;(2)证明:⎩⎨⎧⎭⎬⎫a n +1-12a n 为等比数列;(3)求数列{a n }的通项公式. 14.(2015·湖北卷19)设等差数列{a n }的公差为d ,前n 项和为S n ,等比数列{b n }的公比为q .已知b 1=a 1,b 2=2,q =d ,S 10=100.(1)求数列{a n },{b n }的通项公式;(2)当d >1时,记c n =a nb n,求数列{c n }的前n 项和T n .15.(2015·湖南卷19)设数列{a n }的前n 项和为S n .已知a 1=1,a 2=2,且a n +2=3S n -S n +1+3,n ∈N *.(1)证明:a n +2=3a n ; (2)求S n .16.(2015·山东卷19)已知数列{a n }是首项为正数的等差数列,数列{1a n ·a n +1}的前n 项和为n 2n +1. (1)求数列{a n }的通项公式; (2)设b n =(a n +1)·2a n ,求数列{b n }的前n 项和T n .17.(2015·新课标Ⅱ卷9)已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2=( )A .2B .1C.12D.182015《数列》高考真题答案1.【答案】6【解析】∵112,2n n a a a +==,∴数列{}n a是首项为2,公比为2的等比数列, ∴2(12)12612n n S -==-,∴264n=,∴n=6.2.【答案】2,13-【解析】由题可得,2111(2)()(6)a d a d a d +=++,故有1320a d +=,又因为1221a a +=,即131a d +=,所以121,3d a =-=.3.【答案】27【解析】∵2≥n 时,21,21121+=+=-a a a a n n 且 ∴{}1a a n是以为首项,21为公差的等差数列 ∴2718921289199=+=⨯⨯+⨯=S4.【答案】B 【解析】∵公差1d =,844S S =,∴11118874(443)22a a +⨯⨯=+⨯⨯,解得1a =12,∴1011199922a a d =+=+=,故选B.5.【答案】A6.【答案】(I )22n a n =+;(II )6b 与数列{}n a 的第63项相等.试题解析:(Ⅰ)设等差数列{}n a 的公差为d .因为432a a -=,所以2d =.又因为1210a a +=,所以1210a d +=,故14a =.所以42(1)22n a n n =+-=+(1,2,)n = .(Ⅱ)设等比数列{}n b 的公比为q .因为238b a ==,3716b a ==,所以2q =,14b =.所以61642128b -=⨯=.由12822n =+,得63n =.所以6b 与数列{}n a 的第63项相等.7.【解析】(Ⅰ) 由已知S n =2a n -a 1,有a n =S n -S n-1=2a n -2a n -1(n ≥2)即a n =2a n -1(n ≥2),从而a 2=2a 1,a 3=2a 2=4a 1,又因为a 1,a 2+1,a 3成等差数列 即a 1+a 3=2(a 2+1),所以a 1+4a 1=2(2a 1+1),解得a 1=2 所以,数列{a n }是首项为2,公比为2的等比数列。

专题10 等差数列与等比数列—三年高考(2015-2017)数学(文)真题分项版解析(原卷版)(打包下载)

专题10 等差数列与等比数列—三年高考(2015-2017)数学(文)真题分项版解析(原卷版)(打包下载)

专题10 等差数列与等比数列1.【2017浙江,6】已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6>2S 5”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件2.【2015高考新课标1,文7】已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a =( ) (A )172 (B )192(C )10 (D )12 3.【2014高考重庆文第2题】在等差数列{}n a 中,1352,10a a a =+=,则7a =( ) .5A .8B .10C .14D 4. 【2014天津,文5】设{}n a 是首项为1a ,公差为1-的等差数列,n S 为其前n 项和,若,,,421S S S 成等比数列,则1a =( )A.2B.-2C.21 D .12- 5. 【2014辽宁文9】设等差数列{}n a 的公差为d ,若数列1{2}n a a为递减数列,则( ) A .0d < B .0d > C .10a d < D .10a d >6. 【2015新课标2文5】设n S 是等差数列{}n a 的前n 项和,若1353a a a ++=,则5S =( ) A .5 B .7 C .9 D .117. 【2015新课标2文9】已知等比数列{}n a 满足114a =,()35441a a a =-,则2a =( )A.2B.11C.2 1D.88.【2014全国2,文5】等差数列{}n a 的公差是2,若248,,a a a 成等比数列,则{}n a 的前n 项和n S =( )A. (1)n n +B. (1)n n -C.(1)2n n + D. (1)2n n -9.【2015高考广东,文13】若三个正数a ,b ,c 成等比数列,其中5a =+5c =-,则b = .10. 【2014高考广东卷.文.13】等比数列{}n a 的各项均为正数,且154a a =, 则2122232425log log log log log a a a a a ++++= .11.【2015高考新课标1,文13】数列{}n a 中112,2,n n n a a a S +==为{}n a 的前n 项和,若126n S =,则n = .12.【2015高考浙江,文10】已知{}n a 是等差数列,公差d 不为零.若2a ,3a ,7a 成等比数列,且1221a a +=,则1a = ,d = .13. 【2015高考陕西,文13】中位数为1010的一组数构成等差数列,其末项为2015,则该数列的首项为________14.【2017江苏,9】等比数列{}n a 的各项均为实数,其前n 项的和为n S ,已知3676344S S ==,,则8a = .15.【2017课标1,文17】记S n 为等比数列{}n a 的前n 项和,已知S 2=2,S 3=-6.(1)求{}n a 的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列.16.【2017课标II ,文17】已知等差数列{}n a 的前n 项和为n S ,等比数列{}n b 的前n 项和为n T ,11221,1,2a b a b =-=+= (1)若335a b += ,求{}n b 的通项公式; (2)若321T =,求3S .17.【2015高考北京,文16】(本小题满分13分)已知等差数列{}n a 满足1210a a +=,432a a -=.(I )求{}n a 的通项公式;(II )设等比数列{}n b 满足23b a =,37b a =,问:6b 与数列{}n a 的第几项相等? 18. 【2015高考广东,文19】(本小题满分14分)设数列{}n a 的前n 项和为n S ,n *∈N .已知11a =,232a =,354a =,且当2n ≥ 时,211458n n n n S S S S ++-+=+. (1)求4a 的值; (2)证明:112n n a a +⎧⎫-⎨⎬⎩⎭为等比数列; (3)求数列{}n a 的通项公式.19.【2016高考新课标2文数】等差数列{n a }中,34574,6a a a a +=+=.(Ⅰ)求{n a }的通项公式;(Ⅱ) 设[]n n b a =,求数列{}n b 的前10项和,其中[]x 表示不超过x 的最大整数,如[0.9]=0,[2.6]=220.【2016高考北京文数】(本小题13分)已知}{n a 是等差数列,}{n b 是等差数列,且32=b ,93=b ,11b a =,414b a =. (1)求}{n a 的通项公式;(2)设n n n b a c +=,求数列}{n c 的前n 项和.21.【2015高考四川,文16】设数列{a n }(n =1,2,3…)的前n 项和S n 满足S n =2a n -a 3,且a 1,a 2+1,a 3成等差数列. (Ⅰ)求数列的通项公式; (Ⅱ)设数列1{}na 的前n 项和为T n ,求T n . 22.【2016高考四川文科】(本小题满分12分)已知数列{n a }的首项为1,n S 为数列{}n a 的前n 项和,11n n S qS +=+ ,其中q >0,*n N ∈ .(Ⅰ)若2323,,a a a a + 成等差数列,求{}n a 的通项公式;(Ⅱ)设双曲线2221n y x a -= 的离心率为n e ,且22e = ,求22212n e e e ++⋅⋅⋅+.23.【2015高考重庆,文16】已知等差数列{}n a 满足3a =2,前3项和3S =92. (Ⅰ)求{}n a 的通项公式,(Ⅱ)设等比数列{}n b 满足1b =1a ,4b =15a ,求{}n b 前n 项和n T .专题11 数列通项公式与求和1.【2016高考浙江文数】如图,点列{}{},n n A B 分别在某锐角的两边上,且*1122,,n n n n n n A A A A A A n ++++=≠∈N ,*1122,,n n n n n n B B B B B B n ++++=≠∈N .(P ≠Q 表示点P 与Q 不重合)若n n n d A B =,n S 为1n n n A B B +△的面积,则( )A.{}n S 是等差数列B.{}2n S 是等差数列 C.{}n d 是等差数列 D.{}2nd 是等差数列2.【2016高考上海文科】无穷数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和.若对任意*∈N n ,{}3,2∈n S ,则k 的最大值为________.3.【2014全国2,文16】数列}{n a 满足2,1181=-=+a a a nn ,则=1a ________.4. 【2014,安徽文12】如图,在等腰直角三角形ABC 中,斜边BC =过点A 作BC 的垂线,垂足为1A ;过点1A 作AC 的垂线,垂足为2A ;过点2A 作1AC 的垂线,垂足为3A ;…,以此类推,设1BA a =,12AA a =,123A A a =,…,567A A a =,则7a =________.5. 【2015高考安徽,文13】已知数列}{n a 中,11=a ,211+=-n n a a (2≥n ),则数列}{n a 的前9项和等于 .6. 【2015高考福建,文16】若,a b 是函数()()20,0f x x px q p q =-+>> 的两个不同的零点,且,,2a b - 这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q + 的值等于________.7.【2017课标3,文17】设数列{}n a 满足123(21)2n a a n a n +++-=.(1)求{}n a 的通项公式; (2)求数列21n a n ⎧⎫⎨⎬+⎩⎭的前n 项和.8.【2017山东,文19】(本小题满分12分)已知{a n }是各项均为正数的等比数列,且121236,a a a a a +==.(I)求数列{a n }通项公式;(II){b n }为各项非零的等差数列,其前n 项和S n ,已知211n n n S b b ++=,求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和n T .9.【2017天津,文18】已知{}n a 为等差数列,前n 项和为*()n S n ∈N ,{}n b 是首项为2的等比数列,且公比大于0,2334111412,2,11b b b a a S b +==-=.(Ⅰ)求{}n a 和{}n b 的通项公式; (Ⅱ)求数列2{}n n a b 的前n 项和*()n ∈N .10.【2017北京,文15】已知等差数列{}n a 和等比数列{}n b 满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5. (Ⅰ)求{}n a 的通项公式;(Ⅱ)求和:13521n b b b b -++++.11.【2017江苏,19】 对于给定的正整数k ,若数列{}n a 满足1111n k n knnn kn ka aa a aa--+-++-++++++++ 2n ka =对任意正整数()n n k >总成立,则称数列{}n a 是“()P k 数列”. (1)证明:等差数列{}n a 是“(3)P 数列”;(2)若数列{}n a 既是“(2)P 数列”,又是“(3)P 数列”,证明:{}n a 是等差数列.12【2016高考新课标1文数】(本题满分12分)已知{}n a 是公差为3的等差数列,数列{}n b 满足12111==3n n n n b b a b b nb +++=1,,,. (I )求{}n a 的通项公式; (II )求{}n b 的前n 项和.13.【2014高考广东卷.文.19】(本小题满分14分)设各项均为正数的数列{}n a 的前n 项和为n S ,且n S 满足()223n n S n n S -+--()230n n +=,n N *∈. (1)求1a 的值;(2)求数列{}n a 的通项公式;(3)证明:对一切正整数n ,有()()()112211111113n n a a a a a a +++<+++.14. [2016高考新课标Ⅲ文数]已知各项都为正数的数列{}n a 满足11a =,211(21)20n n n n a a a a ++---=.(I )求23,a a ;(II )求{}n a 的通项公式.15. 【2015高考湖南,文19】(本小题满分13分)设数列{}n a 的前n 项和为n S ,已知121,2a a ==,且13n n a S +=*13,()n S n N +-+∈,(I)证明:23n na a +=;(II )求n S 。

高三理科数学高考真题三年(2015-2017年)考点分类汇编:专题13数列小题

高三理科数学高考真题三年(2015-2017年)考点分类汇编:专题13数列小题

专题13数列小题一、选择题1.【等差数列及其运算】【2016,新课标1卷】已知等差数列{}n a 前9项的和为27,108a =,则100a =( ) A.100 B.99 C.98 D.97【答案】C2. 【等差数列的定义】【2016,浙江理数】如图,点列{A n },{B n }分别在某锐角的两边上,且1122,,n n n n n n A A A A A A n ++++=≠∈*N ,1122,,n n n n n n B B B B B B n ++++=≠∈*N ,(P Q P Q ≠表示点与不重合).若1n n n n n n n d A B S A B B +=,为△的面积,则( )A .{}n S 是等差数列B .2{}n S 是等差数列 C .{}n d 是等差数列D .2{}n d 是等差数列【答案】A3. 【等比数列的应用】【2016,四川理数】某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是( )(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg2≈0.30) A.2018年B.2019年C.2020年D.2021年【答案】B4. 【等差数列及作差比较法】【2015,北京,理6】设{}n a 是等差数列. 下列结论中正确的是( ) A .若120a a +>,则230a a +> B .若130a a +<,则120a a +<C .若120a a <<,则2a >D .若10a <,则()()21230a a a a -->【答案】C5. 【等差数列的通项公式及其前n 项和,等比数列的概念】【2015,浙江,理3】已知{}n a 是等差数列,公差d 不为零,前n 项和是n S ,若3a ,4a ,8a 成等比数列,则( )A.140,0a d dS >>B.140,0a d dS <<C.140,0a d dS ><D.140,0a d dS <>【答案】B.6. 【等差数列的通项公式与等差数列的性质】【2015,重庆,理2】在等差数列{}n a 中,若2a =4,4a =2,则6a =( )A.-1B.0C.1D.6【答案】B7. 【等差中项和等比中项】【2015,福建,理8】若,a b 是函数()()20,0f x x px q p q =-+>>的两个不同的零点,且,,2a b -这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q +的值等于( )A .6B .7C .8D .9【答案】D8. 【等比数列通项公式和性质】【2015,课标2理4】已知等比数列{}n a 满足a 1=3,135a a a ++ =21,则357a a a ++= ( )A .21B .42C .63D .84【答案】B 二、非选择题9. 【等比数列的定义,等比数列的前n 项和】【2016,浙江理数】设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则a 1=_______,S 5=____________.【答案】112110. 【等比数列及其应用】【2016,新课标1卷】设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2 …a n 的最大值为____________.【答案】6411. 【等差数列性质】【2016,江苏卷】已知{}n a 是等差数列,{S }n 是其前n 项和.若21253,S =10a a +=-,则9a 的值是 .【答案】2012. 【等差数列和递推关系】【2015,新课标2,理16】设n S 是数列{}n a 的前n 项和,且11a =-,11n n n a S S ++=,则n S =________.【答案】1n-13.【数列通项,裂项求和】【2015,江苏,11】数列}{n a 满足11=a ,且11+=-+n a a n n (*N n ∈),则数列}1{na 的前10项和为__________.【答案】201114. 【等差中项】【2015,陕西,理13】中位数1010的一组数构成等差数列,其末项为2015,则该数列的首项为______.【答案】515. 【等比数列的性质,等比数列的前n 项和公式】【2015,安徽,理14】已知数列{}n a 是递增的等比数列,14239,8a a a a +==,则数列{}n a 的前n 项和等于_________.【答案】21n-16. 【等差数列与等比数列的性质】【2015,湖南理14】设n S 为等比数列{}n a 的前n 项和,若11a =,且13S ,22S ,3S 成等差数列,则n a =________________.【答案】13-n .1. 【等差数列的基本量求解】【2017,课标1,理4】记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为( )A .1B .2C .4D .8【答案】C 【解析】秒杀解析:因为166346()3()482a a S a a +==+=,即3416a a +=,则4534()()24168a a a a +-+=-=,即5328a a d -==,解得4d =,故选C.【名师点睛】求解等差数列基本量问题时,要多多使用等差数列的性质,如{}n a 为等差数列,若m n p q +=+,则m n p q a a a a +=+.2. 【等差数列求和公式,等差数列基本量的计算】【2017,课标3,理9】等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为( ) A .24-B .3-C .3D . 8【答案】A 【解析】故选A.【名师点睛】(1)等差数列的通项公式及前n项和公式,共涉及五个量a1,a n,d,n,S n,知其中三个就能求另外两个,体现了用方程的思想解决问题.(2)数列的通项公式和前n项和公式在解题中起到变量代换作用,而a1和d是等差数列的两个基本量,用它们表示已知和未知是常用方法.3.【等比数列的应用,等比数列的求和公式】【2017,课标II,理3】我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏 B.3盏 C.5盏 D.9盏【答案】B【解析】试题分析:设塔的顶层共有灯x盏,则各层的灯数构成一个首项为x,公比为2的等比数列,结合等比数列的求和公式有:()71238112x⨯-=-,解得3x=,即塔的顶层共有灯3盏,故选B。

专题10 数列-三年(2022–2024)高考数学真题分类汇编(全国通用)(原卷版)

专题10 数列-三年(2022–2024)高考数学真题分类汇编(全国通用)(原卷版)

专题10数列考点三年考情(2022-2024)命题趋势考点1:等差数列基本量运算2023年全国Ⅰ卷、2024年全国Ⅱ卷2023年新课标全国Ⅰ卷数学真题2022年高考全国乙卷数学(文)真题2023年高考全国甲卷数学(文)真题2023年高考全国乙卷数学(理)真题2024年高考全国甲卷数学(文)真题2024年高考全国甲卷数学(理)真题2023年高考全国乙卷数学(文)真题高考对数列的考查相对稳定,考查内容、频率、题型、难度均变化不大.等差数列、等比数列以选填题的形式为主,数列通项问题与求和问题以解答题的形式为主,偶尔出现在选择填空题当中,常结合函数、不等式综合考查.考点2:等比数列基本量运算2023年全国Ⅱ卷、2023年天津卷2023年高考全国甲卷数学(理)真题2022年高考全国乙卷数学(理)真题2023年高考全国甲卷数学(文)真题2023年高考全国乙卷数学(理)真题考点3:数列的实际应用2024年北京高考数学真题2023年北京高考数学真题2022年新高考全国II卷数学真题2022年高考全国乙卷数学(理)真题考点4:数列的最值问题2022年高考全国甲卷数学(理)真题2022年新高考北京数学高考真题考点5:数列的递推问题(蛛网图问题)2024年高考全国甲卷数学(文)真题2024年新课标全国Ⅱ卷数学真题2022年新高考浙江数学高考真题2023年北京高考数学真题考点6:等差数列与等比数列的综合应用2022年新高考浙江数学高考真题2022年新高考全国II卷数学真题2024年北京高考数学真题考点7:数列新定义问题2022年新高考北京数学高考真题2024年上海夏季高考数学真题2023年北京卷、2024年北京卷考点8:数列通项与求和问题2024年高考全国甲卷数学(理)真题2024年天津高考数学真题2023年高考全国甲卷数学(理)真题2022年新高考天津数学高考真题考点9:数列不等式2023年天津高考数学真题2023年全国Ⅱ卷、2022年全国I卷考点1:等差数列基本量运算1.(2023年新课标全国Ⅰ卷数学真题)设等差数列{}n a 的公差为d ,且1d >.令2n nn nb a +=,记,n n S T 分别为数列{}{},n n a b 的前n 项和.(1)若2133333,21a a a S T =++=,求{}n a 的通项公式;(2)若{}n b 为等差数列,且999999S T -=,求d .2.(2022年高考全国乙卷数学(文)真题)记n S 为等差数列{}n a 的前n 项和.若32236S S =+,则公差d =.3.(2023年高考全国甲卷数学(文)真题)记n S 为等差数列{}n a 的前n 项和.若264810,45a a a a +==,则5S =()A .25B .22C .20D .154.(2023年高考全国乙卷数学(理)真题)已知等差数列{}n a 的公差为23π,集合{}*cos N n S a n =∈,若{},S a b =,则ab =()A .-1B .12-C .0D .125.(2024年高考全国甲卷数学(文)真题)已知等差数列{}n a 的前n 项和为n S ,若91S =,则37a a +=()A .2-B .73C .1D .296.(2024年高考全国甲卷数学(理)真题)记n S 为等差数列{}n a 的前n 项和,已知510S S =,51a =,则1a =()A .72B .73C .13-D .711-7.(2023年高考全国乙卷数学(文)真题)记n S 为等差数列{}n a 的前n 项和,已知21011,40a S ==.(1)求{}n a 的通项公式;(2)求数列{}n a 的前n 项和n T .8.(2024年新课标全国Ⅱ卷数学真题)记n S 为等差数列{}n a 的前n 项和,若347a a +=,2535a a +=,则10S =.9.(2023年新课标全国Ⅰ卷数学真题)记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:{}nS n为等差数列,则()A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件考点2:等比数列基本量运算10.(2023年新课标全国Ⅱ卷数学真题)记n S 为等比数列{}n a 的前n 项和,若45S =-,6221S S =,则8S =().A .120B .85C .85-D .120-11.(2023年高考全国甲卷数学(理)真题)设等比数列{}n a 的各项均为正数,前n 项和n S ,若11a =,5354S S =-,则4S =()A .158B .658C .15D .4012.(2023年天津高考数学真题)已知数列{}n a 的前n 项和为n S ,若()112,22N n n a a S n *+==+∈,则4a =()A .16B .32C .54D .16213.(2022年高考全国乙卷数学(理)真题)已知等比数列{}n a 的前3项和为168,2542a a -=,则6a =()A .14B .12C .6D .314.(2023年高考全国甲卷数学(文)真题)记n S 为等比数列{}n a 的前n 项和.若6387S S =,则{}n a 的公比为.15.(2023年高考全国乙卷数学(理)真题)已知{}n a 为等比数列,24536a a a a a =,9108a a =-,则7a =.考点3:数列的实际应用16.(2024年北京高考数学真题)汉代刘歆设计的“铜嘉量”是龠、合、升、斗、斛五量合一的标准量器,其中升量器、斗量器、斛量器的形状均可视为圆柱.若升、斗、斛量器的容积成公比为10的等比数列,底面直径依次为65mm,325mm,325mm ,且斛量器的高为230mm ,则斗量器的高为mm ,升量器的高为mm .17.(2023年北京高考数学真题)我国度量衡的发展有着悠久的历史,战国时期就已经出现了类似于砝码的、用来测量物体质量的“环权”.已知9枚环权的质量(单位:铢)从小到大构成项数为9的数列{}n a ,该数列的前3项成等差数列,后7项成等比数列,且1591,12,192a a a ===,则7a =;数列{}n a 所有项的和为.18.(2022年新高考全国II 卷数学真题)图1是中国古代建筑中的举架结构,,,,AA BB CC DD ''''是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图.其中1111,,,DD CC BB AA 是举,1111,,,OD DC CB BA 是相等的步,相邻桁的举步之比分别为11111231111,0.5,,DD CC BB AAk k k OD DC CB BA ====.已知123,,k k k 成公差为0.1的等差数列,且直线OA 的斜率为0.725,则3k =()A .0.75B .0.8C .0.85D .0.919.(2022年高考全国乙卷数学(理)真题)嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列{}n b :1111b α=+,212111b αα=++,31231111b ααα=+++,…,依此类推,其中(1,2,)k k α*∈=N .则()A .15b b <B .38b b <C .62b b <D .47b b <考点4:数列的最值问题20.(2022年高考全国甲卷数学(理)真题)记n S 为数列{}n a 的前n 项和.已知221nn S n a n+=+.(1)证明:{}n a 是等差数列;(2)若479,,a a a 成等比数列,求n S 的最小值.21.(2022年新高考北京数学高考真题)设{}n a 是公差不为0的无穷等差数列,则“{}n a 为递增数列”是“存在正整数0N ,当0n N >时,0n a >”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件考点5:数列的递推问题(蛛网图问题)22.(2024年高考全国甲卷数学(文)真题)已知等比数列{}n a 的前n 项和为n S ,且1233n n S a +=-.(1)求{}n a 的通项公式;(2)求数列{}n S 的前n 项和.23.(2024年新课标全国Ⅱ卷数学真题)已知双曲线()22:0C x y m m -=>,点()15,4P 在C 上,k 为常数,01k <<.按照如下方式依次构造点()2,3,...n P n =:过1n P -作斜率为k 的直线与C 的左支交于点1n Q -,令n P 为1n Q -关于y 轴的对称点,记n P 的坐标为(),n n x y .(1)若12k =,求22,x y ;(2)证明:数列{}n n x y -是公比为11kk+-的等比数列;(3)设n S 为12n n n P P P ++ 的面积,证明:对任意正整数n ,1n n S S +=.24.(2022年新高考浙江数学高考真题)已知数列{}n a 满足()21111,3n n n a a a a n *+==-∈N ,则()A .100521002a <<B .100510032a <<C .100731002a <<D .100710042a <<25.(2023年北京高考数学真题)已知数列{}n a 满足()31166(1,2,3,)4n n a a n +=-+= ,则()A .当13a =时,{}n a 为递减数列,且存在常数0M ≤,使得n a M >恒成立B .当15a =时,{}n a 为递增数列,且存在常数6M ≤,使得n a M <恒成立C .当17a =时,{}n a 为递减数列,且存在常数6M >,使得n a M >恒成立D .当19a =时,{}n a 为递增数列,且存在常数0M >,使得n a M <恒成立考点6:等差数列与等比数列的综合应用26.(2022年新高考浙江数学高考真题)已知等差数列{}n a 的首项11a =-,公差1d >.记{}n a 的前n 项和为()n S n *∈N .(1)若423260S a a -+=,求n S ;(2)若对于每个n *∈N ,存在实数n c ,使12,4,15n n n n n n a c a c a c +++++成等比数列,求d 的取值范围.27.(2022年新高考全国II 卷数学真题)已知{}n a 为等差数列,{}n b 是公比为2的等比数列,且223344a b a b b a -=-=-.(1)证明:11a b =;(2)求集合{}1,1500k m k b a a m =+≤≤中元素个数.28.(2024年北京高考数学真题)设{}n a 与{}n b 是两个不同的无穷数列,且都不是常数列.记集合{}*|,N k k M k a b k ==∈,给出下列4个结论:①若{}n a 与{}n b 均为等差数列,则M 中最多有1个元素;②若{}n a 与{}n b 均为等比数列,则M 中最多有2个元素;③若{}n a 为等差数列,{}n b 为等比数列,则M 中最多有3个元素;④若{}n a 为递增数列,{}n b 为递减数列,则M 中最多有1个元素.其中正确结论的序号是.考点7:数列新定义问题29.(2022年新高考北京数学高考真题)已知12:,,,k Q a a a 为有穷整数数列.给定正整数m ,若对任意的{1,2,,}n m ∈ ,在Q 中存在12,,,,(0)i i i i j a a a a j +++≥ ,使得12i i i i j a a a a n +++++++= ,则称Q 为m -连续可表数列.(1)判断:2,1,4Q 是否为5-连续可表数列?是否为6-连续可表数列?说明理由;(2)若12:,,,k Q a a a 为8-连续可表数列,求证:k 的最小值为4;(3)若12:,,,k Q a a a 为20-连续可表数列,且1220k a a a +++< ,求证:7k ≥.30.(2024年上海夏季高考数学真题)无穷等比数列{}n a 满足首项10,1a q >>,记[][]{}121,,,n n n I x y x y a a a a +=-∈⋃,若对任意正整数n 集合n I 是闭区间,则q 的取值范围是.31.(2024年新课标全国Ⅰ卷数学真题)设m 为正整数,数列1242,,...,m a a a +是公差不为0的等差数列,若从中删去两项i a 和()j a i j <后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列1242,,...,m a a a +是(),i j -可分数列.(1)写出所有的(),i j ,16i j ≤<≤,使数列126,,...,a a a 是(),i j -可分数列;(2)当3m ≥时,证明:数列1242,,...,m a a a +是()2,13-可分数列;(3)从1,2,...,42m +中一次任取两个数i 和()j i j <,记数列1242,,...,m a a a +是(),i j -可分数列的概率为m P ,证明:18m P >.32.(2023年北京高考数学真题)已知数列{}{},n n a b 的项数均为m (2)m >,且,{1,2,,},n n a b m ∈ {}{},n n a b 的前n 项和分别为,n n A B ,并规定000A B ==.对于{}0,1,2,,k m ∈ ,定义{}max ,{0,1,2,,}k i k r iB A i m =≤∈∣ ,其中,max M 表示数集M 中最大的数.(1)若1231232,1,3,1,3,3a a a b b b ======,求0123,,,r r r r 的值;(2)若11a b ≥,且112,1,2,,1,j j j r r r j m +-≤+=- ,求n r ;(3)证明:存在{},,,0,1,2,,p q s t m ∈ ,满足,,p q s t >>使得t p s q A B A B +=+.33.(2024年北京高考数学真题)已知集合(){}{}{}{}{},,,1,2,3,4,5,6,7,8,M i j k w i j k w i j k w =∈∈∈∈+++且为偶数.给定数列128:,,,A a a a ,和序列12:,,s T T T Ω ,其中()(),,,1,2,,t t t t t T i j k w M t s =∈= ,对数列A 进行如下变换:将A 的第1111,,,i j k w 项均加1,其余项不变,得到的数列记作()1T A ;将()1T A 的第2222,,,i j k w 项均加1,其余项不变,得到数列记作()21T T A ;……;以此类推,得到()21s T T T A ,简记为()A Ω.(1)给定数列:1,3,2,4,6,3,1,9A 和序列()()():1,3,5,7,2,4,6,8,1,3,5,7Ω,写出()A Ω;(2)是否存在序列Ω,使得()A Ω为123456782,6,4,2,8,2,4,4a a a a a a a a ++++++++,若存在,写出一个符合条件的Ω;若不存在,请说明理由;(3)若数列A 的各项均为正整数,且1357a a a a +++为偶数,求证:“存在序列Ω,使得()A Ω的各项都相等”的充要条件为“12345678a a a a a a a a +=+=+=+”.考点8:数列通项与求和问题34.(2024年高考全国甲卷数学(理)真题)记n S 为数列{}n a 的前n 项和,已知434n n S a =+.(1)求{}n a 的通项公式;(2)设1(1)n n n b na -=-,求数列{}n b 的前n 项和n T .35.(2024年天津高考数学真题)已知数列{}n a 是公比大于0的等比数列.其前n 项和为n S .若1231,1a S a ==-.(1)求数列{}n a 前n 项和n S ;(2)设11,2,kn n k k k n a b b k a n a -+=⎧=⎨+<<⎩,*k ∈N .(ⅰ)当12,k k n a +≥=时,求证:1n k n b a b -≥⋅;(ⅱ)求1nS i i b =∑.36.(2023年高考全国甲卷数学(理)真题)设n S 为数列{}n a 的前n 项和,已知21,2n n a S na ==.(1)求{}n a 的通项公式;(2)求数列12n n a +⎧⎫⎨⎬⎩⎭的前n 项和n T .37.(2022年新高考天津数学高考真题)设{}n a 是等差数列,{}n b 是等比数列,且1122331a b a b a b ==-=-=.(1)求{}n a 与{}n b 的通项公式;(2)设{}n a 的前n 项和为n S ,求证:()1111n n n n n n n S a b S b S b +++++=-;(3)求211(1)nk k k k k a a b +=⎡⎤--⎣⎦∑.考点9:数列不等式38.(2023年天津高考数学真题)已知{}n a 是等差数列,255316,4a a a a +=-=.(1)求{}n a 的通项公式和()1212N n n ii a n --*=∈∑.(2)设{}n b 是等比数列,且对任意的*N k ∈,当1221k k n -≤≤-时,则1k n k b a b +<<,(Ⅰ)当2k ≥时,求证:2121kk k b -<<+;(Ⅱ)求{}n b 的通项公式及前n 项和.39.(2023年新课标全国Ⅱ卷数学真题)已知{}n a 为等差数列,6,2,n n na nb a n -⎧=⎨⎩为奇数为偶数,记n S ,n T 分别为数列{}n a ,{}n b 的前n 项和,432S =,316T =.(1)求{}n a 的通项公式;(2)证明:当5n >时,n n T S >.40.(2022年新高考全国I 卷数学真题)记n S 为数列{}n a 的前n 项和,已知11,n n S a a ⎧⎫=⎨⎬⎩⎭是公差为13的等差数列.(1)求{}n a 的通项公式;(2)证明:121112na a a +++< .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.【2017浙江,6】已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6>2S 5”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【考点】 等差数列、充分必要性【名师点睛】本题考查等差数列的前n 项和公式,通过公式的套入与简单运算,可知4652S S S d +-=, 结合充分必要性的判断,若q p ⇒,则p 是q 的充分条件,若q p ⇐,则p 是q 的必要条件,该题“0>d ”⇔“02564>-+S S S ”,故为充要条件.2.【2015高考新课标1,文7】已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a =( )(A )172 (B )192(C )10 (D )12 【答案】B【解析】∵公差1d =,844S S =,∴11118874(443)22a a +⨯⨯=+⨯⨯,解得1a =12,∴1011199922a a d =+=+=,故选B. 【考点定位】等差数列通项公式及前n 项和公式【名师点睛】解等差数列问题关键在于熟记等差数列定义、性质、通项公式、前n 项和公式,利用方程思想和公式列出关于首项与公差的方程,解出首项与公差,利用等差数列性质可以简化计算.3.【2014高考重庆文第2题】在等差数列{}n a 中,1352,10a a a =+=,则7a =( ).5A .8B .10C .14D【答案】B【解析】试题分析:设等差数列{}n a的公差为d,由题设知,12610a d+=,所以,110216ad-==所以,716268a a d=+=+=.故选B.考点:等差数列通项公式.【名师点睛】本题考查了等差数列的概念与通项公式,本题属于基础题,利用下标和相等的两项的和相等更能快速作答.4.【2014天津,文5】设{}na是首项为1a,公差为1-的等差数列,n S为其前n项和,若,,,421SSS成等比数列,则1a=()A.2B.-2C.21D .12-【答案】D考点:等比数列【名师点睛】本题考查等差数列的通项公式和前n项和公式,本题属于基础题,利用等差数列的前n项和公式表示出,,,421SSS然后依据,,,421SSS成等比数列,列出方程求出首项.这类问题考查等差数列和等比数列的基本知识,大多利用通项公式和前n项和公式通过列方程或方程组就可以解出.5.【2014辽宁文9】设等差数列{}n a的公差为d,若数列1{2}n a a为递减数列,则()A.0d<B.0d>C.10a d<D.1a d>【答案】C【解析】试题分析:由已知得,11122n na a a a-<,即111212nna aa a-<,1n1(a)21na a--<,又n1ana d--=,故121a d<,从而10a d<,选C.【考点定位】1、等差数列的定义;2、数列的单调性.【名师点睛】本题考查等差数列的通项公式、数列的性质等,解答本题的关键,是写出等差数列的通项,利用1{2}n a a是递减数列,确定得到111212nna aa a-<,得到结论.本题是一道基础题.在考查等差数列等基础知识的同时,考查考生的计算能力.6.【2015新课标2文5】设n S是等差数列{}n a的前n项和,若1353a a a++=,则5S=()A.5B.7C.9D.11【答案】A【考点定位】本题主要考查等差数列的性质及前n项和公式的应用.【名师点睛】本题解答过程中用到了的等差数列的一个基本性质即等差中项的性质,利用此性质可得1532.a a a+=高考中数列客观题大多具有小、巧、活的特点,在解答时要注意数列相关性质的应用,尽量避免小题大做.7.【2015新课标2文9】已知等比数列{}n a满足114a=,()35441a a a=-,则2a=()A.2 B.11C.21D.8【答案】C【解析】试题分析:由题意可得()235444412a a a a a==-⇒=,所以34182aq qa==⇒=,故2112a a q==,选C.【考点定位】本题主要考查等比数列性质及基本运算.【名师点睛】解决本题的关键是利用等比数列性质211n n na a a-+=得到一个关于4a的一元二次方程,再通过解方程求4a的值,我们知道,等差、等比数列各有五个基本量,两组基本公式,而这两组公式可看作多元方程,利用这些方程可将等差、等比数列中的运算问题转化解关于基本量的方程(组),因此可以说数列中的绝大部分运算题可看作方程应用题,所以用方程思想解决数列问题是一种行之有效的方法.8.【2014全国2,文5】等差数列{}na的公差是2,若248,,a a a成等比数列,则{}n a的前n项和nS =( )A. (1)n n +B. (1)n n -C. (1)2n n +D. (1)2n n - 【答案】A【解析】由已知得,2428a a a =⋅,又因为{}n a 是公差为2的等差数列,故2222(2)(6)a d a a d +=⋅+,22(4)a +22(12)a a =⋅+,解得24a =,所以2(2)n a a n d =+-2n =,故1()(n 1)2n n n a a S n +==+.【考点定位】1.等差数列;2.等比数列.【名师点睛】本题主要考查了等差数列的通项公式,等比中项的概念,等差数列的前n 项和公式,本题属于基础题,解决本题的关健在于熟练掌握相应的公式.9.【2015高考广东,文13】若三个正数a ,b ,c 成等比数列,其中526a =+,526c =-,则b = . 【答案】1【考点定位】等比中项.【名师点晴】本题主要考查的是等比中项,属于容易题.解题时要抓住关键字眼“正数”,否则很容易出现错误.解本题需要掌握的知识点是等比中项的概念,即若a ,G ,b 成等比数列,则G 称为a 与b 的等比中项,即2G ab =. 10. 【2014高考广东卷.文.13】等比数列{}n a 的各项均为正数,且154a a =,则2122232425log log log log log a a a a a ++++= .【答案】5.【解析】由题意知21534a a a ==,且数列{}n a 的各项均为正数,所以32a =,()()()223512345152433352a a a a a a a a a a a a a ∴=⋅⋅=⋅==,()521222324252123452log log log log log log log 25a a a a a a a a a a ∴++++===.【考点定位】本题考查等比数列的基本性质与对数的基本运算,属于中等偏难题.【名师点晴】本题主要考查的是等比数列的性质和对数的基本运算,属于中等偏难题.解题时要抓住关键字眼“正数”,否则很容易出现错误.解本题需要掌握的知识点是等比数列的性质和对数的基本运算,即等比数列{}n a 中,若m n p q +=+(m 、n 、p 、q *∈N ),则m np q a a a a =,()log log log a a a MN =M +N (0a >,1a ≠,0M >,0N >).11.【2015高考新课标1,文13】数列{}n a 中112,2,n n n a a a S +==为{}n a 的前n 项和,若126n S =,则n = .【答案】6考点:等比数列定义与前n 项和公式【名师点睛】解等差数列问题关键在于熟记等比数列定义、性质、通项公式、前n 项和公式,利用方程思想和公式列出关于首项与公比的方程,解出首项与公比,利用等比数列性质可以简化计算.12.【2015高考浙江,文10】已知{}n a 是等差数列,公差d 不为零.若2a ,3a ,7a 成等比数列,且1221a a +=,则1a = , d = .【答案】2,13- 【解析】由题可得,2111(2)()(6)a d a d a d +=++,故有1320a d +=,又因为1221a a +=,即131a d+=,所以121,3d a =-=.【考点定位】1.等差数列的定义和通项公式;2.等比中项.【名师点睛】本题主要考查等差数列的定义和通项公式.主要考查学生利用等差数列的定义以及等比中项的性质,建立方程组求解数列的首项与公差.本题属于容易题,主要考查学生正确运算的能力.13. 【2015高考陕西,文13】中位数为1010的一组数构成等差数列,其末项为2015,则该数列的首项为________ 【答案】5【解析】若这组数有21n +个,则11010n a +=,212015n a +=,又12112n n a a a +++=,所以15a =;若这组数有2n 个,则1101022020n n a a ++=⨯=,22015n a =,又121n n n a a a a ++=+,所以15a =;故答案为5【考点定位】等差数列的性质.【名师点睛】1.本题考查等差数列的性质,这组数字有可能是偶数个,也有可能是奇数个.然后利用等差数列性质m n p q m n p q a a a a +=+⇒+=+.2.本题属于基础题,注意运算的准确性.14.【2017江苏,9】等比数列{}n a 的各项均为实数,其前n 项的和为n S ,已知3676344S S ==,,则8a = ▲ .【答案】32【考点】等比数列通项【名师点睛】在解决等差、等比数列的运算问题时,有两个处理思路,一是利用基本量,将多元问题简化为一元问题,虽有一定量的运算,但思路简洁,目标明确;二是利用等差、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形. 在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法.15.【2017课标1,文17】记S n 为等比数列{}n a 的前n 项和,已知S 2=2,S 3=-6.(1)求{}n a 的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列.【答案】(1)(2)nn a =-;(2)32)1(321+⋅-+=n n n S ,证明见解析.【解析】试题分析:(1)由等比数列通项公式解得2q =-,12a =-;(2)利用等差中项证明S n +1,S n ,S n +2成等差数列.试题解析:(1)设{}n a 的公比为q .由题设可得121(1)2(1)6a q a q q +=⎧⎨++=-⎩ ,解得2q =-,12a =-.故{}n a 的通项公式为(2)n na =-.(2)由(1)可得11(1)22()1331n n n n a q S q +-==--+-. 由于3212142222()2[()]2313313n n n n n n n n S S S +++++-+=--++=-=-, 故1n S +,n S ,2n S +成等差数列. 【考点】等比数列【名师点睛】等差、等比数列的性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形. 在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法.16.【2017课标II ,文17】已知等差数列{}n a 的前n 项和为n S ,等比数列{}n b 的前n 项和为n T ,11221,1,2a b a b =-=+= (1)若335a b += ,求{}n b 的通项公式;(2)若321T =,求3S .【答案】(Ⅰ);(Ⅱ)当时,.当时,.试题解析:(1)设的公差为d ,的公比为q ,则,.由得d+q=3. ①(1) 由得 ②联立①和②解得(舍去),因此的通项公式(2) 由得.解得当时,由①得,则. 当时,由①得,则.【考点】等差、等比数列通项与求和【名师点睛】在解决等差、等比数列的运算问题时,有两个处理思路,一是利用基本量,将多元问题简化为一元问题,虽有一定量的运算,但思路简洁,目标明确;二是利用等差、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形. 在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法. 17.【2015高考北京,文16】(本小题满分13分)已知等差数列{}n a 满足1210a a +=,432a a -=.(I )求{}n a 的通项公式;(II )设等比数列{}n b 满足23b a =,37b a =,问:6b 与数列{}n a 的第几项相等?【答案】(I )22na n =+;(II )6b 与数列{}n a 的第63项相等.试题解析:(Ⅰ)设等差数列{}n a 的公差为d .因为432a a -=,所以2d =.又因为1210a a +=,所以1210a d +=,故14a =.所以42(1)22na n n =+-=+ (1,2,)n =L .(Ⅱ)设等比数列{}n b 的公比为q .因为238b a ==,3716b a ==, 所以2q =,14b =. 所以61642128b -=⨯=.由12822n =+,得63n =. 所以6b 与数列{}n a 的第63项相等. 考点:等差数列、等比数列的通项公式.【名师点晴】本题主要考查的是等差数列的通项公式和等比数列的通项公式,属于中档题.本题通过求等差数列和等比数列的基本量,利用通项公式求解.解本题需要掌握的知识点是等差数列的通项公式和等比数列的通项公式,即等差数列的通项公式:()11n a a n d =+-,等比数列的通项公式:11n n a a q-=.18. 【2015高考广东,文19】(本小题满分14分)设数列{}n a 的前n 项和为n S ,n *∈N .已知11a =,232a =,354a =,且当2n ≥ 时,211458n n n n S S S S ++-+=+.(1)求4a 的值; (2)证明:112n n a a +⎧⎫-⎨⎬⎩⎭为等比数列; (3)求数列{}n a 的通项公式.【答案】(1)78;(2)证明见解析;(3)()11212n n a n -⎛⎫=-⨯ ⎪⎝⎭.再将数列112n n a a +⎧⎫-⎨⎬⎩⎭的通项公式转化为数列12n n a ⎧⎫⎪⎪⎪⎪⎨⎬⎛⎫⎪⎪⎪⎪⎪⎝⎭⎩⎭是等差数列,进而可得数列{}n a 的通项公式. 试题解析:(1)当2n =时,4231458S S S S +=+,即435335415181124224a ⎛⎫⎛⎫⎛⎫+++++=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得:478a =(2)因为211458n n n n S S S S ++-+=+(2n ≥),所以21114444n n n n n n S S S S S S ++-+-+-=-(2n ≥),即2144n n n a a a +++=(2n ≥),因为3125441644a a a +=⨯+==,所以2144n n n a a a +++=,因为()2121111111114242212142422222n n n n n n n n n n n n n n n n n a a a a a a a a a a a a a a a a a +++++++++++-----====----,所以数列112n n a a +⎧⎫-⎨⎬⎩⎭是以21112a a -=为首项,公比为12的等比数列(3)由(2)知:数列112n n a a +⎧⎫-⎨⎬⎩⎭是以21112a a -=为首项,公比为12的等比数列,所以111122n n n a a -+⎛⎫-= ⎪⎝⎭即1141122n n n na a ++-=⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,所以数列12n n a ⎧⎫⎪⎪⎪⎪⎨⎬⎛⎫⎪⎪⎪⎪⎪⎝⎭⎩⎭是以1212a =为首项,公差为4的等差数列,所以()2144212nna n n =+-⨯=-⎛⎫⎪⎝⎭,即()()111422122nn n a n n -⎛⎫⎛⎫=-⨯=-⨯ ⎪ ⎪⎝⎭⎝⎭,所以数列{}n a 的通项公式是()11212n n a n -⎛⎫=-⨯ ⎪⎝⎭考点:1、等比数列的定义;2、等比数列的通项公式;3、等差数列的通项公式.【名师点晴】本题主要考查的是等比数列的定义、等比数列的通项公式和等差数列的通项公式,属于难题.本题通过将n S 的递推关系式转化为n a 的递推关系式,利用等比数列的定义进行证明,进而可得通项公式,根据通项公式的特点构造成等差数列进行求解.解题时一定要注意关键条件“2n ≥”,否则很容易出现错误.解本题需要掌握的知识点是等比数列的定义、等比数列的通项公式和等差数列的通项公式,即等比数列的定义:1n na q a +=(常数),等比数列的通项公式:11n n a a q-=,等差数列的通项公式:()11n a a n d =+-.19.【2016高考新课标2文数】等差数列{n a }中,34574,6a a a a +=+=.(Ⅰ)求{n a }的通项公式;(Ⅱ) 设[]n n b a =,求数列{}n b 的前10项和,其中[]x 表示不超过x 的最大整数,如[0.9]=0,[2.6]=2. 【答案】(Ⅰ)235n n a +=;(Ⅱ)24. 【解析】试题分析:(Ⅰ) 题目已知数列{n a }是等差数列,根据通项公式列出关于1a ,d 的方程,解方程求得1a ,d ,从而求得n a ;(Ⅱ)根据条件[]x 表示不超过x 的最大整数,求n b ,需要对n =分类讨论,再求数列{}n b 的前10项和.当n =1,2,3时,2312,15n n b +≤<=; 当n =4,5时,2323,25n n b +≤<=;当n =6,7,8时,2334,35n n b +≤<=;当n =9,10时,2345,45n n b +≤<=,所以数列{}n b 的前10项和为1322334224⨯+⨯+⨯+⨯=. 考点:等差数列的性质 ,数列的求和. 【名师点睛】求解本题会出现以下错误:①对“[]x 表示不超过x 的最大整数”理解出错;20.【2016高考北京文数】(本小题13分)已知}{n a 是等差数列,}{n b 是等差数列,且32=b ,93=b ,11b a =,414b a =. (1)求}{n a 的通项公式;(2)设n n n b a c +=,求数列}{n c 的前n 项和.【答案】(1)21n a n =-(1n =,2,3,⋅⋅⋅);(2)2312-+n n【解析】试题分析:(Ⅰ)求出等比数列{}n b 的公比,求出11b a =,414b a =的值,根据等差数列的通项公式求解;(Ⅱ)根据等差数列和等比数列的前n 项和公式求数列}{n c 的前n 项和. 试题解析:(I )等比数列{}n b 的公比32933b q b ===,所以211b b q==,4327b b q ==. 设等差数列{}n a 的公差为d . 因为111a b ==,14427a b ==, 所以11327d +=,即2d =.所以21n a n =-(1n =,2,3,⋅⋅⋅).()11321133n n S n -=++⋅⋅⋅+-+++⋅⋅⋅+ ()12113213n n n +--=+-2312n n -=+.考点:等差、等比数列的通项公式和前n 项和公式,考查运算能力.【名师点睛】1.数列的通项公式及前n 项和公式都可以看作项数n 的函数,是函数思想在数列中的应用.数列以通项为纲,数列的问题,最终归结为对数列通项的研究,而数列的前n 项和S n 可视为数列{S n }的通项.通项及求和是数列中最基本也是最重要的问题之一;2.数列的综合问题涉及到的数学思想:函数与方程思想(如:求最值或基本量)、转化与化归思想(如:求和或应用)、特殊到一般思想(如:求通项公式)、分类讨论思想(如:等比数列求和,1=q 或1≠q )等.21.【2015高考四川,文16】设数列{a n }(n =1,2,3…)的前n 项和S n 满足S n =2a n -a 3,且a 1,a 2+1,a 3成等差数列. (Ⅰ)求数列的通项公式; (Ⅱ)设数列1{}na 的前n 项和为T n ,求T n . 【解析】(Ⅰ) 由已知S n =2a n -a 1,有a n =S n -S n -1=2a n -2a n -1(n ≥2)(Ⅱ)由(Ⅰ)得112n n a =所以T n =211[1()]111122 (11222212)n n n-+++==-- 【考点定位】本题考查等差数列与等比数列的概念、等比数列通项公式与前n 项和等基础知识,考查运算求解能力.【名师点睛】数列问题放在解答题第一题,通常就考查基本概念和基本运算,对于已知条件是S n 与a n 关系式的问题,基本处理方法是“变更序号作差”,这种方法中一定要注意首项a 1是否满足一般规律(代入检验即可,或者根据变换过程中n 的范围和递推关系中的表达式判断).数列求和时,一定要注意首项、公比和项数都不能出错.同时注意,对于较为简单的试题,解析步骤一定要详细具体,不可随意跳步.属于简单题. 22.【2016高考四川文科】(本小题满分12分)已知数列{n a }的首项为1,n S 为数列{}n a 的前n 项和,11n n S qS +=+ ,其中q >0,*n N ∈ .(Ⅰ)若2323,,a a a a + 成等差数列,求{}n a 的通项公式;(Ⅱ)设双曲线2221n y x a -= 的离心率为n e ,且22e = ,求22212n e e e ++⋅⋅⋅+.【答案】(Ⅰ)1=n n a q -;(Ⅱ)1(31)2n n +-.【解析】试题分析:(Ⅰ)已知n S 的递推式11n n S qS +=+,一般是写出当2n ≥时,11n n S qS -=+,两式相减,利用1n n n a S S -=-,得出数列{}n a 的递推式,从而证明{}n a 为等比数列,利用等比数列的通项公式得到结论;(Ⅱ)先利用双曲线的离心率定义得到ne的表达式,再由22e=解出q的值,最后利用等比数列的求和公式求解计算.由2323+a a a a,,成等差数列,可得32232=a a a a++,所以32=2,a a,故=2q.所以1*2()nna n-=?N.(Ⅱ)由(Ⅰ)可知,1nna q-=.所以双曲线2221nyxa-=的离心率22(1)11nn ne a q-=++.由2212e q=+解得3q=所以,22222(1)12222(1)2(11)(1+)[1]1[1]11(31).2nnnnne e e q qqn q q nqn--++鬃?=+++鬃?+-=+++鬃?=+-=+-,考点:数列的通项公式、双曲线的离心率、等比数列的求和公式23.【2015高考重庆,文16】已知等差数列{}n a满足3a=2,前3项和3S=92.(Ⅰ)求{}n a的通项公式,(Ⅱ)设等比数列{}n b满足1b=1a,4b=15a,求{}n b前n项和n T.【答案】(Ⅰ)+1=2nna,(Ⅱ)21nnT=-.【解析】试题分析:(Ⅰ)由已知及等差数列的通项公式和前n项和公式可得关于数列的首项a1和公式d的二元一次方程组,解此方程组可求得首项及公差的值,从而可写出此数列的通项公式,(Ⅱ)由(Ⅰ)的结果可求出b1和b4的值,进而就可求出等比数列的公比,再由等比数列的前n项和公式1(1)1nnb qTq-=-即可求得数列{}n b前n项和n T.试题解析: (1)设{}n a 的公差为d ,则由已知条件得(2)由(1)得141515+1=1==82b b a =,. 设{}n b 的公比为q,则341q 8b b ==,从而2q =. 故{}n b 的前n 项和1(1)1(12)21112n n n n b q T q -?===---.【考点定位】1. 等差数列,2. 等比数列.【名师点睛】本题考查等差数列及等比数列的概念、通项公式及前n 项的求和公式,利用方程组思想求解.本题属于基础题,注意运算的准确性.。

相关文档
最新文档