专题10 等差数列与等比数列—三年高考(2015-2017)数学(文)真题汇编

合集下载

近三年数列全国卷高考真题

近三年数列全国卷高考真题

2015-2017年全国卷数列真题1、(2015全国1卷17题)n S 为数列{n a }的前n 项和.已知n a >0,2n n a a +=43n S +.(Ⅰ)求{n a }的通项公式; (Ⅱ)设11n n n b a a +=,求数列{n b }的前n 项和。

2、(2015全国2卷4题)已知等比数列{}n a 满足a 1=3,135a a a ++ =21,则357a a a ++= ( )A .21B .42C .63D .843、(2015全国2卷16题)设n S 是数列{}n a 的前n 项和,且11a =-,11n n n a S S ++=,则n S =________.4、(2016全国1卷3题)已知等差数列{}n a 前9项的和为27,108a =,则100a = ( ) (A)100 (B )99 (C )98 (D)975、(2016全国2卷15题)设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2 …a n 的最大值为 .6、(2016全国2卷17题)n S 为等差数列{}n a 的前n 项和,且11a =,728S =.记[]lg n n b a =,其中[]x 表示不超过x 的最大整数,如[]0.90=,[]lg991=.(Ⅰ)求1b ,11b ,101b ;(Ⅱ)求数列{}n b 的前1000项和. 7、(2016全国3卷17题)已知数列{}n a 的前n 项和1n nS a λ=+,其中0λ≠.(I )证明{}n a 是等比数列,并求其通项公式;(II )若53132S =,求λ.8、(2017年国1卷4题)记n S 为等差数列{}n a 的前n 项和,若4562448a a S +==,,则{}n a 的公差为()A .1B .2C .4D .8 9、(2017年国1卷12题)几位大学生响应国家的创业号召,开发了一款应用软件,为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动,这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是02,接下来的两项是02,12,在接下来的三项式62,12,22,依次类推,求满足如下条件的最小整数N :100N >且该数列的前N 项和为2的整数幂.那么该款软件的激活码是( )A .440B .330C .220D .110 10、(2017全国2卷3题)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( ) A .1盏 B .3盏 C .5盏 D .9盏 11、(2017全国2卷15题)等差数列{}n a 的前n 项和为n S ,33a =,410S =,则11nk kS ==∑ . 12、(2017全国3卷9题)等差数列{}na 的首项为1,公差不为0.若2a ,3a ,6a 成等比数列,则{}n a 前6项的和为() A .24- B .3- C .3 D .813、(2017全国3卷14题)设等比数列{}n a 满足121a a +=-,133a a -=-,则4a =________.。

等差数列等比数列高考历年真题

等差数列等比数列高考历年真题

温馨提示:高考题库为Word 版,请按住Ctrl ,滑动鼠标滚轴,调节合适的观看比例,点击右上角的关闭按钮可返回目录。

【考点16】等差数列、等比数列2009年考题1.(2009安徽高考)已知{}n a 为等差数列,1a +3a +5a =105,246a a a ++=99,以n S 表示{}n a 的前n 项和,则使得n S 达到最大值的n 是( )(A )21 (B )20 (C )19 (D ) 18【解析】选B.由1a +3a +5a =105得33105,a =即335a =,由246a a a ++=99得4399a =即433a = ,∴2d =-,4(4)(2)412n a a n n =+-⨯-=-,由10n n a a +≥⎧⎨<⎩得20n =.2.(2009安徽高考)已知为等差数列,,则等于( )A. -1B. 1C. 3 D .7【解析】选B.∵135105a a a ++=即33105a =∴335a =同理可得433a =∴公差432d a a =-=-. ∴204(204)1a a d =+-⨯=.3.(2009福建高考)等差数列{}n a 的前n 项和为n S ,且3S =6,1a =4, 则公差d 等于( )A .1B 53C.- 2 D 3 【解析】选C.∵31336()2S a a ==+且3112 =4 d=-2a a d a =+∴.4.(2009海南宁夏高考)等差数列{}n a 的前n 项和为n S ,已知2110m m ma a a -++-=,2138m S -=,则m =( )(A )38 (B )20 (C )10 (D )9【解析】选C.因为{}n a 是等差数列,所以,112m m m a a a -++=,由2110m m ma a a -++-=,得:2m a -2m a =0,所以,m a =2,又2138m S -=,即2))(12(121-+-m a a m =38,即(2m -1)×2=38,解得m =10.5.(2009广东高考)已知等比数列{}n a 满足0,1,2,n a n >=,且25252(3)n n a a n -⋅=≥,则当1n ≥时,2123221log log log n a a a -+++= ( )w.w.w.k.s.5.u.c.o.mA. (21)n n -B. 2(1)n +C. 2nD. 2(1)n -【解析】选C.由25252(3)n n a a n -⋅=≥得n n a 222=,0>n a ,则n n a 2=, +⋅⋅⋅++3212log log a a2122)12(31log n n a n =-+⋅⋅⋅++=-.6.(2009广东高考)已知等比数列}{n a 的公比为正数,且3a ·9a =225a ,2a =1,则1a = ( )A. 21B.22C. 2D.2 【解析】选B.设公比为q ,由已知得()22824111a q a q q a q ⋅=,即22q =,因为等比数列}{n a 的公比为正数,所以2q =故21222a a q ===. 7.(2009辽宁高考)设等比数列{ n a }的前n 项和为n S ,若 63S S =3 ,则 69SS =( )(A ) 2 (B ) 73 (C ) 83(D )3【解析】选B.设公比为q ,则36333(1)S q S S S +==1+q 3=3 Þ q 3=2于是63693112471123S q q S q ++++===++. 8.(2009辽宁高考)已知{}n a 为等差数列,且7a -24a =-1, 3a =0,则公差d =( )(A )-2 (B )-12 (C )12(D )2【解析】选B. a 7-2a 4=a 3+4d -2(a 3+d)=2d =-1 Þ d =-12.9.(2009湖南高考)设n S 是等差数列{}n a 的前n 项和,已知23a =,611a =,则7S 等于( ).A .13B .35C .49D . 63 【解析】选C.172677()7()7(311)49.222a a a a S +++====故选C. 或由21161315112a a d a a a d d =+==⎧⎧⇒⎨⎨=+==⎩⎩, 716213.a =+⨯= 所以1777()7(113)49.22a a S ++=== 10.(2009四川高考)等差数列{n a }的公差不为零,首项1a =1,2a 是1a 和5a 的等比中项,则数列的前10项之和是( )A. 90B. 100C. 145D. 190【解析】选B.设公差为d ,则)41(1)1(2d d +⋅=+.∵d ≠0,解得d =2,∴10S =100.11.(2009辽宁高考)等差数列{}n a 的前n 项和为n S ,且53655,S S -=则4a = 【解析】∵S n =na 1+12n(n -1)d ∴S 5=5a 1+10d,S 3=3a 1+3d∴6S 5-5S 3=30a 1+60d -(15a 1+15d)=15a 1+45d =15(a 1+3d)=15a 4 答案:3112.(2009山东高考)在等差数列}{n a 中,6,7253+==a a a ,则____________6=a .【解析】设等差数列}{n a 的公差为d ,则由已知得⎩⎨⎧++=+=+6472111d a d a d a 解得132a d =⎧⎨=⎩,所以61513a a d =+=.答案:13.13.(2009海南宁夏高考)等比数列{n a }的公比0q >, 已知2a =1,216n n n a a a +++=,则{n a }的前4项和4S =【解析】由216n n n a a a +++=得:116-+=+n n n q q q ,即062=-+q q ,0q >,解得q =2,又2a =1,所以,112a =,21)21(2144--=S =152。

三年高考(2015-2017)高考数学试题解析13数列小题理

三年高考(2015-2017)高考数学试题解析13数列小题理

专题13数列小题1。

【2017课标1,理4】记nS 为等差数列{}na 的前项和.若4524a a +=,648S =,则{}na 的公差为A .1B .2C .4D .8 【答案】C 【解析】试题分析:设公差为d ,45111342724a a a d a d a d +=+++=+=,611656615482S ad a d ⨯=+=+=,联立112724,61548a d a d +=⎧⎨+=⎩解得4d =,故选C.秒杀解析:因为166346()3()482a a S a a +==+=,即3416aa +=,则4534()()24168a a a a +-+=-=,即5328a a d -==,解得4d =,故选C 。

【考点】等差数列的基本量求解【名师点睛】求解等差数列基本量问题时,要多多使用等差数列的性质,如{}na 为等差数列,若m np q +=+,则mnpqa a a a +=+。

2。

【2017课标3,理9】等差数列{}na 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}na 前6项的和为A .24-B .3-C .3D .8 【答案】A 【解析】故选A 。

【考点】等差数列求和公式;等差数列基本量的计算【名师点睛】(1)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.(2)数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a1和d是等差数列的两个基本量,用它们表示已知和未知是常用方法.3。

【2017课标II,理3】我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏B.3盏C.5盏D.9盏【答案】B【解析】试题分析:设塔的顶层共有灯x盏,则各层的灯数构成一个首项为x,公比为2的等比数列,结合等比数列的求和公式有:()712381 12x⨯-=-,解得3x=,即塔的顶层共有灯3盏,故选B。

等差数列和等比数列-2017年高考数学(文)母题题源系列(新课标2专版)含解析

等差数列和等比数列-2017年高考数学(文)母题题源系列(新课标2专版)含解析

【母题原题1】【2017全国Ⅱ,文17】已知等差数列{}n a 的前n 项和为n S ,等比数列{}n b 的前n 项和为n T ,11221,1,2a b a b =-=+=.(1)若335a b +=,求{}n b 的通项公式;(2)若321T=,求3S .【答案】(1)b n =2n−1;(2)当q =−5 时,S 3=21.当q =4时,S 3=−6.试题解析:设{a n }的公差为d ,{b n }的公比为q ,则a n =−1+(n −1)d ,b n =q n−1.由a 2+b 2=2得d +q =3.①(1)由a 3+b 3=5得2d +q 2=6.②联立①和②解得{d =3,q =0(舍去),{d =1,q =2.因此{b n }的通项公式为b n =2n−1. (2)由b 1=1,T 3=21得q 2+q −20=0. 解得q =−5,q =4.当q =−5时,由①得d =8,则S 3=21. 当q =4时,由①得d =−1,则S 3=−6.【考点】等差、等比数列通项与求和【名师点睛】在解决等差、等比数列的运算问题时,有两种处理思路:一是利用基本量,将多元问题简化为一元问题,虽有一定量的运算,但思路简洁,目标明确;二是利用等差、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形. 在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法. 【母题原题2】【2016全国Ⅱ,文17】等差数列{na }中,34574,6aa a a +=+=.(Ⅰ)求{na }的通项公式;(Ⅱ) 设[]nn ba =,求数列{}nb 的前10项和,其中[]x 表示不超过x的最大整数,如=0,=2. 【答案】(Ⅰ)235n n a +=;(Ⅱ)24. 【解析】试题分析:(Ⅰ) 根据等差数列的通项公式及已知条件求1a ,d,从而求得na ;(Ⅱ)由(Ⅰ)求nb ,再求数列{}n b 的前10项和.(Ⅱ)由(Ⅰ)知235nn b +⎡⎤=⎢⎥⎣⎦. 当n =1,2,3时,2312,15n n b +≤<=; 当n =4,5时,2323,25n n b +≤<=; 当n =6,7,8时,2334,35n n b +≤<=;当n=9,10时,2345,45n n b +≤<=. 所以数列{}n b 的前10项和为1322334224⨯+⨯+⨯+⨯=. 【考点】等差数列的通项公式,数列的求和【名师点睛】求解本题时常出现以下错误:对“[]x 表示不超过x 的最大整数”理解出错.【母题原题3】【2015全国Ⅱ,文5】设nS 是等差数列{}na 的前n项和,若1353a aa ++=,则5S =( )A .B .C .D .11 【答案】A【考点定位】本题主要考查等差数列的性质及前n 项和公式的应用.【名师点睛】本题解答过程中用到了的等差数列的一个基本性质即等差中项的性质,利用此性质可得1532.a aa +=高考中数列客观题大多具有小、巧、活的特点,在解答时要注意数列相关性质的应用,尽量避免小题大做.【2015全国Ⅱ,文9】已知等比数列{}na 满足114a=,()35441a a a =-,则2a =( )A.2B.11C.21D.8【答案】C 【解析】试题分析:由题意可得()235444412a a a a a ==-⇒=,所以34182a q q a ==⇒= ,故2112a a q ==,选C .【考点定位】本题主要考查等比数列性质及基本运算. 【名师点睛】解决本题的关键是利用等比数列性质211n n n aaa -+=得到一个关于4a 的一元二次方程,再通过解方程求4a 的值,我们知道,等差、等比数列各有五个基本量,两组基本公式,而这两组公式可看作多元方程,利用这些方程可将等差、等比数列中的运算问题转化解关于基本量的方程(组),因此可以说数列中的绝大部分运算题可看作方程应用题,所以用方程思想解决数列问题是一种行之有效的方法.【命题意图】考查特殊数列的通项及前n 项和或通项与前n 项和nS 间的递推关系,通过转化为等差数列或等比数列,考查数列运算及转化能力.【命题规律】由递推关系求数列通项公式或特定项问题,有时以小题形式来考,主要以考查,nna S 间的关系为主,通过转化为特殊数列求解;以解答题形式考查,会多步设问,通过提示或其他方式构造特殊数列求解.【答题模板】作答数列问题,一般四个步骤:1、判断所求解数列问题是否为等差等比数列问题;2、利用等差、等比数列通项公式及前n 项和公式列出等式或方程;3、利用等差、等比定义将非等差、等比数列经过变形、构造等方法转化为等差、等比数列问题;4、运用特殊方法求数列的前n 项和,如错位相减法,分组求和或裂项求和法等. 【方法总结】关于通项公式与前n 项和nS 间的递推关系问题,可以转化为项na 与1n a 的递推式,进而求na ;或者转化为nS 与1n S 的递推式,先求nS ,再求na ,其中转化关键为11,1,, 2.nn n S n aS S n -=⎧=⎨-≥⎩,通过转化为特殊数列或易求通项公式的递推式求解. (一)主要知识:有关等差、等比数列的结论 1.(1)等差数列证明方法:1nn a a d 或112n n n a a a ;(2)等比数列的证明方法:)0(1≠=-q q a a n n 或112+-=n n n a a a . 2. 等差数列的通项公式:d n a an)1(1-+=,d m n a a m n )(-+=)1(11≠--=n n a a d n 或mn a a d m n --=.3. 等差数列的前项和公式(由倒序相加法推得):2)(1n n a a n s +=,d n n na sn2)1(1-+=. 4.数列n a 是等差数列na pn q (,p q 为常数)3.数列na 是等差数列2nS an bn (,a b 为常数)6.等差数列{}na 的任意连续m项的和构成的数列232,,,m m m m m S S S S S --仍为等差数列.7.等差数列{}na 中,若m n p q +=+,则q p n ma a a a +=+8.等比数列的通项公式:11-=n nq a am n m n q a a -=(m n >). 9.当1≠q 时:qq a s n n --=1)1(1或qqa a s n n --=11当1=q 时:1na sn=(有关等比数列的求和问题,当不能确定“1≠q ”时,应分1,1≠=q q 来讨论). 10.等比数列{}na 中,若m n p q +=+,则mn p q aa a a ⋅=⋅11.等比数列{a n }的任意连续m 项的和构成的数列232,,,m m m m m S S S S S --仍为等比数列.12.两个等差数列{}na 与{}nb 的和差的数列{}nn a b ±仍为等差数列.13.两个等比数列{}na 与{}nb 的积、商、倒数的数列{}n nab ⋅、⎭⎬⎫⎩⎨⎧n n b a 、⎭⎬⎫⎩⎨⎧n b 1仍为等比数列. (二)主要方法:1.解决等差数列和等比数列的问题时,通常考虑两类方法:①基本量法:即运用条件转化为关于1a 和()d q 的方程;②巧妙运用等差数列和等比数列的性质,一般地运用性质可以化繁为简,减少运算量.2.深刻领会两类数列的性质,弄清通项和前n 项和公式的内在联系是解题的关键.1.【2017安徽阜阳二模】等比数列{}n a 中, 132410,30a a a a +=+=,则数列{}n a 前项和5S = ( )A . 81B . 90C . 100D . 121【答案】D2.【2017江西九江三模】已知数列{}n a 为等比数列,若2102,8a a ==,则6a =()A . 4±B . 4-C .D .【答案】C【解析】由题意可得:844106284,2,224a q q a a q a ==∴===⨯=.本题选择C 选项.3.【2017广西5月考前联考】已知等差数列{}n a 的前项和为nS ,8430S S =-≠,则412S S 的值为( )A .13-B . 112- C .112D .13【答案】B 【解析】因为844444216S S S d S d =++⨯=+,即4441632165d S S d S -=+⇒=-,所以12844192483485d S S S d S d =++⨯=+=,则4121651519212Sd S d =-⨯=-,应选答案B .4.【2017江西九江三模】已知数列{}n a 的前项和为n S ,且满足111,2n n n a a a S +=⋅=,设213nn n a a b -=,则数列{}n b 的前项和为__________. 【答案】113nn +-数列{}n b 的前n 项和为:0112112231113333333n n n n nn n T -++⎛⎫⎛⎫⎛⎫=-+-++-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.点睛:使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.5.【2017河北唐山三模】{}n a 是公差不为0的等差数列, {}n b 是公比为正数的等比数列, 111a b ==, 43a b =,84a b =,则数列{}n n a b 的前项和等于__________.【答案】()121n n -+所以12212nn n S n --=-⋅-,整理得: ()121n n S n =-⋅-. 方法点睛:用错位相减法求和时,要注意以下几个问题:(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“nS ”与“nqS ”的表达式时应特别注意将两式“错项对齐”,以便下一步准确写出“nn SqS -”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.6.【2017广东佛山二模】已知{}n a 是等差数列, {}n b 是各项均为正数的等比数列,且111b a==, 34b a =, 12334b b b a a ++=+.(Ⅰ)求数列{}n a , {}n b 的通项公式; (Ⅱ)设nn n ca b =,求数列{}n c 的前项和n T .【答案】(Ⅰ)nan =, 12n n b -=;(Ⅱ)()121n n T n =-⋅+.【解析】试题分析:(1)根据条件列出关于公差与公比的方程组,解方程组可得1d =, 2q =,再代入等差与等比数列通项公式,(2)利用错位相减法求和,注意相减时项的符号变化,中间部分利用等比数列求和时注意项数,最后要除以1q - 试题解析:(Ⅰ)设数列{}n a 的公差为d , {}n b 的公比为,依题意得2213{125d q q q d+=++=+解得1d =, 2q =,所以()11n a n n =+-=,11122n n n b --=⨯=点睛:用错位相减法求和应注意的问题(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“nS ”与“nqS ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“nn SqS -”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.7.【2017重庆二诊】已知等差数列{}n a 的前项和为nS ,49a =,315S =.(1)求nS ;(2)设数列1n S ⎧⎫⎨⎬⎩⎭的前项和为nT ,证明:34n T <. 【答案】(Ⅰ)()2n S n n =+; (Ⅱ)见解析.【解析】(1)由已知,根据等差数列的通项公式()11n a a n d =+-、前项公式()112nn n Sna d-=+,建立关于,a d 的方程,进行求解即可;(2)由(1)求出数列1n S ⎧⎫⎨⎬⎩⎭的通项公式,根据其表达式的特点,利用裂项求和的方法求出nT ,由数列极限,从而不等式可得证.试题解析:(Ⅰ)3223155S a a ==⇒=, 4222a a d -∴==, 21n a n ∴=+, ()32122n n S n n n ++=⋅=+; (Ⅱ)()111111111111132422324352nTn n n n ⎛⎫=+++=-+-+-++- ⎪⨯⨯++⎝⎭11113122+124n n ⎛⎫=+--< ⎪+⎝⎭.8.【2017安徽马鞍山二模】已知数列{}n a 是公差不为0的等差数列, 23a =,且3a , 5a , 8a 成等比数列.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设cos2nnn a ba π=,求数列{}nb 的前2017项和.【答案】(Ⅰ)1n a n =+(Ⅱ)1010.-【解析】试题分析:(Ⅰ)等差数列{}n a 的公差为d ,根据提议列出关于首项1a 和公差d 的方程组,解方程组即可得到结果;(Ⅱ) 根据数列{}n b 每相邻四项的和为常数,可得数列{}n b 的前2017项和.9.【2017河北唐山二模】数列{}n a 的前项和为nS ,()21n n n S a =-,且11a=.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)若nn bna =,求数列{}n b 的前项和n T .【答案】(Ⅰ)112n n a -⎛⎫= ⎪⎝⎭;(Ⅱ)1242nn n T-+=-. 【解析】试题分析:(Ⅰ)对已知等式()21nnn S a =-利用1n n nS S a --=化简整理得()1122n n a n a -=≥,进而可推断出数列{}n a 是一个以1为首项, 12为公比的等比数列,根据等比数列的通项公式求得答案;(Ⅱ)利用错位相减法求结果. 试题解析:(Ⅰ)由()21nnn S a =-,可得()11121n n n S a ---=-(2n ≥),两式相减,得()()1112121n n nn n n SS a a ----=---,()()112221nn n n a a ---=-,即()1122n n a n a -=≥, 故{}n a 是一个以1为首项, 12为公比的等比数列,所以112n n a -⎛⎫= ⎪⎝⎭.点睛:本题主要考查了等比数列的概念,以及数列的求和,属于高考中常考知识点,难度不大;常见的数列求和的方法有公式法即等差等比数列求和公式,分组求和类似于n n n c a b =+,其中{}n a 和{}nb 分别为特殊数列,裂项相消法类似于()11n a n n =+,错位相减法类似于n n n c a b =⋅,其中{}na 为等差数列,{}n b 为等比数列等.10.【2017福建三明5月质检】已知数列{}n a 的前项和为nS ,且22nn Sa =-.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设1nnn ba +=,求数列{}n b 前项和n T . 【答案】(I )2n n a =;(II )()1332nn T n ⎛⎫=-+ ⎪⎝⎭.试题解析:(Ⅰ) 22n n S a =-,当1n =时, 1122a a =-,则12a =, 当2n ≥时,22n n S a =-, 1122n n S a --=-,两式相减,得122nn n a a a -=-,所以12n n a a -=.所以{}n a 是以首项为2,公比为2的等比数列,所以2n na=.(Ⅱ)因为()11122nn n n b n +⎛⎫==+ ⎪⎝⎭,()23111123412222nn T n ⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯+++⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,()234111111234122222n n T n +⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯+++⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,两式相减,即得()123111111121222222n n n T n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯++++-+ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,11211112222n T ⎛⎫⎛⎫⎛⎫=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ()311111222nn n +⎛⎫⎛⎫⎛⎫++-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()1111221111122212nn n T n +⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦=+-+ ⎪⎝⎭-,()11111112222nn n T n +⎛⎫⎛⎫=+--+ ⎪ ⎪⎝⎭⎝⎭,所以()1332nn T n ⎛⎫=-+ ⎪⎝⎭.。

2015《数列》高考真题总结及答案

2015《数列》高考真题总结及答案

2015《数列》高考真题总结1.(2015·新课标I 卷13)在数列{a n }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和.若S n =126,则n =________.2.(2015·浙江卷10)已知{a n }是等差数列,公差d 不为零.若a 2,a 3,a 7成等比数列,且2a 1+a 2=1,则a 1=__________________,d =__________________.3.(2015·安徽卷13)已知数列{a n }中,a 1=1,a n =a n -1+12(n ≥2),则数列{a n }的前9项和等于________.4.(2015·新课标I 卷7)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 8=4S 4,则a 10=( ) A.172 B.192C .10 D .12 5.(2015·新课标Ⅱ卷5)设S n 是等差数列{a n }的前n 项和,若a 1+a 3+a 5=3,则S 5=( )A .5B .7C .9D .116.(2015·北京卷16)已知等差数列{a n }满足a 1+a 2=10,a 4-a 3=2.(1)求{a n }的通项公式;(2)设等比数列{b n }满足b 2=a 3,b 3=a 7,问:b 6与数列{a n }的第几项相等?7.(2015四川文科16)设数列{a n }的前n 项和S n 满足S n =2a n -a 1,且a 1,a 2+1,a 3成等差数列.(1)求数列{a n }的通项公式.(2)设数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为T n ,求T n .8.(2015·重庆卷16)已知等差数列{a n }满足a 3=2,前3项和S 3=92.(1)求{a n }的通项公式;(2)设等比数列{b n }满足b 1=a 1,b 4=a 15,求{b n }的前n 项和T n .9.(2015·浙江卷17)已知数列{a n }和{b n }满足a 1=2,b 1=1,a n +1=2a n (n∈N *),b 1+12b 2+13b 3+…+1n b n =b n +1-1(n ∈N *).(1)求a n 与b n ;(2)记数列{a n b n }的前n 项和为T n ,求T n .10.(2015·福建卷17)等差数列{a n }中,a 2=4,a 4+a 7=15.(1)求数列{a n }的通项公式;(2)设b n =2a n -2+n ,求b 1+b 2+b 3+…+b 10的值.11.(2015·安徽卷18)已知数列{a n }是递增的等比数列,且a 1+a 4=9,a 2a 3=8.(1)求数列{a n }的通项公式;(2)设S n 为数列{a n }的前n 项和,b n =a n +1S n S n +1,求数列{b n }的前n 项和T n .12.(2015·天津卷18)已知{a n }是各项均为正数的等比数列,{b n }是等差数列,且a 1=b 1=1,b 2+b 3=2a 3,a 5-3b 2=7.(1)求{a n }和{b n }的通项公式;(2)设c n =a n b n ,n ∈N *,求数列{c n }的前n 项和.13.(2015·广东卷19)设数列{a n }的前n 项和为S n ,n ∈N *.已知a 1=1,a 2=32,a 3=54,且当n ≥2时,4S n +2+5S n =8S n +1+S n -1.(1)求a 4的值;(2)证明:⎩⎨⎧⎭⎬⎫a n +1-12a n 为等比数列;(3)求数列{a n }的通项公式. 14.(2015·湖北卷19)设等差数列{a n }的公差为d ,前n 项和为S n ,等比数列{b n }的公比为q .已知b 1=a 1,b 2=2,q =d ,S 10=100.(1)求数列{a n },{b n }的通项公式;(2)当d >1时,记c n =a nb n,求数列{c n }的前n 项和T n .15.(2015·湖南卷19)设数列{a n }的前n 项和为S n .已知a 1=1,a 2=2,且a n +2=3S n -S n +1+3,n ∈N *.(1)证明:a n +2=3a n ; (2)求S n .16.(2015·山东卷19)已知数列{a n }是首项为正数的等差数列,数列{1a n ·a n +1}的前n 项和为n 2n +1. (1)求数列{a n }的通项公式; (2)设b n =(a n +1)·2a n ,求数列{b n }的前n 项和T n .17.(2015·新课标Ⅱ卷9)已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2=( )A .2B .1C.12D.182015《数列》高考真题答案1.【答案】6【解析】∵112,2n n a a a +==,∴数列{}n a是首项为2,公比为2的等比数列, ∴2(12)12612n n S -==-,∴264n=,∴n=6.2.【答案】2,13-【解析】由题可得,2111(2)()(6)a d a d a d +=++,故有1320a d +=,又因为1221a a +=,即131a d +=,所以121,3d a =-=.3.【答案】27【解析】∵2≥n 时,21,21121+=+=-a a a a n n 且 ∴{}1a a n是以为首项,21为公差的等差数列 ∴2718921289199=+=⨯⨯+⨯=S4.【答案】B 【解析】∵公差1d =,844S S =,∴11118874(443)22a a +⨯⨯=+⨯⨯,解得1a =12,∴1011199922a a d =+=+=,故选B.5.【答案】A6.【答案】(I )22n a n =+;(II )6b 与数列{}n a 的第63项相等.试题解析:(Ⅰ)设等差数列{}n a 的公差为d .因为432a a -=,所以2d =.又因为1210a a +=,所以1210a d +=,故14a =.所以42(1)22n a n n =+-=+(1,2,)n = .(Ⅱ)设等比数列{}n b 的公比为q .因为238b a ==,3716b a ==,所以2q =,14b =.所以61642128b -=⨯=.由12822n =+,得63n =.所以6b 与数列{}n a 的第63项相等.7.【解析】(Ⅰ) 由已知S n =2a n -a 1,有a n =S n -S n-1=2a n -2a n -1(n ≥2)即a n =2a n -1(n ≥2),从而a 2=2a 1,a 3=2a 2=4a 1,又因为a 1,a 2+1,a 3成等差数列 即a 1+a 3=2(a 2+1),所以a 1+4a 1=2(2a 1+1),解得a 1=2 所以,数列{a n }是首项为2,公比为2的等比数列。

专题10 等差数列与等比数列—三年高考(2015-2017)数学(文)真题分项版解析(原卷版)(打包下载)

专题10 等差数列与等比数列—三年高考(2015-2017)数学(文)真题分项版解析(原卷版)(打包下载)

专题10 等差数列与等比数列1.【2017浙江,6】已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6>2S 5”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件2.【2015高考新课标1,文7】已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a =( ) (A )172 (B )192(C )10 (D )12 3.【2014高考重庆文第2题】在等差数列{}n a 中,1352,10a a a =+=,则7a =( ) .5A .8B .10C .14D 4. 【2014天津,文5】设{}n a 是首项为1a ,公差为1-的等差数列,n S 为其前n 项和,若,,,421S S S 成等比数列,则1a =( )A.2B.-2C.21 D .12- 5. 【2014辽宁文9】设等差数列{}n a 的公差为d ,若数列1{2}n a a为递减数列,则( ) A .0d < B .0d > C .10a d < D .10a d >6. 【2015新课标2文5】设n S 是等差数列{}n a 的前n 项和,若1353a a a ++=,则5S =( ) A .5 B .7 C .9 D .117. 【2015新课标2文9】已知等比数列{}n a 满足114a =,()35441a a a =-,则2a =( )A.2B.11C.2 1D.88.【2014全国2,文5】等差数列{}n a 的公差是2,若248,,a a a 成等比数列,则{}n a 的前n 项和n S =( )A. (1)n n +B. (1)n n -C.(1)2n n + D. (1)2n n -9.【2015高考广东,文13】若三个正数a ,b ,c 成等比数列,其中5a =+5c =-,则b = .10. 【2014高考广东卷.文.13】等比数列{}n a 的各项均为正数,且154a a =, 则2122232425log log log log log a a a a a ++++= .11.【2015高考新课标1,文13】数列{}n a 中112,2,n n n a a a S +==为{}n a 的前n 项和,若126n S =,则n = .12.【2015高考浙江,文10】已知{}n a 是等差数列,公差d 不为零.若2a ,3a ,7a 成等比数列,且1221a a +=,则1a = ,d = .13. 【2015高考陕西,文13】中位数为1010的一组数构成等差数列,其末项为2015,则该数列的首项为________14.【2017江苏,9】等比数列{}n a 的各项均为实数,其前n 项的和为n S ,已知3676344S S ==,,则8a = .15.【2017课标1,文17】记S n 为等比数列{}n a 的前n 项和,已知S 2=2,S 3=-6.(1)求{}n a 的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列.16.【2017课标II ,文17】已知等差数列{}n a 的前n 项和为n S ,等比数列{}n b 的前n 项和为n T ,11221,1,2a b a b =-=+= (1)若335a b += ,求{}n b 的通项公式; (2)若321T =,求3S .17.【2015高考北京,文16】(本小题满分13分)已知等差数列{}n a 满足1210a a +=,432a a -=.(I )求{}n a 的通项公式;(II )设等比数列{}n b 满足23b a =,37b a =,问:6b 与数列{}n a 的第几项相等? 18. 【2015高考广东,文19】(本小题满分14分)设数列{}n a 的前n 项和为n S ,n *∈N .已知11a =,232a =,354a =,且当2n ≥ 时,211458n n n n S S S S ++-+=+. (1)求4a 的值; (2)证明:112n n a a +⎧⎫-⎨⎬⎩⎭为等比数列; (3)求数列{}n a 的通项公式.19.【2016高考新课标2文数】等差数列{n a }中,34574,6a a a a +=+=.(Ⅰ)求{n a }的通项公式;(Ⅱ) 设[]n n b a =,求数列{}n b 的前10项和,其中[]x 表示不超过x 的最大整数,如[0.9]=0,[2.6]=220.【2016高考北京文数】(本小题13分)已知}{n a 是等差数列,}{n b 是等差数列,且32=b ,93=b ,11b a =,414b a =. (1)求}{n a 的通项公式;(2)设n n n b a c +=,求数列}{n c 的前n 项和.21.【2015高考四川,文16】设数列{a n }(n =1,2,3…)的前n 项和S n 满足S n =2a n -a 3,且a 1,a 2+1,a 3成等差数列. (Ⅰ)求数列的通项公式; (Ⅱ)设数列1{}na 的前n 项和为T n ,求T n . 22.【2016高考四川文科】(本小题满分12分)已知数列{n a }的首项为1,n S 为数列{}n a 的前n 项和,11n n S qS +=+ ,其中q >0,*n N ∈ .(Ⅰ)若2323,,a a a a + 成等差数列,求{}n a 的通项公式;(Ⅱ)设双曲线2221n y x a -= 的离心率为n e ,且22e = ,求22212n e e e ++⋅⋅⋅+.23.【2015高考重庆,文16】已知等差数列{}n a 满足3a =2,前3项和3S =92. (Ⅰ)求{}n a 的通项公式,(Ⅱ)设等比数列{}n b 满足1b =1a ,4b =15a ,求{}n b 前n 项和n T .专题11 数列通项公式与求和1.【2016高考浙江文数】如图,点列{}{},n n A B 分别在某锐角的两边上,且*1122,,n n n n n n A A A A A A n ++++=≠∈N ,*1122,,n n n n n n B B B B B B n ++++=≠∈N .(P ≠Q 表示点P 与Q 不重合)若n n n d A B =,n S 为1n n n A B B +△的面积,则( )A.{}n S 是等差数列B.{}2n S 是等差数列 C.{}n d 是等差数列 D.{}2nd 是等差数列2.【2016高考上海文科】无穷数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和.若对任意*∈N n ,{}3,2∈n S ,则k 的最大值为________.3.【2014全国2,文16】数列}{n a 满足2,1181=-=+a a a nn ,则=1a ________.4. 【2014,安徽文12】如图,在等腰直角三角形ABC 中,斜边BC =过点A 作BC 的垂线,垂足为1A ;过点1A 作AC 的垂线,垂足为2A ;过点2A 作1AC 的垂线,垂足为3A ;…,以此类推,设1BA a =,12AA a =,123A A a =,…,567A A a =,则7a =________.5. 【2015高考安徽,文13】已知数列}{n a 中,11=a ,211+=-n n a a (2≥n ),则数列}{n a 的前9项和等于 .6. 【2015高考福建,文16】若,a b 是函数()()20,0f x x px q p q =-+>> 的两个不同的零点,且,,2a b - 这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q + 的值等于________.7.【2017课标3,文17】设数列{}n a 满足123(21)2n a a n a n +++-=.(1)求{}n a 的通项公式; (2)求数列21n a n ⎧⎫⎨⎬+⎩⎭的前n 项和.8.【2017山东,文19】(本小题满分12分)已知{a n }是各项均为正数的等比数列,且121236,a a a a a +==.(I)求数列{a n }通项公式;(II){b n }为各项非零的等差数列,其前n 项和S n ,已知211n n n S b b ++=,求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和n T .9.【2017天津,文18】已知{}n a 为等差数列,前n 项和为*()n S n ∈N ,{}n b 是首项为2的等比数列,且公比大于0,2334111412,2,11b b b a a S b +==-=.(Ⅰ)求{}n a 和{}n b 的通项公式; (Ⅱ)求数列2{}n n a b 的前n 项和*()n ∈N .10.【2017北京,文15】已知等差数列{}n a 和等比数列{}n b 满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5. (Ⅰ)求{}n a 的通项公式;(Ⅱ)求和:13521n b b b b -++++.11.【2017江苏,19】 对于给定的正整数k ,若数列{}n a 满足1111n k n knnn kn ka aa a aa--+-++-++++++++ 2n ka =对任意正整数()n n k >总成立,则称数列{}n a 是“()P k 数列”. (1)证明:等差数列{}n a 是“(3)P 数列”;(2)若数列{}n a 既是“(2)P 数列”,又是“(3)P 数列”,证明:{}n a 是等差数列.12【2016高考新课标1文数】(本题满分12分)已知{}n a 是公差为3的等差数列,数列{}n b 满足12111==3n n n n b b a b b nb +++=1,,,. (I )求{}n a 的通项公式; (II )求{}n b 的前n 项和.13.【2014高考广东卷.文.19】(本小题满分14分)设各项均为正数的数列{}n a 的前n 项和为n S ,且n S 满足()223n n S n n S -+--()230n n +=,n N *∈. (1)求1a 的值;(2)求数列{}n a 的通项公式;(3)证明:对一切正整数n ,有()()()112211111113n n a a a a a a +++<+++.14. [2016高考新课标Ⅲ文数]已知各项都为正数的数列{}n a 满足11a =,211(21)20n n n n a a a a ++---=.(I )求23,a a ;(II )求{}n a 的通项公式.15. 【2015高考湖南,文19】(本小题满分13分)设数列{}n a 的前n 项和为n S ,已知121,2a a ==,且13n n a S +=*13,()n S n N +-+∈,(I)证明:23n na a +=;(II )求n S 。

高三理科数学高考真题三年(2015-2017年)考点分类汇编:专题13数列小题

高三理科数学高考真题三年(2015-2017年)考点分类汇编:专题13数列小题

专题13数列小题一、选择题1.【等差数列及其运算】【2016,新课标1卷】已知等差数列{}n a 前9项的和为27,108a =,则100a =( ) A.100 B.99 C.98 D.97【答案】C2. 【等差数列的定义】【2016,浙江理数】如图,点列{A n },{B n }分别在某锐角的两边上,且1122,,n n n n n n A A A A A A n ++++=≠∈*N ,1122,,n n n n n n B B B B B B n ++++=≠∈*N ,(P Q P Q ≠表示点与不重合).若1n n n n n n n d A B S A B B +=,为△的面积,则( )A .{}n S 是等差数列B .2{}n S 是等差数列 C .{}n d 是等差数列D .2{}n d 是等差数列【答案】A3. 【等比数列的应用】【2016,四川理数】某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是( )(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg2≈0.30) A.2018年B.2019年C.2020年D.2021年【答案】B4. 【等差数列及作差比较法】【2015,北京,理6】设{}n a 是等差数列. 下列结论中正确的是( ) A .若120a a +>,则230a a +> B .若130a a +<,则120a a +<C .若120a a <<,则2a >D .若10a <,则()()21230a a a a -->【答案】C5. 【等差数列的通项公式及其前n 项和,等比数列的概念】【2015,浙江,理3】已知{}n a 是等差数列,公差d 不为零,前n 项和是n S ,若3a ,4a ,8a 成等比数列,则( )A.140,0a d dS >>B.140,0a d dS <<C.140,0a d dS ><D.140,0a d dS <>【答案】B.6. 【等差数列的通项公式与等差数列的性质】【2015,重庆,理2】在等差数列{}n a 中,若2a =4,4a =2,则6a =( )A.-1B.0C.1D.6【答案】B7. 【等差中项和等比中项】【2015,福建,理8】若,a b 是函数()()20,0f x x px q p q =-+>>的两个不同的零点,且,,2a b -这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q +的值等于( )A .6B .7C .8D .9【答案】D8. 【等比数列通项公式和性质】【2015,课标2理4】已知等比数列{}n a 满足a 1=3,135a a a ++ =21,则357a a a ++= ( )A .21B .42C .63D .84【答案】B 二、非选择题9. 【等比数列的定义,等比数列的前n 项和】【2016,浙江理数】设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则a 1=_______,S 5=____________.【答案】112110. 【等比数列及其应用】【2016,新课标1卷】设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2 …a n 的最大值为____________.【答案】6411. 【等差数列性质】【2016,江苏卷】已知{}n a 是等差数列,{S }n 是其前n 项和.若21253,S =10a a +=-,则9a 的值是 .【答案】2012. 【等差数列和递推关系】【2015,新课标2,理16】设n S 是数列{}n a 的前n 项和,且11a =-,11n n n a S S ++=,则n S =________.【答案】1n-13.【数列通项,裂项求和】【2015,江苏,11】数列}{n a 满足11=a ,且11+=-+n a a n n (*N n ∈),则数列}1{na 的前10项和为__________.【答案】201114. 【等差中项】【2015,陕西,理13】中位数1010的一组数构成等差数列,其末项为2015,则该数列的首项为______.【答案】515. 【等比数列的性质,等比数列的前n 项和公式】【2015,安徽,理14】已知数列{}n a 是递增的等比数列,14239,8a a a a +==,则数列{}n a 的前n 项和等于_________.【答案】21n-16. 【等差数列与等比数列的性质】【2015,湖南理14】设n S 为等比数列{}n a 的前n 项和,若11a =,且13S ,22S ,3S 成等差数列,则n a =________________.【答案】13-n .1. 【等差数列的基本量求解】【2017,课标1,理4】记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为( )A .1B .2C .4D .8【答案】C 【解析】秒杀解析:因为166346()3()482a a S a a +==+=,即3416a a +=,则4534()()24168a a a a +-+=-=,即5328a a d -==,解得4d =,故选C.【名师点睛】求解等差数列基本量问题时,要多多使用等差数列的性质,如{}n a 为等差数列,若m n p q +=+,则m n p q a a a a +=+.2. 【等差数列求和公式,等差数列基本量的计算】【2017,课标3,理9】等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为( ) A .24-B .3-C .3D . 8【答案】A 【解析】故选A.【名师点睛】(1)等差数列的通项公式及前n项和公式,共涉及五个量a1,a n,d,n,S n,知其中三个就能求另外两个,体现了用方程的思想解决问题.(2)数列的通项公式和前n项和公式在解题中起到变量代换作用,而a1和d是等差数列的两个基本量,用它们表示已知和未知是常用方法.3.【等比数列的应用,等比数列的求和公式】【2017,课标II,理3】我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏 B.3盏 C.5盏 D.9盏【答案】B【解析】试题分析:设塔的顶层共有灯x盏,则各层的灯数构成一个首项为x,公比为2的等比数列,结合等比数列的求和公式有:()71238112x⨯-=-,解得3x=,即塔的顶层共有灯3盏,故选B。

专题10 数列-三年(2022–2024)高考数学真题分类汇编(全国通用)(原卷版)

专题10 数列-三年(2022–2024)高考数学真题分类汇编(全国通用)(原卷版)

专题10数列考点三年考情(2022-2024)命题趋势考点1:等差数列基本量运算2023年全国Ⅰ卷、2024年全国Ⅱ卷2023年新课标全国Ⅰ卷数学真题2022年高考全国乙卷数学(文)真题2023年高考全国甲卷数学(文)真题2023年高考全国乙卷数学(理)真题2024年高考全国甲卷数学(文)真题2024年高考全国甲卷数学(理)真题2023年高考全国乙卷数学(文)真题高考对数列的考查相对稳定,考查内容、频率、题型、难度均变化不大.等差数列、等比数列以选填题的形式为主,数列通项问题与求和问题以解答题的形式为主,偶尔出现在选择填空题当中,常结合函数、不等式综合考查.考点2:等比数列基本量运算2023年全国Ⅱ卷、2023年天津卷2023年高考全国甲卷数学(理)真题2022年高考全国乙卷数学(理)真题2023年高考全国甲卷数学(文)真题2023年高考全国乙卷数学(理)真题考点3:数列的实际应用2024年北京高考数学真题2023年北京高考数学真题2022年新高考全国II卷数学真题2022年高考全国乙卷数学(理)真题考点4:数列的最值问题2022年高考全国甲卷数学(理)真题2022年新高考北京数学高考真题考点5:数列的递推问题(蛛网图问题)2024年高考全国甲卷数学(文)真题2024年新课标全国Ⅱ卷数学真题2022年新高考浙江数学高考真题2023年北京高考数学真题考点6:等差数列与等比数列的综合应用2022年新高考浙江数学高考真题2022年新高考全国II卷数学真题2024年北京高考数学真题考点7:数列新定义问题2022年新高考北京数学高考真题2024年上海夏季高考数学真题2023年北京卷、2024年北京卷考点8:数列通项与求和问题2024年高考全国甲卷数学(理)真题2024年天津高考数学真题2023年高考全国甲卷数学(理)真题2022年新高考天津数学高考真题考点9:数列不等式2023年天津高考数学真题2023年全国Ⅱ卷、2022年全国I卷考点1:等差数列基本量运算1.(2023年新课标全国Ⅰ卷数学真题)设等差数列{}n a 的公差为d ,且1d >.令2n nn nb a +=,记,n n S T 分别为数列{}{},n n a b 的前n 项和.(1)若2133333,21a a a S T =++=,求{}n a 的通项公式;(2)若{}n b 为等差数列,且999999S T -=,求d .2.(2022年高考全国乙卷数学(文)真题)记n S 为等差数列{}n a 的前n 项和.若32236S S =+,则公差d =.3.(2023年高考全国甲卷数学(文)真题)记n S 为等差数列{}n a 的前n 项和.若264810,45a a a a +==,则5S =()A .25B .22C .20D .154.(2023年高考全国乙卷数学(理)真题)已知等差数列{}n a 的公差为23π,集合{}*cos N n S a n =∈,若{},S a b =,则ab =()A .-1B .12-C .0D .125.(2024年高考全国甲卷数学(文)真题)已知等差数列{}n a 的前n 项和为n S ,若91S =,则37a a +=()A .2-B .73C .1D .296.(2024年高考全国甲卷数学(理)真题)记n S 为等差数列{}n a 的前n 项和,已知510S S =,51a =,则1a =()A .72B .73C .13-D .711-7.(2023年高考全国乙卷数学(文)真题)记n S 为等差数列{}n a 的前n 项和,已知21011,40a S ==.(1)求{}n a 的通项公式;(2)求数列{}n a 的前n 项和n T .8.(2024年新课标全国Ⅱ卷数学真题)记n S 为等差数列{}n a 的前n 项和,若347a a +=,2535a a +=,则10S =.9.(2023年新课标全国Ⅰ卷数学真题)记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:{}nS n为等差数列,则()A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件考点2:等比数列基本量运算10.(2023年新课标全国Ⅱ卷数学真题)记n S 为等比数列{}n a 的前n 项和,若45S =-,6221S S =,则8S =().A .120B .85C .85-D .120-11.(2023年高考全国甲卷数学(理)真题)设等比数列{}n a 的各项均为正数,前n 项和n S ,若11a =,5354S S =-,则4S =()A .158B .658C .15D .4012.(2023年天津高考数学真题)已知数列{}n a 的前n 项和为n S ,若()112,22N n n a a S n *+==+∈,则4a =()A .16B .32C .54D .16213.(2022年高考全国乙卷数学(理)真题)已知等比数列{}n a 的前3项和为168,2542a a -=,则6a =()A .14B .12C .6D .314.(2023年高考全国甲卷数学(文)真题)记n S 为等比数列{}n a 的前n 项和.若6387S S =,则{}n a 的公比为.15.(2023年高考全国乙卷数学(理)真题)已知{}n a 为等比数列,24536a a a a a =,9108a a =-,则7a =.考点3:数列的实际应用16.(2024年北京高考数学真题)汉代刘歆设计的“铜嘉量”是龠、合、升、斗、斛五量合一的标准量器,其中升量器、斗量器、斛量器的形状均可视为圆柱.若升、斗、斛量器的容积成公比为10的等比数列,底面直径依次为65mm,325mm,325mm ,且斛量器的高为230mm ,则斗量器的高为mm ,升量器的高为mm .17.(2023年北京高考数学真题)我国度量衡的发展有着悠久的历史,战国时期就已经出现了类似于砝码的、用来测量物体质量的“环权”.已知9枚环权的质量(单位:铢)从小到大构成项数为9的数列{}n a ,该数列的前3项成等差数列,后7项成等比数列,且1591,12,192a a a ===,则7a =;数列{}n a 所有项的和为.18.(2022年新高考全国II 卷数学真题)图1是中国古代建筑中的举架结构,,,,AA BB CC DD ''''是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图.其中1111,,,DD CC BB AA 是举,1111,,,OD DC CB BA 是相等的步,相邻桁的举步之比分别为11111231111,0.5,,DD CC BB AAk k k OD DC CB BA ====.已知123,,k k k 成公差为0.1的等差数列,且直线OA 的斜率为0.725,则3k =()A .0.75B .0.8C .0.85D .0.919.(2022年高考全国乙卷数学(理)真题)嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列{}n b :1111b α=+,212111b αα=++,31231111b ααα=+++,…,依此类推,其中(1,2,)k k α*∈=N .则()A .15b b <B .38b b <C .62b b <D .47b b <考点4:数列的最值问题20.(2022年高考全国甲卷数学(理)真题)记n S 为数列{}n a 的前n 项和.已知221nn S n a n+=+.(1)证明:{}n a 是等差数列;(2)若479,,a a a 成等比数列,求n S 的最小值.21.(2022年新高考北京数学高考真题)设{}n a 是公差不为0的无穷等差数列,则“{}n a 为递增数列”是“存在正整数0N ,当0n N >时,0n a >”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件考点5:数列的递推问题(蛛网图问题)22.(2024年高考全国甲卷数学(文)真题)已知等比数列{}n a 的前n 项和为n S ,且1233n n S a +=-.(1)求{}n a 的通项公式;(2)求数列{}n S 的前n 项和.23.(2024年新课标全国Ⅱ卷数学真题)已知双曲线()22:0C x y m m -=>,点()15,4P 在C 上,k 为常数,01k <<.按照如下方式依次构造点()2,3,...n P n =:过1n P -作斜率为k 的直线与C 的左支交于点1n Q -,令n P 为1n Q -关于y 轴的对称点,记n P 的坐标为(),n n x y .(1)若12k =,求22,x y ;(2)证明:数列{}n n x y -是公比为11kk+-的等比数列;(3)设n S 为12n n n P P P ++ 的面积,证明:对任意正整数n ,1n n S S +=.24.(2022年新高考浙江数学高考真题)已知数列{}n a 满足()21111,3n n n a a a a n *+==-∈N ,则()A .100521002a <<B .100510032a <<C .100731002a <<D .100710042a <<25.(2023年北京高考数学真题)已知数列{}n a 满足()31166(1,2,3,)4n n a a n +=-+= ,则()A .当13a =时,{}n a 为递减数列,且存在常数0M ≤,使得n a M >恒成立B .当15a =时,{}n a 为递增数列,且存在常数6M ≤,使得n a M <恒成立C .当17a =时,{}n a 为递减数列,且存在常数6M >,使得n a M >恒成立D .当19a =时,{}n a 为递增数列,且存在常数0M >,使得n a M <恒成立考点6:等差数列与等比数列的综合应用26.(2022年新高考浙江数学高考真题)已知等差数列{}n a 的首项11a =-,公差1d >.记{}n a 的前n 项和为()n S n *∈N .(1)若423260S a a -+=,求n S ;(2)若对于每个n *∈N ,存在实数n c ,使12,4,15n n n n n n a c a c a c +++++成等比数列,求d 的取值范围.27.(2022年新高考全国II 卷数学真题)已知{}n a 为等差数列,{}n b 是公比为2的等比数列,且223344a b a b b a -=-=-.(1)证明:11a b =;(2)求集合{}1,1500k m k b a a m =+≤≤中元素个数.28.(2024年北京高考数学真题)设{}n a 与{}n b 是两个不同的无穷数列,且都不是常数列.记集合{}*|,N k k M k a b k ==∈,给出下列4个结论:①若{}n a 与{}n b 均为等差数列,则M 中最多有1个元素;②若{}n a 与{}n b 均为等比数列,则M 中最多有2个元素;③若{}n a 为等差数列,{}n b 为等比数列,则M 中最多有3个元素;④若{}n a 为递增数列,{}n b 为递减数列,则M 中最多有1个元素.其中正确结论的序号是.考点7:数列新定义问题29.(2022年新高考北京数学高考真题)已知12:,,,k Q a a a 为有穷整数数列.给定正整数m ,若对任意的{1,2,,}n m ∈ ,在Q 中存在12,,,,(0)i i i i j a a a a j +++≥ ,使得12i i i i j a a a a n +++++++= ,则称Q 为m -连续可表数列.(1)判断:2,1,4Q 是否为5-连续可表数列?是否为6-连续可表数列?说明理由;(2)若12:,,,k Q a a a 为8-连续可表数列,求证:k 的最小值为4;(3)若12:,,,k Q a a a 为20-连续可表数列,且1220k a a a +++< ,求证:7k ≥.30.(2024年上海夏季高考数学真题)无穷等比数列{}n a 满足首项10,1a q >>,记[][]{}121,,,n n n I x y x y a a a a +=-∈⋃,若对任意正整数n 集合n I 是闭区间,则q 的取值范围是.31.(2024年新课标全国Ⅰ卷数学真题)设m 为正整数,数列1242,,...,m a a a +是公差不为0的等差数列,若从中删去两项i a 和()j a i j <后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列1242,,...,m a a a +是(),i j -可分数列.(1)写出所有的(),i j ,16i j ≤<≤,使数列126,,...,a a a 是(),i j -可分数列;(2)当3m ≥时,证明:数列1242,,...,m a a a +是()2,13-可分数列;(3)从1,2,...,42m +中一次任取两个数i 和()j i j <,记数列1242,,...,m a a a +是(),i j -可分数列的概率为m P ,证明:18m P >.32.(2023年北京高考数学真题)已知数列{}{},n n a b 的项数均为m (2)m >,且,{1,2,,},n n a b m ∈ {}{},n n a b 的前n 项和分别为,n n A B ,并规定000A B ==.对于{}0,1,2,,k m ∈ ,定义{}max ,{0,1,2,,}k i k r iB A i m =≤∈∣ ,其中,max M 表示数集M 中最大的数.(1)若1231232,1,3,1,3,3a a a b b b ======,求0123,,,r r r r 的值;(2)若11a b ≥,且112,1,2,,1,j j j r r r j m +-≤+=- ,求n r ;(3)证明:存在{},,,0,1,2,,p q s t m ∈ ,满足,,p q s t >>使得t p s q A B A B +=+.33.(2024年北京高考数学真题)已知集合(){}{}{}{}{},,,1,2,3,4,5,6,7,8,M i j k w i j k w i j k w =∈∈∈∈+++且为偶数.给定数列128:,,,A a a a ,和序列12:,,s T T T Ω ,其中()(),,,1,2,,t t t t t T i j k w M t s =∈= ,对数列A 进行如下变换:将A 的第1111,,,i j k w 项均加1,其余项不变,得到的数列记作()1T A ;将()1T A 的第2222,,,i j k w 项均加1,其余项不变,得到数列记作()21T T A ;……;以此类推,得到()21s T T T A ,简记为()A Ω.(1)给定数列:1,3,2,4,6,3,1,9A 和序列()()():1,3,5,7,2,4,6,8,1,3,5,7Ω,写出()A Ω;(2)是否存在序列Ω,使得()A Ω为123456782,6,4,2,8,2,4,4a a a a a a a a ++++++++,若存在,写出一个符合条件的Ω;若不存在,请说明理由;(3)若数列A 的各项均为正整数,且1357a a a a +++为偶数,求证:“存在序列Ω,使得()A Ω的各项都相等”的充要条件为“12345678a a a a a a a a +=+=+=+”.考点8:数列通项与求和问题34.(2024年高考全国甲卷数学(理)真题)记n S 为数列{}n a 的前n 项和,已知434n n S a =+.(1)求{}n a 的通项公式;(2)设1(1)n n n b na -=-,求数列{}n b 的前n 项和n T .35.(2024年天津高考数学真题)已知数列{}n a 是公比大于0的等比数列.其前n 项和为n S .若1231,1a S a ==-.(1)求数列{}n a 前n 项和n S ;(2)设11,2,kn n k k k n a b b k a n a -+=⎧=⎨+<<⎩,*k ∈N .(ⅰ)当12,k k n a +≥=时,求证:1n k n b a b -≥⋅;(ⅱ)求1nS i i b =∑.36.(2023年高考全国甲卷数学(理)真题)设n S 为数列{}n a 的前n 项和,已知21,2n n a S na ==.(1)求{}n a 的通项公式;(2)求数列12n n a +⎧⎫⎨⎬⎩⎭的前n 项和n T .37.(2022年新高考天津数学高考真题)设{}n a 是等差数列,{}n b 是等比数列,且1122331a b a b a b ==-=-=.(1)求{}n a 与{}n b 的通项公式;(2)设{}n a 的前n 项和为n S ,求证:()1111n n n n n n n S a b S b S b +++++=-;(3)求211(1)nk k k k k a a b +=⎡⎤--⎣⎦∑.考点9:数列不等式38.(2023年天津高考数学真题)已知{}n a 是等差数列,255316,4a a a a +=-=.(1)求{}n a 的通项公式和()1212N n n ii a n --*=∈∑.(2)设{}n b 是等比数列,且对任意的*N k ∈,当1221k k n -≤≤-时,则1k n k b a b +<<,(Ⅰ)当2k ≥时,求证:2121kk k b -<<+;(Ⅱ)求{}n b 的通项公式及前n 项和.39.(2023年新课标全国Ⅱ卷数学真题)已知{}n a 为等差数列,6,2,n n na nb a n -⎧=⎨⎩为奇数为偶数,记n S ,n T 分别为数列{}n a ,{}n b 的前n 项和,432S =,316T =.(1)求{}n a 的通项公式;(2)证明:当5n >时,n n T S >.40.(2022年新高考全国I 卷数学真题)记n S 为数列{}n a 的前n 项和,已知11,n n S a a ⎧⎫=⎨⎬⎩⎭是公差为13的等差数列.(1)求{}n a 的通项公式;(2)证明:121112na a a +++< .。

三年高考(2016-2018)数学(文)真题分类解析:专题13-等差与等比数列含答案

三年高考(2016-2018)数学(文)真题分类解析:专题13-等差与等比数列含答案

考纲解读明方向和公式;分析解读 1.理解等差数列的概念、等差数列的通项公式与前n项和公式.2.体会等差数列与一次函数的关系,掌握等差数列的一些基本性质.3.命题以求a n,S n为主,考查等差数列相关性质.4.本节内容在高考中主要考查数列定义、通项公式、前n项和公式及性质,分值约为5分,属中低档题.分析解读 1.理解等比数列的概念、掌握等比数列的通项公式和前n项和公式.2.体会等比数列与指数函数的关系.3.求通项公式、求前n项和及等比数列相关性质的应用是高考热点.2018年高考全景展示1.【2018年文北京卷】】“十二平均律” 是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率f,则第八个单音频率为A. B. C. D.【答案】D【解析】分析:根据等比数列的定义可知每一个单音的频率成等比数列,利用等比数列的相关性质可解.详解:因为每一个单音与前一个单音频率比为,所以,又,则,故选D.点睛:此题考查等比数列的实际应用,解决本题的关键是能够判断单音成等比数列. 等比数列的判断方法主要有如下两种:(1)定义法,若()或(),数列是等比数列;(2)等比中项公式法,若数列中,且(),则数列是等比数列.2.【2018年文北京卷】设是等差数列,且.(Ⅰ)求的通项公式;(Ⅱ)求.【答案】(I)(II)【解析】分析:(1)设公差为,根据题意可列关于的方程组,求解,代入通项公式可得;(2)由(1)可得,进而可利用等比数列求和公式进行求解.点睛:等差数列的通项公式及前项和共涉及五个基本量,知道其中三个可求另外两个,体现了用方程组解决问题的思想.3.【2018年全国卷Ⅲ文】等比数列中,.(1)求的通项公式;(2)记为的前项和.若,求.【答案】(1)或(2)【解析】分析:(1)列出方程,解出q可得;(2)求出前n项和,解方程可得m。

数列-三年(2017-2019)高考真题数学(文)专题

数列-三年(2017-2019)高考真题数学(文)专题

数列专题1.【2019年高考全国III 卷文数】已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a = A .16 B .8C .4D .22.【2019年高考浙江卷】设a ,b ∈R ,数列{a n }满足a 1=a ,a n +1=a n 2+b ,n *∈N ,则 A . 当101,102b a => B . 当101,104b a => C . 当102,10b a =-> D . 当104,10b a =->3.【2018年高考浙江卷】已知1234,,,a a a a 成等比数列,且1234123ln()a a a a a a a +++=++.若11a >,则 A .1324,a a a a << B .1324,a a a a >< C .1324,a a a a <>D .1324,a a a a >>4.【2018年高考北京卷文数】设a,b,c,d 是非零实数,则“ad=bc ”是“a,b,c,d 成等比数列”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件5.【2018年高考北京卷文数】“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于若第一个单音的频率为f ,则第八个单音的频率为A BC .D .6.【2017年高考浙江卷】已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6>2S 5”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件7.【2019年高考全国I 卷文数】记S n 为等比数列{a n }的前n 项和.若13314a S ==,,则S 4=___________.8.【2019年高考全国III 卷文数】记n S 为等差数列{}n a 的前n 项和,若375,13a a ==,则10S =___________.9.【2019年高考江苏卷】已知数列*{}()n a n ∈N 是等差数列,n S 是其前n 项和.若25890,27a a a S +==,则8S 的值是__________.10.【2018年高考江苏卷】已知集合*{|21,}A x x n n ==-∈N ,*{|2,}nB x x n ==∈N .将AB 的所有元素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为___________.11.【2017年高考江苏卷】等比数列{}n a 的各项均为实数,其前n 项和为n S ,已知3676344S S ==,,则8a =___________.12.【2019年高考全国I 卷文数】记S n 为等差数列{a n }的前n 项和,已知S 9=-a 5.(1)若a 3=4,求{a n }的通项公式;(2)若a 1>0,求使得S n ≥a n 的n 的取值范围.13.【2019年高考全国II 卷文数】已知{}n a 是各项均为正数的等比数列,1322,216a a a ==+.(1)求{}n a 的通项公式;(2)设2log n n b a =,求数列{}n b 的前n 项和.14.【2019年高考北京卷文数】设{a n }是等差数列,a 1=–10,且a 2+10,a 3+8,a 4+6成等比数列.(1)求{a n }的通项公式;(2)记{a n }的前n 项和为S n ,求S n 的最小值.15.【2019年高考天津卷文数】设{}n a 是等差数列,{}n b 是等比数列,公比大于0,已知1123323,,43a b b a b a ====+.(1)求{}n a 和{}n b 的通项公式;(2)设数列{}n c 满足21n n n c b n ⎧⎪=⎨⎪⎩,为奇数,,为偶数.求*112222()n n a c a c a c n +++∈N .16.【2019年高考江苏卷】定义首项为1且公比为正数的等比数列为“M-数列”.(1)已知等比数列{a n }()n *∈N 满足:245132,440a a a a a a =-+=,求证:数列{a n }为“M-数列”;(2)已知数列{b n }()n *∈N 满足:111221,n n n b S b b +==-,其中S n 为数列{b n }的前n 项和. ①求数列{b n }的通项公式;②设m 为正整数,若存在“M-数列”{c n }()n *∈N ,对任意正整数k ,当k ≤m 时,都有1k k k c b c +成立,求m 的最大值.17.【2019年高考浙江卷】设等差数列{}n a 的前n 项和为n S ,34a =,43a S =,数列{}n b 满足:对每个12,,,n n n n n n n S b S b S b *++∈+++N 成等比数列.(1)求数列{},{}n n a b 的通项公式; (2)记,n c n *=∈N证明:12+.n c c c n *++<∈N18.【2018年高考全国I 卷文数】已知数列{}n a 满足11a =,()121n n na n a +=+,设nn a b n=. (1)求123b b b ,,; (2)判断数列{}n b 是否为等比数列,并说明理由; (3)求{}n a 的通项公式.19.【2018年高考全国III 卷文数】等比数列{}n a 中,15314a a a ==,. (1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和.若63m S =,求m .20.【2018年高考全国II 卷文数】记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-. (1)求{}n a 的通项公式; (2)求n S ,并求n S 的最小值.21.【2018年高考北京卷文数】设{}n a 是等差数列,且123ln2,5ln2a a a =+=. (1)求{}n a 的通项公式; (2)求12e e e n a aa+++.22.【2018年高考天津卷文数】设{a n }是等差数列,其前n 项和为S n (n ∈N *);{b n }是等比数列,公比大于0,其前n 项和为T n (n ∈N *).已知b 1=1,b 3=b 2+2,b 4=a 3+a 5,b 5=a 4+2a 6. (1)求S n 和T n ;(2)若S n +(T 1+T 2+…+T n )=a n +4b n ,求正整数n 的值.23.【2018年高考浙江卷】已知等比数列{a n }的公比q >1,且a 3+a 4+a 5=28,a 4+2是a 3,a 5的等差中项.数列{b n }满足b 1=1,数列{(b n +1−b n )a n }的前n 项和为2n 2+n . (1)求q 的值;(2)求数列{b n }的通项公式.24.【2018年高考江苏卷】设{}n a 是首项为1a ,公差为d 的等差数列,{}n b 是首项为1b ,公比为q 的等比数列.(1)设110,1,2a b q ===,若1||n n a b b -≤对1,2,3,4n =均成立,求d 的取值范围;(2)若*110,,a b m q =>∈∈N ,证明:存在d ∈R ,使得1||n n a b b -≤对2,3,,1n m =+均成立,并求d 的取值范围(用1,,b m q 表示).25.【2017年高考全国I 卷文数】记S n 为等比数列{}n a 的前n 项和,已知S 2=2,S 3=−6.(1)求{}n a 的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列.26.【2017年高考全国II 卷文数】已知等差数列{}n a 的前n 项和为n S ,等比数列{}n b 的前n 项和为n T ,11221,1,2a b a b =-=+=.(1)若335a b +=,求{}n b 的通项公式; (2)若321T =,求3S .27.【2017年高考全国III 卷文数】设数列{}n a 满足123(21)2n a a n a n +++-=.(1)求{}n a 的通项公式; (2)求数列21n a n ⎧⎫⎨⎬+⎩⎭的前n 项和.28.【2017年高考北京卷文数】已知等差数列{}n a 和等比数列{}n b 满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5.(1)求{}n a 的通项公式; (2)求和:13521n b b b b -++++.29.【2017年高考山东卷文数】已知{}n a 是各项均为正数的等比数列,且121236,a a a a a +==. (1)求数列{}n a 的通项公式;(2){}n b 为各项非零的等差数列,其前n 项和S n ,已知211n n n S b b ++=,求数列{}nnb a 的前n 项和n T .30.【2017年高考天津卷文数】已知{}n a 为等差数列,前n 项和为*()n S n ∈N ,{}n b 是首项为2的等比数列,且公比大于0,2334111412,2,11b b b a a S b +==-=.(1)求{}n a 和{}n b 的通项公式;(2)求数列2{}n n a b 的前n 项和*()n ∈N .31.【2017年高考江苏卷】对于给定的正整数k ,若数列{}n a 满足:1111n k n k n n n k n k a a a a a a --+-++-++++++++2n ka =对任意正整数()n n k >总成立,则称数列{}n a 是“()P k 数列”.(1)证明:等差数列{}n a 是“(3)P 数列”;(2)若数列{}n a 既是“(2)P 数列”,又是“(3)P 数列”,证明:{}n a 是等差数列.32.【2017年高考浙江卷】已知数列{x n }满足:x 1=1,x n =x n +1+ln(1+x n +1)(n *∈N ).证明:当n *∈N 时, (1)0<x n +1<x n ;(2)2x n +1− x n ≤12n n x x +; (3)112n -≤x n ≤212n -.数列答案1.【2019年高考全国III 卷文数】已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a = A .16 B .8C .4D .2【答案】C【解析】设正数的等比数列{a n }的公比为q ,则231111421111534a a q a q a q a q a q a ⎧+++=⎨=+⎩, 解得11,2a q =⎧⎨=⎩,2314a a q ∴==,故选C .【名师点睛】本题利用方程思想求解数列的基本量,熟练应用公式是解题的关键. 2.【2019年高考浙江卷】设a ,b ∈R ,数列{a n }满足a 1=a ,a n +1=a n 2+b ,n *∈N ,则 A . 当101,102b a => B . 当101,104b a => C . 当102,10b a =-> D . 当104,10b a =->【答案】A【解析】①当b =0时,取a =0,则0,n a n *=∈N .②当<0b 时,令2x x b =+,即20x x b -+=.则该方程140b ∆=->,即必存在0x ,使得2000x x b -+=, 则一定存在10 ==a a x ,使得21n n n a a b a +=+=对任意n *∈N 成立,解方程20a a b -+=,得a =,10≤时,即90b -时,总存在a =,使得121010a a a ==⋯=≤, 故C 、D 两项均不正确.③当0b >时,221a a b b =+≥,则2232a a b b b =+≥+,()22243a a bbb b =+++.(ⅰ)当12b =时,22451111711,1222162a a ⎡⎤⎛⎫++=>>+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦≥,则26111112224a ⎛⎫>++=> ⎪⎝⎭,2719222a >+=, 28918310224a ⎛⎫>+=> ⎪⎝⎭ ,则2981102a a =+>, 21091102a a =+> , 故A 项正确.(ⅱ)当14b =时,令1==0a a ,则2231111,4442a a ⎛⎫==+< ⎪⎝⎭,所以224311114242a a ⎛⎫=+<+= ⎪⎝⎭,以此类推,所以2210911114242a a ⎛⎫=+<+= ⎪⎝⎭,故B 项不正确. 故本题正确答案为A.【名师点睛】遇到此类问题,不少考生会一筹莫展.利用函数方程思想,通过研究函数的不动点,进一步讨论a 的可能取值,利用“排除法”求解.3.【2018年高考浙江卷】已知1234,,,a a a a 成等比数列,且1234123ln()a a a a a a a +++=++.若11a >,则 A .1324,a a a a << B .1324,a a a a >< C .1324,a a a a <>D .1324,a a a a >>【答案】B【解析】令()ln 1,f x x x =--则()11f x x'=-,令()0,f x '=得1x =,所以当1x >时,()0f x '>,当01x <<时,()0f x '<,因此()()10,ln 1f x f x x ≥=∴≥+.若公比0q >,则()1234123123ln a a a a a a a a a a +++>++>++,不合题意; 若公比1q ≤-,则()()212341110,a a a a a q q +++=++≤但()()212311ln ln 1ln 0a a a a q q a ⎡⎤++=++>>⎣⎦,即()12341230ln a a a a a a a +++≤<++,不合题意; 因此()210,0,1q q -<<∈,22113224,0a a q a a a q a ∴>=<=<,故选B.【名师点睛】构造函数对不等式进行放缩,进而限制参数取值范围,是一个有效方法.如()2ln 1,e 1,e 10.x x x x x x x ≥+≥+≥+≥4.【2018年高考北京卷文数】设a,b,c,d 是非零实数,则“ad=bc ”是“a,b,c,d 成等比数列”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件【答案】B【解析】当14,1,1,4a b c d ====时,,,,a b c d 不成等比数列,所以不是充分条件;当,,,a b c d 成等比数列时,则ad bc =,所以是必要条件.综上所述,“ad bc =”是“,,,a b c d 成等比数列”的必要不充分条件,故选B.【名师点睛】证明“ad bc =”⇒“,,,a b c d 成等比数列”只需举出反例即可,论证“,,,a b c d 成等比数列”⇒“ad bc =”可利用等比数列的性质.5.【2018年高考北京卷文数】“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于若第一个单音的频率为f ,则第八个单音的频率为A BC .D .【答案】D【解析】因为每一个单音的频率与前一个单音的频率的比都为,所以()*12,n n a n n -=≥∈N,又1a f =,则7781a a q f ===,故选D.【名师点睛】此题考查等比数列的实际应用,解决本题的关键是能够判断单音成等比数列.等比数列的判断方法主要有如下两种:(1)定义法,若1n n a q a +=(*0,q n ≠∈N )或1nn a q a -=(*0,2,q n n ≠≥∈N ),数列{}n a 是等比数列;(2)等比中项公式法,若数列{}n a 中,0n a ≠且212n n n a a a --=⋅(*3,n n ≥∈N ),则数列{}n a 是等比数列.6.【2017年高考浙江卷】已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6>2S 5”的 A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】由46511210212(510)S S S a d a d d +-=+-+=,可知当0d >时,有46520S S S +->,即4652S S S +>,反之,若4652S S S +>,则0d >,所以“d >0”是“S 4 + S 6>2S 5”的充要条件,选C .【名师点睛】本题考查等差数列的前n 项和公式,通过套入公式与简单运算,可知4652S S S d +-=, 结合充分必要性的判断,若p q ⇒,则p 是q 的充分条件,若p q ⇐,则p 是q 的必要条件,该题“0d >”⇔“46520S S S +->”,故互为充要条件.7.【2019年高考全国I 卷文数】记S n 为等比数列{a n }的前n 项和.若13314a S ==,,则S 4=___________. 【答案】58【解析】设等比数列的公比为q ,由已知223111314S a a q a q q q =++=++=,即2104q q ++=. 解得12q =-,所以441411()(1)521181()2a q S q ---===---. 【名师点睛】准确计算,是解答此类问题的基本要求.本题由于涉及幂的乘方运算、繁分式的计算,部分考生易出现运算错误.一题多解:本题在求得数列的公比后,可利用已知计算3343431315()428S S a S a q =+=+=+-=,避免繁分式计算.8.【2019年高考全国III 卷文数】记n S 为等差数列{}n a 的前n 项和,若375,13a a ==,则10S =___________.【答案】100【解析】设等差数列{}n a 的公差为d ,根据题意可得317125,613a a d a a d =+=⎧⎨=+=⎩得11,2a d =⎧⎨=⎩ 101109109101012100.22S a d ⨯⨯∴=+=⨯+⨯= 【名师点睛】本题考点为等差数列的求和,为基础题目,利用基本量思想解题即可,充分记牢等差数列的求和公式是解题的关键.9.【2019年高考江苏卷】已知数列*{}()n a n ∈N 是等差数列,n S 是其前n 项和.若25890,27a a a S +==,则8S 的值是__________. 【答案】16【解析】由题意可得:()()()25811191470989272a a a a d a d a d S a d ⎧+=++++=⎪⎨⨯=+=⎪⎩, 解得:152a d =-⎧⎨=⎩,则8187840282162S a d ⨯=+=-+⨯=. 【名师点睛】等差数列、等比数列的基本计算问题,是高考必考内容,解题过程中要注意应用函数方程思想,灵活应用通项公式、求和公式等,构建方程(组),如本题,从已知出发,构建1a d ,的方程组. 10.【2018年高考江苏卷】已知集合*{|21,}A x x n n ==-∈N ,*{|2,}nB x x n ==∈N .将AB 的所有元素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为___________. 【答案】27【解析】所有的正奇数和()2n n *∈N 按照从小到大的顺序排列构成{}n a ,在数列|{}n a 中,25前面有16个正奇数,即5621382,2a a ==.当n =1时,1211224S a =<=,不符合题意;当n =2时,2331236S a =<=,不符合题意;当n =3时,3461248S a =<=,不符合题意;当n =4时,4510<12=60S a =,不符合题意;……;当n =26时,()2752621221(141)441625032121=2516S a ⨯-⨯+=+=+=<-,不符合题意;当n =27时,()8527221222(143)21484+62=546>12=5420S a⨯-⨯+=+=-,符合题意.故使得+1>12n n S a 成立的n 的最小值为27.【名师点睛】本题主要考查等差数列、等比数列的前n 项和,考查考生的运算求解能力,考查的核心素养是数学运算.11.【2017年高考江苏卷】等比数列{}n a 的各项均为实数,其前n 项和为n S ,已知3676344S S ==,,则8a =___________. 【答案】32【解析】当1q =时,显然不符合题意;当1q ≠时,3161(1)714(1)6314a q q a q q ⎧-=⎪-⎪⎨-⎪=⎪-⎩,解得1142a q ⎧=⎪⎨⎪=⎩,则7812324a =⨯=. 【名师点睛】在解决等差、等比数列的运算问题时,有两个处理思路:①利用基本量,将多元问题简化为一元问题,虽有一定量的运算,但思路简洁,目标明确;②利用等差、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质成立的前提条件,有时需要进行适当变形.在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法.12.【2019年高考全国I 卷文数】记S n 为等差数列{a n }的前n 项和,已知S 9=-a 5.(1)若a 3=4,求{a n }的通项公式;(2)若a 1>0,求使得S n ≥a n 的n 的取值范围.【答案】(1)210n a n =-+;(2)110()n n *≤≤∈N .【解析】(1)设{}n a 的公差为d . 由95S a =-得140a d +=. 由a 3=4得124a d +=. 于是18,2a d ==-.因此{}n a 的通项公式为102n a n =-.(2)由(1)得14a d =-,故(9)(5),2n n n n da n d S -=-=. 由10a >知0d <,故n n S a ≥等价于211100n n -+,解得1≤n ≤10. 所以n 的取值范围是{|110,}n n n *≤≤∈N .【名师点睛】该题考查的是有关数列的问题,涉及到的知识点有等差数列的通项公式,等差数列的求和公式,在解题的过程中,需要认真分析题意,熟练掌握基础知识是正确解题的关键.13.【2019年高考全国II 卷文数】已知{}n a 是各项均为正数的等比数列,1322,216a a a ==+.(1)求{}n a 的通项公式;(2)设2log n n b a =,求数列{}n b 的前n 项和.【答案】(1)212n n a -=;(2)2n S n =.【解析】(1)设{}n a 的公比为q ,由题设得22416q q =+,即2280q q --=.解得2q =-(舍去)或q =4.因此{}n a 的通项公式为121242n n n a --=⨯=.(2)由(1)得2(21)log 221n b n n =-=-, 因此数列{}n b 的前n 项和为21321n n +++-=.【名师点睛】本题考查数列的相关性质,主要考查等差数列以及等比数列的通项公式的求法,考查等差数列求和公式的使用,考查化归与转化思想,考查计算能力,是简单题.14.【2019年高考北京卷文数】设{a n }是等差数列,a 1=–10,且a 2+10,a 3+8,a 4+6成等比数列.(1)求{a n }的通项公式;(2)记{a n }的前n 项和为S n ,求S n 的最小值.【答案】(1)212n a n =-;(2)当5n =或者6n =时,n S 取到最小值30-.【解析】(1)设{}n a 的公差为d . 因为110a =-,所以23410,102,103a d a d a d =-+=-+=-+. 因为23410,8,6a a a +++成等比数列, 所以()()()23248106a a a +=++. 所以2(22)(43)d d d -+=-+. 解得2d =.所以1(1) 212n a a n d n =+-=-. (2)由(1)知,212n a n =-.所以,当7n ≥时,0n a >;当6n ≤时,0n a ≤. 所以,n S 的最小值为630S =-.【名师点睛】等差数列基本量的求解是等差数列中的一类基本问题,解决这类问题的关键在于熟练掌握等差数列的有关公式并能灵活运用.15.【2019年高考天津卷文数】设{}n a 是等差数列,{}n b 是等比数列,公比大于0,已知1123323,,43a b b a b a ====+.(1)求{}n a 和{}n b 的通项公式;(2)设数列{}n c 满足21n n n c b n ⎧⎪=⎨⎪⎩,为奇数,,为偶数.求*112222()n n a c a c a c n +++∈N .【答案】(1)3n a n =,3nn b =;(2)22(21)369()2n n n n +*-++∈N【解析】(1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .依题意,得2332,3154,q d q d =+⎧⎨=+⎩解得3,3,d q =⎧⎨=⎩故133(1)3,333n n n n a n n b -=+-==⨯=.所以,{}n a 的通项公式为3n a n =,{}n b 的通项公式为3nn b =.(2)112222n n a c a c a c +++()()135212142632n n n a a a a a b a b a b a b -=+++++++++123(1)36(6312318363)2n n n n n -⎡⎤=⨯+⨯+⨯+⨯+⨯++⨯⎢⎥⎣⎦()2123613233n n n =+⨯+⨯++⨯.记1213233n n T n =⨯+⨯++⨯,① 则231313233n n T n +=⨯+⨯++⨯,②②−①得,()12311313(21)332333331332n n n n nn n T n n +++--+=---⨯=-+⨯=--+-. 所以,122112222(21)3336332n n n n n a c a c a c n T n +-++++=+=+⨯()22(21)3692n n n n +*-++=∈N . 【名师点睛】本小题主要考查等差数列、等比数列的通项公式及前n 项和公式等基础知识,考查数列求和的基本方法和运算求解能力,属于中档题目.16.【2019年高考江苏卷】定义首项为1且公比为正数的等比数列为“M -数列”.(1)已知等比数列{a n }()n *∈N 满足:245132,440a a a a a a =-+=,求证:数列{a n }为“M -数列”;(2)已知数列{b n }()n *∈N 满足:111221,n n n b S b b +==-,其中S n 为数列{b n }的前n 项和. ①求数列{b n }的通项公式;②设m 为正整数,若存在“M -数列”{c n }()n *∈N ,对任意正整数k ,当k ≤m 时,都有1k k k c b c +成立,求m 的最大值.【答案】(1)见解析;(2)①b n =n ()*n ∈N ;②5.【解析】(1)设等比数列{a n }的公比为q ,所以a 1≠0,q ≠0.由245321440a a a a a a =⎧⎨-+=⎩,得244112111440a q a q a q a q a ⎧=⎨-+=⎩,解得112a q =⎧⎨=⎩.因此数列{}n a 为“M—数列”.(2)①因为1122n n n S b b +=-,所以0n b ≠. 由1111,b S b ==,得212211b =-,则22b =. 由1122n n n S b b +=-,得112()n n n n n b b S b b ++=-, 当2n ≥时,由1n n n b S S -=-,得()()111122n n n nn n n n n b b b b b b b b b +-+-=---,整理得112n n n b b b +-+=.所以数列{b n }是首项和公差均为1的等差数列. 因此,数列{b n }的通项公式为b n =n ()*n ∈N .②由①知,b k =k ,*k ∈N .因为数列{c n }为“M–数列”,设公比为q ,所以c 1=1,q >0. 因为c k ≤b k ≤c k +1,所以1k k q k q -≤≤,其中k =1,2,3,…,m .当k =1时,有q ≥1; 当k =2,3,…,m 时,有ln ln ln 1k kq k k ≤≤-. 设f (x )=ln (1)x x x >,则21ln ()xf 'x x-=. 令()0f 'x =,得x =e.列表如下:因为ln 2ln8ln 9ln 32663=<=,所以max ln 3()(3)3f k f ==. 取q =k =1,2,3,4,5时,ln ln kq k,即k k q ≤,经检验知1k qk -≤也成立.因此所求m 的最大值不小于5.若m ≥6,分别取k =3,6,得3≤q 3,且q 5≤6,从而q 15≥243,且q 15≤216, 所以q 不存在.因此所求m 的最大值小于6. 综上,所求m 的最大值为5.【名师点睛】本题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.17.【2019年高考浙江卷】设等差数列{}n a 的前n 项和为n S ,34a =,43a S =,数列{}n b 满足:对每个12,,,n n n n n n n S b S b S b *++∈+++N 成等比数列.(1)求数列{},{}n n a b 的通项公式; (2)记,n c n *=∈N证明:12+.n c c c n *++<∈N【答案】(1)()21n a n =-,()1n b n n =+;(2)证明见解析. 【解析】(1)设数列{}n a 的公差为d ,由题意得11124,333a d a d a d +=+=+,解得10,2a d ==.从而*22,n a n n =-∈N . 所以2*n S n n n =-∈N ,,由12,,n n n n n n S b S b S b +++++成等比数列得()()()212n n n n n n S b S b S b +++=++.解得()2121n n n n b S S S d++=-. 所以2*,n b n n n =+∈N .(2)*n c n ===∈N . 我们用数学归纳法证明.(i )当n =1时,c 1=0<2,不等式成立;(ii )假设()*n k k =∈N 时不等式成立,即12k c c c +++<.那么,当1n k =+时,121k k c c c c +++++<<<==.即当1n k =+时不等式也成立.根据(i )和(ii ),不等式12n c c c +++<对任意*n ∈N 成立.【名师点睛】本题主要考查等差数列、等比数列、数列求和、数学归纳法等基础知识,同时考查运算求解能力和综合应用能力.18.【2018年高考全国I 卷文数】已知数列{}n a 满足11a =,()121n n na n a +=+,设nn a b n=. (1)求123b b b ,,; (2)判断数列{}n b 是否为等比数列,并说明理由; (3)求{}n a 的通项公式.【答案】(1)b 1=1,b 2=2,b 3=4;(2)见解析;(3)a n =n ·2n -1. 【解析】(1)由条件可得a n +1=2(1)n n a n+. 将n =1代入得,a 2=4a 1,而a 1=1,所以,a 2=4. 将n =2代入得,a 3=3a 2,所以,a 3=12. 从而b 1=1,b 2=2,b 3=4.(2){b n }是首项为1,公比为2的等比数列. 由条件可得121n na a n n+=+,即b n +1=2b n , 又b 1=1,所以{b n }是首项为1,公比为2的等比数列. (3)由(2)可得12n na n-=, 所以a n =n ·2n -1. 【名师点睛】该题考查的是有关数列的问题,涉及到的知识点有根据数列的递推公式确定数列的项,根据不同数列的项之间的关系,确定新数列的项,利用递推关系整理得到相邻两项之间的关系确定数列是等比数列,根据等比数列通项公式求得数列{b n }的通项公式,借助于{b n }的通项公式求得数列{a n }的通项公式,从而求得最后的结果.19.【2018年高考全国III 卷文数】等比数列{}n a 中,15314a a a ==,. (1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和.若63m S =,求m . 【答案】(1)1(2)n n a -=-或12n n a -=;(2)6m =. 【解析】(1)设{}n a 的公比为q ,由题设得1n n a q -=. 由已知得424q q =,解得0q =(舍去),2q =-或2q =. 故1(2)n n a -=-或12n n a -=. (2)若1(2)n n a -=-,则1(2)3nn S --=.由63m S =得(2)188m -=-,此方程没有正整数解. 若12n n a -=,则21n n S =-. 由63m S =得264m =,解得6m =. 综上,6m =.【名师点睛】等差、等比数列中的基本量的求解,可利用通项公式及前n 项和公式建立1, a d (或q ),, ,n n n a S 五个基本量间的关系式,即“知三求二”.非等差、等比数列的求和常用三种方法:一是分组求和法,特征是原数列可以拆成几个等差或等比数列的和;二是裂项相消求和法,特征是通项是分式形式,如等差数列{}n a 的的公差是d ,则111111n n n n n b a a d a a ++⎛⎫==- ⎪⎝⎭;三是错位(项)相减求和法,特征是通项可以看成一个等差数列与一个等比数列对应项的积(或商).20.【2018年高考全国II 卷文数】记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-. (1)求{}n a 的通项公式; (2)求n S ,并求n S 的最小值.【答案】(1)a n =2n –9;(2)S n =n 2–8n ,最小值为–16. 【解析】(1)设{a n }的公差为d ,由题意得3a 1+3d =–15. 由a 1=–7得d =2.所以{a n }的通项公式为a n =2n –9. (2)由(1)得S n =n 2–8n =(n –4)2–16. 所以当n =4时,S n 取得最小值,最小值为–16.【名师点睛】数列是特殊的函数,研究数列最值问题,可利用函数性质,但要注意其定义域为正整数集这一限制条件.(1)根据等差数列前n 项和公式,求出公差,再代入等差数列通项公式得结果;(2)根据等差数列前n 项和公式得n S 关于n 的二次函数关系式,根据二次函数对称轴以及自变量为正整数求函数最值.21.【2018年高考北京卷文数】设{}n a 是等差数列,且123ln2,5ln2a a a =+=. (1)求{}n a 的通项公式; (2)求12e e e n a aa+++.【答案】(1)ln 2n a n =;(2)122n +-. 【解析】(1)设等差数列{}n a 的公差为d , ∵235ln2a a +=, ∴1235ln2a d +=, 又1ln2a =, ∴ln2d =.∴()11ln 2n a a n d n =+-=. (2)由(1)知ln2n a n =, ∵ln 2ln2e e e =2nn a n n ==, ∴{}ena 是以2为首项,2为公比的等比数列.∴212ln2ln2ln221e e e e e e =222=22nn a a a n n ++++=++++++-.∴12e e e n a a a +++1=22n +-.【名师点睛】等差数列的通项公式及前n 项和共涉及五个基本量1,,,,n n a a d n S ,知道其中三个可求另外两个,体现了用方程组解决问题的思想.(1)设公差为d ,根据题意可列关于1,a d 的方程组,求解1,a d ,代入通项公式可得;(2)由(1)可得e 2n a n =,进而可利用等比数列求和公式进行求解.22.【2018年高考天津卷文数】设{a n }是等差数列,其前n 项和为S n (n ∈N *);{b n }是等比数列,公比大于0,其前n 项和为T n (n ∈N *).已知b 1=1,b 3=b 2+2,b 4=a 3+a 5,b 5=a 4+2a 6. (1)求S n 和T n ;(2)若S n +(T 1+T 2+…+T n )=a n +4b n ,求正整数n 的值. 【答案】(1)(1)2n n n S +=,21nn T =-;(2)4. 【解析】(1)设等比数列{}n b 的公比为q ,由b 1=1,b 3=b 2+2,可得220q q --=.因为0q >,可得2q =,故12n n b -=.所以,122112nn n T -==--. 设等差数列{}n a 的公差为d .由435b a a =+,可得134a d +=.由5462b a a =+,可得131316,a d +=从而11,1a d ==,故n a n =, 所以,(1)2n n n S +=. (2)由(1),有131122(12)(222)=2 2.12n nn n T T T n n n +⨯-+++=+++--=---由12()4n n n n S T T T a b ++++=+可得11(1)2222n n n n n n ++++--=+, 整理得2340,n n --=解得1n =-(舍),或4n =. 所以n 的值为4.【名师点睛】本小题主要考查等差数列、等比数列的通项公式及前n 项和公式等基础知识.考查数列求和的基本方法和运算求解能力.23.【2018年高考浙江卷】已知等比数列{a n }的公比q >1,且a 3+a 4+a 5=28,a 4+2是a 3,a 5的等差中项.数列{b n }满足b 1=1,数列{(b n +1−b n )a n }的前n 项和为2n 2+n . (1)求q 的值;(2)求数列{b n }的通项公式.【答案】(1)2q =;(2)2115(43)()2n n b n -=-+⋅.【解析】本题主要考查等差数列、等比数列、数列求和等基础知识,同时考查运算求解能力和综合应用能力.(1)由42a +是35,a a 的等差中项得35424a a a +=+, 所以34543428a a a a ++=+=, 解得48a =.由3520a a +=得18()20q q+=, 因为1q >,所以2q =.(2)设1()n n n n c b b a +=-,数列{}n c 前n 项和为n S .由11,1,, 2.n n n S n c S S n -=⎧=⎨-≥⎩解得41n c n =-.由(1)可知12n n a -=,所以111(41)()2n n n b b n -+-=-⋅,故211(45)(),22n n n b b n n ---=-⋅≥,11123221()()()()n n n n n b b b b b b b b b b ----=-+-++-+-23111(45)()(49)()73222n n n n --=-⋅+-⋅++⋅+.设221113711()(45)(),2222n n T n n -=+⋅+⋅++-⋅≥,2211111137()(49)()(45)()22222n n n T n n --=⋅+⋅++-⋅+-⋅ 所以22111111344()4()(45)()22222n n n T n --=+⋅+⋅++⋅--⋅,因此2114(43)(),22n n T n n -=-+⋅≥,又11b =,所以2115(43)()2n n b n -=-+⋅.【名师点睛】用错位相减法求和应注意的问题:(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n −qS n ”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.24.【2018年高考江苏卷】设{}n a 是首项为1a ,公差为d 的等差数列,{}n b 是首项为1b ,公比为q 的等比数列.(1)设110,1,2a b q ===,若1||n n a b b -≤对1,2,3,4n =均成立,求d 的取值范围; (2)若*110,,a b m q =>∈∈N ,证明:存在d ∈R ,使得1||n n a b b -≤对2,3,,1n m =+均成立,并求d 的取值范围(用1,,b m q 表示). 【答案】(1);(2)见解析.【解析】本小题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.满分16分.(1)由条件知:.因为1||n n a b b -≤对n =1,2,3,4均成立, 即对n =1,2,3,4均成立,即11,1d 3,32d 5,73d 9,得. 因此,d 的取值范围为.(2)由条件知:.若存在d ,使得1||n n a b b -≤(n =2,3,···,m +1)成立,即,即当时,d 满足. 因为,则,从而,,对均成立.因此,取d =0时,1||n n a b b -≤对均成立.下面讨论数列的最大值和数列的最小值().75[,]32112(,)n n n a n d b -=-=112|()1|n n d ---≤≤≤≤≤≤≤≤7532d ≤≤75[,]32111(1),n n n a b n d b b q -=+-=1111 |1|2,3,,(1())n b n d b q b n m -+--≤=+2,3,,1n m =+1111211n n q q b d b n n ---≤≤--q ∈112n m q q -<≤≤11201n q b n --≤-1101n q b n ->-2,3,,1n m =+2,3,,1n m =+12{}1n q n ---1{}1n q n --2,3,,1n m =+①当时,, 当时,有,从而.因此,当时,数列单调递增, 故数列的最大值为. ②设,当x >0时,,所以单调递减,从而<f (0)=1.当时,, 因此,当时,数列单调递减, 故数列的最小值为. 因此,d 的取值范围为.25.【2017年高考全国I 卷文数】记S n 为等比数列{}n a 的前n 项和,已知S 2=2,S 3=−6.(1)求{}n a 的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列.【答案】(1)(2)nn a =-;(2)122(1)33n n n S +=-+-⋅,证明见解析. 【解析】(1)设{}n a 的公比为q .由题设可得121(1)2,(1) 6.a q a q q +=⎧⎨++=-⎩解得2q =-,12a =-. 故{}n a 的通项公式为(2)nn a =-.(2)由(1)可得11(1)22()1331n n n n a q S q +-==--+-. 2n m ≤≤111 2222111()()()n n n n n n n n q q nq q nq n q q q n n n n n n -------+--+-==---112mq <≤2n m q q ≤≤1() 20n n nn q q q ---+>21n m ≤≤+12{}1n q n ---12{}1n q n ---2m q m-()()21xf x x =-ln 21(0(n )l 22)xf x x '=--<()f x ()f x 2n m ≤≤111112111()()()nn n q q n n f q n n n n --=≤-=<-21n m ≤≤+1{}1n q n --1{}1n q n --mq m11(2)[,]m mb q b q m m-。

等差数列、等比数列的性质-2017年高考数学三轮讲练测核心热点总动员含解析

等差数列、等比数列的性质-2017年高考数学三轮讲练测核心热点总动员含解析

2016年学易高考三轮复习系列:讲练测之核心热点 【全国通用版】热点八 等差数列,等比数列的性质【名师精讲指南篇】 【高考真题再现】1.【2015全国卷1文】已知{}na 是公差为1的等差数列,nS为{}na 的前项和,若844SS =,则10a =()。

A 。

172B 。

192C 。

10D.12【答案】B2。

【2015全国卷1文】在数列{}n a 中,112,2n n a a a +==,n S 为{}n a 的前n 项和。

若126nS =,则n =。

【答案】6【解析】由12n n a a +=,得12n na a +=,即数列{}n a 是公比为2的等比数列。

()()11212126112n n n a q S q--===--,得6n =。

故填6。

3。

【2015全国卷2文】已知等比数列{}na 满足411=a ,()35441a a a =-,则=2a ( ).A. B. C 。

21 D 。

81【答案】C【解析】由等比数列的性质得2354a aa =,即()24441a a =-,则42a =.所以有3418a qa ==,所以2q =.故2112a a q == 。

故选C.4.【2015全国卷2文】 设nS 是等差数列}{na 的前项和,若3531=++a a a ,则=5S ().A. B 。

C 。

D 。

11【答案】A【解析】由已知1353a aa ++=,则333a =,31a =.又因为()15353552=5=522a a a Sa +⨯== 。

故选A 。

5。

【2015全国卷2理】设nS 是数列{}n a 的前项和,且1111,n n n a a S S ++=-=,则n S =____________________.【答案】1nSn=-6。

【2016全国卷1理】已知等差数列{}na 前项的和为27,10=8a ,则100=a ( )。

A. 100B.99 C 。

98 D.97【答案】C【解析】设等差数列{}n a 的公差为d ,由95279Sa ==,得53a =。

热点10 等差数列与等比数列-2017年高考数学二轮核心考

热点10 等差数列与等比数列-2017年高考数学二轮核心考

2017届高考数学考点总动员【二轮精品】第一篇热点10 等差数列与等比数列【热点考法】本热点考题形式为选择题、填空题、或解答题,主要考查等差数列、等比数列的定义、性质、通项公式和前n 项和公式,考查等差、等比数列的基本运算、基本技能和基本思想方法,考查运算求解能力、函数与方程思想,难度为基础题或中等难度,分值为5至12分. 【热点考向】考向一 等差数列与等比数列的基本量的求解【解决法宝】等差(比)数列的通项公式、前n 项和公式中一共包含1,a d (或q ),,n n a 与n S 这五个量,如果已知其中的三个,就可以求其余的两个.其中1a 和d (或q )是两个基本量,所以等差数列与等比数列的基本运算问题一般先设出这两个基本量,然后根据通项公式、求和公式构建这两者的方程组,通过解方程组求其值,这也是方程思想在数列问题中的体现.注意方程思想的应用.讨论等差数列前n 项和的最值时,不要忽视n 为整数的条件和0n a =的情形.等比数列前n 项和公式时,注意分类讨论.例1.【广东海珠区2017届上学期高三综合测试(一),7】公差不为0的等差数列{}n a 的部分项123,,,k k k a a a 构成等比数列{}n k a ,且11k =,22k =,36k =,则4k 为( )A .20B .22C .24D .28【分析】利用等比数列和等差数列的通项公式即可求解 4k .考向二 判断和证明等差数列、等比数列 【解决法宝】1.等差数列的判定:①定义法:1n n a a d --=(d 为常数)(n ∈N*)⇔{n a }是等差数列;②等差中项法:112n n n a a a +-=+⇔{n a }是等差数列;③通项公式法:n a pn q =+(,p q 为常数)⇔{n a }是等差数列;④前n 项和公式法:2n S an bn =+(,a b 为常数)⇔{n a }是等差数列.其中用来证明方法的有①②. 2.等比数列的判定: ①定义法:1nn a q a -=(0,0n a q ≠≠)⇔{n a }是等比数列; ②等比中项法:211n n n a a a +-=(0n a ≠)⇔{n a }是等比数列; ③通项公式法:(a 0,b 0)nn a ab =≠≠⇔{n a }是等比数列;④前n 项和公式法:,(a 0,b 0,b 1),na,(a 0)n n a b a S ⎧⋅-≠≠≠=⎨≠⎩⇔{n a }是等比数列,其中用来证明方法的有①②.例2.【河南八市重点高中2017届高三上学期第一次测评,18】(本小题满分12分)已知数列{}n a 的前n 项和为n S ,且满足()*2n n S a n n N =+∈.(1)求证数列{}1n a -是等比数列,并求数列{}n a 的通项公式;(2)若()2log 1,n n n b a T =-+是数列21n n b b +⎧⎫⎨⎬⎩⎭的前n 项和,求证:34n T <.【分析】(1)令1n =先求出1a ,当2n ≥时,由1n n n a S S -=-可得121n n a a -=-,两边同减去1可得()1121n n a a --=-,从而可证数列{}1n a -是等比数列;先求出数列{}1n a -的通项公式,即可求数列{}n a 的通项公式;(2)由()2log 1n n b a n =-+=,所以2111122n n b b n n +⎛⎫=- ⎪+⎝⎭,用裂项相消法求和求出()()3234212n n T n n +=-++,放缩可证不等式成立.【解析】(1)当1n =时,11121a S a ==+,解得11a =-,当2n ≥时,1n n n a S S -=-,即121n n a a -=-,即()1121n n a a --=-,因为1120a -=-≠,故10n a -≠,所以{}1n a -是首项为-2,公比为2的等比数列,所以12,21n n n n a a -=-=-+…………………………6分 (2)由(1)知n b n =,所以2111122n n b b n n +⎛⎫=- ⎪+⎝⎭, 所以()()123111132331221242124n n n T b b b b n n n n +⎛⎫=++++=+--=-< ⎪++++⎝⎭…………12分考向三 等差数列与等比数列的性质【解决法宝】条件或结论中涉及等差或等比数列中的两项或多项的关系时,先观察分析下标之间的关系,再考虑能否应用性质解决,要特别注意等差数列与等比数列性质的类比、联系与区别.等差数列(等比数列)中若出现的是通项与数列和的关系,则优先考虑:(1)等差数列性质:①已知,,,m n p q *∈N ,q p n m +=+,则q p n m a a a a +=+;②d m n a a m n )(-+=;(2)等比数列性质:①已知,,,m n p q *∈N ,q p n m +=+,则q p n m a a a a =;②m n m n q a a -=;利用性质可简化计算.例3.【江西南昌市2017届摸底考试,11】设等比数列{}n a 的公比为q ,其前n 项之积为n T ,并且满足条件:11a >,201620171a a >,20162017101a a -<-,给出下列结论:(1)01q <<;(2)2016201810a a ->;(3)2016T 是数列{}n T 中的最大项;(4)使1n T >成立的最大自然数等于4031,其中正确的结论为( )A .(2)(3)B .(1)(3)C .(1)(4)D .(2)(4) 【分析】利用等比数列的性质即可判断各结论的正误.例4 【河北省衡水中学2017届高三上学期第三次调,10】已知等差数列{}{},n n a b 的前n 项和分别为,n n S T ,若对于任意的自然数n ,都有2343n n S n T n -=-,则()3153392102a a a b b b b ++=++( ) A .1941 B .1737C .715D .2041【分析】利用等差数列的性质与前n 项和公式,即可求出结果. 【解析】()()11111538383831111113921011111111111111111()2211()222a a a a a a a a a a a a ab b b b b b b b b b b b b b b b ++++++=+====++++++++=1111211319411341S T ⨯-==⨯-,故选A . 考向四 与等数列、等差数列有关的综合问题【解决法宝】1.新定义数列问题,认真阅读定义,利用新定义将问题转化为熟悉的数列问题,再利用熟悉的数列方法,处理之,对新概念的理解是解题的关键.2.等比数列与等差数列的应用问题,认真阅读试题,将应用题化为等比或等差数列问题,再利用等比数列或等差数列的有关知识和方法解决之.3.对等比数列与等差数列的综合问题,利用等比数列与等差数列的有关知识方法,转化为函数问题或不等式问题,再利用相关的数学知识和方法求解.例5【河北省衡水中学2017届高三摸底联考,17】(本小题满分12分)中国人口已经出现老龄化与少子化并存的结构特征,测算显示中国是世界上人口老龄化速度最快的国家之一,再不实施“放开二胎”新政策,整个社会将会出现一系列的问题,若某地区2015年人口总数为45万,实施“放开二胎”新政策后专家估计人口总数将发生如下变化:从2016年开始到2025年每年人口比上年增加0.5万人,从2026年开始到2035年每年人口为上一年的0099. (1)求实施新政策后第n 年的人口总数n a 的表达式(注:2016年为第一年);(2)若新政策实施后的2016年到2035年人口平均值超过49万,则需调整政策,否则继续实施, 问到2035年后是否需要调整政策?(说明:()10100.9910.010.9=-≈).【分析】(1)由题意可知,从2016年开始到2025年每年人口数成等差数列无增长,从2026年开始到2035年每年人口数组成一个等比数列,由等差数列与等比数列的通项公式写出即可;(2)求出从2016年到2035年的人口总数20S ,求其平均值即可.【解析】(1)当10n ≤时,数列{}n a 是首项为45.5,公差为0.5的等差数列, ()45.50.51n a n =+⨯-当11n ≥ 时,数列{}n a 是以公比为0.99 的等比数列,又1050a =10500.99n n a -=⨯因此,新政策实施后第n 年的人口总数n a (单位:万)的表达式为()1045.50.51,110500.99,11n n n n a n -⎧+⨯-≤≤⎪=⎨⨯≥⎪⎩(2)设n S 为数列{}n a 的前n 项和,则从2016 年到2035年共20年,由等差数列及等比数列的求和公式得:()()102010111220...477.5495010.99972.5S S a a a =++++=+⨯-≈ 万∴新政策实施到2035年年人口均值为2048.634920S ≈< 故到2035年不需要调整政策. 【热点集训】 一、选择题:1.【福建省泉州市2016届高三下学期3月质量检查】《张丘建算经》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女不善织,日减功迟,初日织五尺,末日织一尺,今三十织迄,问织几何.”其意思为:有个女子不善于织布,每天比前一天少织同样多的布,第一天织五尺,最后一天织一尺,三十天织完,问三十天共织布 A.30尺 B.90尺 C.150尺 D.180尺 【答案】B【解析】问题模型为一等差数列{}n a ,首项5,末项1,项数30,其和为30(51)902+=,选B.2.【河南百校联考2017届高三9月质检,3】在等差数列{}n a 中,12a =,公差为d ,则“4d =”是“123,,a a a 成等比数列”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】A3.【广西南宁二中、柳州高中、玉林高中2017届高三8月联考,4】已知等比数列{}n a 中,32a =,4616a a =,则91157a a a a -=-( )A .2B .4C .8D .16 【答案】B【解析】因为344633416a a a q a q q =⋅==,所以22q =,所以6891133245733a a a q a q a a a q a q--=--=2324222()()()q q q q --=4,故选B . 4.【河北省衡水中学2017届高三上学期第三次调,4】等比数列{}n a 的前n 项和为n S ,已知2532a a a =,且4a 与72a 的等差中项为54,则5S =( )A .29B .31C .33D .36 【答案】B5.【长春市普通高中2016届高三质量监测(二)】设等差数列{}n a 的前n 项和为n S ,10a >且65911a a =,当n S 取最大值时,n 的值为( ) A. 9 B. 10C. 11D. 12【答案】B【解析】由题意,不妨设69a t =,511a t =,则公差2d t =-,其中0t >,因此10a t =,11a t =-,即当10n =时,n S 取得最大值. 故选B.6.【湖北黄石2017届高三9月调研,7】设等差数列{}n a 的前n 项和为n S ,且271224a a a ++=,则13S =( )A .52B .78C .104D .208 【答案】C【解析】271277243=24=8a a a a a ++=⇒⇒,11313713()13104.2a a S a +===选C.7.【山东潍坊2017届高三上学期期中,6】中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走了378里路,第一天健步行走,从第二天起因脚痛每天走的路程为前一天的一半,走了6天后到达目的地.”问此人第4天和第5天共走了( )A .60里B .48里 C.36里 D .24里 【答案】C【解析】由题意知,此人每天走的里数构成公比为12的等比数列,设等比数列的首项为1a ,则有16141112378,192,192241812a a a ⎛⎫- ⎪⎝⎭===⨯=-,5124122a =⨯=,45241236a a +=+=,所以此人第4天和第5天共走了36里,故选C.8.【河北衡水中学2017届高三摸底联考,7】已知{}n a 为等差数列,n S 为其前n 项和,公差为d ,若201717100201717S S -=,则d 的值为( ) A .120 B . 110C .10D .20【答案】B【解析】因为11(1)(1)22n n n na d S n a d n n -+-==+,所以2017171120171171()100010020171722S S a d a d d ---=+-+==,所以110d =,故选B. 9.【河北唐山市2017届高三摸底考试,3】在等比数列{}n a 中,13524621,42a a a a a a ++=++=,则9S =( )A .255B .256C .511D .512【答案】C .10.【北京市石景山区2016届高三第一学期期末】已知数列{}n a 是等差数列,348,4a a ==,则前n 项和n S 中最大的是( ) A.3SB.4S 或5SC.5S 或6SD.6S【答案】B【解析】由已知43484d a a =-=-=-,3(3)8(3)(4)204n a a n d n d =+-=+-⨯-=-,由2040n a n =-≥得5n ≤,所以40a >,50a =,60a <,所以45S S =是n S 中的最大值.故选B .11.【辽宁盘锦市高中2017届11月月考,3】等比数列{}n a 中,已知对任意正整数n ,1232n n a a a a m ++++=+…,则22212n a a a +++…等于( )A .1(4)3nm +B .1(21)3n-C .41n-D .2(2)n m +【答案】A12.【山西临汾一中等五校2017届高三第三联考,3】已知等比数列{}n a 共有10项,其中奇数项之积为2,偶数项之积为64,则其公比是( )A .32B .2D .【答案】C【解析】奇数项之积为2,偶数项之积为64,得297531=⋅⋅⋅⋅a a a a a ,64108642=⋅⋅⋅⋅a a a a a ,则32975311086425=⋅⋅⋅⋅⋅⋅⋅⋅=a a a a a a a a a a q ,则2=q ,故选C.13.【山东省济南一中2016届高三上学期期中】已知{}n a 等比数列,2512,,4a a ==则12231n n a a a a a a ++++=( )A .()1614n -- B . ()1612n-- C .()32143n -- D .()32123n -- 【答案】C 【解析】15.【河南百校联考2017届高三9月质检,11】在各项均为正数的等比数列{}n a 中,若4321228a a a a +--=,则542a a +的最小值为( )A .12B .C ..【答案】C【解析】24321212128228(2)(1)821a a a a a a q a a q +--=⇒+-=⇒+=-,则335421282(2),(1)1q a a a a q q q +=+=>-,求导得导函数零点q =也是最小值点,所以q =542a a +取最小值为 C.16.【北京市朝阳区2016届高三第一学期期末】在各项均为正数的等比数列{}n a 中,若22a =,则132a a +的最小值是 .【答案】.【解析】设等比数列的公比为q,21322224a a a a q q q q +=+=+≥=当且仅当242q q q =⇒=时,等号成立,故132a a +的最小值是17.【安徽百校论坛2017届高三上学期第2联考,16】已知函数{}n a 满足11123n n n a a a +++=+,且11a =,则数列21n a ⎧⎫⎨⎬+⎩⎭的前20项和为 .【答案】780 【解析】由11123n n n a a a +++=+得123111n n n a a a ++=++,即111211n n a a +-=++,∴数列11n a ⎧⎫⎨⎬+⎩⎭是以12为首项,2为公差的等差数列,则13212n n a =-+,∴数列21n a ⎧⎫⎨⎬+⎩⎭是以1为首项,4为公差的等差数列,其前20项的和为2010194780+⨯⨯=.18.【四川遂宁、广安、眉山、内江四市2017届高三上学期第一次联考,8】已知数列{}n a 满足()()1116,26,n n a n n a a n -⎧⎛⎫-+ ⎪⎪=⎝⎭⎨⎪⎩<≥若对于任意的*n N ∈都有1n n a a +>,则实数a 的取值范围为 . 【答案】17,212⎛⎫⎪⎝⎭19.【北京市海淀区2016届高三第一学期期中】对于数列,都有为常数)成立,则称数列具有性质.⑴ 若数列的通项公式为,且具有性质,则t 的最大值为 ;⑵ 若数列的通项公式为,且具有性质,则实数a 的取值范围是【答案】(1)2;(2) 【解析】20.【四川巴中市2017届“零诊”,17】(本小题满分12分)在等差数列}{n a 中,2372-=+a a ,2983-=+a a .(1)求数列}{n a 的通项公式;(2)设数列}{n n b a +是首项为1,公比为q 的等比数列,求}{n b 的前n 项和n S . 【答案】(1)32n a n =-+;(2)详见解析.【解析】(1)设等差数列}{n a 的公差为d ,则62)(7283-==+-+d a a a a ,∴3-=d , ∴2372172-=+=+d a a a ,解得11-=a ,∴数列}{n a 的通项公式为32n a n =-+; (2)∵数列}{n n b a +是首项为1,公比为q 的等比数列,∴1-=+n n n q b a ,即123-=++-n n q b n ,∴123-+-=n n q n b ,∴)1(2)13()1()]23(741[1212--++++-=++++-++++=n n n q q q n n qq q n S 当1=q 时,232)13(2nn n n n S n +=+-=; 当1≠q 时,qq n n S nn --+-=112)13(. 21.【河北唐山市2017届上学期高三摸底考,17】(本小题满分12分) 设n S 为等差数列{}n a 的前n 项和,1015110,240S S ==. (1)求数列{}n a 的通项公式; (2)令11n nn n n a a b a a ++=+,求数列{}n b 的前n 项和n T . 【答案】(Ⅰ)a n =2n ;(Ⅱ)n n +1+2n .【解析】(Ⅰ)设公差为d ,依题意有⎩⎨⎧10a 1+1092d =110,15a 1+15142d =240.解得,a 1=d =2.所以,a n =2n .(Ⅱ)b n =2n +22n +2n 2n +2=n +1n +n n +1= 1 n -1n +1+2,T n =1-1 2+ 1 2- 1 3+ 1 3- 1 4+…+ 1 n -1n +1+2n =n n +1+2n22.【云南省、四川省、贵州省2017届高三上学期百校大联考数学,17】(本小题满分12分) 设数列{}n a 是公差大于0的等差数列,n S 为数列{}n a 的前n 项和.已知39S =,且12a ,31a -,41a +构成等比数列.(1)求数列{}n a 的通项公式; (2)若数列{}n b 满足1*2()n nna n Nb -=∈,设n T 是数列{}n b 的前n 项和,证明6n T <. 【答案】(1)21n a n =-;(2)详见解析 【解析】(1)设数列{}n a 的公差为d ,则0d >.∵39S =,∴123239a a a a ++==,即23a =.……………………………………………………………2分又12a ,31a -,41a +成等比数列, ∴2(2)2(3)(42)d d d +=-+,解得2d =,11a =.………………………………………………………4分∴12(1)21n a n n =+-=-.……………………………………………………………………………………5分 (2)由12n nna b -=,得11211(21)()22n n n n b n ---==-.…………………………………………………………6分 则0111111()3()(21)()222n n T n -=+++-,………………………………………………………………7分 所以121111111()3()(23)()(21)()22222n n n T n n -=+++-+-,………………………………………8分 两式相减得:1211111112()2()2()(21)()22222n n n T n -=+⋅+⋅++⋅--⋅ 1211()21121213122212n n n n n n -----=+-=---,………………………………………………………………10分 故12362n n n T -+=-,……………………………………………………………………………………………11分因为*n N ∈,所以123662n n n T -+=-<.……………………………………………………………………12分 23.【河南八市重点高中2017届高三上学期第一次测评,18】(本小题满分12分)已知数列{}n a 的前n 项和为n S ,且满足()*2n n S a n n N =+∈.(1)求证数列{}1n a -是等比数列,并求数列{}n a 的通项公式; (2)若()2log 1,n n n b a T =-+是数列21n n b b +⎧⎫⎨⎬⎩⎭的前n 项和,求证:34nT <. 【答案】(1)证明见解析;21n n a =-+;(2)见解析.。

等差数列与等比数列类比总结(全面知识点+100道练习题附解析)精编材料word版

等差数列与等比数列类比总结(全面知识点+100道练习题附解析)精编材料word版

等差数列与等比数列知识点总结及经典题目100道练习题:答案解析:14d +5 6解析:nS有最小值,可知1a<,0d>761aa<-变形得676a aa+<,故6a<,67a a+>671121212()12()22a aa aS++==>当12n<时,nS很明显都是小于0的故nS取到最小正数时的n为12.答案:1257解析:由1020S S=知对称轴为15n=,故最大值为前15项之和.答案:A5 8解析:41434442S a d⨯=+=,81878562S a d⨯=+=两式联立解得114a=,2d=-故2(1)14(2)152nn nS n n n-=+⨯-=-+对称轴为7.5,故当7n=或8n=时取最大值27715756S=-+⨯=.答案:最大值为7856S S==59解析:根据对称性,由67S S=可知58S S=,49S S=由中间到两端以此减小,所以985S S S<=,C选项错误.答案:C6 0解析:由条件可知函数零点在18与19之间,又函数过原点则对称轴应介于182与192之间,即大于9小于9.5数列的下标只能取正整数,离对称轴最近的正整数为9,故9S最大.答案:C数学浪子整理制作,侵权必究。

专题10 等差数列与等比数列—三年高考(2015-2017)数学(文)真题分项版解析(原卷版)

专题10 等差数列与等比数列—三年高考(2015-2017)数学(文)真题分项版解析(原卷版)

专题10 等差数列与等比数列1.【2017浙江,6】已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6>2S 5”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件2.【2015高考新课标1,文7】已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a =( ) (A )172 (B )192(C )10 (D )12 3.【2014高考重庆文第2题】在等差数列{}n a 中,1352,10a a a =+=,则7a =( ).5A .8B .10C .14D4. 【2014天津,文5】设{}n a 是首项为1a ,公差为1-的等差数列,n S 为其前n 项和,若,,,421S S S 成等比数列,则1a =( )A.2B.-2C.21D .12- 5. 【2014辽宁文9】设等差数列{}n a 的公差为d ,若数列1{2}n a a为递减数列,则( ) A .0d < B .0d > C .10a d < D .10a d >6. 【2015新课标2文5】设n S 是等差数列{}n a 的前n 项和,若1353a a a ++=,则5S =( ) A .5 B .7 C .9 D .117. 【2015新课标2文9】已知等比数列{}n a 满足114a =,()35441a a a =-,则2a =( )A.2B.1 1C.2 1D.88.【2014全国2,文5】等差数列{}n a 的公差是2,若248,,a a a 成等比数列,则{}n a 的前n 项和n S =( )A. (1)n n +B. (1)n n -C.(1)2n n + D. (1)2n n -9.【2015高考广东,文13】若三个正数a ,b ,c 成等比数列,其中5a =+5c =-则b = .10. 【2014高考广东卷.文.13】等比数列{}n a 的各项均为正数,且154a a =, 则2122232425log log log log log a a a a a ++++= .11.【2015高考新课标1,文13】数列{}n a 中112,2,n n n a a a S +==为{}n a 的前n 项和,若126n S =,则n = .12.【2015高考浙江,文10】已知{}n a 是等差数列,公差d 不为零.若2a ,3a ,7a 成等比数列,且1221a a +=,则1a = ,d = .13. 【2015高考陕西,文13】中位数为1010的一组数构成等差数列,其末项为2015,则该数列的首项为________14.【2017江苏,9】等比数列{}n a 的各项均为实数,其前n 项的和为n S ,已知3676344S S ==,,则8a = .15.【2017课标1,文17】记S n 为等比数列{}n a 的前n 项和,已知S 2=2,S 3=-6.(1)求{}n a 的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列.16.【2017课标II ,文17】已知等差数列{}n a 的前n 项和为n S ,等比数列{}n b 的前n 项和为n T ,11221,1,2a b a b =-=+= (1)若335a b += ,求{}n b 的通项公式; (2)若321T =,求3S .17.【2015高考北京,文16】(本小题满分13分)已知等差数列{}n a 满足1210a a +=,432a a -=.(I )求{}n a 的通项公式;(II )设等比数列{}n b 满足23b a =,37b a =,问:6b 与数列{}n a 的第几项相等? 18. 【2015高考广东,文19】(本小题满分14分)设数列{}n a 的前n 项和为n S ,n *∈N .已知11a =,232a =,354a =,且当2n ≥ 时,211458n n n n S S S S ++-+=+. (1)求4a 的值; (2)证明:112n n a a +⎧⎫-⎨⎬⎩⎭为等比数列; (3)求数列{}n a 的通项公式.19.【2016高考新课标2文数】等差数列{n a }中,34574,6a a a a +=+=.(Ⅰ)求{n a }的通项公式;(Ⅱ) 设[]n n b a =,求数列{}n b 的前10项和,其中[]x 表示不超过x 的最大整数,如[0.9]=0,[2.6]=220.【2016高考北京文数】(本小题13分)已知}{n a 是等差数列,}{n b 是等差数列,且32=b ,93=b ,11b a =,414b a =. (1)求}{n a 的通项公式;(2)设n n n b a c +=,求数列}{n c 的前n 项和.21.【2015高考四川,文16】设数列{a n }(n =1,2,3…)的前n 项和S n 满足S n =2a n -a 3,且a 1,a 2+1,a 3成等差数列. (Ⅰ)求数列的通项公式; (Ⅱ)设数列1{}na 的前n 项和为T n ,求T n . 22.【2016高考四川文科】(本小题满分12分)已知数列{n a }的首项为1,n S 为数列{}n a 的前n 项和,11n n S qS +=+ ,其中q >0,*n N ∈ .(Ⅰ)若2323,,a a a a + 成等差数列,求{}n a 的通项公式;(Ⅱ)设双曲线2221n y x a -= 的离心率为n e ,且22e = ,求22212n e e e ++⋅⋅⋅+.23.【2015高考重庆,文16】已知等差数列{}n a满足3a=2,前3项和3S=9 2 .(Ⅰ)求{}n a的通项公式,(Ⅱ)设等比数列{}n b满足1b=1a,4b=15a,求{}n b前n项和n T.。

2017年高考数学(考点解读+命题热点突破)专题10 数列、等差数列﹑等比数列 理

2017年高考数学(考点解读+命题热点突破)专题10 数列、等差数列﹑等比数列 理

数列、等差数列﹑等比数列【考向解读】1.高考侧重于考查等差、等比数列的通项a n ,前n 项和S n 的基本运算,另外等差、等比数列的性质也是高考的热点.2.备考时应切实理解等差、等比数列的概念,加强五个量的基本运算,强化性质的应用意识.3.等差数列、等比数列是高考的必考点,经常以一个选择题或一个填空题,再加一个解答题的形式考查,题目难度可大可小,有时为中档题,有时解答题难度较大.解决这类问题的关键是熟练掌握基本量,即通项公式、前n 项和公式及等差、等比数列的常用性质. 【命题热点突破一】等差、等比数列的基本计算例1、【2016年高考北京理数】已知{}n a 为等差数列,n S 为其前n 项和,若16a =,350a a +=,则6=S _______..【答案】6【解析】∵{}n a 是等差数列,∴35420a a a +==,40a =,4136a a d -==-,2d =-, ∴616156615(2)6S a d =+=⨯+⨯-=,故填:6.【感悟提升】 涉及求等差、等比数列的通项、某一项问题时,常用到等差、等比数列的基本性质.等差数列{a n }中,m +n =p +q ⇒a m +a n =a p +a q ,m +n =2p ⇒a m +a n =2a p ;等比数列{a n }中,m +n =p +q ⇒a m a n =a p a q ,m + n = 2p ⇒a m a n =a 2p .【变式探究】 在等比数列{a n }中,a 1=2,前n 项和为S n ,若数列{a n +1}也是等比数列,则S n 等于( ) A .2n +1-2 B .3nC .2nD .3n-1 【答案】C【命题热点突破二】等差、等比数列的判断与证明已知数列{a n }的各项均为正数,且a 1=1,a n +1a n +a n +1-a n =0(n∈N *). (1)设b n =1a n,求证:数列{b n }是等差数列;(2)求数列⎩⎨⎧⎭⎬⎫a n n +1的前n 项和S n . 【解析】解:(1)证明:因为a n +1a n +a n +1-a n =0(n∈N *), 所以b n +1-b n =1a n +1-1a n =a n +1a n -1a n=1,又b 1=1a 1=1,所以数列{}b n 是首项为1,公差为1的等差数列.(2)由(1)知b n =n ,所以a n =1n .令c n =a n n +1,则c n =1n (n +1)=1n -1n +1,S n =c 1+c 2+…+c n =⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=n n +1. 【感悟提升】 等差数列的判定与证明有以下四种方法:①定义法,即a n -a n -1=d(d 为常数,n∈N *,n≥2)⇔{a n }为等差数列;②等差中项法,即2a n +1=a n +a n +2(n∈N *)⇔{a n }为等差数列;③通项公式法,即a n =an +b(a ,b 是常数,n∈N *)⇔{a n }为等差数列;④前n 项和公式法,即S n =an 2+bn(a ,b 是常数,n∈N *)⇔{a n }为等差数列.等比数列的判定与证明有以下三种方法:①定义法,即a n a n -1=q(q 为常数且q≠0,n∈N *,n≥2)⇔{a n }为等比数列;②等比中项法,即a 2n +1=a n a n +2(a n ≠0,n∈N *)⇔{a n }为等比数列;③通项公式法,即a n =a 1qn -1(其中a 1,q 为非零常数,n∈N *)⇔{a n }为等比数列.【变式探究】若{a n }是各项均不为零的等差数列,公差为d ,S n 为其前n 项和,且满足a 2n =S 2n -1,n∈N *.数列{b n } 满足b n =1a n ·a n +1,T n 为数列{b n }的前n 项和.(1) 求a n 和T n .(2) 是否存在正整数 m ,n(1<m<n),使得T 1,T m ,T n 成等比数列? 若存在,求出所有m ,n 的值;若不存在,请说明理由.(2)假设存在正整数 m ,n (1<m<n ),使得T 1,T m ,T n 成等比数列,则T 1·T n =T 2m .∵T 1·T n =n 6n +3=16+3n <16,∴T 2m=⎝ ⎛⎭⎪⎫m 2m +12=m 24m 2+4m +1<16, ∴2m 2-4m -1<0,∴1-62<m <1+62,又∵m∈N 且m >1, ∴m=2,则T 22=425.令T 1·T n =n 6n +3=425,得n =12,∴当且仅当m =2,n =12时,T 1,T m ,T n 成等比数列. 【命题热点突破三】 数列中a n 与S n 的关系问题例3 、【2016高考江苏卷】已知{}n a 是等差数列,{S }n 是其前n 项和.若21253,S =10a a +=-,则9a 的值是▲ . 【答案】20.【解析】由510S =得32a =,因此2922(2d)33,23620.d d a -+-=-⇒==+⨯=【感悟提升】 数列{a n }中,a n 与S n 的关系为:当n≥2时,a n =S n -S n -1(*),当n =1时,a 1=S 1.若a 1=S 1满足(*),则a n =S n -S n -1(n∈N *);若a 1=S 1不满足(*),则a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n≥2.【变式探究】 已知数列{a n }的前n 项和为S n ,且满足4(n +1)·(S n +1)=(n +2)2a n ,则数列{a n }的通项公式为( )A .(n +1)3B .(2n +1)2C .8n 2D .(2n +1)2-1 【答案】A【解析】 当n =1时,4×(1+1)×(a 1+1)=(1+2)2a 1,解得a 1=8.当n≥2时,4(S n +1)=(n +2)2a nn +1,4(S n -1+1)=(n +1)2a n -1n ,两式相减,得4a n =(n +2)2a n n +1-(n +1)2a n -1n ,即a n a n -1=(n +1)3n 3,所以a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1=(n +1)3n 3×n 3(n -1)3×…×3323×8=(n +1)3.检验知n =1也符合该式,所以a n =(n +1)3.【命题热点突破四】等差数列与等比数列的综合例4 、已知数列{a n }满足a n +2=qa n (q 为实数,且q≠1),n∈N *,a 1=1,a 2=2,且a 2+a 3,a 3+a 4,a 4+a 5成等差数列.(1)求q 的值和{a n }的通项公式;(2)设b n =log 2a 2n a 2n -1,n∈N *,求数列{b n }的前n 项和.(2)由(1)得b n =log 2a 2n a 2n -1=n2n -1.设{b n }的前n 项和为S n ,则S n =1×120+2×121+3×122+…+(n -1)×12n -2+n×12n -1,12S n =1×121+2×122+3×123+…+(n -1)×12n -1+n×12n , 上述两式相减,得12S n =1+12+122+…+12n -1-n 2n =1-12n1-12-n 2n =2-22n -n2n , 整理得,S n =4-n +22n -1.所以数列{b n }的前n 项和为4-n +22n -1,n∈N *.【感悟提升】 在等差数列、等比数列的综合问题中,通过列方程(组)求基本量是基本而重要的方法.在数列的最值问题中,如果使用函数的方法,要充分考虑数列中的自变量是正整数.【变式探究】已知等比数列{}a n 的首项a 1=2,公比q>1,且a n ,54a n +1,a n +2成等差数列(n∈N *).(1)求数列{}a n 的通项公式;(2)记b n =na n ,数列{}b n 的前n 项和为S n ,若(n -1)2≤m(S n -n -1)对于n≥2,n∈N *恒成立,求实数m 的取值范围.【解析】解:(1)由a n ,54a n +1,a n +2成等差数列,可得a n +a n +2=52a n +1.又{}a n 是等比数列,所以a n +q 2a n =52qa n ,又因为a n ≠0,所以2q 2-5q +2=0,因为q>1,所以q =2.又a 1=2,所以数列{}a n 的通项公式为a n =2n.(2)因为b n =na n =n·2n ,所以S n =1×2+2×22+3×23+…+n×2n, 2S n =1×22+2×23+3×24+…+(n -1)·2n+n·2n +1,所以S n =-(2+22+23+ (2)-n·2n +1)=-(2-2n +11-2-n·2n +1)=(n -1)·2n +1+2.因为(n -1)2≤m(S n -n -1)对于n≥2,n∈N *恒成立,所以 (n -1)2≤m[(n -1)·2n +1+2-n -1]恒成立,即(n -1)2≤m(n -1)(2n +1-1)恒成立,于是问题转化为m≥n -12n +1-1对于n≥2,n∈N *恒成立.令f (n )=n -12n +1-1,n≥2,则f (n +1)-f (n )=n 2n +2-1-n -12n +1-1=(2-n )·2n +1-1(2n +2-1)(2n +1-1)<0, 所以当n≥2,n∈N *时,f (n +1)<f (n ),即f (n )单调递减, 则f (n )≤f(2)=17,所以m≥17.故实数m 的取值范围为⎣⎢⎡⎭⎪⎫17,+∞. 【高考真题解读】1. 【2016高考新课标1卷】已知等差数列{}n a 前9项的和为27,108a =,则100a = ( ) (A )100 (B )99 (C )98 (D )97 【答案】C 【解析】由已知,1193627,98a d a d +=⎧⎨+=⎩所以110011,1,9919998,a d a a d =-==+=-+=故选C.2【2016高考浙江理数】如图,点列{A n },{B n }分别在某锐角的两边上,且1122,,n n n n n n A A A A A A n ++++=≠∈*N ,1122,,n n n n n n B B B B B B n ++++=≠∈*N ,(P Q P Q ≠表示点与不重合).若1n n n n n n n d A B S A B B +=,为△的面积,则( )A .{}n S 是等差数列B .2{}nS 是等差数列 C .{}n d 是等差数列 D .2{}nd 是等差数列 【答案】A3.【2016年高考北京理数】已知{}n a 为等差数列,n S 为其前n 项和,若16a =,350a a +=,则6=S _______..【答案】6【解析】∵{}n a 是等差数列,∴35420a a a +==,40a =,4136a a d -==-,2d =-, ∴616156615(2)6S a d =+=⨯+⨯-=,故填:6.4.【2016高考江苏卷】已知{}n a 是等差数列,{S }n 是其前n 项和.若21253,S =10a a +=-,则9a 的值是▲ . 【答案】20.【解析】由510S =得32a =,因此2922(2d)33,23620.d d a -+-=-⇒==+⨯=5、【2016高考新课标1卷】设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2 …a n 的最大值为 . 【答案】64【解析】设等比数列{}n a 的公比为(0)q q ≠,由1324105a a a a +=⎧⎨+=⎩得2121(1)10(1)5a q a q q ⎧+=⎪⎨+=⎪⎩,解得1812a q =⎧⎪⎨=⎪⎩.所以2(1)1712(1)22212118()22n n n n n n nn a a a a q--++++-==⨯=,于是当3n =或4n =时,12n a a a 取得最大值6264=.6.【2016高考江苏卷】(本小题满分16分)记{}1,2,100U =…,.对数列{}()*n a n N ∈和U 的子集T ,若T =∅,定义0TS=;若{}12,,k T t t t =…,,定义12+k T t t t S a a a =++….例如:{}=1,3,66T 时,1366+T S a a a =+.现设{}()*n a n N ∈是公比为3的等比数列,且当{}=2,4T 时,=30T S . (1)求数列{}n a 的通项公式;(2)对任意正整数()1100k k ≤≤,若{}1,2,k T ⊆…,,求证:1T k S a +<; (3)设,,C D C U D U S S ⊆⊆≥,求证:2C CDD S S S +≥.【答案】(1)13n n a -=(2)详见解析(3)详见解析 【解析】(1)由已知得1*13,n n a a n -=⋅∈N .于是当{2,4}T =时,2411132730r S a a a a a =+=+=. 又30r S =,故13030a =,即11a =.所以数列{}n a 的通项公式为1*3,n n a n -=∈N .(2)因为{1,2,,}T k ⊆,1*30,n n a n -=>∈N ,所以1121133(31)32k k k r k S a a a -≤+++=+++=-<.因此,1r k S a +<.(3)下面分三种情况证明. ①若D 是C 的子集,则2C CDC D D D D S S S S S S S +=+≥+=.②若C 是D 的子集,则22C CDC C CD S S S S S S +=+=≥.③若D 不是C 的子集,且C 不是D 的子集. 令U E CD =ð,U F D C =ð则E ≠∅,F ≠∅,EF =∅.于是C E C D S S S =+,D F CD S S S =+,进而由C D S S ≥,得E F S S ≥.设k 是E 中的最大数,l 为F 中的最大数,则1,1,k l k l ≥≥≠.由(2)知,1E k S a +<,于是1133l kl F E k a S S a -+=≤≤<=,所以1l k -<,即l k ≤.又k l ≠,故1l k ≤-, 从而1121131133222l l k E F l a S S a a a ----≤+++=+++=≤≤,故21E F S S ≥+,所以2()1C C DD CDS S S S -≥-+,即21C CDD S S S +≥+.综合①②③得,2C C DD S S S +≥.1.【2015高考重庆,理2】在等差数列{}n a 中,若2a =4,4a =2,则6a =( )A 、-1B 、0C 、1D 、6 【答案】B【解析】由等差数列的性质得64222240a a a =-=⨯-=,选B.2.【2015高考福建,理8】若,a b 是函数()()20,0f x x px q p q =-+>> 的两个不同的零点,且,,2a b -这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q + 的值等于( ) A .6 B .7 C .8 D .9 【答案】D【解析】由韦达定理得a b p +=,a b q ⋅=,则0,0a b >>,当,,2a b -适当排序后成等比数列时,2-必为等比中项,故4a b q ⋅==,4b a =.当适当排序后成等差数列时,2-必不是等差中项,当a 是等差中项时,422a a =-,解得1a =,4b =;当4a 是等差中项时,82a a =-,解得4a =,1b =,综上所述,5a b p +==,所以p q +9=,选D .3.【2015高考北京,理6】设{}n a 是等差数列. 下列结论中正确的是( )A .若120a a +>,则230a a +>B .若130a a +<,则120a a +<C .若120a a <<,则2a > D .若10a <,则()()21230a a a a -->【答案】C4.【2015高考新课标2,理16】设nS 是数列{}n a 的前n 项和,且11a =-,11n n n a S S ++=,则n S =________.【答案】1n -【解析】由已知得111n n n n n a S S S S +++=-=⋅,两边同时除以1n n S S +⋅,得1111n n S S +=--,故数列1n S ⎧⎫⎨⎬⎩⎭是以1-为首项,1-为公差的等差数列,则11(1)n S n n =---=-,所以1n S n =-. 5.【2015高考广东,理10】在等差数列{}n a 中,若2576543=++++a a a a a ,则82a a += .【答案】10. 【解析】因为{}n a 是等差数列,所以37462852a a a a a a a +=+=+=,345675525a a a a a a ++++==即55a =,所以285210a a a +==,故应填入10.6.【2015高考陕西,理13】中位数1010的一组数构成等差数列,其末项为2015,则该数列的首项为 . 【答案】5【解析】设数列的首项为1a ,则12015210102020a +=⨯=,所以15a =,故该数列的首项为5,所以答案应填:5.7.【2015高考浙江,理3】已知{}n a 是等差数列,公差d 不为零,前n 项和是n S ,若3a ,4a ,8a 成等比数列,则( ) A.140,0a d dS >> B.140,0a d dS << C.140,0a d dS >< D.140,0a d dS <>【答案】B.【解析】∵等差数列}{n a ,3a ,4a ,8a 成等比数列,∴d a d a d a d a 35)7)(2()3(11121-=⇒++=+, ∴dd a a a a S 32)3(2)(211414-=++=+=,∴03521<-=d d a ,03224<-=d dS ,故选B.8.【2015高考安徽,理14】已知数列{}n a 是递增的等比数列,14239,8a a a a +==,则数列{}n a 的前n 项和等于 . 【答案】21n-9. 【2014高考北京版理第5题】设{}n a 是公比为q 的等比数列,则“1>q ”是“{}n a 为递增数列”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】D 【解析】对等比数列}{n a ,若1>q ,则当01<a 时数列}{n a 是递减数列;若数列}{n a 是递增数列,则}{n a 满足01<a 且10<<q ,故当“1>q ”是”数列}{n a 为递增数列的既不充分也不必要条件.故选C.10. 【2014高考福建卷第3题】等差数列{}n a 的前n 项和nS ,若132,12a S ==,则6a =( ).8A .10B .12C .14D【答案】C【解析】假设公差为d,依题意可得1323212,22d d⨯+⨯⨯=∴=.所以62(61)212a=+-⨯=.故选C.11。

高考真题与模拟训练 专题10 等差数列(解析版)

高考真题与模拟训练 专题10 等差数列(解析版)

专题10 等差数列第一部分 真题部分一、选择题1.(2021·北京高考真题){}n a 和{}n b 是两个等差数列,其中()15kka kb ≤≤为常值,1288a =,596=a ,1192b =,则3b =( )A .64B .128C .256D .512【答案】B【解析】由已知条件可得5115a a b b =,则51519619264288a b b a ⨯===,因此,1531926412822b b b ++===. 故选:B.2.(2021·北京高考真题)数列{}n a 是递增的整数数列,且13a ≥,12100n a a a ++⋅⋅⋅+=,则n 的最大值为( ) A .9 B .10C .11D .12【答案】C【解析】若要使n 尽可能的大,则1a ,递增幅度要尽可能小,不妨设数列{}n a 是首项为3,公差为1的等差数列,其前n 项和为n S , 则2n a n =+,1131311881002S +=⨯=<,12314121021002S +=⨯=>, 所以n 的最大值为11. 故选:C.3.(2020·浙江高考真题)已知等差数列{a n }的前n 项和S n ,公差d ≠0,11a d≤.记b 1=S 2,b n+1=S 2n+2–S 2n ,n *∈N ,下列等式不可能...成立的是( ) A .2a 4=a 2+a 6 B .2b 4=b 2+b 6C .2428a a a = D .2428b b b =【答案】D【解析】对于A ,因为数列{}n a 为等差数列,所以根据等差数列的下标和性质,由4426+=+可得,4262a a a =+,A 正确;对于B ,由题意可知,21212222n n n n n b S a a S ++++=+=-,1212b S a a ==+, ∴234b a a =+,478b a a =+,61112b a a =+,81516b a a =+. ∴()47822b a a =+,26341112b b a a a a +=+++.根据等差数列的下标和性质,由31177,41288+=++=+可得()26341112784=2=2b b a a a a a a b +=++++,B 正确;对于C ,()()()()2224281111137222a a a a d a d a d d a d d d a -=+-++=-=-,当1a d =时,2428a a a =,C 正确; 对于D ,()()22222478111213452169b a a a d a a d d =+=+=++,()()()()2228341516111125229468145b b a a a a a d a d a a d d =++=++=++,()22428112416832b b b d a d d d a -=-=-.当0d >时,1a d ≤,∴()113220d a d d a -=+->即24280b b b ->;当0d <时,1a d ≥,∴()113220d a d d a -=+-<即24280b b b ->,所以24280b b b ->,D 不正确.故选:D.4.(2019·全国高考真题(理))记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则 A .25n a n =- B . 310n a n =- C .228n S n n =-D .2122n S n n =- 【答案】A【解析】由题知,41514430245d S a a a d ⎧=+⨯⨯=⎪⎨⎪=+=⎩,解得132a d =-⎧⎨=⎩,∴25n a n =-,故选A . 二、填空题5.(2021·江苏高考真题)已知等比数列{}n a 的公比为q ,且116a ,24a ,3a 成等差数列,则q 的值是___________. 【答案】4【解析】因为{}n a 为等比数列,且公比为q , 所以21a a q =⋅,231a a q =⋅且10a ≠,0q ≠. 因为116a ,24a ,3a 成等差数列, 所以1321624a a a +=⨯,有21111624a a q a q +⋅=⨯⋅,28160q q -+=, 解得4q =. 故答案为:4.6.(2020·海南高考真题)将数列{2n –1}与{3n –2}的公共项从小到大排列得到数列{a n },则{a n }的前n 项和为________. 【答案】232n n -【解析】因为数列{}21n -是以1为首项,以2为公差的等差数列, 数列{}32n -是以1首项,以3为公差的等差数列,所以这两个数列的公共项所构成的新数列{}n a 是以1为首项,以6为公差的等差数列, 所以{}n a 的前n 项和为2(1)16322n n n n n -⋅+⋅=-, 故答案为:232n n -.7.(2020·全国高考真题(文))记n S 为等差数列{}n a 的前n 项和.若1262,2a a a =-+=,则10S =__________.【答案】25 【解析】{}n a 是等差数列,且12a =-,262a a +=设{}n a 等差数列的公差d根据等差数列通项公式:()11n a a n d +-= 可得1152a d a d +++= 即:()2252d d -++-+= 整理可得:66d =解得:1d =根据等差数列前n 项和公式:*1(1),2n n n S na d n N -=+∈ 可得:()1010(101)1022045252S ⨯-=-+=-+=∴1025S =.故答案为:25.8.(2019·江苏高考真题)已知数列*{}()n a n ∈N 是等差数列,n S 是其前n 项和.若25890,27a a a S +==,则8S 的值是_____. 【答案】16.【解析】由题意可得:()()()25811191470989272a a a a d a d a d S a d ⎧+=++++=⎪⎨⨯=+=⎪⎩, 解得:152a d =-⎧⎨=⎩,则8187840282162S a d ⨯=+=-+⨯=. 9.(2019·全国高考真题(理))记S n 为等差数列{a n }的前n 项和,12103a a a =≠,,则105S S =___________. 【答案】4.【解析】因213a a =,所以113a d a +=,即12a d =,所以105S S =11111091010024542552a d a a a d⨯+==⨯+. 三、解答题10.(2021·天津高考真题)已知{}n a 是公差为2的等差数列,其前8项和为64.{}n b 是公比大于0的等比数列,1324,48b b b =-=. (I )求{}n a 和{}n b 的通项公式; (II )记2*1,n n nc b b n N =+∈, (i )证明{}22n n c c -是等比数列;(ii)证明)*nk n N =∈【答案】(I )21,n a n n N *=-∈,4,n n N b n *=∈;(II )(i )证明见解析;(ii )证明见解析.【解析】(I )因为{}n a 是公差为2的等差数列,其前8项和为64. 所以12818782642a a a a ⨯++⋅⋅⋅+=+⨯=,所以11a =, 所以()12121,n n n n N a a *=+-=-∈; 设等比数列{}n b 的公比为(),0q q >,所以()221321484q b b b q q b q ==-=--,解得4q =(负值舍去),所以114,n n n b q n N b -*==∈; (II )(i )由题意,221441n n n n n b c b =++=, 所以22224211442444n n nn nnn c c ⎛⎫⎛⎫=+-+=⋅ ⎪ ⎪⎝⎭⎝⎭-, 所以220nn c c ≠-,且212222124424n n n n nn c c c c +++⋅==⋅--, 所以数列{}22n n c c -是等比数列;(ii )由题意知,()()22122222121414242222n n n n n n n n n a n n c c a +-+-==<-⋅⋅⋅,12n n-==,所以112nn k k k k-==<, 设10121112322222nn k n k k nT --===+++⋅⋅⋅+∑, 则123112322222n n nT =+++⋅⋅⋅+, 两式相减得21111111122121222222212nn n n nn n n n T -⎛⎫⋅- ⎪+⎝⎭=+++⋅⋅⋅+-=-=--, 所以1242n n n T -+=-,所以1112422n nk nk kk n--==+⎫=-<⎪⎭11.(2021·全国高考真题)记n S是公差不为0的等差数列{}n a的前n项和,若35244,a S a a S==.(1)求数列{}n a的通项公式n a;(2)求使n nS a>成立的n的最小值.【答案】(1)26na n=-;(2)7.【解析】(1)由等差数列的性质可得:535S a=,则:3335,0a a a=∴=,设等差数列的公差为d,从而有:()()22433a a a d a d d=-+=-,()()()41234333322S a a a a a d a d a a d d=+++=-+-++-=-,从而:22d d-=-,由于公差不为零,故:2d=,数列的通项公式为:()3326na a n d n=+-=-.(2)由数列的通项公式可得:1264a=-=-,则:()()214252nn nS n n n-=⨯-+⨯=-,则不等式n nS a>即:2526n n n->-,整理可得:()()160n n-->,解得:1n<或6n>,又n为正整数,故n的最小值为7.12.(2021·全国高考真题)已知数列{}n a满足11a=,11,,2,.nnna naa n++⎧=⎨+⎩为奇数为偶数(1)记2n nb a=,写出1b,2b,并求数列{}n b的通项公式;(2)求{}n a的前20项和.【答案】(1)122,5b b==;(2)300.【解析】(1)由题设可得121243212,1215b a a b a a a==+===+=++=又22211k ka a++=+,2122k ka a+=+,*()k N∈故2223k ka a+=+,即13n nb b+=+,即13n nb b+-=所以{}n b为等差数列,故()21331nb n n=+-⨯=-.(2)设{}n a 的前20项和为20S ,则2012320S a a a a =++++,因为123419201,1,,1a a a a a a =-=-=-,所以()20241820210S a a a a =++++-()1291091021021023103002b b b b ⨯⎛⎫=++++-=⨯⨯+⨯-= ⎪⎝⎭.13.(2021·全国高考真题(理))已知数列{}n a 的各项均为正数,记n S 为{}n a 的前n 项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{}n a 是等差数列:②数列是等差数列;③213aa =.注:若选择不同的组合分别解答,则按第一个解答计分. 【答案】答案见解析【解析】选①②作条件证明③:(0)an b a =+>,则()2n S an b =+, 当1n =时,()211a S a b ==+;当2n ≥时,()()221n n n a S S an b an a b -=-=+--+()22a an a b =-+;因为{}n a 也是等差数列,所以()()222a b a a a b +=-+,解得0b =;所以()221n aa n =-,所以213a a =.选①③作条件证明②:因为213a a =,{}n a 是等差数列, 所以公差2112d a a a =-=,所以()21112n n n S na d n a -=+==,)1n =+=,所以是等差数列.选②③作条件证明①:(0)an b a =+>,则()2n S an b =+, 当1n =时,()211a S a b ==+;当2n ≥时,()()221n n n a S S an b an a b -=-=+--+()22a an a b =-+;因为213a a =,所以()()2323a a b a b +=+,解得0b =或43a b =-; 当0b =时,()221,21n a a a a n ==-,当2n ≥时,2-1-2n n a a a =满足等差数列的定义,此时{}n a 为等差数列; 当43a b =-4=3an b an a =+-03a=-<不合题意,舍去.综上可知{}n a 为等差数列.14.(2021·全国高考真题(理))记n S 为数列{}n a 的前n 项和,n b 为数列{}n S 的前n 项积,已知212n nS b +=. (1)证明:数列{}n b 是等差数列; (2)求{}n a 的通项公式.【答案】(1)证明见解析;(2)()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩.【解析】(1)由已知212n n S b +=得221n n n b S b =-,且0n b ≠,12n b ≠, 取1n =,由11S b =得132b =, 由于n b 为数列{}n S 的前n 项积,所以1212222212121n n n b b b b b b b ⋅⋅⋅⋅=---, 所以1121121222212121n n n b b b b b b b +++⋅⋅⋅⋅=---,所以111221n n n nb bb b +++=-,由于10n b +≠所以12121n n b b +=-,即112n n b b +-=,其中*n N ∈ 所以数列{}n b 是以132b =为首项,以12d =为公差等差数列; (2)由(1)可得,数列{}n b 是以132b =为首项,以12d =为公差的等差数列,()3111222n nb n ∴=+-⨯=+, 22211n n n b nS b n+==-+,当n =1时,1132a S ==, 当n ≥2时,()121111n n n n n a S S n n n n -++=-=-=-++,显然对于n =1不成立, ∴()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩.15.(2019·江苏高考真题)定义首项为1且公比为正数的等比数列为“M -数列”. (1)已知等比数列{a n }满足:245132,440a a a a a a =-+=,求证:数列{a n }为“M -数列”; (2)已知数列{b n }满足:111221,n n n b S b b +==-,其中S n 为数列{b n }的前n 项和. ①求数列{b n }的通项公式;②设m 为正整数,若存在“M -数列”{c n },对任意正整数k ,当k ≤m 时,都有1k k k c b c +成立,求m 的最大值.【答案】(1)见解析;(2)①b n =n ()*n ∈N ;②5.【解析】(1)设等比数列{a n }的公比为q ,所以a 1≠0,q ≠0.由245321440a a a a a a =⎧⎨-+=⎩,得244112111440a q a q a q a q a ⎧=⎨-+=⎩,解得112a q =⎧⎨=⎩.因此数列{}n a 为“M —数列”.(2)①因为1122n n n S b b +=-,所以0n b ≠. 由1111,b S b ==得212211b =-,则22b =. 由1122n n n S b b +=-,得112()n n n n n b b S b b ++=-,当2n ≥时,由1n n n b S S -=-,得()()111122n n n nn n n n n b b b b b b b b b +-+-=---,整理得112n n n b b b +-+=.所以数列{b n }是首项和公差均为1的等差数列. 因此,数列{b n }的通项公式为b n =n ()*n N ∈.②由①知,b k =k ,*k N ∈.因为数列{c n }为“M –数列”,设公比为q ,所以c 1=1,q >0. 因为c k ≤b k ≤c k +1,所以1k k q k q -≤≤,其中k =1,2,3,…,m .当k =1时,有q ≥1;当k =2,3,…,m 时,有ln ln ln 1k kq k k ≤≤-. 设f (x )=ln (1)x x x >,则21ln ()xf 'x x-=. 令()0f 'x =,得x =e .列表如下:x(1,e)e(e ,+∞) ()f 'x+0 –f (x )极大值因为2663=<=,所以max ()(3)3f k f ==.取q =k =1,2,3,4,5时,ln ln k q k,即k k q ≤,经检验知1k q k -≤也成立.因此所求m 的最大值不小于5.若m ≥6,分别取k =3,6,得3≤q 3,且q 5≤6,从而q 15≥243,且q 15≤216, 所以q 不存在.因此所求m 的最大值小于6. 综上,所求m 的最大值为5.16.(2019·北京高考真题(文))设{a n }是等差数列,a 1=–10,且a 2+10,a 3+8,a 4+6成等比数列. (Ⅰ)求{a n }的通项公式;(Ⅱ)记{a n }的前n 项和为S n ,求S n 的最小值. 【答案】(Ⅰ)212n a n =-;(Ⅱ)30-. 【解析】(Ⅰ)设等差数列{}n a 的公差为d ,因为234+10+8+6a a a ,,成等比数列,所以2324(+8)(+10)(+6)a a a =,即2(22)(34)d d d -=-,解得2d =,所以102(1)212n a n n =-+-=-.(Ⅱ)由(Ⅰ)知212n a n =-, 所以22102121112111()224n n S n n n n -+-=⨯=-=--;当5n =或者6n =时,n S 取到最小值30-.第二部分 模拟训练1.若数列{}n a 为等差数列,且16a π=,32a π=,则20cos a =( )A .12B C .12-D . 【答案】C 【解析】3126a a d π-== 201101963a a ππ=+⋅=201041cos coscos cos 3332a ππππ⎛⎫===+=- ⎪⎝⎭ 故选:C2.记n S 为数列{}n a 的前项和,已知点(,)n n a 在直线102y x =-上,若有且只有两个正整数n 满足n S k ≥,则实数k 的取值范围是( ) A .(8,14] B .(14,18] C .(18,20] D .81(18,]4【答案】C【解析】解:由已知可得102n a n =-,由12n n a a --=-,所以数列{}n a 为等差数列,首项为8,公差为-2, 所以2(1)8(2)92n n n S n n n -=+⨯-=-+, 当n =4或5时, n S 取得最大值为20, 因为有且只有两个正整数n 满足n S k ≥, 所以满足条件的4n =和5n =, 因为3618S S ==,所以实数k 的取值范围是(]18,20. 故选:C .3.已知n S 为等差数列{}n a 的前n 项和,3518a S +=-,63a a =-,则下列数值中最大的是( )A .416S B .525S C .636SD .749S【答案】D【解析】设等差数列{}n a 的公差为d,3518a S +=-,63a a =-,()111154+2+5+182+5+2a d a d a d a d ⨯⎧=-⎪∴⎨⎪=-⎩,解得17a =-,2d =,()217282n n n S n n n -=-+⨯=-,281n S n n ∴=-,可得2n S n ⎧⎫⎨⎬⎩⎭是单调递增数列, 所以在416S ,525S ,536S ,749S 中,最大的为749S . 故选:D.4.在正项等比数列{}n a 中.24a =.416a =.满足123m a a a a =21ma +.则m =( ) A .4 B .3C .5D .8【答案】A【解析】由题意得公比2q ===, 首项21422a a q ===, ∴111222n n nn a a q --==⨯=,由21231m m a a a a a +=,()(1)12212331 (2)2222222m m m m m++++++===可得(1)2(1)222m m m ++=,解得4m =,故选:A.5.已知数列{}n a 的前n 项和为n S ,且21122n S n n =+,若()1211n n n n n b a a ++=-⋅,则数列{}n b 的前n 项和n T =______.【答案】,12,1n nn n T n n n ⎧-⎪⎪+=⎨+⎪-⎪+⎩为偶数为奇数【解析】21122n S n n =+, 当1n =时,111a S ==,当2n ≥时,()()2211111112222n n n a S S n n n n n -⎡⎤=-=+--+-=⎢⎥⎣⎦,满足11a =, n a n ∴=,()()()()12111++121111+1nn n n n n n n b a n n a n n +++=-⋅=-⋅=⎛⎫∴⋅ ⎪⎝⎭-, 当n 为偶数时,111111111+122334111n n T n n n n ⎛⎫⎛⎫⎛⎫⎛⎫=-++-++++=-+=- ⎪ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎝⎭, 当n 为奇数时,1111111121+122334111n n T n n n n +⎛⎫⎛⎫⎛⎫⎛⎫=-++-++-+=--=- ⎪ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎝⎭, ,12,1n n n n T n n n ⎧-⎪⎪+∴=⎨+⎪-⎪+⎩为偶数为奇数.故答案为:,12,1n nn n T n n n ⎧-⎪⎪+=⎨+⎪-⎪+⎩为偶数为奇数6.数列{}n a 的前n 项和为n S ,23nn n a S +=,数列{}n b 满足()()211332n bn n a a n N *++=-∈,则数列{}n b 的前10项和为______. 【答案】65【解析】由23nn n a S +=知:11123n n n a S ++++=,则1112233n n n n n n a S a S ++++--=-,得1323n n n a a +-=⨯,∴121323n n n a a +++-=⨯,而()()211332n bn n a a n N *++=-∈, ∴1n b n =+,故数列{}n b 的前10项和为1010(211)652T ⨯+==, 故答案为:65.7.设公差不为0的等差数列{}n a 的前n 项和为n S .若数列{}n a 满足:存在三个不同的正整数,,r s t ,使得,,r s t a a a 成等比数列,222,,r s t a a a 也成等比数列,则1990nnS S a +的最小值为___________.【答案】45【解析】设1(1)n a a n d =+-,0d ≠, 由题意,,r s t a a a 成等比数列,s t r s a a a a =,所以s t s t r s r s a a a a s t a a a a r s--===--, 222,,r s t a a a 也成等比数列,2222s t r s a a a a =,所以222222222222s t s t r s r s a a a a s t s t a a a a r s r s---====---, 所以s t r s a a a a =2222s t r s a a a a ==,所以s t r s a a a a =2222s t r s a a a a ==2222s s r r a a s s sa a r r r--===--, 1111(1)(1)s r a a s d a d sd s a a r d a d rd r+--+===+--+,所以10a d -=,1d a =. 1111(1)99099099012(1)22nnn n a na dS S n a a n d n -+++==+++-,4445<<,设9901()22n f n n =++,由勾形函数性质知()f n在上递减,在)+∞上递增,又*n N ∈, (45)45f =,990441(44)454422f =++=,所以()f n 的最小值为45.即1990nnS S a +的最小值为45.故答案为:45.8.已知定义在[0,)+∞上的函数()f x 满足()()151,0222,2x x f x f x x ⎧--≤<⎪=⎨--≥⎪⎩.设()f x 在[)()*22,2n n n -∈N上的最大值记作n a ,n S 为数列{}n a 的前n 项和,则n S 的最大值为___________. 【答案】64【解析】由题意,函数()()151,0222,2x x f x f x x ⎧--≤<⎪=⎨--≥⎪⎩,当1n =时,[0,2)x ∈,此时()151f x x =--,此时函数()f x 在[0,2)上的最大值为()1151115f =--=,所以115a =,当2n =时,[2,4)x ∈,此时()()22f x f x =--,此时2[0,2)x -∈, 所以()()2215212133f x f x x x =--=----=--,此时函数()f x 在[2,4)[0,2)上的最大值为()3133313f =--=,所以213a =,当[22,2)x n n ∈-时,()15[(22)]2(1)15(22)12(1)f x f x n n x n n =-----=------, 此时函数()f x 的最大值为()172f n n =-,所以172n a n =-,当18,n n N +≤≤∈时,0n a >,当9,n n N +≥∈时,0n a <,所以n S 的最大值为8818()8(151)6422a S a +⨯+===. 故答案为:64.9.设等差数列{}n a 的前n 项和为n S ,首项11a =,且41412S S -=.数列{}n b 的前n 项和为n T ,且满足111,21n n b b T +==+.(1)求数列{}n a 和{}n b 的通项公式;(2)求数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和.【答案】(1)21n a n =-,13n n b -=;(2)1133n n n T -+=-. 【解析】解:(1)设数列{}n a 的公差为d ,且11a =, 又41412S S -=,则()12341412312a a a a a d +++-=++=, 所以2d =,则1(1)221n a n n =+-⋅=-;由121n n b T +=+可得121(2)n n b T n -=+≥, 两式相减得12n n n b b b +-=,13(2)n n b b n +=≥,又21213b T =+=, 所以213b b =,故{}n b 是首项为1,公比为3的等比数列,所以13n n b -=.(2)设1213n n n n a n c b --==, 记{}n c 的前n 项和为n T .则0121135213333n n n T --=++++, 12311352133333n n n T -=++++, 两式相减得:121222221133333n n n n T --=++++-,11112212233122133313n n n n n n T -⎛⎫⨯- ⎪-+⎝⎭=+⨯-=--,所以1133n n n T -+=-.10.已知数列{}n a 满足31212311212121212n n n a a a a ++++=-++++,n *∈N .(1)求数列{}n a 的通项公式;(2)设等差数列{}n b 的前n 项和为n S ,且21122n S n n k =-+,令2n n n c b a kn =-+,求数列{}n c 的前n 项和n T .【答案】(1)112n n a =--;(2)()11122n n n n T +=+- . 【解析】(1)当1n =时,11132a =-,132a ∴=-;当2n ≥时,由31212311212121212n n n a a a a ++++=-++++,①得31121231111212121212nn n a a a a ---++++=-++++,② ①-②得,111121222n n n n n a -=-=-+,112n n a ∴=--,132=-a 也符合,因此,数列{}n a 的通项公式为112n n a =--; (2)由题意,设等差数列{}n b 的公差为d , 则()221111122222n n n d d d S nb n b n n n k -⎛⎫=+=+-=-+ ⎪⎝⎭, 11221220d d b k ⎧=⎪⎪⎪∴-=-⎨⎪=⎪⎪⎩,解得,1010b d k =⎧⎪=⎨⎪=⎩,()111n b b n d n ∴=+-=-;由(1)知,212n n n nc b a kn n =-+=+, 故123231*********2n n nT c c c c n ⎛⎫=++++=+++++++++ ⎪⎝⎭()()111111*********n n n n n n ⎛⎫- ⎪++⎝⎭=+=+--. 11.已知数列{}n a 满足0n a ≠恒成立.(1)若221n n n a a ka ++=且0n a >,当{}lg n a 成等差数列时,求k 的值;(2)若2212n n n a a a ++=且0n a >,当11a =、4a =2a 以及n a 的通项公式;(3)若21312n n n n a a a a +++=-,11a =-,3[4,8]a ∈,20200a <,设n S 是{}n a 的前n 项之和,求2020S 的最大值.【答案】(1)1 ;(2)2a ,()21n n a -=;(3)505143-【解析】(1)若221n n n a a ka ++=且0n a >,所以221lg lg n n n a a ka ++=,即21lg lg 2lg lg n n n a a k a ++=++,当{}lg n a 成等差数列时,21lg lg 2lg n n n a a a ++=+, 所以lg 0k =,解得:1k = ;(2)2212n n n a a a ++=,令1n =可得21322a a a =,即2322a a =,令2n =可得22432a a a =,即2232a =所以42224a =⨯,因为0n a >,所以32a =,解得2a =, 由2212n n n a a a ++=可得2112n n n na aa a +++=, 所以1n n a a +⎧⎫⎨⎬⎩⎭是首项为21a a =2的等比数列,所以112n n na a -+=,所以0212a a =,1322a a =,2432a a =,212n nn a a --=, 以上式子累乘得:()()()()()()21211112101222122n n n n n n n n n na a --------++++-=⨯=⨯=⨯=,所以()21n n a -=,(3)由21312n n n n a a a a +++=-可得132412n n n n a a a a ++++=-, 所以22424111224n n n n n n a a a a a a +++++⎛⎫=-- ⎪=⎝⎭⨯, 因为0n a ≠,所以414n n a a +=,即44n n a a +=, 所以2505504202020162012444444k k a a a a a -=====,因为20200a <,所以504440a <,所以40a <,因为213412a a a a =-,所以341220a a a a =+即2432a a a =, ()()()202015920172610201837112019S a a a a a a a a a a a a =++++++++++++++()48122020a a a a +++++()()250425041214441444a a =+++++++++()250431444a +++++()250441444a +++++()()250412341444a a a a =+++++++,因为2432a a a =,3[4,8]a ∈,所以240a a >,因为40a <,所以20a <,所以()24a a +-≥=-24a a +≤-所以123431a a a a a +++≤-+-,令31y a =-+-2,t ⎡=⎣,21y t =--,对称轴为t =,是开口向上的抛物线,在2,t ⎡∈⎣单调递增,所以t =时取得最大值,故1234a a a a +++最大值为(211-=-,所以()()2504202012341444S a a a a =+++++++最大值为50550514141143---⨯=-.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.【2017浙江,6】已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6>2S 5”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【考点】 等差数列、充分必要性【名师点睛】本题考查等差数列的前n 项和公式,通过公式的套入与简单运算,可知4652S S S d +-=, 结合充分必要性的判断,若q p ⇒,则p 是q 的充分条件,若q p ⇐,则p 是q 的必要条件,该题“0>d ”⇔“02564>-+S S S ”,故为充要条件.2.【2015高考新课标1,文7】已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a =( )(A )172 (B )192(C )10 (D )12 【答案】B【解析】∵公差1d =,844S S =,∴11118874(443)22a a +⨯⨯=+⨯⨯,解得1a =12,∴1011199922a a d =+=+=,故选B. 【考点定位】等差数列通项公式及前n 项和公式【名师点睛】解等差数列问题关键在于熟记等差数列定义、性质、通项公式、前n 项和公式,利用方程思想和公式列出关于首项与公差的方程,解出首项与公差,利用等差数列性质可以简化计算.3.【2014高考重庆文第2题】在等差数列{}n a 中,1352,10a a a =+=,则7a =( ).5A .8B .10C .14D【答案】B【解析】试题分析:设等差数列{}n a的公差为d,由题设知,12610a d+=,所以,110216ad-==所以,716268a a d=+=+=.故选B.考点:等差数列通项公式.【名师点睛】本题考查了等差数列的概念与通项公式,本题属于基础题,利用下标和相等的两项的和相等更能快速作答.4.【2014天津,文5】设{}na是首项为1a,公差为1-的等差数列,n S为其前n项和,若,,,421SSS成等比数列,则1a=()A.2B.-2C.21D .12-【答案】D考点:等比数列【名师点睛】本题考查等差数列的通项公式和前n项和公式,本题属于基础题,利用等差数列的前n项和公式表示出,,,421SSS然后依据,,,421SSS成等比数列,列出方程求出首项.这类问题考查等差数列和等比数列的基本知识,大多利用通项公式和前n项和公式通过列方程或方程组就可以解出.5.【2014辽宁文9】设等差数列{}n a的公差为d,若数列1{2}n a a为递减数列,则()A.0d<B.0d>C.10a d<D.1a d>【答案】C【解析】试题分析:由已知得,11122n na a a a-<,即111212nna aa a-<,1n1(a)21na a--<,又n1ana d--=,故121a d<,从而10a d<,选C.【考点定位】1、等差数列的定义;2、数列的单调性.【名师点睛】本题考查等差数列的通项公式、数列的性质等,解答本题的关键,是写出等差数列的通项,利用1{2}n a a是递减数列,确定得到111212nna aa a-<,得到结论.本题是一道基础题.在考查等差数列等基础知识的同时,考查考生的计算能力.6.【2015新课标2文5】设n S是等差数列{}n a的前n项和,若1353a a a++=,则5S=()A.5B.7C.9D.11【答案】A【考点定位】本题主要考查等差数列的性质及前n项和公式的应用.【名师点睛】本题解答过程中用到了的等差数列的一个基本性质即等差中项的性质,利用此性质可得1532.a a a+=高考中数列客观题大多具有小、巧、活的特点,在解答时要注意数列相关性质的应用,尽量避免小题大做.7.【2015新课标2文9】已知等比数列{}n a满足114a=,()35441a a a=-,则2a=()A.2 B.11C.21D.8【答案】C【解析】试题分析:由题意可得()235444412a a a a a==-⇒=,所以34182aq qa==⇒=,故2112a a q==,选C.【考点定位】本题主要考查等比数列性质及基本运算.【名师点睛】解决本题的关键是利用等比数列性质211n n na a a-+=得到一个关于4a的一元二次方程,再通过解方程求4a的值,我们知道,等差、等比数列各有五个基本量,两组基本公式,而这两组公式可看作多元方程,利用这些方程可将等差、等比数列中的运算问题转化解关于基本量的方程(组),因此可以说数列中的绝大部分运算题可看作方程应用题,所以用方程思想解决数列问题是一种行之有效的方法.8.【2014全国2,文5】等差数列{}na的公差是2,若248,,a a a成等比数列,则{}n a的前n项和nS =( )A. (1)n n +B. (1)n n -C. (1)2n n +D. (1)2n n - 【答案】A【解析】由已知得,2428a a a =⋅,又因为{}n a 是公差为2的等差数列,故2222(2)(6)a d a a d +=⋅+,22(4)a +22(12)a a =⋅+,解得24a =,所以2(2)n a a n d =+-2n =,故1()(n 1)2n n n a a S n +==+.【考点定位】1.等差数列;2.等比数列.【名师点睛】本题主要考查了等差数列的通项公式,等比中项的概念,等差数列的前n 项和公式,本题属于基础题,解决本题的关健在于熟练掌握相应的公式.9.【2015高考广东,文13】若三个正数a ,b ,c 成等比数列,其中526a =+,526c =-,则b = . 【答案】1【考点定位】等比中项.【名师点晴】本题主要考查的是等比中项,属于容易题.解题时要抓住关键字眼“正数”,否则很容易出现错误.解本题需要掌握的知识点是等比中项的概念,即若a ,G ,b 成等比数列,则G 称为a 与b 的等比中项,即2G ab =. 10. 【2014高考广东卷.文.13】等比数列{}n a 的各项均为正数,且154a a =,则2122232425log log log log log a a a a a ++++= .【答案】5.【解析】由题意知21534a a a ==,且数列{}n a 的各项均为正数,所以32a =,()()()223512345152433352a a a a a a a a a a a a a ∴=⋅⋅=⋅==,()521222324252123452log log log log log log log 25a a a a a a a a a a ∴++++===.【考点定位】本题考查等比数列的基本性质与对数的基本运算,属于中等偏难题.【名师点晴】本题主要考查的是等比数列的性质和对数的基本运算,属于中等偏难题.解题时要抓住关键字眼“正数”,否则很容易出现错误.解本题需要掌握的知识点是等比数列的性质和对数的基本运算,即等比数列{}n a 中,若m n p q +=+(m 、n 、p 、q *∈N ),则m np q a a a a =,()log log log a a a MN =M +N (0a >,1a ≠,0M >,0N >).11.【2015高考新课标1,文13】数列{}n a 中112,2,n n n a a a S +==为{}n a 的前n 项和,若126n S =,则n = .【答案】6考点:等比数列定义与前n 项和公式【名师点睛】解等差数列问题关键在于熟记等比数列定义、性质、通项公式、前n 项和公式,利用方程思想和公式列出关于首项与公比的方程,解出首项与公比,利用等比数列性质可以简化计算.12.【2015高考浙江,文10】已知{}n a 是等差数列,公差d 不为零.若2a ,3a ,7a 成等比数列,且1221a a +=,则1a = , d = .【答案】2,13- 【解析】由题可得,2111(2)()(6)a d a d a d +=++,故有1320a d +=,又因为1221a a +=,即131a d+=,所以121,3d a =-=.【考点定位】1.等差数列的定义和通项公式;2.等比中项.【名师点睛】本题主要考查等差数列的定义和通项公式.主要考查学生利用等差数列的定义以及等比中项的性质,建立方程组求解数列的首项与公差.本题属于容易题,主要考查学生正确运算的能力.13. 【2015高考陕西,文13】中位数为1010的一组数构成等差数列,其末项为2015,则该数列的首项为________ 【答案】5【解析】若这组数有21n +个,则11010n a +=,212015n a +=,又12112n n a a a +++=,所以15a =;若这组数有2n 个,则1101022020n n a a ++=⨯=,22015n a =,又121n n n a a a a ++=+,所以15a =;故答案为5【考点定位】等差数列的性质.【名师点睛】1.本题考查等差数列的性质,这组数字有可能是偶数个,也有可能是奇数个.然后利用等差数列性质m n p q m n p q a a a a +=+⇒+=+.2.本题属于基础题,注意运算的准确性.14.【2017江苏,9】等比数列{}n a 的各项均为实数,其前n 项的和为n S ,已知3676344S S ==,,则8a = ▲ .【答案】32【考点】等比数列通项【名师点睛】在解决等差、等比数列的运算问题时,有两个处理思路,一是利用基本量,将多元问题简化为一元问题,虽有一定量的运算,但思路简洁,目标明确;二是利用等差、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形. 在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法.15.【2017课标1,文17】记S n 为等比数列{}n a 的前n 项和,已知S 2=2,S 3=-6.(1)求{}n a 的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列.【答案】(1)(2)nn a =-;(2)32)1(321+⋅-+=n n n S ,证明见解析.【解析】试题分析:(1)由等比数列通项公式解得2q =-,12a =-;(2)利用等差中项证明S n +1,S n ,S n +2成等差数列.试题解析:(1)设{}n a 的公比为q .由题设可得121(1)2(1)6a q a q q +=⎧⎨++=-⎩ ,解得2q =-,12a =-.故{}n a 的通项公式为(2)n na =-.(2)由(1)可得11(1)22()1331n n n n a q S q +-==--+-. 由于3212142222()2[()]2313313n n n n n n n n S S S +++++-+=--++=-=-, 故1n S +,n S ,2n S +成等差数列. 【考点】等比数列【名师点睛】等差、等比数列的性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形. 在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法.16.【2017课标II ,文17】已知等差数列{}n a 的前n 项和为n S ,等比数列{}n b 的前n 项和为n T ,11221,1,2a b a b =-=+= (1)若335a b += ,求{}n b 的通项公式;(2)若321T =,求3S .【答案】(Ⅰ);(Ⅱ)当时,.当时,.试题解析:(1)设的公差为d ,的公比为q ,则,.由得d+q=3. ①(1) 由得 ②联立①和②解得(舍去),因此的通项公式(2) 由得.解得当时,由①得,则. 当时,由①得,则.【考点】等差、等比数列通项与求和【名师点睛】在解决等差、等比数列的运算问题时,有两个处理思路,一是利用基本量,将多元问题简化为一元问题,虽有一定量的运算,但思路简洁,目标明确;二是利用等差、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形. 在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法. 17.【2015高考北京,文16】(本小题满分13分)已知等差数列{}n a 满足1210a a +=,432a a -=.(I )求{}n a 的通项公式;(II )设等比数列{}n b 满足23b a =,37b a =,问:6b 与数列{}n a 的第几项相等?【答案】(I )22na n =+;(II )6b 与数列{}n a 的第63项相等.试题解析:(Ⅰ)设等差数列{}n a 的公差为d .因为432a a -=,所以2d =.又因为1210a a +=,所以1210a d +=,故14a =.所以42(1)22na n n =+-=+ (1,2,)n =L .(Ⅱ)设等比数列{}n b 的公比为q .因为238b a ==,3716b a ==, 所以2q =,14b =. 所以61642128b -=⨯=.由12822n =+,得63n =. 所以6b 与数列{}n a 的第63项相等. 考点:等差数列、等比数列的通项公式.【名师点晴】本题主要考查的是等差数列的通项公式和等比数列的通项公式,属于中档题.本题通过求等差数列和等比数列的基本量,利用通项公式求解.解本题需要掌握的知识点是等差数列的通项公式和等比数列的通项公式,即等差数列的通项公式:()11n a a n d =+-,等比数列的通项公式:11n n a a q-=.18. 【2015高考广东,文19】(本小题满分14分)设数列{}n a 的前n 项和为n S ,n *∈N .已知11a =,232a =,354a =,且当2n ≥ 时,211458n n n n S S S S ++-+=+.(1)求4a 的值; (2)证明:112n n a a +⎧⎫-⎨⎬⎩⎭为等比数列; (3)求数列{}n a 的通项公式.【答案】(1)78;(2)证明见解析;(3)()11212n n a n -⎛⎫=-⨯ ⎪⎝⎭.再将数列112n n a a +⎧⎫-⎨⎬⎩⎭的通项公式转化为数列12n n a ⎧⎫⎪⎪⎪⎪⎨⎬⎛⎫⎪⎪⎪⎪⎪⎝⎭⎩⎭是等差数列,进而可得数列{}n a 的通项公式. 试题解析:(1)当2n =时,4231458S S S S +=+,即435335415181124224a ⎛⎫⎛⎫⎛⎫+++++=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得:478a =(2)因为211458n n n n S S S S ++-+=+(2n ≥),所以21114444n n n n n n S S S S S S ++-+-+-=-(2n ≥),即2144n n n a a a +++=(2n ≥),因为3125441644a a a +=⨯+==,所以2144n n n a a a +++=,因为()2121111111114242212142422222n n n n n n n n n n n n n n n n n a a a a a a a a a a a a a a a a a +++++++++++-----====----,所以数列112n n a a +⎧⎫-⎨⎬⎩⎭是以21112a a -=为首项,公比为12的等比数列(3)由(2)知:数列112n n a a +⎧⎫-⎨⎬⎩⎭是以21112a a -=为首项,公比为12的等比数列,所以111122n n n a a -+⎛⎫-= ⎪⎝⎭即1141122n n n na a ++-=⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,所以数列12n n a ⎧⎫⎪⎪⎪⎪⎨⎬⎛⎫⎪⎪⎪⎪⎪⎝⎭⎩⎭是以1212a =为首项,公差为4的等差数列,所以()2144212nna n n =+-⨯=-⎛⎫⎪⎝⎭,即()()111422122nn n a n n -⎛⎫⎛⎫=-⨯=-⨯ ⎪ ⎪⎝⎭⎝⎭,所以数列{}n a 的通项公式是()11212n n a n -⎛⎫=-⨯ ⎪⎝⎭考点:1、等比数列的定义;2、等比数列的通项公式;3、等差数列的通项公式.【名师点晴】本题主要考查的是等比数列的定义、等比数列的通项公式和等差数列的通项公式,属于难题.本题通过将n S 的递推关系式转化为n a 的递推关系式,利用等比数列的定义进行证明,进而可得通项公式,根据通项公式的特点构造成等差数列进行求解.解题时一定要注意关键条件“2n ≥”,否则很容易出现错误.解本题需要掌握的知识点是等比数列的定义、等比数列的通项公式和等差数列的通项公式,即等比数列的定义:1n na q a +=(常数),等比数列的通项公式:11n n a a q-=,等差数列的通项公式:()11n a a n d =+-.19.【2016高考新课标2文数】等差数列{n a }中,34574,6a a a a +=+=.(Ⅰ)求{n a }的通项公式;(Ⅱ) 设[]n n b a =,求数列{}n b 的前10项和,其中[]x 表示不超过x 的最大整数,如[0.9]=0,[2.6]=2. 【答案】(Ⅰ)235n n a +=;(Ⅱ)24. 【解析】试题分析:(Ⅰ) 题目已知数列{n a }是等差数列,根据通项公式列出关于1a ,d 的方程,解方程求得1a ,d ,从而求得n a ;(Ⅱ)根据条件[]x 表示不超过x 的最大整数,求n b ,需要对n =分类讨论,再求数列{}n b 的前10项和.当n =1,2,3时,2312,15n n b +≤<=; 当n =4,5时,2323,25n n b +≤<=;当n =6,7,8时,2334,35n n b +≤<=;当n =9,10时,2345,45n n b +≤<=,所以数列{}n b 的前10项和为1322334224⨯+⨯+⨯+⨯=. 考点:等差数列的性质 ,数列的求和. 【名师点睛】求解本题会出现以下错误:①对“[]x 表示不超过x 的最大整数”理解出错;20.【2016高考北京文数】(本小题13分)已知}{n a 是等差数列,}{n b 是等差数列,且32=b ,93=b ,11b a =,414b a =. (1)求}{n a 的通项公式;(2)设n n n b a c +=,求数列}{n c 的前n 项和.【答案】(1)21n a n =-(1n =,2,3,⋅⋅⋅);(2)2312-+n n【解析】试题分析:(Ⅰ)求出等比数列{}n b 的公比,求出11b a =,414b a =的值,根据等差数列的通项公式求解;(Ⅱ)根据等差数列和等比数列的前n 项和公式求数列}{n c 的前n 项和. 试题解析:(I )等比数列{}n b 的公比32933b q b ===,所以211b b q==,4327b b q ==. 设等差数列{}n a 的公差为d . 因为111a b ==,14427a b ==, 所以11327d +=,即2d =.所以21n a n =-(1n =,2,3,⋅⋅⋅).()11321133n n S n -=++⋅⋅⋅+-+++⋅⋅⋅+ ()12113213n n n +--=+-2312n n -=+.考点:等差、等比数列的通项公式和前n 项和公式,考查运算能力.【名师点睛】1.数列的通项公式及前n 项和公式都可以看作项数n 的函数,是函数思想在数列中的应用.数列以通项为纲,数列的问题,最终归结为对数列通项的研究,而数列的前n 项和S n 可视为数列{S n }的通项.通项及求和是数列中最基本也是最重要的问题之一;2.数列的综合问题涉及到的数学思想:函数与方程思想(如:求最值或基本量)、转化与化归思想(如:求和或应用)、特殊到一般思想(如:求通项公式)、分类讨论思想(如:等比数列求和,1=q 或1≠q )等.21.【2015高考四川,文16】设数列{a n }(n =1,2,3…)的前n 项和S n 满足S n =2a n -a 3,且a 1,a 2+1,a 3成等差数列. (Ⅰ)求数列的通项公式; (Ⅱ)设数列1{}na 的前n 项和为T n ,求T n . 【解析】(Ⅰ) 由已知S n =2a n -a 1,有a n =S n -S n -1=2a n -2a n -1(n ≥2)(Ⅱ)由(Ⅰ)得112n n a =所以T n =211[1()]111122 (11222212)n n n-+++==-- 【考点定位】本题考查等差数列与等比数列的概念、等比数列通项公式与前n 项和等基础知识,考查运算求解能力.【名师点睛】数列问题放在解答题第一题,通常就考查基本概念和基本运算,对于已知条件是S n 与a n 关系式的问题,基本处理方法是“变更序号作差”,这种方法中一定要注意首项a 1是否满足一般规律(代入检验即可,或者根据变换过程中n 的范围和递推关系中的表达式判断).数列求和时,一定要注意首项、公比和项数都不能出错.同时注意,对于较为简单的试题,解析步骤一定要详细具体,不可随意跳步.属于简单题. 22.【2016高考四川文科】(本小题满分12分)已知数列{n a }的首项为1,n S 为数列{}n a 的前n 项和,11n n S qS +=+ ,其中q >0,*n N ∈ .(Ⅰ)若2323,,a a a a + 成等差数列,求{}n a 的通项公式;(Ⅱ)设双曲线2221n y x a -= 的离心率为n e ,且22e = ,求22212n e e e ++⋅⋅⋅+.【答案】(Ⅰ)1=n n a q -;(Ⅱ)1(31)2n n +-.【解析】试题分析:(Ⅰ)已知n S 的递推式11n n S qS +=+,一般是写出当2n ≥时,11n n S qS -=+,两式相减,利用1n n n a S S -=-,得出数列{}n a 的递推式,从而证明{}n a 为等比数列,利用等比数列的通项公式得到结论;(Ⅱ)先利用双曲线的离心率定义得到ne的表达式,再由22e=解出q的值,最后利用等比数列的求和公式求解计算.由2323+a a a a,,成等差数列,可得32232=a a a a++,所以32=2,a a,故=2q.所以1*2()nna n-=?N.(Ⅱ)由(Ⅰ)可知,1nna q-=.所以双曲线2221nyxa-=的离心率22(1)11nn ne a q-=++.由2212e q=+解得3q=所以,22222(1)12222(1)2(11)(1+)[1]1[1]11(31).2nnnnne e e q qqn q q nqn--++鬃?=+++鬃?+-=+++鬃?=+-=+-,考点:数列的通项公式、双曲线的离心率、等比数列的求和公式23.【2015高考重庆,文16】已知等差数列{}n a满足3a=2,前3项和3S=92.(Ⅰ)求{}n a的通项公式,(Ⅱ)设等比数列{}n b满足1b=1a,4b=15a,求{}n b前n项和n T.【答案】(Ⅰ)+1=2nna,(Ⅱ)21nnT=-.【解析】试题分析:(Ⅰ)由已知及等差数列的通项公式和前n项和公式可得关于数列的首项a1和公式d的二元一次方程组,解此方程组可求得首项及公差的值,从而可写出此数列的通项公式,(Ⅱ)由(Ⅰ)的结果可求出b1和b4的值,进而就可求出等比数列的公比,再由等比数列的前n项和公式1(1)1nnb qTq-=-即可求得数列{}n b前n项和n T.试题解析: (1)设{}n a 的公差为d ,则由已知条件得(2)由(1)得141515+1=1==82b b a =,. 设{}n b 的公比为q,则341q 8b b ==,从而2q =. 故{}n b 的前n 项和1(1)1(12)21112n n n n b q T q -?===---.【考点定位】1. 等差数列,2. 等比数列.【名师点睛】本题考查等差数列及等比数列的概念、通项公式及前n 项的求和公式,利用方程组思想求解.本题属于基础题,注意运算的准确性.。

相关文档
最新文档