弹性力课件第三章 应变理论

合集下载

岩土弹塑性力学教学课件(共13章)第3章_应变状态

岩土弹塑性力学教学课件(共13章)第3章_应变状态

§3.1 应变状态11
• 三个刚性转动分量及6个应变分量合在一起,才全 面反映了物体变形
xyz x y z xy yz zx
B
B’’ 刚性转动
B’’’
B’
变形
A 刚性平动 A`
§3.1 应变状态12
• 工程应变: ln l0
l0
变形后长度 原始长度
不适用于大变形
• 自然应变/对数应变:
在塑性变形较大时,用-曲线不能真正代表加载和变形的状态。
x y z
• ——弹性体一点的体积改变量
• 引入体积应变有助于简化公式。
• 大于零表示体积膨胀,小于零体积压缩。
• 注意:土力学中塑性体应变符号约定相反。
§3.2 主应变与应变主方向8
应变Lode参数: 为表征偏量应变张量的形式,引入应变Lode参数:
22 3 1 3
1
(1.66)
如果两种应变状态με 相等,表明它们所对应的应变莫尔圆 相似,也即偏应变张量的形式相同。
Vz y
;
zx
Vz x
Vx z
;
§3.3 应变率张量 2
小变形情况下,应变速率分量与应变分量间存在如下关系:
x
Vx x
du x dt
d dt
u x
x
u x
y
Vy y
dv y dt
d v
dt
y
y
v y
z
Vz z
z
dw dt
d w dt z
z
w z
线应变速率
j
Vj,i )
(1.56)
§3.3 主应变与应变主方向 4
由于时间度量的绝对值对塑性规律没有影响,因

弹性力学课件03-应力应变关系

弹性力学课件03-应力应变关系

§3–2 弹塑性力学常用的简化模型
5. 理想塑性力学模型 (刚塑性力学模型)

s
6. 线性强化刚塑性力学模型
s
s
E1
s E1

School of Engineering and Technology,China University of Geosciences
School of Engineering and Technology,China University of Geosciences





E 21

五、主应力 --- 主应变关系
1 1 1 2 3 E 1 2 2 3 1 E 1 3 3 2 1 E


x m
1 x m E
e xy
e yz e zx
xy
1 1 sx ex sx 2G E 1 ey sy 2G 1 ez sz 2G
1 xy G
1 1 xy xy 2 2G 1 yz 2G 1 zx 2G
四、用应变分量表示应力形式的广义胡克定律
G
1 1 x x y z x x x y z E E 1 (1 ) x x 2G x E 2G y 1 2 y E z 2G z G 1 E xy x (1 ) x xy E 1 2 yz G yz E E zx G zx x x 1 (1 )(1 2 ) E (2G 3 ) (1 )(1 2 ) Lame′常数

弹性力学-第三章-应变状态

弹性力学-第三章-应变状态

应变,由于六个应变分量对应三个位移分量,则其求解将相
对复杂。 这个问题以后作专门讨论。
几使何用方张程量给符出号的,应几变何通方常程称可为以表工达程为应:变。ij
1 2
ui,j
uj,i
§3.1 变形11
上式表明应变分量ij 将满足二阶张量的坐 标变换关系,应变张量分量与工程应变分 量的关系可表示为
• 刚性位移可以分解为平动与转动 • 刚性转动——变形位移的一部分,但是不产
生变形。
§3.1 变形13
通过分析弹性体内无限邻近两点的位 置变化,则可得出刚体的转动位移与 纯变形位移之间的关系。
设M点的坐标为(x,y,z)
与M点邻近的
位移(u,v,w)
N点的坐标为(x+dx,y+dy,z+dz)
位移(u+du,v+dv,w+dw)
将几何方程
x
u, x
y
v y
,
z
w z
,
中的第 1,2,4 式:
xy
vu, x y
yz
wv, y z
zx
uw z x
作如下求偏导运算:
2 x
y 2
3u xy 2
2 y
x2
3v x2y
2 xy
xy
2 u
yx
y
v x
3u xy 2
3v x 2y
§3.3 应变协调5
从几何方程中消去位移分量,第一式和第二式分别对y和 x求二阶偏导数
(
x
)l
1 2
xym
1 2
xzn
0
1 2
xyl
(
y
)m
1 2

弹性力学_第三章应变.ppt

弹性力学_第三章应变.ppt

v
B"
B
u u dx x
线素AB的转角为: BB tg AB
弹性力学
第三章 应变
§3-1 变形与应变概念 §3-2 变形连续条件 §3-3 应变增量和应变速率张量 §3-4 应力应变分析的相似性与差异性
§3-1 变形与应变概念
弹性体在受外力以后,还将发生变形。物体的 变形状态,一般有两种方式来描述: 1、给出各点的位移;2、给出各体素的变形。 弹性体内任一点的位移,用此位移在x、y、z 三个坐标轴上的投影u、v、w来表示。以沿坐标轴 正方向为正,沿坐标轴负方向为负。这三个投影称 为位移分量。一般情况下,弹性体受力以后,各点 的位移并不是定值,而是坐标的函数。
变形的度量——应变
一个物体受作用力后,其内部质点不仅要发生相对位置的改 变(产生了位移),而且要产生形状的变化(产生了变形)。 物体的变形程度用应变来度量,物体在某一时刻的形态与早先 的形态(一般指初始状态或未变形的状态)之间的差别就是物 体在该时刻的应变。物体变形时,其体内各质点在各方向上都 会有应变。
AB、AD的正应变 x 、 y :
C'
D" D '
D C
dy
u
A
A'

B'
v v dx x
v
B"
B
u u dx x
dx 0 图 2-5
x
线素AB的正应变为: u (u dx)u u x x dx x 同理,AD的正应变为: v (v dy) v v y y dy y

§3-1 变形与应变概念
刚体位移:物体内部各点位置变化,但仍保持初始状态相对 位置不变(即其体内任意两点之间距保持不变)。

弹性力学课件第三章应变理论

弹性力学课件第三章应变理论
有限元法的实现需要借助计算机编程,利用有限 元分析软件进行建模、求解和后处理。
有限差分法
01
有限差分法是一种基于离散化的数值分析方法,通过将连续的时间或 空间离散化为有限个差分,建立差分方程进行求解。
02
在弹性力学中,有限差分法常用于求解波动问题和热传导问题等偏微 分方程。
03
有限差分法的优点在于简单直观,易于编程实现,特别适合处理规则 区域的问题。
应变分析在断裂力学中的应用对于评估材料的安全性和可靠性具有重要意义,特别是在 航空航天、石油化工和核能等领域的高强度材料中尤为重要。
流体力学中的应变分析
01
流体力学是研究流体运动规律和流体与固体相互作用的一门学科。 在流体力学中,应变分析是研究流体流动状态和流体机械性能的 基础。
02
应变分析在流体力学中主要关注流体在不同压力、温度和 剪切力等条件下的流动行为。通过测量流体的应变响应, 可以评估流体的流动特性和机械性能,为流体机械的设计 和优化提供依据。
应变理论在处理大变形和塑性变形时存在困难,需要 引入更复杂的模型和理论。
应变理论在处理多相材料和复合材料时,难以准确描 述材料的复杂行为。
应变理论的新发展
发展了高阶应变理论,以更准确地描述材料的复杂 变形行为。
引入了有限变形理论,对应变和应力进行更全面的 描述。
结合数值计算方法,如有限元法,对应变进行数值 模拟和分析。
弹性力学课件第三章应变理论

CONTENCT

• 应变理论概述 • 应变理论基础 • 应变分析方法 • 应变理论应用 • 应变理论发展前景
01
应变理论概述
应变定义与测量
应变定义
物体在外力作用下发生的形状和尺寸 的相对变化。

弹性力学-空间问题的应变分析 (第三章)

弹性力学-空间问题的应变分析 (第三章)

x y z yz zx xy 0
( a)
代入几何方 程,有
v w u 0, 0, 0, y z x u w v u w v 0, 0 0, z x x y y z
积分式(a)中前三式,有
2
N l x m y n z mn yz nl zx lm xy
2 2 2
(3-5)
—— 任意方向线应变计算公式 任意点线应变的张量与矩阵表示:
N l 2 x m2 y n2 z mn yz nl zx lm xy
u0、v0、w0 分别为沿三个坐标轴方向的刚体位移。
对于平面情形,有
u u0 z y v v0 z x
3. 体积应变
设有一微小正平行六面体,棱长:x、y、z , 变形前体积:V0
z
x y z
z
x
变形后的边长和体积分别为:
x x x, y y y, z z z;
f 3 ( x, y) i jx ky lxy
(c) 将以上三式代回式(c),得
将上式中的第二、第三式分别对z、 y 求偏导,有:
2 f ( y, z ) 0, 2 f1 ( y, z ) 0 2 1 y z
k f l hx 0 c j d l y 0 g b h d z 0
y
x
y
V (x x x) (y y y) (z z z ) xyz (1 x )(1 y )(1 z )
体积应变(相对体积改变) :
V V0 xyz (1 x )(1 y )(1 z ) xyz e V0 xyz x y z x y y z z x x y z

弹塑性理论--应变 ppt课件

弹塑性理论--应变  ppt课件

一、P点的正应变
x

(u

u dx) x dx
u

u x
在这里由于小变形,由y
方向位移v所引起的PA的伸缩
是高一阶的微量,略去不计。
o
u P
v
y
P
B v v dy
y
u u dx x
A
A
x
v v dx x
B
u u dy y
ppt课件
图3-1
3
同理可求得:
Sy

o(Sx2 , S y 2 )

(x

x)

( x0

x0 )

u x
Sx

u y
Sy
(y

y)

( y0

y0
)

v x
Sx

v y
Sy
Sx Sx Sx (x x) (x0 x0 )
S y

S y
Sx
(y ppt课件
16
这样,对于纯变形来说 Si ui, j S j Si i, j S j
现在说明应变张量 i, j 的物理意义。
如S平行X轴,则 S x S, S y 0
S x S y

u x
Sx

u y
Sy


v x
Sx

v y
Sy

11
wwyx ))
w

z

0

1 (u v) 2 y x
1 2
(
u z

弹性力学-第三章 应变分析

弹性力学-第三章 应变分析

(3.9)
α xy
% dr2
% dr1
dr2
α yx
dr1
x
第三章 应变分析 §3-3
应变张量的进一步解释
由式(3.12)得 由式(3.12)得dr1和dr2间直角的减小量为 (3.12)
∆ϕ = 22ε ij nm j j = 2ε 12 = 2ε xy ∆ϕ = ε ij ni i m
上式表示剪应变是角度变化的一半 图中: 图中:
% dr 2 = dr 2 + 2dr ⋅ G ⋅ dr = (1 + 2n ⋅ G ⋅ n)dr 2
第三章 应变分析 §3-2
变形状态和应变张量
只讨论小变形问题,忽略高阶项 只讨论小变形问题 忽略高阶项 式(3.6) 为 其中
∇u ⋅ u∇
(3.7)
% dr 2 = (1 + 2n ⋅ ε ⋅ n)dr 2
ε x 1 γ ε ij = 2 yx 1 γ zx 2
εy
1 γ zy 2
对称张量 张量的剪切应变分量 ≠ 实际的剪切应变
第三章 应变分析 §3-3
应变张量的进一步解释
应变与位移的关系(几何方程) 点的位移是u(x+dx,y)、 应变与位移的关系(几何方程) A点的位移是 点的位移是 , 、 v(x+dx,y), , ,
分别为Y 分别为Y和Z方向的正应变 如图, 如图, 设n为x轴向的单位基矢量即n=e1 轴向的单位基矢量即n=e n1 = 1, n2 = 0, n3 = 0 设m为y轴向的单位基矢量即m=e2 轴向的单位基矢量即m=e O m1 = 0, m2 = 1, m3 = 0
y
ε nn = εijni⋅ ε ⋅ n11 =ε ijxni n j ε = n nj = ε = ε

弹性应力应变关系教学课件PPT_OK

弹性应力应变关系教学课件PPT_OK

c36 c46
C2311
C2322
C2333
C2312
C2323
C2331
c51
c52
c53
c54
c55
c56
C3111 C3122 C3133 C3112 C3123 C3131 c61 c62 c63 c64 c65 c66
取 11=1,22=2,33=3,23=4,13=5,12=6 两个矩阵均为对称矩阵。
式中cmn(m,n=1,6)是取决于材料性质的常数,共36个。
2021/8/23
16
线弹性材料的应力应变关系的矩阵表达
x c11 c12 c13 c14 c15 c16 x
y
c21
c22
c23
c24
c25
c26
y
z yz
cc3411
c32 c42
c33 c43
c34 c44
2G y
z
2G z
1
2G z
1
3K
2G z
xy 2G xy yz 2G yz zx 2G zx
式中 称为Lame 常数。
3K E
E
1
1 1 2 (1 )(1 2)
2021/8/23
13
整理最终的应力应变关系是
x 2G xx y 2G yy z 2G zz
y c3c333zz c3c434yz
yz c3c535zx
zx
c3c636xy
xy
yyzz c4411 xx c4422 yy c4433 zz c4444 yyzz c4455 zzxx c4466 xxyy
zzxx c5511 xx c5522 yy c5533 zz c5544 yyzz c5555 zzxx c5566 xxyy

弹性变形能(应变能)课件

弹性变形能(应变能)课件
THANKS
应变能的计算实例
矩形梁的弯曲
考虑一个矩形梁在受到横向载荷作用下的弯曲变形,通过积 分法计算梁的应变能。
圆柱体的扭转
分析一个圆柱体在受到扭矩作用下的扭转变形,采用直接法 计算圆柱体的应变能。
应变能的计算结果分析
应变能与外力的关系
应变能与作用在物体上的外力之间存在一定的关系,可以通过计算结果分析这种关系。
特性
应变能与物体的材料性质、形变 量的大小和外力的大小等因素有 关,具有可逆性和可恢复性。
弹性变形能(应变能)的重要性
工程应用
在许多工程领域中,如桥梁、建筑、 机械等,应变能的研究和应用对于提 高结构的稳定性和安全性具有重要意 义。
科学研究
应变能的研究有助于深入了解材料的 力学性能和物理性质,推动相关学科 的发展。
抗震设计
在抗震设计中,通过分析地震作用下结构的 应变能变化,可以评估结构的抗震性能,并 优化抗震设计。
在材料科学中的应用
材料性能评估
通过测试材料在不同受力状态下 的应变能变化,可以评估材料的 力学性能,如弹性模量、屈服强
度等。
材料损伤监测
应变能的异常变化可以用于监测材 料的损伤和裂纹扩展,为材料的寿 命预测和维护提供依据。
弹性变形能(应变能课件
目录
• 弹性变形能(应变能)概述 • 弹性力学基础 • 弹性变形能(应变能)的计算 • 弹性变形能(应变能)的应用 • 弹性变形能(应变能)的未来发展
01
弹性变形能(应变能)概述
定义与特性
定义
弹性变形能(应变能)是指物体 在受到外力作用发生形变时,由 于弹力作用而存储在物体内部的 能量。
弹性变形能(应变能)的物理意义
能量守恒

弹性力学第3章—应变

弹性力学第3章—应变

Siui, j S j = 0
S是任意线段,因此上式成立的条件是S各分量的系数为零,即
ui , j + u j ,i = 0
因此刚体位移所对应的相对位移张量是反对称张量,反之亦成立
3.1 变形与应变的概念
应变张量的物理意义:
1.拉压应变(线应变)
应变张量反映了物体的变形,因此变形导致的线段矢量 变化量为
3.3 主应变、应变偏量及其不变量
主应变与主方向:
3 2 ′ε n ′ε n − I 3 ′ =0 εn − I1 − I2
上述方程的三个实根即为主应变 ε1 , ε 2 , ε 3 ,进一步可以求 得主方向,以及剪应变的三个极值。
γ 1 = ± (ε 2 − ε 3 )
γ 2 = ± (ε1 − ε 3 )
1 1 ui , j = ( ui , j + u j ,i ) + ( ui , j − u j ,i ) 2 2

ui , j = ε ij + ωij
对称部分称为应变张量,反映物体的变形
1 ε ij = ( ui , j + u j ,i ) 2 反对称部分称为转动张量,反映物体的刚体位移
1 ωij = ( ui , j − u j ,i ) 2
3.1 变形与应变的概念
微线段的刚体位移:
刚体位移时,矢量在位移前后的长度(模)相等
S′ =
(Si + δSi )(Si + δSi ) =
δSi = ui , j S j
Si Si = S
化简并略去高阶小量后得到 2SiδSi = 0 联合右式 得到 展开后,即为
2 2 2 2 2 2 2 u1,1S12 + u2,2 S2 + u3,3S3 + ( u1,2 + u2,1 ) S12 S2 + ( u2,3 + u3,2 ) S2 S3 + ( u3,1 + u1,3 ) S3 S1 = 0

弹性力学第三章:应变分析

弹性力学第三章:应变分析

y
x
正应变
微元体棱边的相对伸长度
棱边夹角之间的变化
x y z
剪应变
z
将平行六面体 分别投影到3 个坐标面上
M A o m x a
B
y
b
z
M点在Ox轴的位移分量为
u ( x, y, z )
M点在Oy轴的位移分量为 M A o
v ( x, y , z )
B y A点和B点相应的位移分别为
u ( x dx, y, z )
2 2 z ' xl32 y m3 z n3 xyl3m3 yz m3n3 zxn3l3 3 T 3
x ' y ' 2 xl1l2 2 y m1m2 2 z n1n2 xy (l1m2 m1l2 )
dy u m’
a’ a
u x
同理
v m
o
dx
x
v y y
w z z
u
u dy y
y b
b’’
1 tan 1
v v dx v x u dx dx x
u u dx x
b’
2
dy u m’
a’’ m
o
a’
a dx
x
顺次轮换 x, y, z 和
u , v, w
可得其他两个切应变分量
yz
w v y z
xz
u w z x
当 xy , yz , zx 大于零, 表示角度缩小, 反之则表示角度扩大 综上所述。可以得到以下6个关系式
u w v x , yz x y z v u w y , zx y z x w w u z , xy z x y

弹性力学徐芝纶第三章详解

弹性力学徐芝纶第三章详解

在数学上,x',y',z' 必为x,y,
z的单值连续函数
y
x
位移函数具有三阶连续导数
二、应变
对于微分单元体的变形,将分 为两个部分讨论。
一是微分单元体棱边的伸长和缩短 正应变 二是棱边之间夹角的变化 (剪)切应变
符号规定: 伸长为正,缩短为负 直角变小为正,直角变大为负
正应力 剪应力
正应变 剪应变
v x
u y
xy
v x
u y
yz
w y
v z
zx
u z
w x
上式为剪应变的几何方程
x
u x
y
v y
z
w z
xy
v x
u y
yz
w y
v z
zx
u z
w x
这六式为几何方程(柯西方程)
四、转角方程
x
w y
v z
y
u z
w x
z
v x
u y
3-3 一点应变状态、应变张量
一、应变张量
与应力张量相同,应变张量也是二阶对称张量
则,a点的位移为:
u u dx x
v v dx x
b点的位移为:
u u dy y
v v dy y
x
M
' a' 'Ma Ma
(dx
u dx) x
dx
dx
u x
(dy v dy) dy
y
M 'b''Mb Mb
y dy
v y
同理:
x
u x
y
v y
z
w z

弹性力学 第三章应变状态理论

弹性力学 第三章应变状态理论

w
w
1 2
xz
dx
1 2
yz
dy
z
dz
1 2
y
dx
1 2
xdy
§3-2 相对位移张量 转动分量
0
u u
v
v
1 2
z
w
w
1 2
y
1 2
z
0
1 2
x
1 2
y
dx
1 2
x
dy
dz
0
x
1 2
xy
1 2
xz
dx
1 2
xy
y
1 2
yz
dy
1 2
xz
1 2
yz
dz
x
u x
y
v y
z
w z
yz
w y
v z
zx
u z
w x
xy
v x
u y
1 2
yz
yz
,
1 2
zx
zx ,
1 2
xy
xy
ij
1 2
(ui,
j
u j,i )
§3-2 相对位移张量 转动分量
相对位移张量:
u u u
x
y
z
v v v
x
y
z
w w w
x y z
转动矢量:
u(x dx, y, z) u u dx
a:
x
v(x dx, y, z) v v dx x
u(x, y dy, z) u u dy
b:
y
b a
v(x, y dy, z) v v dy

弹性力学课件完整版

弹性力学课件完整版

材料拉伸或压缩时力学性能指标
弹性模量
弹性模量是描述材料抵抗弹性变形能力的指标,它等于应 力与应变的比值。
泊松比
泊松比是描述材料在拉伸或压缩时横向变形与纵向变形之 间关系的指标。
屈服极限和强度极限
屈服极限是指材料开始产生塑性变形的应力值,强度极限 是指材料在拉伸或压缩时所能承受的最大应力值。这些指 标对于评价材料的力学性能具有重要意义。
生物医学领域人体骨骼、肌肉等软组织力学性能研究
骨骼力学性能研究
运用弹性力学理论对人体骨骼进行受力分析 和模拟,研究骨骼在不同载荷下的应力分布 和变形情况,为骨折治疗和骨骼生物力学研 究提供理论支持。
肌肉软组织力学性能研究
通过弹性力学方法建立肌肉软组织的力学模 型,研究肌肉在收缩和舒张过程中的应力应 变关系以及能量转换机制,为运动生物力学
通过弹性力学中的运动方程可以建立位移梯度与应变之间的联系。
03
位移边界条件与约束
在实际问题中,空间各点的位移会受到边界条件和约束的影响。因此,
在分析空间各点位移变化规律时,需要考虑这些因素的影响。
06
弹性力学在工程中应用 举例
建筑结构中梁、板、柱设计原理
梁的设计原理 根据梁的受力特点和支承条件,运用弹性力学理论进行内 力、应力和变形的分析,从而确定梁的截面尺寸和配筋。
实验法在弹性力学研究中作用
验证理论模型
通过实验手段,可以验证弹性力学理论模型 的正确性和有效性。
研究材料性能
通过实验可以研究不同材料的力学性能,为 弹性力学的研究提供基础数据。
获取实验数据
通过实验可以获取大量的实验数据,为弹性 力学的研究提供有力的支持。
探索新现象和新规律
通过实验可以发现新的力学现象和规律,推 动弹性力学的发展。

材料力学 第三章 应变理论

材料力学 第三章 应变理论

ij 称为柯西应变张量或小应变张量
其实体表示形式为 1 u u 2
是二阶对称张量,只有六个独立分量。
§3-1 位移和变形
在笛卡尔坐标系中,其常用形式为
11
u1 x1
u x
x ,12
21
1 2
u1 x2
u2 x1
1 u
2
y
v x
xy
yx
22
u2 x2
v y
i
ji
ui x j
j
1
i
ui x j
j
i
可由位移梯度分量 ui 和线元正应变 计算任意方向线元
变形后的方向余弦。x j
考虑两线元间的夹角变化
t cos , t t 2 t 1 1
t
1 t t 2 t
§3-2 小应变张量(几何方程)
若变形前两线元互相垂直,即 t 0
u j xi
ei ej
E 1 u u u u 2
➢ 按照欧拉描述还可以定义描述大变形的阿尔曼西(Almansi,E)
应变张量,即
dS2 dS02 2eijdxidxj
eij
1 2
ui xj
u j xi
um xi
um xj
它也是二阶对称张量
由此可见:物体无变形(线元长度不变,仅作刚体运动) 的充分必要条件是应变张量处处为零。
令 为变形后线元间直角的减小量,则由上式可得
cos
2
cos , t
2 t 2ij it j 2t
通常定义两正交线元间的直角减小量为工程剪应变 t ,即
t 2t 2 t 2ijit j
若 , t 为坐标轴方向的单位矢量,例如 i 1, t j 1(i j)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

v t
小应变的几何意义
i 方向的工程正应变; 表示单位长度的伸长量, 伸长为正
的两倍为工程剪应变, 表示两条垂直线元的夹 角的缩小量;缩小为正
小应变的其他表示方式
11 12 21 22 31 32 x 13 1 23 2 xy 33 1 zx 2 1 xy 2
11 12 13 21 22 23 , 32 33 31 x xy xz xy y yz zx zy z
几何方程
u v x ; y ; x y v z ; z u v xy ; y x v w yz ; z y w u zx ; x z
y
1 zy 2
1 xz 2 1 yz , 2 z
x xy zx
xy xz y zy
yz z
( x , y , z , yz , zx , xy ) ( x , y , z , yz , zx , xy )
u 3 u 1 2 31 ; x1 x3
(1) 坐标变换性质
mn mi njij , mi
cos( xm , xi )
(2) 主应变:存在三个相互垂直的主方向,其相 互间的剪应变为零; 主应变方向与任意与其垂直的方向上的剪应 变为零; (3)特征方程,应变不变量;体积应变 (4)主坐标系 (5)最大剪应变等于最大最小主应变之差;
时间:2012年9月24日:15:35—17:20
3.2 小应变张量
1 ui u j ij 2 x j xi

1 v t cos(v, t ) (vmtm 2 ij vit j ) (1 v t )(vmtm 2 ij vi t j )
22
u 2 ; x2
几何方程
1 u i u j ij ( ) 2 x j xi
u 3 u 1 u 2 x 11 ; y 22 ; z 33 ; x1 x2 x3
xy 212 zx
u 1 u 2 u 2 u 3 ; yz 2 23 ; x2 x1 x3 x2
(6)等倾线元(八面体)正应变等于平均正 应变 (7)八面体剪应变是等倾面法线与其相垂直 的所有线元之间的剪应变的最大值; 主应变方向与任意与其垂直的方向上的 剪应变为零; (8)应变张量可分解为应变球张量和应变 偏张量
小应变张量的性质:应变转轴公式
• 应变张量的各分量,在新坐标系下的分量与原坐标 系下的分量之间的关系,满足转轴公式。(与应力 的转轴公式相同!)
x j xl

2 jl
xi xk
2 ij
xk xl

2 ij
xk xl

2 ik
x j xl

2 jl
xi xk
0
2
2u j
uk 1 ui 1 ul ( x x x x x x ) ( x x x j i l 2 j k l 2 i j k
2u j
xi xk xl
)
1 2 ui uk 1 2 u j ul x x ( x x ) x x ( x x ) k i l l 2 j l 2 i k 2 ik
vt 2 vt 2 ij vit j 2(1v1t1 2v2t2 3v3t3 )
2 (1t1 2t2 3t3 ) 2d t 3 1 d (1e1 2e2 3e3 ) 3
(7)八面体剪应变是等倾面法线与其相垂直的所有 线元之间的剪应变的最大值;
1 u i u j ij ( ) 2 x j xi
11 33 12 23 31
u 1 ; x1 u 3 ; x3 1 u 1 u 2 ( ); 2 x2 x1 1 u 2 u 3 ( ); 2 x3 x2 1 u 3 u 1 ( ); 2 x1 x3
(8)应变张量可分解为应变球张量和应变便张量
3.3 刚体转动
ui ui ( x dx) ui ( x) dxm xm
ui 1 ui u j x j 2 x j xi ij ij
1 u j ui 2 xi x j
(6)等倾线元(八面体)正应变等于平均正 应变 (7)八面体剪应变是等倾面法线与其相垂直 的所有线元之间的剪应变的最大值; 主应变方向与任意与其垂直的方向上的 剪应变为零; (8)应变张量可分解为应变球张量和应变 便张量
(6)等倾线元(八面体)正应变等于平均正 应变
(7)八面体剪应变是等倾面法线与其相垂直的所有 线元之间的剪应变的最大值;
2 ij
xk xl

2 ij
xk xl

2 ik
x j xl

2 jl
xi xk
0
应变协调方程
2 ij
xk xl

kl
xi x j 3
2
1 ui ( x x x 2 j k l
3
3
2ul 1 3uk ) ( x x x x x x ) xi xk xl i j k 2 j i l
mn mi njij , mi
[ ] [ ][ ][ ]

cos( xm , xi )
(2) 主应变:存在三个相互垂直的主方向,其相互间的剪 应变为零; 主应变方向与任意与其垂直的方向上的剪应变为零;
vt ij vit j vv jt j 0
主应变
(4)主坐标系: 应变主轴 (5)最大剪应变等于最大最小主应变之差; 最大剪应变发生在主平面内,是由与两个主 方向成45度角的两个垂直方向间的剪应变
弹性力学 第8讲
授课教师:刘书田
Tel:84706149; Email:stliu@ 教室:综合教学:05—11:40
弹性力学 第6讲
授课教师:刘书田
Tel:84706149; Email:stliu@ 教室:综合教学楼 311
时间:2012年9月20日:10:05—11:40
第三章 应变理论
• 位移与应变的描述:
– 位移的描述 – 形变的描述:应变张量 – 刚体位移:平动位移+转角
• 小应变张量及其性质 • 几何方程:应变与位移之间的关系 • 应变协调方程:应变分量之间的关系
3.1 位移和应变描述
Green Strain
有限应变的几何方程
线元长度和方向的变化
应变表述线元长度变化和线元间夹角变化
引入
表示线元的长度比
线元方向的变化
线元间夹角的变化
欧拉描述:Almmansi Strain
弹性力学 第7讲
授课教师:刘书田
Tel:84706149; Email:stliu@ 教室:综合教学楼 311

ui ( x dx) ui ( x) ij dx j ij dx j
转动张量
0 ij 3 2
3
0 1
2 1 0
绕坐标轴的 刚体转动
ui ( x dx) ui ( x) ij dx j ij dx j
相关文档
最新文档