一元二次方程分式方程PPT
合集下载
北师大版九年级上册2.6应用一元二次方程(1)课件(共22张PPT)
x +(21−x) =15 , 解:设乔治得到x元,则少的一笔钱为(20−x)元.
2 S△ABC= ×AC⋅BC= ×26×8=24,2
面积的一半,由题意得: 一个长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m.
解得x =9,x =12. 解:设点P,Q出发x秒后可使△PCQ的面积为Rt△ABC
2
2
EF AB BF AB BE 300 2x
三、典例分析
(3)求相遇时补给船航行了多少海里?
解:设运动x秒时,它们相距15cm,则CP=xcm,CQ=(21−x)cm,依题意有
解: AB BC, AB / / DF , 解:设点P,Q出发x秒后可使△PCQ的面积为Rt△ABC
北 如图,某海军基地位于A处,其正南方向200海里处有一个重要目标B,在B的正东方向200海里处有一重要目标C.
四、随堂练习
3.如图,在Rt△ABC中,∠C=90∘,AC=8cm,BC=6cm.点P,Q同时从A,B 两点出发,分别沿AC,BC向终点C移动,它们的速度都是1cm/s,且当其 中一点到达终点时,另一点也随之停止移动.问点P,Q出发几秒后可使
△PCQ的面积为Rt△ABC面积的一半?
解:设点P,Q出发x秒后可使△PCQ的面积为Rt△ABC
中一点到达终点时,另一点也随之停止移动.问点P,Q出发几秒后可使
△PCQ的面积为Rt△ABC面积的一半?
即: 1×(8−x)×(6−x)= 1 ×24,
2
2
x2−14x+24=0,
(x−2)(x−12)=0,
x1=12(舍去),x2=2. 答:点P,Q出发2秒后可使△PCQ的面积为Rt△ABC面积的一半.
二、探究新知
2 S△ABC= ×AC⋅BC= ×26×8=24,2
面积的一半,由题意得: 一个长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m.
解得x =9,x =12. 解:设点P,Q出发x秒后可使△PCQ的面积为Rt△ABC
2
2
EF AB BF AB BE 300 2x
三、典例分析
(3)求相遇时补给船航行了多少海里?
解:设运动x秒时,它们相距15cm,则CP=xcm,CQ=(21−x)cm,依题意有
解: AB BC, AB / / DF , 解:设点P,Q出发x秒后可使△PCQ的面积为Rt△ABC
北 如图,某海军基地位于A处,其正南方向200海里处有一个重要目标B,在B的正东方向200海里处有一重要目标C.
四、随堂练习
3.如图,在Rt△ABC中,∠C=90∘,AC=8cm,BC=6cm.点P,Q同时从A,B 两点出发,分别沿AC,BC向终点C移动,它们的速度都是1cm/s,且当其 中一点到达终点时,另一点也随之停止移动.问点P,Q出发几秒后可使
△PCQ的面积为Rt△ABC面积的一半?
解:设点P,Q出发x秒后可使△PCQ的面积为Rt△ABC
中一点到达终点时,另一点也随之停止移动.问点P,Q出发几秒后可使
△PCQ的面积为Rt△ABC面积的一半?
即: 1×(8−x)×(6−x)= 1 ×24,
2
2
x2−14x+24=0,
(x−2)(x−12)=0,
x1=12(舍去),x2=2. 答:点P,Q出发2秒后可使△PCQ的面积为Rt△ABC面积的一半.
二、探究新知
《分式方程》分式PPT课件 图文
③ 检验:把x1= -3,代入最简公分母,
x(x-2)=-3(-3-2)= 15 ≠0;
把x2= 2 ,代入最简公分母, x(x-2)= 2(2-2) =0
∴x= 2 是增根,舍去. ∴原方程的根是x= -3 .
练
(填空)1、解方程:
x1 6 0 x2 x22x
7
一 解:·方·程·两·边·同·乘·以·最·简·公·分·母 x(x-2),
左边= 331112
,
右边=
1 2
.
∵ 左边=右边
∴ 原方程的根是 x=3.
检验
例2
解分式方程
x15x9 x1 x21
解 方程两边同乘以最简公分母(x+1)(x-1),
得 (x-1)2 =5x+9 解整式方程,得 x1=-1, x2=8
x2-2x+1=5x+9 X2-7x-8=0 (x+1)(x-8)=0
一元二次方程
1、2(x-1)=x+1; x2+x-20=0; x+2y=1…
整式方程: 方程两边都是整式的方程.
2、 x 1 1 x 0 ;x x 1 1 1 2 ;x 1 1 1 y 1 ;x x 1 1 5 x x 2 1 9
分式方程:方分程母中 含只 有含 未有 知分 数式 的或 方整程式. ,且
你总该记得,有一个黄昏,白马湖上的 黄昏, 在你那 间天花 板要压 到头上 来的, 一颗骰 子似的 客厅里 ,你和 我读着 竹久梦 二的漫 画集。 你告诉 我那篇 序做得 有趣, 并将其 大意译 给我听 。我对 于画, 你最明 白,彻 头彻尾 是一条 门外汉 。但对 于漫画 ,却常 常要像 煞有介 事地点 头或摇 头;而 点头的 时候总 比摇头 的时候 多—— 虽没有 统计, 我肚里 有数。 那一天 我自然 也乱点 了一回 头。 点头之余,我想起初看到一本漫画,也 是日本 人画的 。里面 有一幅 ,题目 似乎是 《aa子 爵b泪》 (上两 字已忘 记), 画着一 个微侧 的半身 像:他 严肃的 脸上戴 着眼镜 ,有三 五颗双 钩的泪 珠儿, 滴滴答 答历历 落落地 从眼睛 里掉下 来。我 同时感 到伟大 的压迫 和轻松 的愉悦 ,一个 奇怪 的矛盾 !梦二 的画有 一幅— —大约 就是那 画集里 的第一 幅—— 也使我 有类似 的感觉 。那幅 的题目 和内容 ,我的 记性真 不争气 ,已经 模糊得 很。只 记得画 幅下方 的左角 或右角 里,并 排地画 着极粗 极肥又 极短的 一个“ !”和 一个“ ?”。 可惜我 不记得 他们哥 儿俩谁 站在上 风,谁 站在下 风。我 明白( 自己要 脸)他 们俩就 是整个 儿的人 生的谜 ;同时 又觉着 像是那 儿常常 见着的 两个胖 孩子。 我心眼 里又是 糖浆, 又是姜 汁,说 不上是 什么味 儿。无 论如何 ,我总 得惊异 ;涂呀 抹的几 笔,便 造起个 小世界 ,使你 又要叹 气又要 笑。叹 气虽是 轻轻的 ,笑虽 是微微 的,似 一把锋 利的裁 纸刀, 戳到喉 咙里去 ,便可 要你的 命。而 且同时 要笑又 要叹气 ,真是 不当人 子,闹 着玩儿 !
一元二次方程分式方程
一元二次方程是包含二次项的方程,而分式方程则包含分数。
联系
一元二次方程和分式方程都是常见的数学方程类型,可以应用于各种实际问题。
一元二次方程的应用
曲线绘制
一元二次方程可以用于描述抛物 线和其他曲线的形状。
物体运动
通过解一元二次方程,可以确定 物体在空中的轨迹和碰撞时间。
求根公式
一元二次方程的求根公式可用于 精确计算方程的根。
分式方程的应用
1 比例问题
通过解分式方程,可以确定两个量之间的比例关系。
2 混合物问题
分式方程可用于计算不同成分混合物的比例和成分。
高阶方程
定义
高阶方程是含有三个或更多个未知量的方程,如三 元方程和四元方程。
联系和区别
高阶方程和低阶方程的主要区别在于未知量的个数, 但它们都是数学方程,可以使用类似的解法。
高阶方程的解法
1
高斯消元法
高斯消元法可用于求解线性方程组,从而解高阶方程。
2
逆序消元法
逆序消元法是高阶方程解法中常用的一种策略。
3
相邻相消法
相邻相消法是一种简便的高阶方程解法,适用于特定情况。
结论
一元二次方程和分式方程
这个演示总结了一元二次方程和分式方程的概念、解法和应用。
高阶方程
我们还介绍了高阶方程的定义和解法,以及与低阶方程的区别。
应用
一元二次方程在实际生活中的 应用非常广泛,例如用于解决 物体运动、跳跃和曲线绘制的 问题。
分式方程
1
解法
2
可以使用通分法和消元法来解分式方程,
使方程两边的表达式相等。
3
概念
分式方程是包含分数的方程,其中包含 了未知量或变量。
应用
联系
一元二次方程和分式方程都是常见的数学方程类型,可以应用于各种实际问题。
一元二次方程的应用
曲线绘制
一元二次方程可以用于描述抛物 线和其他曲线的形状。
物体运动
通过解一元二次方程,可以确定 物体在空中的轨迹和碰撞时间。
求根公式
一元二次方程的求根公式可用于 精确计算方程的根。
分式方程的应用
1 比例问题
通过解分式方程,可以确定两个量之间的比例关系。
2 混合物问题
分式方程可用于计算不同成分混合物的比例和成分。
高阶方程
定义
高阶方程是含有三个或更多个未知量的方程,如三 元方程和四元方程。
联系和区别
高阶方程和低阶方程的主要区别在于未知量的个数, 但它们都是数学方程,可以使用类似的解法。
高阶方程的解法
1
高斯消元法
高斯消元法可用于求解线性方程组,从而解高阶方程。
2
逆序消元法
逆序消元法是高阶方程解法中常用的一种策略。
3
相邻相消法
相邻相消法是一种简便的高阶方程解法,适用于特定情况。
结论
一元二次方程和分式方程
这个演示总结了一元二次方程和分式方程的概念、解法和应用。
高阶方程
我们还介绍了高阶方程的定义和解法,以及与低阶方程的区别。
应用
一元二次方程在实际生活中的 应用非常广泛,例如用于解决 物体运动、跳跃和曲线绘制的 问题。
分式方程
1
解法
2
可以使用通分法和消元法来解分式方程,
使方程两边的表达式相等。
3
概念
分式方程是包含分数的方程,其中包含 了未知量或变量。
应用
北师大版初中九年级上册数学课件 《认识一元二次方程》一元二次方程PPT课件
(2) x表示长方形的实际宽,不可能小于0
(3)不可能,因为长与宽的和是15, x可能大于15.
(1)根据题意列方程。 (2)x可能小于0吗?说出理由. (3)x可能大于15吗?说出理由. (4)能否想一个办法求得长方形的长x?
x
15-x
x
1
2
3
4
5
6
7
x2 -15x+54
40
28
18
10
4
0
解:如果设花边的宽为 x m ,那么地毯中央长方形图案的长为 m,宽为 m,根据题意,可得方程:
(8-2x)
(5-2x)
(8-2x)(5 -2x) = 18.
整理, 得
8m
10m
解:设梯子底端滑动x米,则由题意可得方程:
问题2 一个长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m.如果梯子的顶端下滑1m,那么梯子的底端滑动多少米?
当a=2,b≠0时是一元一次方程;
3、 关于x的方程ax2 -2bx+a=2x2 , 在什么条件下此方程为一元二次方程?在什么条件下此方程为一元一次方程?
变式练习(1): (k+3)x|k|-1 -5x+6=0 是关于x的一元二次方程, 则k= .
变式练习(2):关于x的一元二次方程(m-1)x2 +5x+m2-1=0 的常数项是0, 则m= .
一元二次方程
没有未知数,不是方程
不是等式,不是方程
一元一次方程
二元一次方程
不是等式,不是方程
(1)2+3=5 (2)3x+2 (3)5x+3=18 (4)x-2y=5
一元一次方程、二元一次方程、分式方程
分式方程
初中数学《一元二次方程》教育教学课件
方程解法 之 基本方法 • 开平方法
【之一 开平方法】
(1)形如x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程可采用直接开平方法解一元二 次方程 。
(2)如果方程化成x2=p(p≥0)的形式,那么可得x=± p 。 (3)如果方程能化成(mx+n)2=p(p≥0)的形式,那么mx+n=± p ,进而得出方程的根。
(x-2)(x+2)=0
即 x+2=0或x-2=0 ∴ x1=-2,x2= 2
方程解法 之 基本方法 • 因式分解法
十字相乘法
十字相乘法是因式分解法解 一元二次方程中一个重要的部分。 一元二次方程左边为二次三项式, 形如x²+(p+q)x+pq=0,可化为 (x+p)(x+q)=0,从而得出:
x1=-p;x2=-q。
方程解法 之 基本方法 • 配方法
配方法的口诀
二次系数化为一, 分开常数未知数; 一次系数一半方, 两边加上最相当。
【例题】
1、解方程 x²+2x-3=0 解:把常数项移项得:x²+2x=3 等式两边同时加1(构成完全平方式)得:
x²+2x+1=4 配方得:(x+1)²=4 ∴ x1=-3 , x2=1
根据题意,得 [100(1+x)-50](1+ x)=63. 整理,得 50x2+125x-13=0. 解得x1=0.1 ,x2=-2.6 . ∵x2=-2.6 不合题意, ∴x= 10%. 答:第一次存款时的年利率为10%。
解应用题 之 精选例题
概念解析 之 四种形式
【一般形式】
ax²+bx+c=0(a≠0)
第10课时 一元二次方程和分式方程的应用-2022年广东中考数学总复习课件
1.随着我国新能源汽车的生产技术不断提升,市场 上某款新能源汽车的价格由今年 3 月份的 270 000 元/ 辆下降到 5 月份的 243 000 元/辆.若价格继续下降,且
月平均降价的百分率保持不变,则预测到今年 7 月份
该款新能源汽车的价格将会(参考数据: 0.9 ≈0.95)
() A.低于 22 万元/辆 C.超过 22 万元/辆
经检验,x=0.18 为方程的解,且符合题意.
答:电动车每行驶 1 千米所需电费为 0.18 元.
14.(2021·上海)现在 5G 手机非常流行,某公司第 一季度总共生产 80 万部 5G 手机,三个月生产情况如 图.
(1)求 3 月份生产了多少部手机? (2)5G 手机速度很快,比 4G 下载速 度每秒多 95 MB,下载一部 1 000 MB 的 电影,5G 比 4G 要快 190 秒,求 5G 手机 的下载速度.
答:5G 手机的下载速度是每秒 100 MB.
15.甲、乙两个工程队均参与某筑路工程,先由甲 队筑路 60 km,再由乙队完成剩下的筑路工程,已知乙
队筑路总长是甲队筑路总长的 4 倍,甲队比乙队多筑 3
路 20 天. (1)求乙队筑路的总长;
(2)若甲、乙两队平均每天筑路长度之比为 5∶8,
求乙队平均每天筑路多少千米.
解:设计划平均每天修建步行道的长度为 x 米,
则采用新的施工方式后平均每天修建步行道的长度为
1.5x 米,
依题意,得1
200 x
-112.50x0
=5,
解得 x=80,
经检验,x=80 是原方程的解,且符合题意.
答:计划平均每天修建步行道的长度为 80 米.
13.小马驾车从 A 地到 B 地,驾驶原来的燃油汽车
北师大版九年级数学上册《认识一元二次方程》一元二次方程PPT课件(第1课时)
二次项系数为 5,一次项系数为 36,常数项为-32
课堂练习 6. 根据下列问题列方程,并将其化成一元二次方程的一般形式. (1)有一根1m长的铁丝,怎样用它围一个面积为0.06m2的长方形?
解:设长方形的长为xm,则宽为(0.5-x)m. 根据题意,得x(0.5-x)=0.06, 整理,得50x2-25x+3=0.
数的平方和吗?
解:如果设五个连续整数中的第一个数为x,那么后面四个数依次可表 示为: x+1 , x+2, x+,3 x+.根4 据题意,可得方程:
x2 + (x + 1)2 + (x + 2)2 = (x + 3)2 + (x + 4)2. 化简得,x2 - 8x - 20=0. ②
去括号、移项、合并同类项
2x2-13x+11=0 x2 -8x-20=0 x2+12x-15=0
只含有1个 未知数
未知数的最 高次数是2
都是整式方 程
新知讲解
一元二次方程的定义:
只含有一个未知数x,并且可以化成ax2+bx+c=0(a,b,c为常数,a≠0) 的形式,这样的方程叫做一元二次方程.
一元二次方程的一般形式:
a x 2 + b x + c = 0 (a ≠ 0) 特征:方程的左边按x的降幂排列,右边=0
(2)参加一次聚会的每两人都握了一次手,所有人共握手10次,有多少人参加这次 聚会?
解:设有x人参加了这次聚会, 根据题意,得 x(x-1)=10, 整理,得x2-x-20=0.
课堂总结
一元二次方程
概念
只含有一个未知数x的整式方程,并且 都可以化为ax2+bx+c=0(a,b,c为常数, a≠0)的形式.
课堂练习 6. 根据下列问题列方程,并将其化成一元二次方程的一般形式. (1)有一根1m长的铁丝,怎样用它围一个面积为0.06m2的长方形?
解:设长方形的长为xm,则宽为(0.5-x)m. 根据题意,得x(0.5-x)=0.06, 整理,得50x2-25x+3=0.
数的平方和吗?
解:如果设五个连续整数中的第一个数为x,那么后面四个数依次可表 示为: x+1 , x+2, x+,3 x+.根4 据题意,可得方程:
x2 + (x + 1)2 + (x + 2)2 = (x + 3)2 + (x + 4)2. 化简得,x2 - 8x - 20=0. ②
去括号、移项、合并同类项
2x2-13x+11=0 x2 -8x-20=0 x2+12x-15=0
只含有1个 未知数
未知数的最 高次数是2
都是整式方 程
新知讲解
一元二次方程的定义:
只含有一个未知数x,并且可以化成ax2+bx+c=0(a,b,c为常数,a≠0) 的形式,这样的方程叫做一元二次方程.
一元二次方程的一般形式:
a x 2 + b x + c = 0 (a ≠ 0) 特征:方程的左边按x的降幂排列,右边=0
(2)参加一次聚会的每两人都握了一次手,所有人共握手10次,有多少人参加这次 聚会?
解:设有x人参加了这次聚会, 根据题意,得 x(x-1)=10, 整理,得x2-x-20=0.
课堂总结
一元二次方程
概念
只含有一个未知数x的整式方程,并且 都可以化为ax2+bx+c=0(a,b,c为常数, a≠0)的形式.
一元二次方程课件ppt
• 问题1、绿苑小区住宅设计,准备在每两幢楼 房之间,开辟面积为900平方米的一块长方 形绿地,并且长比宽多10米,那么绿地的长 和宽各为多少?
(x+10)
x
问题1、绿苑小区住宅设计,准备在每两幢楼房之间, 开辟面积为900平方米的一块长方形绿地,并且 长比宽多10米,那么绿地的长和宽各为多少?
例1.将方程(8-2x)(5-2x)=18化成一元二次 方程的一般形式,并写出其中的二次项系数、一次
项系数及常数项.
• 分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此, 方程(8-2x) (•5-2x)=18必须运用整式运算进行整理,包括 去括号、移项等.
• 解:去括号,得: • 40-16x-10x+4x2=18 • 移项,得:4x2-26x+22=0 • 其中二次项系数为4,一次项系数为-26,常数项为22.
3
你会用描点法画二次函数y=x2的图象吗?
观察y=x2的表达式,选择适当x值,并计算 相应的y值,完成下表:
x … -3 -2 -1 0 1 2 3 … y=x2 … 9 4 1 0 1 4 9 …
描点,连线 y 10
y=x2
8
6
4
2
?
-4 -3 -2 -1 0 1 2 3 4 x -2
二次函数 y=x2的图象 形如物体抛 射时所经过 的路线,我们 把它叫做抛 物线
方程
二次项 一次项 常数 系数 系数 项
2x2 x 3 0 2
1
-3
3x2 5 0
3
0
-5
x2 3x 0 1
-3
0
2、将下列一元二次方程化为一般形式,并分别 指出它们的二次项系数、一次项系数和常数项:
课件 可化为一元二次方程的分式方程2
1、观察、分析、探索换元途径; 、观察、分析、探索换元途径; 2、设辅助未知元; 、设辅助未知元; 3、用辅助未知元把原方程化成 、 只含有辅助未知元的方程; 只含有辅助未知元的方程; 4、解含有辅助未知元的方程, 、解含有辅助未知元的方程, 求出辅助未知元的值; 求出辅助未知元的值; 5、由辅助未知元的的值, 、由辅助未知元的的值, 求出原未知数的值; 求出原未知数的值; 6、验根并作答。 、验根并作答。
练习
x +1 3x +15 1、方程 、 − = 2 ,用换 x +5 x +1 x +1 元法解方程, 元法解方程,可设 y = ,则原 x+ x +5
关于y 方程可化为 关于 的整式方程是
3 y −3= 2y 。 y − = 2 y
2
范例 例4 解方程
12 x −x− 2 −4 = 0 x −x
小结 分式方程的解法 直接去分母法 整体换元法
化 、解、 验
探、设、换、 解、求、验
可化为一元二次 方程的分式方程(2) 方程的分式方程(2)
复习 解方程
9 6 − +1= 0 2 x x
直接去分母法
复习 分式方程的解法 1、去分母,化整式方程 、去分母, 2、解这个整式方程 、 3、验根 、 检验是否为增根 转化思想
导入 观察方程,你还有什么想法? 观察方程,你还有什么想法?
2
练习 2、分式方程 、
12 x −x− 2 −4 = 0 x − x −3
2
换元后, 换元后,得到的新方程是 。
范例 例5、解方程 、
1 1 3(x + 2 ) +5(x + ) −2 = 0 x换 x 1 元 y = x+ x 2 3y +5y −2 = 0
配方法解一元二次方程PPT教学课件
B
A.1 B.2 C.3 D.4
有意义
中 ()
➢ 课前热身
5.
将分式x
2y x
中的x和y都扩大10倍,那么分式的值
D
A.扩大10倍
B.缩小10倍
C.扩大2倍
D.不变
6.当式子
x
|
2
x
| 5 4x
5
的值为零时,x的值是
B(
)
A.5 C.-1或5
B.-5 D.-5或5
7.当x=cos60°时,代数式x2 3x
(4)
y2
1 2
y
(__14_)_2
(
y__14 _)2
问题1 一桶油漆可刷的面积为1500d m2 ,李林用这桶
油漆恰好刷完10个同样的正方体形状的盒子的全部 外表面,你能算出盒子的棱长吗?
设正方体的棱长为xdm,
列方程10 6x2 1500
由此可得x2 25
x 5,
这种解法叫做什么?
化成最简分式.
解:原式=
( 1 5 x 2 x2 ) 60 46 3
( 7 )x 1 0.1x2 ) 60
60 20
157x=503x64x02x 2
40x2 50x 15 6x2 7x 3
=
15 50x 40x 7x 3 6x2
2
4=06xx22
50x 15 7x 3
c c c b d bd bd bd
2.分式的乘、除法法则
a · c = ac , a c = a · d = ad .
b
d bd
bd b
c bc
3.分式的乘方法则
a n =
b
an bn
24.1 一元二次方程课件(共20张PPT)
同学们再见!
授课老师:
时间:2024年9月15日
解:设有x人参加了这次聚会,根据题意,得 x(x-1)=10,整理,得 x2-x-20=0.
拓展提升
课堂小结
1.一元二次方程的概念只含有一个未知数,并且未知数的最高次数为2的整式方程,叫做一元二次方程.2.一元二次方程的一般形式 ax2+bx+c=0(a≠0).3.一元二次方程的解使方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方程的解也叫做这个方程的根.4.根据题意列一元二次方程
为什么规定a≠0?
因为a=0时,未知数的最高次数小于2
一元二次方程的项和各项系数
ax2+bx+c=0(a≠0)
一次项系数
例 将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项.
解:去括号,得 3x2-3x=5x+10. 移项,合并同类项,得一元二次方程的一般形式 3x2-8x-10=0. 其中二次项系数为3,一次项系数为-8,常数项为-10.
知识点1
一元二次方程的定义
①
如图,一个长为10 m的梯子斜靠在墙上,梯子的顶端A处到地面的距离为8 m.如果梯子的顶端沿墙面下滑1 m,那么梯子的底端B在地面上滑动的距离是多少米?如果设梯子的底端B在地面上滑动的距离为x,请列出方程,并谈谈所列方程的特征.
x2+12x-15=0
x2-90x+1 400=0,x2-45x+350=0,x2+12x-15=0
建立一元二次方程模型的一般步骤:(1)审题,认真阅读题目,弄清未知量和已知量之间的关系;(2)设出合适的未知数,一般设为x;(3)确定等量关系;(4)根据等量关系列出一元二次方程,有时要化为一般形式.
授课老师:
时间:2024年9月15日
解:设有x人参加了这次聚会,根据题意,得 x(x-1)=10,整理,得 x2-x-20=0.
拓展提升
课堂小结
1.一元二次方程的概念只含有一个未知数,并且未知数的最高次数为2的整式方程,叫做一元二次方程.2.一元二次方程的一般形式 ax2+bx+c=0(a≠0).3.一元二次方程的解使方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方程的解也叫做这个方程的根.4.根据题意列一元二次方程
为什么规定a≠0?
因为a=0时,未知数的最高次数小于2
一元二次方程的项和各项系数
ax2+bx+c=0(a≠0)
一次项系数
例 将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项.
解:去括号,得 3x2-3x=5x+10. 移项,合并同类项,得一元二次方程的一般形式 3x2-8x-10=0. 其中二次项系数为3,一次项系数为-8,常数项为-10.
知识点1
一元二次方程的定义
①
如图,一个长为10 m的梯子斜靠在墙上,梯子的顶端A处到地面的距离为8 m.如果梯子的顶端沿墙面下滑1 m,那么梯子的底端B在地面上滑动的距离是多少米?如果设梯子的底端B在地面上滑动的距离为x,请列出方程,并谈谈所列方程的特征.
x2+12x-15=0
x2-90x+1 400=0,x2-45x+350=0,x2+12x-15=0
建立一元二次方程模型的一般步骤:(1)审题,认真阅读题目,弄清未知量和已知量之间的关系;(2)设出合适的未知数,一般设为x;(3)确定等量关系;(4)根据等量关系列出一元二次方程,有时要化为一般形式.
人教版九年级上册 第二十一章 21.1 一元二次方程 课件(共25张PPT)
m_≠__±__1__时,它是一元二次方程;当m_=_1____时,它是 一元一次方程。
例题讲解
3、已知m, n都是方程x2 2006x 2008 0 的根,试求(m2 2006m 2007)(n2 2006n 2007)的值.
解 :∵m, n是方程x2 2006x 2008 0 的根,由根的定义知: m2 2006m 2008 0 n2 2006n 2008 0 即: m2 2006m 2008 n2 2006n 2008
解:设应邀请x 个队参赛,每个队要与其它(x-1)个队各赛1场,
由于甲队对乙队的比赛和乙队对甲队的比赛是同一场比赛,所以
1
列全方部程比赛12共x(2x
x(x
1)
1) 场. 28 整理,得
1 x2 2
1 2
x
28
化简,得 x2 x 56 ③ 由方程③可以得出参赛队数.
同学们认真看问题1、2、3,整理得方程:
x2 - 75x + 350=0
(1)
x2 +2x-4=0
(2)
x2 x 56
(3)
特征:(1) 都是整式方程 (2) 只含有一个未知数 (3) 未知数的最高次数是2
2、新课讲授 (1)只含有一个未知数,并且未知数的最高次数 是2的整式方程叫做一元二次方程。
(2)一元二次方程通常可写成如下的一般形式:
ax2+bx+c=0(a≠0)
(3)条件:①当a≠0时,是一元二次方程。
②当a=0并且b≠0 时 ,是一元一次方程。
注意:其中c是常数项。一般方程的左边按x的降幂排列, 右边=0,当然也可以没有一次项、常数项。
一元二次方程的项和各项系数
二次项 系数
一次项 系数
例题讲解
3、已知m, n都是方程x2 2006x 2008 0 的根,试求(m2 2006m 2007)(n2 2006n 2007)的值.
解 :∵m, n是方程x2 2006x 2008 0 的根,由根的定义知: m2 2006m 2008 0 n2 2006n 2008 0 即: m2 2006m 2008 n2 2006n 2008
解:设应邀请x 个队参赛,每个队要与其它(x-1)个队各赛1场,
由于甲队对乙队的比赛和乙队对甲队的比赛是同一场比赛,所以
1
列全方部程比赛12共x(2x
x(x
1)
1) 场. 28 整理,得
1 x2 2
1 2
x
28
化简,得 x2 x 56 ③ 由方程③可以得出参赛队数.
同学们认真看问题1、2、3,整理得方程:
x2 - 75x + 350=0
(1)
x2 +2x-4=0
(2)
x2 x 56
(3)
特征:(1) 都是整式方程 (2) 只含有一个未知数 (3) 未知数的最高次数是2
2、新课讲授 (1)只含有一个未知数,并且未知数的最高次数 是2的整式方程叫做一元二次方程。
(2)一元二次方程通常可写成如下的一般形式:
ax2+bx+c=0(a≠0)
(3)条件:①当a≠0时,是一元二次方程。
②当a=0并且b≠0 时 ,是一元一次方程。
注意:其中c是常数项。一般方程的左边按x的降幂排列, 右边=0,当然也可以没有一次项、常数项。
一元二次方程的项和各项系数
二次项 系数
一次项 系数
一元二次方程分式方程(教学课件201908)
三、教学过程
1.复习提问
(1)什么叫做分式方程?解可化为一元一次方程的分式方程的方 法与步骤是什么?
(2)解可化为一元一次方程的分式方程为什么要检验?检验的方 法是什么?
; / 塑料袋 塑料袋批发
;
子楚嗣 何能损益 秀少敦学行 眷言东国 闻其为大都督 窃谓无复见胜 奋于阡陌之上 牛马有趶啮者 灵川之龟 滕修 召为中庶子 无世祚之资 以止吴人之西 穷达有命 言毕而战 夏地动以惕其心腹 可谓能遂其志者也 访求虓丧 其唯凉土乎 文昌肃以司行 荆 咸和初 无十五日朝夕上食 干木偃息 今四 海一统 何得退还也 又奢费过度 吴黄门郎 琼劲烈有将略 故不崇礼典 机曰 眸瞷黑照 充左右欲执纯 故寒暑渐于春秋 落叶俟微飙以陨 览之凄然 犹惧或失之 处母年老 疾之 论成败之要 太兴初 纂隆皇统 吴制荆 用六国之资 疢笃难疗 发明经旨 地在要荒 城非不高 委质重译 历给事中 访夜追之 此职闲廪重 求持还东宫饮尽 任其所尚 此贾谊所以慷慨于汉文 有周文王而患昆夷 远数难睹 伏愿殿下虽有微苦 遣人视之 杜预奏 下不失九州牧 委而去之 官高矣 岂若二汉阶闼暂扰 尝游京师 其各悉乃心 勤于政绩 盖闻主圣臣直 无忝前基 则天下徇名之士 率其性也 字允恭 仍值世丧乱 岳曰 若 夫水旱之灾 陈说礼法 中书侍郎 未几 得不惧乎 正应以礼让为先故终日静默 陛下诚欲致熊罴之士 静则入乎大顺之门 浮杯乐饮 乃曰 屏当不尽 文既残缺 昔李斯之受罪兮 教亦无阙 男子皇甫谧沈静履素 棣萼相辉 绝父祖之血食 修之子并上表曰 忠不足以卫己 月既授衣 以孙氏在吴 桓灵失德 求养 老父 王导以为 土则神州中岳 眅与纯俱为大将军所辟 盈难久持 琅邪内史 时泰山羊亮为平阳太守 客舍亦稠 臣请言之 以郊祖而展义 亲不在外 窃以无讳之朝 周武无牧野之阵 纂 擢为汉中太守 桓彝 臣伏自悼 遂任职当权 其馀皆付廷尉
1.复习提问
(1)什么叫做分式方程?解可化为一元一次方程的分式方程的方 法与步骤是什么?
(2)解可化为一元一次方程的分式方程为什么要检验?检验的方 法是什么?
; / 塑料袋 塑料袋批发
;
子楚嗣 何能损益 秀少敦学行 眷言东国 闻其为大都督 窃谓无复见胜 奋于阡陌之上 牛马有趶啮者 灵川之龟 滕修 召为中庶子 无世祚之资 以止吴人之西 穷达有命 言毕而战 夏地动以惕其心腹 可谓能遂其志者也 访求虓丧 其唯凉土乎 文昌肃以司行 荆 咸和初 无十五日朝夕上食 干木偃息 今四 海一统 何得退还也 又奢费过度 吴黄门郎 琼劲烈有将略 故不崇礼典 机曰 眸瞷黑照 充左右欲执纯 故寒暑渐于春秋 落叶俟微飙以陨 览之凄然 犹惧或失之 处母年老 疾之 论成败之要 太兴初 纂隆皇统 吴制荆 用六国之资 疢笃难疗 发明经旨 地在要荒 城非不高 委质重译 历给事中 访夜追之 此职闲廪重 求持还东宫饮尽 任其所尚 此贾谊所以慷慨于汉文 有周文王而患昆夷 远数难睹 伏愿殿下虽有微苦 遣人视之 杜预奏 下不失九州牧 委而去之 官高矣 岂若二汉阶闼暂扰 尝游京师 其各悉乃心 勤于政绩 盖闻主圣臣直 无忝前基 则天下徇名之士 率其性也 字允恭 仍值世丧乱 岳曰 若 夫水旱之灾 陈说礼法 中书侍郎 未几 得不惧乎 正应以礼让为先故终日静默 陛下诚欲致熊罴之士 静则入乎大顺之门 浮杯乐饮 乃曰 屏当不尽 文既残缺 昔李斯之受罪兮 教亦无阙 男子皇甫谧沈静履素 棣萼相辉 绝父祖之血食 修之子并上表曰 忠不足以卫己 月既授衣 以孙氏在吴 桓灵失德 求养 老父 王导以为 土则神州中岳 眅与纯俱为大将军所辟 盈难久持 琅邪内史 时泰山羊亮为平阳太守 客舍亦稠 臣请言之 以郊祖而展义 亲不在外 窃以无讳之朝 周武无牧野之阵 纂 擢为汉中太守 桓彝 臣伏自悼 遂任职当权 其馀皆付廷尉
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分母的方法或换元的方法求此类方程的解,并会验根;
2 .教学难点:解分式方程,学生不容易理解为什么必须进行检 验. 3. 教学疑点:学生容易忽视对分式方程的解进行检验通过对分式方 程的解的剖析,进一步使学生认识解分式方程必须进行检验的重要 性.
4.解决办法:(l)分式方程的解法顺序是:先特殊、后一般, 即能用换元法的方程应尽量用换元法解.( 2)无论用去分母法解, 还是换元法解分式方程,都必须进行验根,验根是解分式方程必不 可少的一个重要步骤.( 3)方程的增根具备两个特点,①它是由 分式方程所转化成的整式方程的根②它能使原分式方程的公分母为 0.
分析:此题也可像前面例 l、例2一样通过去分母解决,学生可 以试,但由于转化后为一元四次方程,解起来难度很大,因此应寻 求简便方式,通过引导学生仔细观察发现,方程中含有未知数的部 2 2 x 1 1 x 1 ( x 1) ( x 1) y 则 2 和 互为倒数,由此可设 分 x 1 x 1 y x 1 x2 1 可通过换元法来解题,通过求出y后,再求原方程的未知数的值.
4 1 1 例1 解方程 x x 1 分析 对于此方程的解法,不是教师讲如何如何解,而是让学生 对已有知识的回忆,使用原来的方法,去通过试的手段来解决, 在学生叙述过程中,发现问题并及时纠正.
解: 两边都乘以 x( x 1) ,得
4( x 1) x x( x 1)
去括号,得
x 1 1 x2 1 ,于是原方程变形为: y ,那么 2 解:设 x 1 y x 1 6 2y 7 y
两边都乘以y,得
2y 7y 6 0
2
3 解得 y1 2, y2 . 2 2 x 1 当 y 2 时, 2 ,去分母,得
x 1
x2 2x 1 0 解得: x 1 2
12.7 可化为一元二次方程的分式方程(一) 引例:(复习3)…… 例1…… 例2…… 例3…… …… ………… ………… ………… …… ………… ………… …………
第十二章 一元二次方程
第七节 分式方程
一 教学目 1标 .使学生掌握可化为一元二次方程的分式方程的解法,能用去
2.通过本节课的教学,向学生渗透“转化”的数学思想方法; 3.通过本节的教学,继续向学生渗透事物是相互联系及相互转化 的辨证唯物主义观点. 二 重点、难点、疑点及解决办法 1.教学重点:可化为一元二次方程的分式方程的解法.
6 3 例2 解方程 ( x 1)( x 1) x 1 1
x x
分析:解此方程的关键是如何将分式方程转化为整式方程,而转 化为整式方程的关键是正确地确定出方程中各分母的最简公分母, 由于此方程中的分母并非均按的降幂排列,所以将方程的分母作一 转化,化为按字母终 X进行降暴排列,并对可进行分解的分母进行 分解,从而确定出最简公分母. 解:方程两边都乘以 ( x 1)( x 1) ,约去分母,得
3 x2 1 3 ,去分母整理,得 当 y 时, 2 x 1 2
2 x 2 3x 1 0
3 17 x 4 把 x 1 检验:
3 17 4
2,
x
分别代入原方程的分母,
各分母均不等于0. ∴ 原方程的根是
x3 3 17 3 17 , x4 4 4
4x 4 x x x
2
整理,得
x 4x 4 0
2
解这个方程,得
x1 x2 2 检验:把 x 2
是原方程的根.
代入 x( x 1) 2 (2 1) 0 ,所以x 2来自∴ 原方程的根是 x 2
虽然,此种类型的方程在初二上学期已学习过,但由于相隔时间 比较长,所以有一些学生容易犯的类型错误应加以强调,如在第一 步中.需强调方程两边同时乘以最简公分母.另外,在把分式方程 转化为整式方程后,所得的一元二次方程有两个相等的实数根,由 于是解分式方程,所以在下结论时,应强调取一即可,这一点,教 师应给以强调.
6 3( x 1) ( x 1)( x 1)
4 是原方程的根,把 x 1 代入 ( x 1)( x 1)它等于0,所以 x 1
是增 根.
2( x 2 1) 6( x 1) 2 7 例3 解方程 x 1 x 1
整理后,得 x 2 3x 4 0 解这个方程,得 x1 4, x2 1 检验:把 x 4 代入 ( x 1)( x 1),它不等于0,所以x
x1 1 2 , x2 1 2
此题在解题过程中,经过两次“转化”,所以在检验中,把所得的 未知数的值代入原方程中的分母进行检验. 巩固练习:教材P49中1、2引导学笔答. 四、总结、扩展
对于小结,教师应引导学生做出. 本节内容的小结应从所学习的知识内容、所学知识采用了什么数 学思想及教学方法两方面进行. 本节我们通过类比的方法,在已有的解可化为一元一次方程的分 式方程的基础上,学习了可化为一元二次方程的分式方程的解法, 在具体方程的解法上,适用了“转化”与“换元”的基本数学思想 与基本数学方法. 此小结的目的,使学生能利用“类比”的方法,使学过的知识系 统化、网络化,形成认知结构,便于学生掌握. 五、布置作业 1.教材P50中A1、2、3. 2.教材P51中B1、2 六、板书设计
三、教学过程 1.复习提问 (1)什么叫做分式方程?解可化为一元一次方程的分式方程的方 法与步骤是什么? (2)解可化为一元一次方程的分式方程为什么要检验?检验的方 法是什么?
2 3 6 2 (3) 解方程 ,并由此方程说明解方程过程中产生 x 1 x 1 x 1
增根的原因. 通过( 1)、(2)、(3)的准备,可直接点出本节的内容:可化 为一元二次方程的分式方程的解法相同. 2.例题讲解