多面体与球的接切问题练习题

合集下载

多面体与球的切接问题专练

多面体与球的切接问题专练

多面体与球的切接问题专练、选择题1. (2017全国卷川)已知圆柱的高为 1,它的两个底面的圆周在直径为 2的同一个球的球面上,则该圆柱的体积为 ()3 n A . nB.~ 4 n nC.2D.4解析:选B 设圆柱的底面半径为 r ,贝y r 2= 12- i^)= 4,所以圆柱的体积V = |nX 13n 4 .2. (2016全国卷川)在封闭的直三棱柱 ABC-A 1B 1C 1内有一个体积为 V 的球•若 AB 丄 BC , AB = 6, BC = 8, AA 1 = 3,则 V 的最大值是()9 n A . 4 nB.yA . 12 n C . 20 n解析:选D 法一:女口图,作BF 丄CD 于F , AE 丄BF 于E ,由A-BCD 为正四面体可知 AE 丄平面BCD ,设O 为正四面体 A-BCD 的内切球的球 心,则OE 为内切球的半径,连接 OB.因为正四面体的棱长为 12,所以BF = AF = 6 3, BE = 4 3,所以 AE = 122— 4 3 2= 4 6.又 OB 2— OE 2= BE 2,即(4 6 — OE )2— OE 2= (4 3)2, 所以OE = ■ 6,则其内切球的半径是 ,6. 所以内切球的表面积为 4 nX ( 6)2= 24 n法二:因为正四面体的棱长为 12,其内切球半径为正四面体高的 三,所以r = 1X^X 12 4 4 3=.6,故其内切球的表面积为24n.4.三棱锥P-ABC 的四个顶点都在体积为 500-7的球的表面上,底面 ABC 所在的小圆面D.32 n 3解析:选B 设球的半径为 R , •••△ ABC 的内切圆半径为 6+ 8—10 2=2, ••• R W 2.又 2R W 3,4 --Vmax = 3X nX 3.已知正四面体A-BCD 的棱长为 12,则其内切球的表面积为B . 16 n D . 24 n3积为16n,则该三棱锥的高的最大值为(B . 6D . 10解析:选C 依题意,设题中球的球心为34: = 5罗;解得R = 5.由7tr 2= 16 n,解得 3 3O ,半径为R ,^ABC 的外接圆半径为r ,则 r = 4.又球心O 到平面ABC 的距离为 R 2— r 23,因此三棱锥 P-ABC 的高的最大值为 5 + 3= 8.5. (2018洛阳第一次统考)已知三棱锥P-ABC 的四个顶点均在某球面上,PC 为该球的直径,△ ABC 是边长为4的等边三角形,三棱锥 P-ABC 的体积为 弓,则此三棱锥的外接球3 的表面积为(16 n A •亍 40 n B・T 64 n Ch80 n D ."T解析:选 D 依题意,记三棱锥 P-ABC 的外接球的球心为 0,半径为R ,点P 到平面 ABC 的距离为11 ^13 - 16 4h ,则由V P -ABC =ABC h = 孑 计X 4 X h = -3-,得h = 码.又PC 为球O 的直径,因此球心 1 2 ABO 到平面ABC 的距离等于2h =(3.又正△ ABC 的外接圆半径为r =禹而20所以三棱锥P-ABC 的外接球的表面积等于 4d R 2= 80 n.6.四棱锥 P-ABCD 的底面 ABCD 是边长为 6的正方形,且 PA = PB = PC = PD ,若 个半径为1的球与此四棱锥所有面都相切,则该四棱锥的高是( )B . 54 C.29 D ・解析:选D 过点P 作PH 丄平面 ABCD 于点 H.由题知,四棱锥 P-ABCD 是正四棱锥,内切球的球心 0应在四棱锥的高 锥的高作组合体的轴截面如图,其中PE , PF 是斜高,的一个切点.设 PH = h ,易知Rt △ PMO s Rt △ PHF ,所以0^ POFH7. (2018成都一诊)如图,网格纸上小正方形的边长为 出的是某四棱锥的三视图,则该四棱锥的外接球的表面积为A . 136 nB . 34 n,因此 R 2 =43 2 +PH 上.过正四棱 M 为球面与侧面PF ,即粗实线画C . 25 nD . 18 n解析:选B 由三视图知,该四棱锥的底面是边长为 3的正方形,高为4,且有一条侧 棱垂直于底面,所以可将该四棱锥补形为长、宽、高分别为 3,3,4的长方体,该长方体外接球的半径R 即为该四棱锥外接球的半径,所以 2R = 32+ 32+ 42,解得只=亠尹,所以该四棱锥外接球的表面积为 4K R 2= 34 n.8. (2018湖北七市(州)联考)一个几何体的三视图如图所示,则该几何体外接球的表面 积为()D . 20 n解析:选C 根据三视图可知,该几何体为三棱锥,且其中边长为1的侧棱与底面垂直,底面为斜边长为2的等腰直角三角形,所以可以将该三棱锥补形为长、 宽、高分别为 2,A . 36 nC . 32 nD . 28 n解析:选B 根据三视图可知,该几何体是一个四棱锥, 其底面是一个 边长为4的正方形,高是 2 ,3.将该四棱锥还原成一个三棱柱,如图所示, 则其底面是边长为 4的正三角形,高是4,其中心到三棱柱的 6个顶点的距 离即为该四棱锥外接球的半径.因为三棱柱的底面是边长为 4的正三角形,所以底面三角形的中心到三角形三个顶点的距离为2X 2 3 = 晋,所以其外接球的半径RS = 4 n R 2= 4 nX28= 112n 3 = 3 .9.某几何体的三视图如图所示,若这个几何体的顶点都在球 O 的表面上,则球 O 的表面积是( )B •飞2, 1的长方体,所以该几何体的外接球0的半径R = ~-三一2丄1= ¥,所以球O的表面积S= 4 T R2= 5 n.10.底面为矩形的四棱锥P-ABCD的所有顶点都在球O的球面上,且AB = 2 3, AD =2,它的最大体积为,则球O的表面积为()3A. 10 nB. 15 nC. 20 nD. 25 n解析:选D 如图所示,设矩形ABCD的对角线的交点为01,当点P在010的延长线上,并在球面上时,四棱锥则有3X2 3 X 2X PO1= 16T3,3 3所以PO1= 4,连接OA,设球O的半径为R,则PO = OA= R, OO1= 4-R,O1A= 2 , AB2+ AD2= 2.在Rt △ AO1O 中,OO1 + O1A2= OA2,即(4 —R)2+ 22= R2,解得R= 5, 所以球O的表面积为4冗R2= 25 n.11.已知底面为正三角形的三棱柱内接于半径为1的球,则此三棱柱的体积的最大值为()B. 2解析:选A 如图,设球心为O,三棱柱的上、下底面的中心分别为O1, O2,底面正三角形的边长为a,则AO1 = ;xj a = ~33a.由已知得O1O2丄底面,在Rt △ OAO1中,由勾股定理得33a 2= +,OO1 =12—所以V三棱柱=今宀2X壬戸=』2±,4 3 2令f(a) = 3a4—a6(0<a< 3),则f' (a)= 12a3—6a5= —6a3(a2—2),令f' (a)= 0,解得a =2.因为当a€ (0, 2)时,f' (a)>0 ;当a€ ( .2, .3)时,f' (a)<0,所以函数f(a)在(0, .2)上单调递增,在(.2, 3)上单调递减.所以f(a)在a = ,2处取得极大值f(・2)= 4. 因为函数f(a)在区间(0,3)上有唯一的极值,所以当a =. 2时,三棱锥的体积取得最大值为1,故三棱柱体积的最大值为1.12. (2018 •州综合测试)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直 的四棱锥称之为阳马;将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥P-ABC 为上,则球0的表面积为()一个顶点的距离都相等,即 PC 的中点为球心 0,易得2R = PC =■ 20,为 4 n R 2= 20 n.二、填空题13. 已知球 0的半径为 R , A , B , C 三点在球0的球面上,球心 离为 卑R , AB = AC = BC = 2*3,则球 0的表面积为 ____________ .解析:设厶ABC 外接圆的圆心为 01,半径为r ,因为AB = AC = BC = 2 3,所以△ ABC 为正三角形,其外接圆的半径r=盘討=2,因为。

高考满分数学压轴题13 与球相关的外接与内切问题(可编辑可打印)

高考满分数学压轴题13 与球相关的外接与内切问题(可编辑可打印)

一.方法综述如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点. 考查学生的空间想象能力以及化归能力。

研究球与多面体的接、切问题主要考虑以下几个方面的问题:(1)多面体外接球半径的求法,当三棱锥有三条棱垂直或棱长相等时,可构造长方体或正方体. (2)与球的外切问题,解答时首先要找准切点,可通过作截面来解决. (3)球自身的对称性与多面体的对称性;二.解题策略类型一 柱体与球【例1】(2020·河南高三(理))已知长方体1111ABCD A B C D -的表面积为208,118AB BC AA ++=,则该长方体的外接球的表面积为( ) A .116π B .106πC .56πD .53π【答案】A 【解析】【分析】由题意得出11118104AB BC AA AB BC BC AA AB AA ++=⎧⎨⋅+⋅+⋅=⎩,由这两个等式计算出2221AB BC AA ++,可求出长方体外接球的半径,再利用球体表面积公式可计算出结果.【详解】依题意,118AB BC AA ++=,11104AB BC BC AA AB AA ⋅+⋅+⋅=,所以,()()222211112116AB BC AA AB BC AA AB BC BC AA AB AA ++=++-⋅+⋅+⋅=,故外接球半径r ==,因此,所求长方体的外接球表面积24116S r ππ==.故选:A.【点睛】本题考查长方体外接球表面积的计算,解题的关键就是利用长方体的棱长来表示外接球的半径. 【举一反三】1.(2020·2,若与球相关的外接与内切问题该棱柱的顶点都在一个球面上,则该球的表面积为( ) A .73π B .113π C .5π D .8π【答案】D【解析】根据条件可知该三棱柱是正三棱柱,上下底面中心连线的中点就是球心,如图,则其外接球的半径22221123222sin 60R OB OO BO ⎛⎫ ⎪⎛⎫==+=+= ⎪ ⎪︒⎝⎭⎝⎭, 外接球的表面积428S ππ=⨯=.故选:D【指点迷津】直棱柱的外接球的球心在上、下底面的外接圆的圆心的连线上,确定球心,用球心、一底面的外接圆的圆心,一顶点构成一个直角三角形,用勾股定理得关于外接球半径的关系式,可球的半径. 2.(2020·安徽高三(理))已知一个正方体的各顶点都在同一球面上,现用一个平面去截这个球和正方体,得到的截面图形恰好是一个圆及内接正三角形,若此正三角形的边长为a ,则这个球的表面积为( ). A .234a π B .23a π C .26a πD .232a π【答案】D【解析】由已知作出截面图形如图1,可知正三角形的边长等于正方体的面对角线长,正方体与其外接球的位置关系如图2所示,可知外接球的直径等于正方体的体对角线长,设正方体的棱长为m ,外接球的半径为R ,则2a m =,23R m =,所以64R a =,所以外接球的表面积为222634442a S R a πππ⎛⎫==⨯= ⎪ ⎪⎝⎭, 故选:D .【点睛】本题考查正方体的外接球、正方体的截面和空间想象能力,分析出外接球的半径与正三角形的边长的关系是本题的关键,3.(2020·河南高三(理))有一圆柱状有盖铁皮桶(铁皮厚度忽略不计),底面直径为20cm ,高度为100cm ,现往里面装直径为10cm 的球,在能盖住盖子的情况下,最多能装( ) (附:2 1.414,3 1.732,5 2.236≈≈≈) A .22个 B .24个C .26个D .28个【答案】C【解析】由题意,若要装更多的球,需要让球和铁皮桶侧面相切,且相邻四个球两两相切, 这样,相邻的四个球的球心连线构成棱长为10cm 的正面体,易求正四面体相对棱的距离为52cm ,每装两个球称为“一层”,这样装n 层球, 则最上层球面上的点距离桶底最远为()()10521n +-cm ,若想要盖上盖子,则需要满足()10521100n +-≤,解得19213.726n ≤+≈, 所以最多可以装13层球,即最多可以装26个球.故选:C 类型二 锥体与球【例2】5.已知球O 的半径为102,以球心O 为中心的正四面体Γ的各条棱均在球O 的外部,若球O 的球面被Γ的四个面截得的曲线的长度之和为8π,则正四面体Γ的体积为_________. 【来源】重庆市2021届高三下学期二模数学试题 【答案】182【解析】由题知,正四面体截球面所得曲线为四个半径相同的圆,每个圆的周长为2π,半径为1,故球心O 到正四面体各面的距离为2106122⎛⎫-=⎪⎝⎭,设正四面体棱长为a ,如图所示,则斜高332AE EF a ==,体高63=AF a ,在Rt AEF 和R t AGO 中,13OG EF AO AE ==,即61236632a =-,∴6a =,∴231362618234312V a a =⋅⋅=⋅=. 【举一反三】1.(2020四川省德阳一诊)正四面体ABCD 的体积为,则正四面体ABCD 的外接球的体积为______. 【答案】【解析】如图,设正四面体ABCD 的棱长为,过A 作AD ⊥BC , 设等边三角形ABC 的中心为O ,则,,,即.再设正四面体ABCD 的外接球球心为G ,连接GA , 则,即.∴正四面体ABCD 的外接球的体积为.故答案为:.2.(2020·宁夏育才中学)《九章算术》是我国古代的数学名著,其中有很多对几何体体积的研究,已知某囤积粮食的容器的下面是一个底面积为32π,高为h 的圆柱,上面是一个底面积为32π,高为h 的圆锥,若该容器有外接球,则外接球的体积为 【答案】288π【解析】如图所示,根据圆柱与圆锥和球的对称性知,其外接球的直径是23R h =,设圆柱的底面圆半径为r ,母线长为l h =, 则232r ππ=,解得42r =222(2)(3)l r h +=, 222(82)9h h ∴+=,解得4h =,∴外接球的半径为3462R =⨯=,∴外接球的体积为3344628833R V πππ⨯===.3.(2020·贵阳高三(理))在四棱锥P ABCD -中,底面ABCD 是边长为4的正方形,PAD ∆是一个正三角形,若平面PAD ⊥平面ABCD ,则该四棱锥的外接球的表面积为( ) A .143πB .283πC .563πD .1123π【答案】D 【解析】【分析】过P 作PF AD ⊥,交AD 于F ,取BC 的中点G ,连接,PG FG ,取PF 的三等分点H (2PH HF =),取GF 的中点E ,在平面PFG 过,E F 分别作,GF PF 的垂线,交于点O ,可证O 为外接球的球心,利用解直角三角形可计算PO .【详解】如图,过P 作PF AD ⊥,交AD 于F ,取BC 的中点G ,连接,PG FG ,在PF 的三等分点H (2PH HF =),取GF 的中点E ,在平面PFG 过,E F 分别作,GF PF 的垂线,交于点O .因为PAD ∆为等边三角形,AF FD =,所以PF ⊥AD . 因为平面PAD ⊥平面ABCD ,平面PAD平面ABCD AD =,PF ⊂平面PAD ,所以PF ⊥平面ABCD ,因GF ⊂平面ABCD ,故PF GF ⊥. 又因为四边形ABCD 为正方形,而,G F 为,BC AD 的中点,故FG CD ,故GF AD ⊥,因ADPF F =,故PF ⊥平面PAD .在Rt PGF ∆中,因,OE GF PF GF ⊥⊥,故OE PF ,故OE ⊥平面ABCD ,同理OH ⊥平面PAD .因E 为正方形ABCD 的中心,故球心在直线OE 上,因H 为PAD ∆的中心,故球心在直线OH 上,故O 为球心,OP 为球的半径. 在Rt PGF ∆中,2234343323PH PF ==⨯⨯=,2OH EF ==, 故16282214333OP =+==,所以球的表面积为28112433ππ⨯=. 类型三 构造法(补形法)【例3】已知三棱锥P ABC -的各个顶点都在球O 的表面上,PA ⊥底面ABC ,AB AC ⊥,6AB =,8AC =,D 是线段AB 上一点,且2AD DB =.过点D 作球O 的截面,若所得截面圆面积的最大值与最小值之差为25π,则球O 的表面积为( ) A .128π B .132πC .144πD .156π【答案】B【解析】PA ⊥平面ABC ,AB AC ⊥,将三棱锥P ABC -补成长方体PQMN ABEC -,如下图所示:设AE BC F =,连接OF 、DF 、OD ,可知点O 为PE 的中点,因为四边形ABEC 为矩形,AE BC F =,则F 为AE 的中点,所以,//OF PA 且12OF PA =,设2PA x =,且2210AE AB BE =+=,222225PE PA AE x ∴+=+所以,球O 的半径为21252R PE x ==+, 在Rt ABE △中,2ABE π∠=,6AB =,10AE =,3cos 5AB BAE AE ∠==,在ADF 中,243AD AB ==,5AF =, 由余弦定理可得222cos 17DF AD AF AD AF BAE =+-⋅∠=,PA ⊥平面ABCD ,OF ∴⊥平面ABCD ,DF ⊂平面ABCD ,则OF DF ⊥,12OF PA x ==,22217OD OF DF x ∴=+=+, 设过点D 的球O 的截面圆的半径为r ,设球心O 到截面圆的距离为d ,设OD 与截面圆所在平面所成的角为θ,则22sin d OD R r θ==-.当0θ=时,即截面圆过球心O 时,d 取最小值,此时r 取最大值,即2max 25r R x ==+;当2πθ=时,即OD 与截面圆所在平面垂直时,d 取最大值,即2max 17d OD x ==+,此时,r 取最小值,即()22min max 22r R d =-=. 由题意可得()()()222max min 1725r r x πππ⎡⎤-=+=⎣⎦,0x,解得22x =.所以,33R =,因此,球O 的表面积为24132S R ππ==.故选:B.【举一反三】1.(2020宁夏石嘴山模拟)三棱锥中,侧棱与底面垂直,,,且,则三棱锥的外接球的表面积等于 .【答案】【解析】把三棱锥,放到长方体里,如下图:,因此长方体的外接球的直径为,所以半径,则三棱锥的外接球的表面积为.2.(2020菏泽高三模拟)已知直三棱柱的底面为直角三角形,且两直角边长分别为1和,此三棱柱的高为,则该三棱柱的外接球的体积为A.B.C.D.【答案】C【解析】如图所示,将直三棱柱补充为长方体,则该长方体的体对角线为,设长方体的外接球的半径为,则,,所以该长方体的外接球的体积,故选C.3.(2020·贵州高三月考(理))某几何体的三视图如图所示,则该几何体的体积为()A.43B.53C.83D.163【答案】A【解析】【分析】如图所示画出几何体,再计算体积得到答案.【详解】由三视图知该几何体是一个四棱锥,可将该几何体放在一个正方体内,如图所示:在棱长为2的正方体1111ABCD A B C D -中,取棱11,,,,B C DA AB BC CD 的中点分别为,,,,E M N P Q ,则该几何体为四棱锥E MNPQ -,其体积为()2142233⨯⨯=.故选:A 类型四 与球体相关的最值问题【例4】(2020·福建高三期末(理))在外接球半径为4的正三棱锥中,体积最大的正三棱锥的高h =( ) A .143B .134C .72D .163【答案】D 【解析】【分析】设正三棱锥底面的边长为a ,高为h ,由勾股定理可得22234(4)3h a ⎛⎫=-+ ⎪ ⎪⎝⎭,则22183h h a -=,三棱锥的体积()23384V h h =-,对其求导,分析其单调性与最值即可得解. 【详解】解:设正三棱锥底面的边长为a ,高为h ,根据图形可知22234(4)3h a ⎛⎫=-+ ⎪ ⎪⎝⎭,则22180,3h h a -=>08h ∴<<. 又正三棱锥的体积21334V a h =⨯()2384h h h =-()23384h h =-,则()231634V h h '=-, 令0V '=,则163h =或0h =(舍去), ∴函数()23384V h h =-在160,3⎛⎫ ⎪⎝⎭上单调递增,在16,83⎛⎫⎪⎝⎭上单调递减,∴当163h =时,V 取得最大值,故选:D. 【点睛】本题考查球与多面体的最值问题,常常由几何体的体积公式、借助几何性质,不等式、导数等进行解决,对考生的综合应用,空间想象能力及运算求解能力要求较高. 【举一反三】1.(2020·广东高三(理))我国古代数学名著《九章算术》中有这样一些数学用语,“堑堵”意指底面为直角三角形,且侧棱垂直于底面的三棱柱,而“阳马”指底面为矩形,且有一侧棱垂直于底面的四棱锥.现有一如图所示的堑堵,AC BC ⊥,若12AA AB ==,当阳马11B A ACC -体积最大时,则堑堵111ABC A B C -的外接球体积为( )A .22πB .823C .23D .2π【答案】B【解析】依题意可知BC ⊥平面11ACC A .设,AC a BC b ==,则2224a b AB +==.111111323B A ACC V AC AA BC AC BC -=⨯⨯⨯⨯=⨯⨯22114232323AC BC +≤⨯=⨯=,当且仅当2AC BC ==时取得最大值.依题意可知1111,,A BC A BA A BB ∆∆∆是以1A B 为斜边的直角三角形,所以堑堵111ABC A B C -外接球的直径为1A B ,故半径221111222OB A B AA AB ==⨯+=.所以外接球的体积为()34π82π233⋅=. 特别说明:由于BC ⊥平面11ACC A ,1111,,A BC A BA A BB ∆∆∆是以1A B 为斜边的直角三角形,所以堑堵111ABC A B C -外接球的直径为1A B 为定值,即无论阳马11B A ACC -体积是否取得最大值,堑堵111ABC A B C -外接球保持不变,所以可以直接由直径1A B 的长,计算出外接球的半径,进而求得外接球的体积.故选:B2.(2020·遵义市南白中学高三期末)已知A ,B ,C ,D 四点在同一个球的球面上,6AB BC ==,90ABC ∠=︒,若四面体ABCD 体积的最大值为3,则这个球的表面积为( )A .4πB .8πC .16πD .32π【答案】C 【解析】根据6AB BC ==可得直角三角形ABC ∆的面积为3,其所在球的小圆的圆心在斜边AC 的中点上,设小圆的圆心为Q , 由于底面积ABC S ∆不变,高最大时体积最大,所以DQ 与面ABC 垂直时体积最大,最大值为为133ABC S DQ ∆⨯=,即133,33DQ DQ ⨯⨯=∴=,如图, 设球心为O ,半径为R ,则在直角AQO ∆中,即222(3)(3,)2R R R =∴+=-, 则这个球的表面积为24216S ππ=⨯=,故选C.3.(2020·河南高三(理))菱形ABCD 的边长为2,∠ABC =60°,沿对角线AC 将三角形ACD 折起,当三棱锥D -ABC 体积最大时,其外接球表面积为( ) A .153π B .2153π C .209π D .203π 【答案】D 【解析】【分析】当平面ACD 与平面ABC 垂直时体积最大,如图所示,利用勾股定理得到2223(3)()3R OG =-+和22223()3R OG =+,计算得到答案. 【详解】易知:当平面ACD 与平面ABC 垂直时体积最大. 如图所示:E 为AC 中点,连接,DE BE ,外接球球心O 的投影为G 是ABC ∆中心,在BE 上 3BE =,3DE =,33EG =,233BG =设半径为R ,则2223(3)()3R OG =-+,22223()3R OG =+ 解得:153R =,表面积22043S R ππ== 故选:D三.强化训练一、选择题1.(2020·广西高三期末)棱长为a 的正四面体ABCD 与正三棱锥E BCD -的底面重合,若由它们构成的多面体ABCDE 的顶点均在一球的球面上,则正三棱锥E BCD -的表面积为( ) A .2334a + B .2336a + C .2336a - D .2334a - 【答案】A【解析】由题意,多面体ABCDE 的外接球即正四面体ABCD 的外接球, 由题意可知AE ⊥面BCD 交于F ,连接CF ,则233323CF a a =⋅= 且其外接球的直径为AE ,易求正四面体ABCD 的高为223633a a a ⎛⎫ ⎪ ⎪=⎝⎭-. 设外接球的半径为R ,由2226333R a R a ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭=⎭-⎝-得64R a =. 设正三棱锥E BCD -的高为h ,因为6623AE a a h ==+,所以66h a =. 因为底面BCD ∆的边长为a ,所以2222EB EC ED CF h a ===+=, 则正三棱锥E BCD -的三条侧棱两两垂直.即正三棱锥E BCD -的表面积222121333322224S a a a ⎛⎫+=⨯⨯+⨯= ⎪ ⎪⎝⎭,故选:A .2、(2020辽宁省师范大学附属中学高三)在三棱锥中,,则三棱锥外接球的表面积为( )A.B.C.D.【答案】C【解析】如图,把三棱锥补形为长方体,设长方体的长、宽、高分别为,则,∴三棱锥外接球的半径∴三棱锥外接球的表面积为.故选:C.3.(2020·安徽高三期末)如果一个凸多面体的每个面都是全等的正多边形,而且每个顶点都引出相同数目的棱,那么这个凸多面体叫做正多面体.古希腊数学家欧几里得在其著作《几何原本》的卷13中系统地研究了正多面体的作图,并证明了每个正多面体都有外接球.若正四面体、正方体、正八面体的外接球半径相同,则它们的棱长之比为()A23B.223C.22D.223【答案】Ba b c R【解析】设正四面体、正方体、正八面体的棱长以及外接球半径分别为,,,则2223,23,22R a R b R c =⨯==, 即222,,2::2:2:333R R a b c R a b c ===∴=故选:B 4.(2020·北京人大附中高三)如图,在四棱锥S ABCD -中,四边形ABCD 为矩形,23AB =,2AD =,120ASB ∠=︒,SA AD ⊥,则四棱锥外接球的表面积为( )A .16πB .20πC .80πD .100π 【答案】B【解析】由四边形ABCD 为矩形,得AB AD ⊥,又SA AD ⊥,且SA AB A ⋂=,∴AD ⊥平面SAB ,则平面SAB ⊥平面ABCD ,设三角形SAB 的外心为G ,则23322sin 2sin12032AB GA ASB ====∠︒. 过G 作GO ⊥底面SAB ,且1GO =,则22215OS =+=.即四棱锥外接球的半径为5. ∴四棱锥外接球的表面积为24(5)20S ππ=⨯=.故选B .5.(2020河南省郑州市一中高三)在三棱锥中,平面,M 是线段上一动点,线段长度最小值为,则三棱锥的外接球的表面积是( ) A . B .C .D .【答案】C【解析】解:如图所示:三棱锥中,平面,M是线段上一动点,线段长度最小值为,则:当时,线段达到最小值,由于:平面,所以:,解得:,所以:,则:,由于:,所以:则:为等腰三角形.所以,在中,设外接圆的直径为,则:,所以外接球的半径,则:,故选:C.6、(2020河南省天一大联考)某多面体的三视图如图所示,其中正视图是一个直角边为2的等腰直角三角形,侧视图是两直角边分别为2和1的直角三角形,俯视图为一矩形,则该多面体的外接球的表面积为()A.B.C.D.【答案】C【解析】由三视图可得,该几何体为一个三棱锥,放在长、宽、高分别为2,1,2的长方体中,此三棱锥和长方体的外接球是同一个,长方体的外接球的球心在体对角线的中点处,易得其外接球的直径为,从而外接球的表面积为.故答案为:C.7.(2020·江西高三期末(理))如图,三棱锥P ABC -的体积为24,又90PBC ABC ∠=∠=︒,3BC =,4AB =,410PB =,且二面角P BC A --为锐角,则该三棱锥的外接球的表面积为( )A .169πB .144πC .185πD .80π【答案】A【解析】因90PBC ABC ∠=∠=︒,所以BC ⊥平面PAB ,且PBA ∠为二面角P BC A --的平面角, 又3BC =,4AB =,410PB =,由勾股定理可得13PC =,5AC =, 因为1sin 8102PAB S PB AB PBA PBA ∆⋅=⋅∠=∠,所以三棱锥的体积1181032433PAB V S BC PBA ∆=⋅=⨯∠⨯=,解得310sin PBA ∠=,又PBA ∠为锐角,所以10cos 10PBA ∠=, 在PAB ∆中,由余弦定理得2101601624410144PA =+-⨯⨯=, 即12PA =,则222PB PA AB =+,故PA AB ⊥, 由BC ⊥平面PAB 得BC PA ⊥,故PA ⊥平面ABC ,即PA AC ⊥,取PC 中点O , 在直角PAC ∆和直角PBC ∆中,易得OP OC OA OB ===,故O 为外接球球心, 外接圆半径11322R PC ==,故外接球的表面积24169S R ππ==.故选:A. 8.(2019·湖南长沙一中高三)在如图所示的空间几何体中,下面的长方体1111ABCD A B C D -的三条棱长4AB AD ==,12AA =,上面的四棱锥1111P A B C D -中11D E C E =,1111PE A B C D ⊥平面,1PE =,则过五点A 、B 、C 、D 、P 的外接球的表面积为( )A .311π9B .311π18C .313π9D .313π18【答案】C【解析】问题转化为求四棱锥P ABCD -的外接球的表面积.4913PC =+=,∴3sin 13PCD ∠=.所以PCD ∆外接圆的半径为131336213r ==⨯,由于PE ⊥平面1111D C B A ,则PE ⊥平面ABCD ,PE ⊂平面PCD ,所以平面PCD ⊥平面ABCD , 所以外接球的222169313243636R r =+=+=.所以2313π4π9S R ==球表面积.9.三棱锥P —ABC 中,底面ABC 满足BA=BC , ,点P 在底面ABC 的射影为AC 的中点,且该三棱锥的体积为,当其外接球的表面积最小时,P 到底面ABC 的距离为( ) A .3 B .C .D .【答案】B【解析】设外接球半径为,P 到底面ABC 的距离为,,则,因为,所以, 因为,所以当时,,当时,,因此当时,取最小值,外接球的表面积取最小值,选B.10.(2019·河北高三月考)在平面四边形ABCD 中,AB ⊥BD ,∠BCD =30°,2246AB BD +=,若将△ABD 沿BD 折成直二面角A -BD -C ,则三棱锥A-BDC 外接球的表面积是( ) A .4π B .5πC .6πD .8π【答案】C【解析】取,AD BD 中点,E F ,设BCD ∆的外心为M ,连,,MB MF EF , 则01,30,22MF BD BMF DMB BCD BM BF BD ⊥∠=∠=∠=∴== 分别过,E M 作,MF EF 的平行线,交于O 点, 即//,//OE MF OM EF ,,BD AB E ⊥∴为ABD ∆的外心,平面ABD ⊥平面BCD ,AB ⊥平面BCD ,//,EF AB EF ∴⊥平面BCD ,OM ∴⊥平面BCD ,同理OE ⊥平面ABD ,,E M 分别为ABD ∆,BCD ∆外心,O ∴为三棱锥的外接球的球心,OB 为其半径, 22222221342OB BM OM BD EF BD AB =+=+=+=, 246S OB ππ=⨯=球.故选:C11.(2020·梅河口市第五中学高三期末(理))设三棱锥P ABC -的每个顶点都在球O 的球面上,PAB ∆是面积为3的等边三角形,45ACB ∠=︒,则当三棱锥P ABC -的体积最大时,球O 的表面积为( ) A .283π B .10πC .323π D .12π【答案】A【解析】如图,由题意得2334AB =,解得2AB =.记,,AB c BC a AC b ===, 12sin 24ABC S ab C ab ∆==,由余弦定理2222cos c a b ab C =+-,得224222a b ab ab ab =+-≥-,42(22)22ab ≤=+-,当且仅当a b =时取等号.所以CA CB =且平面PAB ⊥底面ABC 时,三棱锥P ABC -的体积最大.分别过PAB ∆和ABC ∆的外心作对应三角形所在平面的垂线,垂线的交点即球心O , 设PAB ∆和ABC ∆的外接圆半径分别为1r ,2r ,球O 的半径为R ,则123r =,21222sin 45r =⨯=︒.故222211172233R r r ⎛⎫=+=+= ⎪⎝⎭, 球O 的表面积为22843R ππ=.故选:A.12.(2020四川省成都外国语学校模拟)已知正方形ABCD 的边长为4,E ,F 分别是BC ,CD 的中点,沿AE ,EF ,AF 折成一个三棱锥P-AEF (使B ,C ,D 重合于P ),三棱锥P-AEF 的外接球表面积为( )A .B .C .D .【答案】C 【解析】如图,由题意可得,三棱锥P-AEF 的三条侧棱PA ,PE ,PF 两两互相垂直, 且,,把三棱锥P-AEF 补形为长方体,则长方体的体对角线长为, 则三棱锥P-AEF 的外接球的半径为,外接球的表面积为.故选:C .13.已知球O 夹在一个二面角l αβ--之间,与两个半平面分别相切于点,A B .若2AB =,球心O 到该二面角的棱l 的距离为2,则球O 的表面积为( ) A .8πB .6πC .4πD .2π【来源】江西省萍乡市2021届高三二模考试数学(文)试题 【答案】A【解析】过,,O A B 三点作球的截面,如图:设该截面与棱l 交于D ,则OA l ⊥,OB l ⊥,又OA OB O =,所以l ⊥平面AOB ,所以OD l ⊥,所以||2OD =,依题意得,OA AD OB BD ⊥⊥,所以,,,O A D B 四点共圆,且OD 为该圆的直径,因为||2||AB OD ==,所以AB 也是该圆的直径,所以四边形OADB 的对角线AB 与OD 的长度相等且互相平分,所以四边形OADB 为矩形,又||||OA OB =,所以该矩形为正方形,所以2||||22OA AB ==,即圆O 的半径为2,所以圆O 的表面积为24(2)8ππ⨯=. 故选:A14.已知点,,A B C 在半径为2的球面上,满足1AB AC ==,3BC =,若S 是球面上任意一点,则三棱锥S ABC -体积的最大值为( ) A .32312+ B .3236+ C .23312+ D .3312+ 【答案】A【解析】设ABC 外接圆圆心为O ',三棱锥S ABC -外接球的球心为O ,1AB AC ==,设D 为BC 中点,连AD ,如图,则AD BC ⊥,且O '在AD 上,221()22BC AD AB =-=, 设ABC 外接圆半径为r ,222231()()()242BC r AD r r =+-=+-,解得1r =, 22||23OO r '∴=-=要使S ABC -体积的最大,需S 到平面ABC 距离最大, 即S 为O O '32,所以三棱锥S ABC -体积的最大值为11112)2)3322ABCS ⨯=⨯⨯⨯=故选:A15.已知半球O 与圆台OO '有公共的底面,圆台上底面圆周在半球面上,半球的半径为1,则圆台侧面积取最大值时,圆台母线与底面所成角的余弦值为( )A B C .6D 【答案】D【解析】如图1所示,设BC x =,CO r '=,作CF AB ⊥于点F ,延长OO '交球面于点E ,则1BF r =-,OO CF '===2得CO O D ''⋅=()()11O E O H OO OO ''''⋅=+⋅-,即((211r =+⋅,解得212x r =-,则圆台侧面积(2π1102x S x x ⎛⎫=⋅+-⋅<< ⎪⎝⎭,则'2322S x ππ=-,令'0S =,则3x =或x =,当0x <<时,'0S >x <<'0S <,所以函数2π112x S x ⎛⎫=⋅+-⋅ ⎪⎝⎭在⎛ ⎝⎭上递增,在⎝上递减,所以当3x =时,S 取得最大值.当3x BC ==时,21123x r =-=,则213BF r =-=.在轴截面中,OBC ∠为圆台母线与底面所成的角,在Rt CFB △中可得cos 3BF OBC BC ∠==故选:D .16.(2020·重庆八中高三)圆柱的侧面展开图是一个面积为216π的正方形,该圆柱内有一个体积为V 的球,则V 的最大值为 【答案】323π【解析】设圆柱的底面直径为2r ,高为l ,则222π16πr l l =⎧⎨=⎩,解得24πr l =⎧⎨=⎩.故圆柱的底面直径为4,高为4π,所以圆柱内最大球的直径为4,半径为2,其体积为34π32π233⨯=. 17.(2020·江西高三)半正多面体(semiregular solid )亦称“阿基米德多面体”,如图所示,是由边数不全相同的正多边形为面的多面体,体现了数学的对称美.将正方体沿交于一顶点的三条棱的中点截去一个三棱锥,如此共可截去八个三棱锥,得到一个有十四个面的半正多面体,它们的边长都相等,其中八个为正三角形,六个为正方形,称这样的半正多面体为二十四等边体.若二十四等边体的棱长为2,则该二十四等边体外接球的表面积为【答案】8π【解析】2,侧棱长为2的正四棱柱的外接球,2222(2)(2)(2)2R ∴=++,2R ∴,∴该二十四等边体的外接球的表面积24πS R =24π(2)8π=⨯=.18.(2020·福建高三期末(理))在棱长为4的正方体1111ABCD A B C D -中,E ,F 分别为1AA ,BC 的中点,点M 在棱11B C 上,11114B M BC =,若平面FEM 交11A B 于点N ,四棱锥11N BDD B -的五个顶点都在球O 的球面上,则球O 半径为 【答案】2293【解析】如图1,2,,B M F 三点共线,连结22,B E B MF ∈从而2B ∈平面FEM ,则2B E 与11A B 的交点即为点N ,又12Rt B B N ∆与1Rt A EN ∆相似,所以1112112A E A NB B NB ==; 如图2,设11B D N ∆的外接圆圆心为1O ,半径为r ,球半径为R ,在11B D N ∆中,111445,103NB D D N ︒∠==,由正弦定理得453r =,所以1853D P =,在1Rt DD P ∆中,解得4293DP =,即42293R =,所以所求的球的半径为2293.19.(2020·黑龙江高三(理))设,,,A B C D 是同一个半径为4的球的球面上四点,在ABC 中,6BC =,60BAC ∠=︒,则三棱锥D ABC -体积的最大值为【答案】183【解析】ABC 中,6BC =,60BAC ∠=︒,则643223sin sin 60a r r A ===∴=︒,22max 6h R r R =-=,222222cos 36a b c bc A b c bc bc bc =+-=+-≥∴≤ ,1sin 932S bc A =≤ 当6a b c ===时等号成立,此时11833V Sh ==20.(2020·河北承德第一中学高三)正三棱锥S -ABC 的外接球半径为2,底边长AB =3,则此棱锥的体积为【答案】934或334【解析】设正三棱锥的高为h ,球心在正三棱锥的高所在的直线上,H 为底面正三棱锥的中心因为底面边长AB=3,所以2222333332AH AD ⎛⎫==-= ⎪⎝⎭当顶点S 与球心在底面ABC 的同侧时,如下图此时有222AH OH OA += ,即()()222322h +-=,可解得h=3因而棱柱的体积113393333224S ABC V -=⨯⨯⨯⨯=当顶点S 与球心在底面ABC 的异侧时,如下图有222AH OH OA +=,即()222322h +-=,可解得h=1所以113333313224S ABC V -=⨯⨯⨯⨯=9333421.(2020·江西高三(理))已知P,A,B,C 是半径为2的球面上的点,PA=PB=PC=2,90ABC ∠=︒,点B 在AC 上的射影为D ,则三棱锥P ABD -体积的最大值为 【答案】338【解析】如下图,由题意,2PA PB PC ===,90ABC ∠=︒,取AC 的中点为G ,则G 为三角形ABC 的外心,且为P 在平面ABC 上的射影,所以球心在PG 的延长线上,设PG h =,则2OG h =-,所以2222OB OG PB PG -=-,即22424h h --=-,所以1h =. 故G CG 3A ==,过B 作BD AC ⊥于D ,设AD x =(023x <<),则23CD x =-,设(03)BD m m =<≤,则~ABD BCD ,故23m xx m-=, 所以()223m x x =-,则()23m x x =-,所以ABD 的面积()3112322S xm x x ==-,令()()323f x x x =-,则()2'634f x x x =-(),因为20x >,所以当3032x <<时,()'0f x >,即()f x 此时单调递增;当33232x ≤<时,()'0f x ≤,此时()f x 单调递减.所以当332x =时,()f x 取到最大值为24316,即ABD 的面积最大值为1243932168=.当ABD 的面积最大时,三棱锥P ABD -体积取得最大值为19333388⨯=.22.已知H 是球O 的直径AB 上一点,:1:3AH HB =,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为__________.【来源】宁夏固原市第五中学2021届高三年级期末考试数学(文)试题 【答案】163π【解析】如下图所示,设AH x =,可得出3HB x =,则球O 的直径为4AB x =,球O 的半径为2x ,设截面圆H 的半径为r ,可得2r ππ=,1r ∴=,由勾股定理可得()2222OH r x +=,即()22214x AH x -+=,即2214x x +=,33x ∴=,所以球O 的半径为2323x =,则球O 的表面积为22316433S ππ⎛⎫=⨯= ⎪ ⎪⎝⎭. 23.如图,在三棱锥P ABC -中,PA ⊥平面ABC ,AB BC ⊥,2PA AB ==,22AC =,M 是BC 的中点,则过点M 的平面截三棱锥P ABC -的外接球所得截面的面积最小值为___【答案】π 【解析】PA ⊥平面ABC ,AB BC ⊥,将三棱锥P ABC -补成长方体ABCD PEFN -,则三棱锥P ABC -的外接球直径为22222223R PC PA AB AD PA AC ==++=+=,所以,3R =,设球心为点O ,则O 为PC 的中点,连接OM ,O 、M 分别为PC 、BC 的中点,则//OM PB ,且2211222OM PB PA AB ==+=, 设过点M 的平面为α,设球心O 到平面α的距离为d . ①当OM α⊥时,2d OM ==;②当OM 不与平面α垂直时,2d OM <=. 综上,2d OM ≤=.设过点M 的平面截三棱锥P ABC -的外接球所得截面圆的半径为r ,则221r R d =-≥,因此,所求截面圆的面积的最小值为2r ππ=.24.若正四棱锥P ABCD -的底面边长和高均为8,M 为侧棱PA 的中点,则四棱锥M ABCD -外接球的表面积为___________.【来源】山西省运城市2021届高三上学期期末数学(文)试题 【答案】132π【解析】在正四棱锥P ABCD -中M 为侧楼PA 中点,∴四棱锥M ABCD -外接球即为棱台MNEF ABCD -的外接球,如图,四棱锥P ABCD -的底面边长和高均为8,1214,42AB O N O M ===∴ 212242AO MO ==∴设球心为O ,则图中12,OO A OMO △△均为直角三角形, 设1OO h =,222(42)OA h ∴=+,222(22)(4)OM h =++,A , M 都在球面上,222O O M R A =∴=,解得21,33h R =∴=,24132S R ππ∴==球25.已知P 为球O 球面上一点,点M 满足2OM MP =,过点M 与OP 成30的平面截球O ,截面的面积为16π,则球O 的表面积为________.【来源】广西钦州市2021届高三第二次模拟考试数学(理)试题 【答案】72π 【解析】如图所示:设截面圆心为1O , 依题意得130OMO ∠=, 设1OO h =,则2OM h =, 又2OM MP =,所以3OP h =,即球的半径为3h ,所以3ON h =,又截面的面积为16π,所以()2116O N ππ=,解得14O N =,在1Rt OO N 中,()22316h h =+, 解得2h =,所以球的半径为32, 所以球的表面积是()243272S ππ==,故答案为: 72π 26.如图是数学家GeminadDandelin 用来证明一个平面截圆锥得到的截面是椭圆的模型(称为丹德林双球模型):在圆锥内放两个大小不同的小球,使得它们分别与圆锥侧面、截面相切,设图中球1O 和球2O 的半径分别为1和3,128O O =,截面分别与球1O 和球2O 切于点E 和F ,则此椭圆的长轴长为___________.【来源】江苏省盐城市阜宁县2020-2021学年高三上学期期末数学试题【答案】15【解析】如图,圆锥面与其内切球12,O O 分别相切与,B A ,连接12,O B O A ,则12,O B AB O A AB ⊥⊥,过1O 作12O D O A 于D ,连接12,,O F O E EF 交12O O 于点C ,设圆锥母线与轴的夹角为α,截面与轴的夹角为β,在Rt △12O O D 中,2312DO ,22182215O D11221515cos 84O D O O α===128O O = , 218CO O C =-,△2EO C △1FO C ,11218O C O C EO O F -= 解得12O C =,26O C = 222211213CF O C FO ∴=-=-= ,即13cos 2CFO C , 所以椭圆离心率为cos 25cos 5c e aβα=== 在△2EO C 中223cos cos 2EC ECO O C β=∠== 解得33EC =,432EF c ==2325155a a =⇒= 2215a ∴=故答案为:21527.在长方体1111ABCD A B C D -中,13AB =,5AD =,112AA =,过点A 且与直线CD 平行的平面α将长方体分成两部分.现同时将两个球分别放入这两部分几何体内,则在平面α变化的过程中,这两个球的半径之和的最大值为___________.【来源】江苏省六校2021届高三下学期第四次适应性联考数学试题 【答案】16538【解析】如图所示:平面ABMN 将长方体分成两部分,MN 有可能在平面11CDD C 上或平面1111A D C B 上,根据对称性知,两球半径和的最大值是相同的,故仅考虑在平面11CDD C 上的情况,延长11B C 与BM 交于点P ,作1O Q BC ⊥于Q 点,设1CBP BPB α∠=∠=,圆1O 对应的半径为1r ,根据三角形内切圆的性质, 在1Rt O QB 中,12QBO α∠=,15BQ BC CQ r =-=-,111tan 25O Q r BQ r α==-, 则15tan5251tan 1tan 22r ααα==-++,又当BP 与1BC 重合时,1r 取得最大值,由内切圆等面积法求得1512251213r ⨯≤=++,则2tan 23α≤ 设圆2O 对应的半径为2r ,同理可得266tan2r α=-, 又252r ≤,解得7tan 212α≥. 故1255566tan 176(1tan )221tan 1tan 22r r αααα+=-+-=--+++,72tan 1223α≤≤, 设1tan 2x α=+,则195[,]123x ∈,()5176f x x x=--, 由对号函数性质易知195[,]123x ∈,函数()f x 单减,则19519165()()1761912123812f x f ≤=--⨯=,即最大值为16538 故答案为:16538 28.设A B C D ,,,是同一个半径为4的球的球面上四点,ABC 为等边三角形且其面积为93,则三棱锥D ABC -体积的最大值为___________.【来源】江苏省南京市秦淮中学2021届高三下学期期初学情调研数学试题【答案】183【解析】ABC 为等边三角形且其面积为93,则23934ABC SAB ==,6AB ∴=,如图所示,设点M 为ABC 的重心,E 为AC 中点,当点D 在平面ABC 上的射影为M 时,三棱锥D ABC -的体积最大,此时,4OD OB R ===, 点M 为三角形ABC 的重心,2233BM BE ∴==, Rt OMB ∴中,有222OM OB BM =-=,426DM OD OM ∴=+=+=,所以三棱锥D ABC -体积的最大值19361833D ABC V -=⨯=29.已知四面体ABCD 的棱长均为6,,EF 分别为棱,BC BD 上靠近点B 的三等分点,过,,A E F 三点的平面与四面体ABCD 的外接球O 的球面相交,得圆'O ,则球O 的半径为___________,圆'O 的面积为__________.【来源】河南省九师联盟2021届高三下学期3月联考理科数学试题【答案】3 8π【解析】。

立体几何中球与几何体的切接问题

立体几何中球与几何体的切接问题

立体几何中球与几何体的切接问题(精讲+精练)一、外接球如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.解决这类问题的关键是抓住内接的特点,即球心到多面体的顶点的距离等于球的半径.并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用.二、内切球球的内切问题主要是指球外切多面体与旋转体,解答时首先要找准切点,通过作截面来解决.如果外切的是多面体,则作截面时主要抓住多面体过球心的对角面来作.当球与多面体的各个面相切时,注意球心到各面的距离相等即球的半径,求球的半径时,可用球心与多面体的各顶点连接,球的半径为分成的小棱锥的高,用体积法来求球的半径.【常用结论】①外接球模型一:墙角模型是三棱锥有一条侧棱垂直于底面且底面是直角三角形模型,用构造法(构造长方体)解决.外接球的直径等于长方体的体对角线长(在长方体的同一顶点的三条棱长分别为a,b,c,外接球的半径为R,则2R=a2+b2+c2.),秒杀公式:R2=a2+b2+c24.可求出球的半径从而解决问题.有以下四种类型:②外接球模型二:三棱锥的三组对棱长分别相等模型,一般用构造法(构造长方体)解决.外接球的直径等于长方体的体对角线长,即(长方体的长、宽、高分别为a、b、c).秒杀公式:R2=x2+y2+z28 (三棱锥的三组对棱长分别为x、y、z).可求出球的半径从而解决问题.A BCDA1B1C1D1类型ⅠA BCDA1B1C1D1类型ⅡA BCDA1B1C1D1类型ⅢA BCDA1B1C1D1例外型2R=③外接球模型三:直棱柱的外接球、圆柱的外接球模型,用找球心法(多面体的外接球的球心是过多面体的两个面的外心且分别垂直这两个面的直线的交点.一般情况下只作出一个面的垂线,然后设出球心用算术方法或代数方法即可解决问题.有时也作出两条垂线,交点即为球心.)解决.以直三棱柱为例,模型如下图,由对称性可知球心O 的位置是△ABC 的外心O 1与△A 1B 1C 1的外心O 2连线的中点,算出小圆O 1的半径AO 1=r ,OO 1=,.④外接球模型四:垂面模型是有一条侧棱垂直底面的棱锥模型,可补为直棱柱内接于球,由对称性可知球心O 的位置是△CBD的外心O 1△AB 2D 2的外心O 2连线的中点,算出小圆O 1的半径AO 1=r ,OO 1=,. ⑤外接球模型五:有一侧面垂直底面的棱锥型,常见的是两个互相垂直的面都是特殊三角形且平面ABC ⊥平面BCD ,如类型Ⅰ,△ABC 与△BCD 都是直角三角形,类型Ⅱ,△ABC 是等边三角形,△BCD 是直角三角形,类型Ⅲ,△ABC 与△BCD 都是等边三角形,解决方法是分别过△ABC 与△BCD 的外心作该三角形所在平面的垂线,交点O 即为球心.类型Ⅳ,△ABC 与△BCD 都一般三角形,解决方法是过△BCD 的外心O 1作该三角形所在平面的垂线,用代数方法即可解决问题.设三棱锥A -BCD 的高为h ,外接球的半径为R ,球心为O .△BCD 的外心为O 1,O 1到BD 的距离为d ,O 与O 1的距离为m ,则Error!解得R .可用秒杀公式:R 2=r 12+r 22-l 24(其中r 1、r 2为两个面的外接圆的半径,l 为两个面的交线的长)AB C D A 1B 1C 1D 12h 2224h R r ∴=+O 1C 1AA 1B 1O B CRrh2hO 22h 2224h R r ∴=+r h C DB R A O 1O2h r hC D BR A O 1O2h O 2D 2B 2⑥外接球模型六:圆锥、顶点在底面的射影是底面外心的棱锥.秒杀公式:R =h 2+r 22h(其中h 为几何体的高,r 为几何体的底面半径或底面外接圆的圆心)⑦内切球思路:以三棱锥P -ABC 为例,求其内切球的半径.方法:等体积法,三棱锥P-ABC 体积等于内切球球心与四个面构成的四个三棱锥的体积之和;第一步:先求出四个表面的面积和整个锥体体积;第二步:设内切球的半径为r ,球心为O ,建立等式:V P -ABC =V O -ABC +V O -PAB +V O -PAC +V O -PBC ⇒V P -ABC =13S △ABC ·r +13S △PAB ·r +13S △PAC ·r +13S △PBC ·r =13(S △ABC +S △PAB +S △PAC +S △PBC )·r ; 第三步:解出r =3V P -ABC SO -ABC +S O -PAB +S O -PAC +S O -PBC =3V S 表.【典例1】(2023·浙江·高三校联考期中)正四面体的所有顶点都在同一个表面积是36π的球面上,则该正四面体的棱长是 .类型Ⅰ类型Ⅱ类型ⅢABCDO 1O R rm h -m R dd 类型Ⅳ因为正四面体内接于球,则相应的一个正方体内接球,设正方体为则正四面体为,设球的半径为R ,则, 解得,所以则正方体的棱长为,【典例2】(2023·河南·开封高中校考模拟预测)已知四面体ABCD 中,,ABCD 外接球的体积为()A .B CD .则故11A CB D -2436R ππ=3R =16AC =23AB CD ==AC BD ==AD BC ==45π22222220,29,41,a b b c a c ⎧+=⎪+=⎨⎪+=⎩22a b R +=【典例3】(2023·黑龙江齐齐哈尔·高三齐齐哈尔市第八中学校校考阶段练习)设直三棱柱的所有顶点都在一个表面积是的球面上,且,则此直三棱柱的表面积是( ) A .B .C .D .【典例4】(2023·安徽宣城·高三统考期末)在三棱锥中,△ABC 是边长为3的等边三角形,侧棱PA ⊥平面ABC ,且,则三棱锥的外接球表面积为 .【答案】【解析】根据已知,底面是边长为3的等边三角形,平面, 可得此三棱锥外接球,即以为底面以为高的正三棱柱的外接球.111ABC A B C -40π1,120AB AC AA BAC ∠===16+8+8+16+-P ABC 4PA =-P ABC 28πABC PA ⊥ABC ABC PA的中点,的外接圆半径为所以球的半径为所以四面体外接球的表面积为故答案为:.【典例5】(2023·四川乐山·高三期末)已知正边长为1,将绕旋转至,使得平面平面,则三棱锥的外接球表面积为.取BC 中点G ,连接AG,DG ,则分别取与的外心的球心,由ABC r AN =R OA ==-P ABC 28πABC ABC BC DBC △ABC ⊥BCD D ABC -ABC DBC A BCD -AB AC DB DC BC =====2213122AG DG ⎛⎫∴==-=⎪⎝⎭【典例6】(2023·山东滨州·高三校考期中)已知正四棱锥的底面边长为侧棱长为6,则该四棱锥的外接球的体积为.,显然正四棱锥令,则在中,所以该四棱锥的外接球体积为【典例7】(2023·高三课时练习)边长为的正四面体内切球的体积为()A B C.DP ABCD-221133PO PA AO=-=PO AO R==1|33OO=1Rt AO O△22R AOA O==1π6设正四面体的内切球半径为由等体积法可得因此,该正四面体的内切球的体积为【题型训练1-刷真题】一、单选题322144243A BCDB ACE V V --⎛⎫=-=-⨯ ⎪ ⎪⎝⎭ABCD (21123A BCD V r S -==2.(2022·全国·统考高考真题)已知球上,则当该四棱锥的体积最大时,其高为(A .B .【答案】C【分析】方法一:先证明当四棱锥的顶点1312,底面所在圆的半径为[方法一]:导数法设正四棱锥的底面边长为,高为则,所以,所以正四棱锥的体积2a 2222l a h =+2232(3a =+26h l =2222a l h =-13V Sh =二、填空题【点睛】方法点睛:多面体与球切、接问题的求解方法(1)涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题求解;(2)若球面上四点P 、A 、B 、C 构成的三条线段PA 、PB 、PC 两两垂直,且PA =a ,PB =b ,PC =c ,一般把有关元素“补形”成为一个球内接长方体,根据4R2=a2+b2+c2求解;(3)正方体的内切球的直径为正方体的棱长;(4)球和正方体的棱相切时,球的直径为正方体的面对角线长;(5)利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.【题型训练2-刷模拟】一、单选题)故选:B3.(2023·全国·高三专题练习)在直三棱柱直三棱柱的外接球的体积为( )A .B . 【答案】C【分析】将直三棱柱放入长方体中,借助长方体的外接球求解8π316π34.(2023秋·四川眉山的球面上,则该圆柱的体积为(A .【答案】C【分析】设圆柱的底面半径为 A .B .【答案】B π12π外接球球心位置,求出外接球半径,即可求得答案 因为由于平面平面故平面,又M 为的外心,⊥22AB BC AC ===ACD ⊥ABC BM ⊥ACD DM ADC △的外接球,结合直三棱柱的性质求外接圆半径接球, 设四面体的外接球的球心为,半径为,,则, 的外接球表面积为.AEF A BCD -O R 132AB ==22217R O O r =+=24π28πR =8.(2023·四川成都·校联考二模)在三棱锥平面,若三棱锥A .【答案】B【分析】根据三棱锥中线面关系可先确定球心【详解】 的中点为,连接,因为,又因为平面平面,平面PAC ⊥ABC 231O 1PO AC ⊥112AO AC ==221(26)PA AO =-=PAC ⊥ABC是边长为 10.(2023春·四川绵阳底面是正方形,( )A .【答案】CABCD 89π【详解】 的边长为,在等边三角形平面,∴平面是等边三角形,则,设四棱锥外接球的半径为,为正方形为四棱锥P -ABCD 外接球球心,则易知ABCD 2x PAB ⊥ABCD PE ⊥PAB 3PE x =()211233633ABCD S PE x x ⋅⋅=⨯⨯=R 1O故选:C12.(2023秋·陕西西安·高三校联考开学考试)已知在三棱锥平面,则三棱锥A.B.⊂ABC-P ABC π4【点睛】求解几何体外接球有关的问题,关键点在于找到球心的位置,然后计算出外接球的半径接法和补形法,直接法是根据几何体的结构来找到球心;补形法是补形成直棱柱、长方体(正方体)等几何体,并根据这些几何体的结构找到球心并求得半径13.(2023秋·湖南衡阳·高三衡阳市田家炳实验中学校考阶段练习)球,.若由,则,即又,故,仅当BCD BD CD ⊥BD =24π9πR =32R =1BD =22BD CD ++4CD AC ⋅≤AC所以,四面体外接球即为长方体外接球,则半径由题意,四面体的四个侧面均为全等三角形,形内角,的外接球的直径,要想体积最设,则,,所以当时,,则有三棱锥所以. 故选:A16.(2023·河南·统考三模)如图,该几何体为两个底面半径为的体积为V 1,它的内切球的体积为V A . B .AB x =PA x =6BC x =-PC 2x =min 26PC =3min 4π86π3V R ==2:3的内切圆的半径即为该几何体内切球的半径,求出半径,再根据球的体积公17.(2023·福建宁德·校考模拟预测)将一个半径为半径为()A.C.313+ () 2313-【点睛】关键点点睛:此题考查圆锥的内切球问题,解题的关键是表示出圆锥的体积,化简后利用导数求出其最大值,从而可确定出圆的大小,考查空间想象能力和计算能力,属于较难题18.(2023·全国·高三专题练习)已知四棱锥A . C . 【答案】B所以故其内切圆表面积为故选:B .19.(2023·全国·高三专题练习)若一个正三棱柱存在外接球与内切球,则它的外接球与内切球体积之比为(823)π-(863)π-1133P ABCD ABCD V S PH S -=⋅=表面积24π(8r =-将直三棱柱补成如图所示的长方体,则外接球的直径即为该长方体的体对角线,故外接球的半径为故外接球的的表面积为. 故选:D.21.(2023春·贵州·高三校联考期中)已知正三棱锥221232+29π故选:A.22.(2023·全国·高三专题练习)已知圆台则该圆台的体积为( )A .B .【答案】B72π3143设上底面半径易知,作,垂足为1O B r =1BC O B r ==AC 2BD O A ⊥故选:A【点睛】解决与球有关的内切或外接的问题时,解题的关键是确定球心的位置.对于外切的问题要注意球心到各个面的距离相等且都为球半径;对于球的内接几何体的问题,注意球心到各个顶点的距离相等,解题时要构造出由球心到截面圆的垂线段、小圆的半径和球半径组成的直角三角形,利用勾股定理求得球的半径.24.(2023秋·浙江丽水·高三浙江省丽水中学校联考期末)将菱形体积最大时,它的内切球和外接球表面积之比为(26323R +B ACD -因为,所以当平面平面时,平面平面,所以此时四面体的高最大为因为,所以BA BC =BO ⊥BAC ⊥DAC BO ⊂BAC BO B ACD -DA DC =二、填空题故答案为:26.(2023秋·四川眉山,则该三棱柱的外接球的表面积为【答案】又由三棱柱的高为,则球心因此球半径R 满足:所以外接球的表面积故答案为:4π2360π322R r d =+24πS R ==60π【点睛】求解正棱锥有关问题,要把握住正棱锥的性质,如底面是正多边形,定点在底面的射影是底面的中心等等.求解几何体外接球有关问题,目是求球的表面积还是求体积28.(2023·河南·统考模拟预测)在菱形ABC16【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径;定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则 由,以为坐标原点, 设内切圆半径,易知由等面积可得,解得设四面体外接球球心为所以易知在平面射影为4,3AB BC ==AB ⊥B ,BA BC ABC r 12S lr =PABC O 'ABC31.(2023春·江西南昌·高三南昌市八一中学校考阶段练习)底面,,若【答案】32.(2023·四川绵阳·绵阳南山中学实验学校校考模拟预测)在边长为段,的中点,连接ABCD AC BD O = 163π-AB BC DE【答案】【分析】由题意可知两两垂直,所以将三棱锥就是三棱锥的外接球的直径,求出体对角线的长,则可求出外接球的表面积【详解】由题意可知两两垂直,且 33.(2023秋·河南周口这个圆台的体积为 【答案】【分析】根据圆台与球的性质结合圆台的表面积、体积公式计算即可6π,,OD OE OF ,,OD OE OF OD =1423π故答案为: 34.(2023·全国·高三专题练习)【答案】【分析】作出内切球的轴截面,再根据几何关系求解即可 设该内切球的球心为所以,由已知得所以,在中,142π38πO OE OF OB ===2,BD DF ==AOF AO【答案】 【分析】根据题意利用余弦定理求得方体的六个面的对角线,利用等体积法求出内切球半径,运算求解即可 设长方体从同一个顶点出发的三条棱长分别为则,解得又因为三棱锥是长方体切掉四个角的余下部分,23π222222749a b a c b c ⎧+=⎪+=⎨⎪+=⎩a b c ⎧⎪⎨⎪⎩A BCD -'因为菱形的四条边相等,对角线互相垂直中,面与面的面积是确定的,所以要使三棱锥表面积最大,则需要面最大即可,而且;,当时,取得最大值 因为,,所以由余弦定理知所以,易得. =ABC -ADC ABC DCB DAB S S = sin DCB DC BC ∠⋅⋅π2DCB ∠=DBC S △2DB =32EB ED ==22sin 3DED '∠=63DD '=设,高,则,在Rt 中,所以正四棱锥的体积,故当调递减,2AB a =PO h =2OD a =MOD 13V Sh =2282(4)V h h h h '=-+=--。

立体几何多面体与外接球问题专项归纳--[1]

立体几何多面体与外接球问题专项归纳--[1]

⽴体⼏何多⾯体与外接球问题专项归纳--[1]⽴体⼏何多⾯体与外接球问题专项归纳1、⼀个四棱柱的底⾯是正⽅形,侧棱与底⾯垂直,其长度为4,棱柱的体积为16,棱柱的各顶点在⼀个球⾯上,则这个球的表⾯积是()ππππ2、⼀个正四⾯体的所有棱长都为2,四个顶点在同⼀个球⾯上,则此球的表⾯积为()ππ3ππ;3.在半球内有⼀个内接正⽅体,试求这个半球的体积与正⽅体的体积之⽐.4.⼀个正四⾯体的所有棱长都为2,四个顶点在同⼀个球⾯上,则此球的表⾯积为( ) ππ3ππ~历届⾼考外接球内切球问题1. (陕西理?6)⼀个正三棱锥的四个顶点都在半径为1的球⾯上,其中底⾯的三个顶点在该球的⼀个⼤圆上,则该正三棱锥的体积是()A .433 B .33 C . 43 D .123答案 B2. 直三棱柱111ABC A B C -的各顶点都在同⼀球⾯上,若12AB AC AA ===,120BAC ∠=?,则此球的表⾯积等于。

解:在ABC ?中2AB AC ==,120BAC ∠=?,可得3BC =由正弦定理,可得ABC ?/外接圆半径r=2,设此圆圆⼼为O ',球⼼为O ,在RT OBO '?中,易得球半径5R =故此球的表⾯积为2420R ππ=.3.正三棱柱111ABC A B C -内接于半径为2的球,若,A B 两点的球⾯距离为π,则正三棱柱的体积为.答案 84.表⾯积为的正⼋⾯体的各个顶点都在同⼀个球⾯上,则此球的体积为A .3 B .13π C .23π D .3 答案 A^【解析】此正⼋⾯体是每个⾯的边长均为a 的正三⾓形,所以由8=1a =,故选A 。

5.已知正⽅体外接球的体积是π332,那么正⽅体的棱长等于()2 B.332 C.324 D.334答案 D6.(2006⼭东卷)正⽅体的内切球与其外接球的体积之⽐为 ( )A. 1∶3B. 1∶3C. 1∶33D. 1∶9、答案 C7.(2008海南、宁夏理科)⼀个六棱柱的底⾯是正六边形,其侧棱垂直底⾯.已知该六棱柱的顶点都在同⼀个球⾯上,且该六棱柱的体积为98,底⾯周长为3,则这个球的体积为.答案34π8. (2007天津理?12)⼀个长⽅体的各顶点均在同⼀球的球⾯上,且⼀个顶点上的三条棱的长分别为1,2,3,则此球的表⾯积为.答案 14π —9.(2007全国Ⅱ理?15)⼀个正四棱柱的各个顶点在⼀个直径为2 cm 的球⾯上。

与球有关的内切、外接问题

与球有关的内切、外接问题

(2)三棱锥A-BCD,侧棱长为2 5 ,底面是边长为2 3 的等边三角形, 125
则该三棱锥外接球的体积为___6__π__.
解析 如图所示,该三棱锥为正三棱锥,O为底面 BCD的中心且AO垂直于底面BCD,O′在线段AO上, O′为外接球球心, 令 O′A=O′D=R,OD=23DE=23×2 3× 23=2, AD=2 5,
(2) 三 棱 锥 A - BCD 的 四 个 面 都 是 直 角 三 角 形 , 且 侧 棱 AB 垂 直 于 底 面
BCD,BC⊥CD,AB=BC=2,且VA-BCD=
4 3
,则该三棱锥A-BCD外接
球的体积为__4___3_π__.
解析 因为AB⊥BC,BC⊥CD,构造如图所示的长方体, 则AD为三棱锥A-BCD的外接球的直径. 设外接球的半径为R. ∵VA-BCD=13×12×BC×CD×AB=16×2×CD×2=43, ∴CD=2,∴该长方体为正方体,∴AD=2 3,∴R= 3, 外接球体积为 V=43πR3=4 3π.
B,C,D都在同一球面上,则此球的体积为___3__.
解析 如图,设正四棱锥的底面中心为O1, ∴SO1垂直于底面ABCD,令外接球球心为O, ∴△ASC的外接圆就是外接球的一个轴截面圆, 外接圆的半径就是外接球的半径. 在△ASC 中,由 SA=SC= 2,AC=2,
得SA2+SC2=AC2. ∴△ASC是以AC为斜边的直角三角形. ∴A2C=1 是外接圆的半径,也是外接球的半径. 故 V 球=43π.
∴AO= AD2-OD2=4,∴OO′=4-R,
又OO′2+OD2=O′D2, ∴(4-R)2+4=R2,解得 R=52,∴V 球=43πR3=1625π.
反思 感悟

多面体与球的接切问题

多面体与球的接切问题

, 2 R 3a
A
O

S半球 S正方体
2 R2 3a 2 2 2 6a 6a 2
例. 已知球O的表面上有P、A、B、C 四点,且PA、PB、PC两两互相垂直, 若PA=PB=PC=a,求这个球的表面积 和体积。
变式:将上面的条件改为 “PA=a,PB=b,PC=c”
3V 内切球半径公式:r= ,其中V为几何体的体积, S表 S表为几何体的表面积
§正三棱锥与球
P P A

P H OB M D C
A
O
H
C
A
O H
CBM来自DBM
D
球心在高PH上, 即在锥体内部
球心与底面正Δ中 心H重合
球心在高 PH的延长 线上,即在 锥体外部
正三棱锥的外接球的球心在它的高所在直线上
度量关系:
设正三棱锥底面边长为b,侧棱长为a, 高为h,外接圆半径为R,
性质3: 球心到截面的距离d与球
的半径R及截面的半径r 有下面的关系:
A
r R d
2
2
一球的球面面积为 256π cm ,过此 球的一条半径中点,作垂直于这条半径 的截面,求截面圆的半径和面积.
2
解:设 O 为球心,O′为截面圆圆心,如右图,则 OO′ ⊥O′A,O′A 为截面圆半径,OA 为球的半径. 根据球的表面积公式,则有: 2 4π· AO =256π,得 AO=8 cm, 在 Rt△AO′O 中, 1 OO′= AO=4 cm. 2 所以 AO′= AO2-OO′2= 82-42=4 3(cm). S 截面圆=π· AO′2=π· (4 3)2=48π(cm2). 所以截面圆半径为 4 3 cm,面积为 48πcm .

多面体与球的切接问题

多面体与球的切接问题

(2013 哈九中三模) 已知矩形 ABCD 的面积为 8, 典例2: 当矩形周长最小时, 沿对角线 AC 把 ACD 折起, 则三棱锥 D-ABC 的外接球的表面积等于( )
A.4
B.8
C.16
D.24
变题:
1.(2013 期末理)四面体 ABCD 的四个顶点在同一个球面 上,AB=BC=CD=DA=3,AC= 2 3 ,BD= 6 则该球的表面积为 ( )
反馈训练2:
4.三棱锥 S-ABC 中,SAB SAC ,AB=AC,SA=SB=2,侧棱 AS
60 与底面 ABC 所成的角为 ,经过 S,A,B,C 四点的球的球心
在三棱锥内,求这个球的体积
【设计意图:巩固棱锥外接球半径的求法】
小结2 求棱锥外接球半径的方法: (1)补形法(适用特殊棱锥) (2)射影定理法(适用于侧棱相等即球心落 在高线上的的棱锥) (3)勾股定理法 (通法) 关键是找球心,画出截面图,构造与R有关 的直角三角形。
多面体与球的切接问题
基本知识回顾:
一、 球体的体积与表面积
二、球与多面体的接、切
4 3 ① V球 R 3

S球面 4 R
2
外接球球心到各顶点的距离相等 (R) 定义 1:若一个多面体的各顶点都在一个球的球面上, 则称这个多面体是这个球的内接多面体, 这个球是这个 多面体的外接球 。
(r) 定义内切球球心到各面的距离相等 2:若一个多面体的各面都与一个球的球面相切, 则称这个多面体是这个球的外切多面体, 这个球是这个多面体的内切球 。
反馈训练2:
2. 某几何体的三视图如图所示,若该几何体各顶点都在一 球面上,则这个球的表面积为___________

通用版2020版高考数学大二轮复习专题突破练16热点小专题二球与多面体的内切外接理

通用版2020版高考数学大二轮复习专题突破练16热点小专题二球与多面体的内切外接理

专题突破练16 热点小专题二球与多面体的内切、外接一、选择题1.体积为8的正方体的顶点都在同一球面上,则该球的表面积为()A.12πB.πC.8πD.4π2.(2019江西九江一模,文9)《九章算术》卷第五《商功》中,有“贾令刍童,上广一尺,袤二尺,下广三尺,袤四尺,高一尺.”,意思是:“假设一个刍童,上底面宽1尺,长2尺;下底面宽3尺,长4尺,高1尺(如图).”(注:刍童为上下底面为相互平行的不相似长方形,两底面的中心连线与底面垂直的几何体),若该几何体所有顶点在一球的表面上,则该球体的表面积为()A.46π平方尺B.41π平方尺C.40π平方尺D.36π平方尺3.(2019山东济宁一模,理9)《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”.已知某“堑堵”的三视图如图所示,则该“堑堵”的外接球的体积为()A.πB.πC.6πD.8π4.已知直三棱柱ABC-A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的直径为()A.13B.4C.2D.25.(2019山东潍坊二模,理8)一个各面均为直角三角形的四面体有三条棱长为2,则该四面体外接球的表面积为()A.6πB.12πC.32πD.48π6.(2019北京朝阳一模,理7改编)某三棱锥的三视图如图所示(网格纸上小正方形的边长为1),则该三棱锥的外接球的体积为()A.4πB.2πC.6πD.4π7.已知A,B是球O的球面上两点,∠AOB=9 °,C为该球面上的动点.若三棱锥O-ABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π8.如图②,需在正方体的盒子内镶嵌一个小球,使得镶嵌后三视图均为图①所示,且面A1C1B截得小球的截面面积为,则该小球的体积为()A. B. C. D.9.已知A,B,C,D是同一球面上的四个点,其中△ABC是正三角形,AD⊥平面ABC,AD=2AB=6,则该球的体积为()A.32πB.48πC.24πD.16π10.(2019四川第二次诊断,理10)已知一个几何体的正视图,侧视图和俯视图均是直径为10的圆(如图),这个几何体内接一个圆锥,圆锥的体积为27π,则该圆锥的侧面积为()A.9πB.12πC.10πD.11.(2019山西吕梁一模,文12)四棱锥S-ABCD中,底面ABCD为矩形,AD=4,AB=2,且SA+SD=8,当该四棱锥的体积最大时,其外接球的表面积为() A.20π B.25πC.πD.π12.已知三棱锥S-ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此棱锥的体积为()A. B. C. D.二、填空题13.(2019四川成都二模,理14)已知三棱锥A-BCD的四个顶点都在球O的表面上,若AB=AC=AD=1,BC=CD=BD=,则球O的表面积为.14.(2019河北唐山一模,理15)在四面体ABCD中,AB=BC=1,AC=,且AD⊥CD,该四面体外接球的表面积为.15.(2019湖南六校联考,理15)在《九章算术》中,将底面为矩形且有一条侧棱与底面垂直的四棱锥称之为阳马.如图,若四棱锥P-ABCD为阳马,侧棱PA⊥底面ABCD,且PA=3,BC=AB=4,设该阳马的外接球半径为R,内切球半径为r,则=.16.已知三棱锥S-ABC的所有顶点都在球O的球面上,SC是球O的直径,若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S-ABC的体积为9,则球O的表面积为.参考答案专题突破练16热点小专题二球与多面体的内切、外接1.A解析设正方体的棱长为a,由a3=8,得a=2.由题意可知,正方体的体对角线为球的直径,故2r=,则r=所以该球的表面积为4π×()2=12π,故选A.2.B解析由已知得球心在几何体的外部,设球心到几何体下底面的距离为x,则R2=x2+2=(x+1)2+2,解得x=2,∴R2=,∴该球的表面积S=41π.故选B.3.A解析根据几何体的三视图可知几何体为底面为腰长为 的直角等腰三角形,高为2的直三棱柱.设外接球的半径为R,则(2R)2=()2+()2+22,解得R=,所以V=()3=故选A.4.A解析由题意可知,直三棱柱ABC-A1B1C1的外接球O的半径R=,故球O的直径为13.故选A.5.B解析如图,在四面体ABCD中,∠ABD=∠ABC=∠BCD=∠ACD=9 °,AB=BC=CD=2,可得BD=2,AD=2,设AD的中点为O,连接OB,OC,则OB=OC=OA=OD,所以AD的中点O即为外接球的球心,故球O半径为,其表面积为12π,故选B.6.D解析由三视图得该几何体的直观图如图所示.将该三棱锥补形为正方体,如图所示.所以该三棱锥的外接球的体积等于补形后正方体外接球的体积,所以球的直径等于正方体的体对角线长,即2R==2,所以球的体积为V=()3=47.C解析由△AOB的面积确定可知,若三棱锥O-ABC的底面OAB上的高最大,则其体积最大.因为高最大为半径R,所以V O-ABC=R2×R=36,解得R=6,故S球=4πR2=144π.8.B解析设正方体盒子的棱长为2a,则内切球的半径为a,平面A1BC1是边长为2a的正三角形,且球与以点B1为公共点的三个面的切点恰为△A1BC1三边的中点,∴所求截面的面积是该正三角形的内切圆的面积,则由图得,△A1BC1内切圆的半径是a×tan °=a,则所求的截面圆的面积是π·a2=a2=,故a=1,∴该小球的体积为V球=13=9.A解析由题意画出几何体的直观图如图,把A,B,C,D扩展为三棱柱,上下底面中心的中点与A的距离为球的半径,AD=2AB=6,OE=3,△ABC是正三角形,AE=3=,AO==2故所求球的体积为(2)3=3210.A解析几何体的轴截面如图所示,设圆锥的底面半径为r,由题意可得π×r2×(-+5)=27π,解得r=3,所以该圆锥的侧面积为6π9=9故选A.11.D解析当点S到底面ABCD的距离最大时,四棱锥的体积最大,这时△SAD为等边三角形,S到底面ABCD的距离为2 且平面SAD⊥平面ABCD.设球心O到平面ABCD的距离OE=x,则由OD=OS,得x2+5=(2-x)2+1,所以x=,所以四棱锥外接球的半径R= 9,所以四棱锥外接球的表面积为S=4πR2=故选D.12.A解析∵SC是球O的直径,∴∠CAS=∠CBS=9 °.∵BA=BC=AC=1,SC=2,∴AS=BS=取AB的中点D,显然AB⊥CD,AB⊥SD,∴AB⊥平面SCD.=-, 在△CDS中,CD=,DS=,SC=2,利用余弦定理可得cos∠CDS=-·∴sin∠CDS=,∴S△CDS=,故V=V B-CDS+V A-CDS=S△CDS×BD+S△CDS×AD=S△CDS×BA=1=13.3π解析(法一)如图,取CD的中点E,连接BE,可得BE=,设等边三角形BCD的中心为G,则BG=,∴AG=-设三棱锥A-BCD的外接球的半径为R,则R2=BG2+OG2,即R2=2+-R2,解得R=∴球O的表面积为4πR2=3π.(法二)∵AB=AC=AD=1,BC=CD=BD=,∴由勾股定理的逆定理得三棱锥的三个侧面都是全等的直角三角形,将三棱锥补形为正方体,则其外接球的直径为正方体的体对角线,∴2R=,故球O的表面积为4πR2=3π.14.2π解析如图所示,由AB=BC=1,AC=,得AB⊥BC,所以△ABC和△DAC都是直角三角形.△ABC 外接圆的圆心是AC的中点,△DAC外接圆的圆心也是AC的中点,且两个三角形的外接圆都是球的大圆,所以球半径R=AC=,所以S球=4πR2=2π.15解析易知该阳马补形所得到的长方体的体对角线为外接球的直径,所以(2R)2=AB2+AD2+AP2=42+42+32=41,R=因为侧棱PA⊥底面ABCD,且底面为正方形,所以内切球O1在侧面PAD内的正视图是△PAD的内切圆,则内切球半径为1,故16.36π解析取SC的中点O,连接OA,OB.因为SA=AC,SB=BC,所以OA⊥SC,OB⊥SC.因为平面SAC⊥平面SBC,且OA⊂平面SAC,所以OA⊥平面SBC.设OA=r,则V A-SBC=S△SBC×OA=2r×r×r=r3,所以r3=9,解得r=3.所以球O的表面积为4πr2=36π.。

立体几何----与球有关的切、接问题拔高练——2022届高考数学一轮复习

立体几何----与球有关的切、接问题拔高练——2022届高考数学一轮复习

立体几何----与球有关的切、接问题提高练【答题技巧】1.“切”“接”问题的处理规律(1)“切”的处理:球的内切问题主要是球内切于多面体或旋转体.解答时要找准切点,通过作截面来解决.(2)“接”的处理:把一个多面体的顶点放在球面上即球外接于该多面体.解决这类问题的关键是抓住外接的特点,即球心到多面体的顶点的距离等于球的半径.2.当球的内接多面体为共顶点的棱两两垂直的三棱锥、共顶点的三个侧面两两垂直的三棱锥或三组对棱互相垂直的三棱锥时,常构造长方体或正方体以确定球的直径.3.与球有关的组合体的常用结论 (1)长方体的外接球: ①球心:体对角线的交点;②半径:,,r a b c =为长方体的长、宽、高). (2)正方体的外接球、内切球及与各条棱都相切的球:①外接球:球心是正方体的中心,半径(r a =为正方体的棱长); ②内切球:球心是正方体的中心,半径(2ar a =为正方体的棱长);③与各条棱都相切的球:球心是正方体的中心,半径r =(a 为正方体的棱长). (3)正四面体的外接球与内切球(正四面体可以看作是正方体的一部分):①外接球:球心是正四面体的中心,半径(r a =为正四面体的棱长);②内切球:球心是正四面体的中心,半径(r a =为正四面体的棱长). 【练习】1.在三棱锥P-ABC 中,△ABC 的内切圆圆O 的半径为2,PO ⊥平面ABC ,且三棱锥P-ABC 的三个侧面与底面所成角都为60°,则该三棱锥的内切球的体积为( )C.16π3D.4π32.已知在三棱锥P-ABC 中,△ABC 是以A 为直角的三角形,AB=AC=2,△PBC 是正三角形,且PC 与底面ABC所成角的正弦值为34,则三棱锥P-ABC外接球的半径为( )A.43B.32C.133D.2233.张衡是中国东汉时期伟大的天文学家、数学家等,他曾经得出圆周率的平方除以十六等于八分之五.已知三棱锥A-BCD的每个顶点都在球O的表面上,AB⊥底面BCD,BC⊥CD,且AB=CD=3,BC=2,利用张衡的结论可得球O的表面积为( )A.30B.1010C.33D.12104.已知三棱锥P-ABC中,PA PB PC ABC==,是边长为42的正三角形,D,E分别是PA,AB上靠近点A 的三等分点,DE PC⊥,则三棱锥P-ABC的内切球的表面积为( )A.(5763203)π-B.(2881603)π-C.(64323)π-D.(64323)π-5.取两个相互平行且全等的正n边形,将其中一个旋转一定角度,连接这两个多边形的顶点,使得侧面均为等边三角形,我们把这种多面体称作“n角反棱柱”.当6n=时,得到如图所示棱长均为2的“六角反棱柱”,则该“六角反棱柱”外接球的表面积等于( )A.(53)π+ B.(1243)π+ C.(2553)π+ D.(2843)π+6.已知在菱形ABCD中,23AB BD==ABCD沿对角线BD折起,得到三棱锥A BCD-,且使得棱33AC=A BCD-的外接球的表面积为( )A.7πB.14πC.28πD.35π7.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有仓,广三丈,袤四丈五尺,容粟一万斛.问高几何?”其意思为:“今有一个长方体的粮仓,宽3丈,长4丈5尺,可装粟10 000斛,问该粮仓的高是多少?”已知1斛粟的体积为2.7立方尺,一丈为10尺,则该粮仓的外接球的体积是( )A.133π4立方丈 B.133π48立方丈 C.133133π4立方丈 D.133133π48立方丈 8.已知正方形ABCD 中,E ,F 分别是AB ,BC 的中点,沿DE ,DF ,EF 折起得到如图所示的空间几何体,若2AB =,则此几何体的内切球的体积为( )A.3π2B.π4C.π48D.π169.在平面四边形ABCD 中,2,2AB AD BC CD DB =====,现将ABD 沿BD 折起,使二面角A BD C --的大小为60︒.若,,,A B C D 四点在同一个球的球面上,则球的表面积为( ) A.13π3B.14π3C.52π9D.56π910.已知三棱锥S-ABC 的顶点都在球O 的球面上,且该三棱锥的体积为23,SA ⊥平面,4,120ABC SA ABC =∠=︒,则球O 的体积的最小值为_________.11.如图,已知长方体1111ABCD A B C D -的底面ABCD 为正方形,P 为棱11A D 的中点,且6PA AB ==,则四棱锥P ABCD -的外接球的体积为_________________.12.设正四面体的内切球半径为r ,外接球半径为R ,则rR=___________. 13.已知底面为正方形的四棱锥P ABCD -的五个顶点在同一个球面上,,2,1PD BC AB PC ⊥==,3PD =则四棱锥P ABCD -外接球的体积为________.14.已知有两个半径为2的球记为12,O O ,两个半径为3的球记为34,O O ,这四个球彼此相外切,现有一个球O 与这四个球1234,,,O O O O 都相内切,则球O 的半径为____________.15.在三棱锥P-ABC 中,PA ⊥平面,,12ABC AB BC PA AB AC ⊥===,三棱锥P-ABC 的所有顶点都在球O 的表面上,则球O 的半径为__________;若点M 是ABC 的重心,则过点M 的平面截球O 所得截面的面积的最小值为__________.16.已知正三棱柱111ABC A B C -,底面边长为3,高为2,P 为上底面三角形111A B C 中线上一动点,则三棱锥P ABC -的外接球表面积的取值范围是_____________.17.如图,已知边长为1的正方形ABCD 与正方形BCFE 所在平面互相垂直,P 为EF 的中点,Q 为线段FC 上的动点,当三棱锥P-ABQ 的体积最大时,三棱锥P-ABQ 的外接球的表面积为_________________.答案以及解析1.答案:A解析:设三棱锥P ABC -的内切球的半径为R ,过O 作OD AC ⊥于点,D OE BC ⊥于点,E OF AB ⊥于点F ,则2OD OE OF ===.连接PD ,易证PD AC ⊥,因为三棱锥P-ABC 的三个侧面与底面所成角都为60°,所以60PDO ∠=︒,则22tan 6023,4cos60PO PD ===︒=︒.由题意可知三棱锥P-ABC 的内切球的球心'O 在线段PO 上,在Rt POD 中,sin OD RDPO PD PO R∠==-,即2423R =-,解得23R =.所以该三棱锥的内切球的体积为334423323πππ33R ⎛⎫== ⎪ ⎪⎝⎭,故选A. 2.答案:C解析:如图,不妨令二面角P BC A --为钝二面角,取BC 的中点D ,连接AD , 因为2AB AC ==,90BAC ∠=︒,所以2BC =,且D 为ABC 外接圆的圆心.作PH ⊥平面ABC 于H ,易知H 在直线AD 上,连接,HC HA ,则PCH ∠为PC 与底面ABC 所成角, 则3sin 4PH PCH PC ∠==,又2PC BC ==,所以32PH =,又3PD =,则332sin 3PH PDH PD ∠===. 设1O 为PBC 的外心,O 为三棱锥P ABC -外接球的球心,连接1,OO OD ,则1OO ⊥平面PBC ,OD ⊥平面133,,cos ABC O D PDO =∠=,则12cos 3O D OD PDO ==∠,设外接球的半径为R ,则222413131,99R OD DA R =+=+==,故选C.3.答案:B解析:因为BC CD ⊥,所以7BD 又AB ⊥底面BCD ,所以10AD O 的球心为侧棱AD 的中点,从而球O 10利用张衡的结论2π5168=,可得π10=所以球O 的表面积为2104π10π1010==⎝⎭故选B.4.答案:C解析:因为PA PB PC ==,ABC 是边长为42的正三角形,所以三棱锥P ABC -为正三棱锥, 由正棱锥对棱垂直可知PB AC ⊥.又D ,E 分别是PA ,AB 上靠近点A 的三等分点,所以//DE PB , 所以DE AC ⊥.又,DE PC PC AC C ⊥⋂=,所以DE ⊥平面PAC ,所以PB ⊥平面PAC ,所以90APB ∠=︒,所以4PA PB PC ===,所以,,PA PB PC 两两互相垂直. 设三棱锥P ABC -的内切球的半径为r ,则由等体积法可得,()1133PABPACPBCABCPACSSSSr S PB ⋅+++=⋅,即11(88883)8433r ⨯+++=⨯⨯,解得2(33)r -=,故三棱锥P ABC -的内切球的表面积为222(33)(64323)π4π4πS r ⎡⎤--==⨯=⎢⎥⎣⎦.故选C. 5.答案:B解析:如图,设上、下正六边形的中心分别为1O ,2O ,连接12O O ,则其中点O 即为所求外接球的球心. 连接2O C ,取棱AB 的中点M ,作2MN O C ⊥于点N ,连接1O M ,MC ,则13O M MC ==.而22O C =, 则22212NC O C O N O C O M =-=-=-3,222123(23)231O O MN MC NC ∴==-=--=-,则131OO -.连接OA ,1O A ,设所求外接球的半径为R ,则有2222211(31)233R OA OO O A ==+=+=+∴该“六角反棱柱”外接球的表面积24π(1243)πS R ==+.故选B.6.答案:C解析:由题意可知,ABD BCD 为等边三角形.如图所示,设外接球的球心为O ,等边三角形BCD 的中心为,O '取BD 的中点F ,连接,,,AF CF OO ',,,OB O B OA '由AB AD BC BD DC ====,得,,AF BD CF BD ⊥⊥又AF CF F ⋂=,所以BD ⊥平面AFC ,且可求得AF =3,CF =而33,AC =所以AFC ∠=120.︒在平面AFC 中过点A 作CF 的垂线,与CF 的延长线交于点E ,由BD ⊥平面AFC 得.BD AE ⊥又,,AE EC BD EC F ⊥⋂=所以AE ⊥平面BCD .过点O 作OG AE ⊥于点G ,则四边形O EGO '是矩形. 又2sin 6023O B BC '︒=⨯=,所以13331.sin 60,sin3022O F O B AE AF EF AF ''︒︒======. 设外接球的半径为,,R OO x '=则由222222,OO O B OB OA AG GO ''+==+, 得2222223332,1,2x R x R ⎛⎫⎛⎫+=-++= ⎪ ⎪ ⎪⎝⎭⎝⎭解得23,7,x R == 故三棱锥A BCD -外接球的表面积24π28π.S R ==故选C.7.答案:D解析:由题意可得粮仓的高2723 4.5h ==⨯(丈),设外接球的半径为R , 则2222133133(2)23 4.533.25,4R R =++==该粮仓的外接球的体积是34133133133π3⨯⨯⎝⎭(立方丈),选D. 8.答案:C解析:在等腰DEF 中,2222215,112DE DF EF ==+=+=D 到EF 的距离为h , 则22293(5)2222h ⎛⎫-= ⎪ ⎪⎝⎭令该几何体的内切球的球心为O ,且球心O 到三个面的距离均为半径r .又因为,DP PE DP PF ⊥⊥,且PE PF P ⋂=,所以DP ⊥平面PEF .由等体积法知O PEF O PFD O PDE O DEF D PEF V V V V V -----+++=,即11113111121212211232323232232r r r r ⨯⨯⨯+⨯⨯⨯+⨯⨯⨯+⨯⨯⨯⨯⨯,解得14r =, 则3 441πππ336448O V r ==⨯⨯=球,故选C.9.答案:C解析:如图所示,设M 为BD 的中点,连接,MA MC ,依题意,折起后AMC ∠是二面角A BD C --的平面角,则60AMC ∠=︒.易知,四面体ABCD 的外接球的球心O 在平面MCA 上,于是点O 在底面BCD 上的射影是正BCD的中心,设为点Q,而点O在侧面ABD上的射影是M,易得3MQ=,又30OMQ∠=︒,因此13OQ=,进而22221231333R OC OQ QC⎛⎫⎛⎫==+=+=⎪⎪ ⎪⎝⎭⎝⎭,所以球O的表面积为21352π4π9⎛⎫⨯=⎪⎪⎝⎭,故选C.10.4010π解析:由题意得,三棱锥S ABC-的体积11342332S ABCV AB BC-=⨯⋅=,则6AB BC⋅=,、当球O 的体积最小时,ABC外接圆的半径最小,即AC最小,在ABC中,由余弦定理和基本不等式得222123182AC AB BC AB BC AB BC⎛⎫=+-⋅⨯-⋅=⎪⎝⎭,当且仅当6AB BC=取等号,则min32AC=,此时ABC外接圆的直径min32226sin1203ACr===O的半径22210R r=+=O的体积的最小值为344010ππ3R=.11.答案:2821π解析:解法一由题意知PAD为正三角形,取AD的中点M,PAD的中心N,记AC BD F⋂=,连接,PM FM,过,N F分别作平面11AA D D与平面ABCD的垂线,两垂线交于点O,则点O为四棱锥P ABCD-的外接球球心.由题意知22362333PN PM===132ON MF AB===,所以四棱锥P ABCD-的外接球半径22223(23)21R ON PN++所以四棱锥P ABCD-的外接球的体积34π2821π3V R==.解法二连接1111,,,AC BD AC B D,记1111,AC BD F AC B D E⋂=⋂=,连接EF,易知四棱锥P ABCD-的外接球的球心O在线段EF上.取AD的中点G,连接PG,设OF x=,球O的半径为R,易知1122AF AC==⨯36232,633PG==则22222(32)(33)3R x x =+=-+,得3x =,则21R =, 所以四棱锥P ABCD -的外接球的体积34π2821π3V R ==. 12.答案:13解析:如图,在正四面体PABC 中,D ,E 分别为BC ,AC 的中点,连接AD ,BE 交于点F ,则点F 为正三角形ABC 的外心,连接PF ,则PF ⊥底面ABC ,且正四面体PABC 的外接球球心与内切球球心为同一点,应在线段PF 上,记作点O ,如图所示.不妨设正四面体PABC 的棱长为a ,则在ABC 中,22233sin 60333AF AD AC ==⋅⋅==°. PF ⊥底面,ABC AF ⊂底面,ABC PF AF ∴⊥,2222363PF AP AF a a ⎛⎫∴=-=-= ⎪ ⎪⎝⎭. 正四面体PABC 的外接球、内切球球心均为O ,,OP OA R OF r ∴===.OF PF OP =-,且在Rt AFO 中有222AF OF OA +=,22236R R ⎫⎫∴+-=⎪⎪⎪⎪⎝⎭⎝⎭, 6666,R r ∴==-=,611236r R a ∴==. 13.答案:82π3. 解析:由题意知,BC DC BC PD ⊥⊥,所以BC ⊥平面PCD ,而BC ⊂平面ABCD ,则平面PCD ⊥平面ABCD .由条件知222CD PC PD =+,所以PC PD ⊥.如图,取CD 的中点G ,连接,AC BD ,交于点O , 则O 为正方形ABCD 的中心,过点G 作平面CDP 的垂线,则点O 在该垂线上, 所以O 为四棱锥P ABCD -外接球的球心,由于2AO , 所以四棱锥P ABCD -外接球的体积为3482ππ(2)3=.14.答案:6解析:由题意可得121314234,O O O O O O O O ====24345,6O O O O ==.如图,取12O O 的中点34,M O O 的中点N ,连接1234,,,,,MN O N O N O M O M 则12O O ⊥3124,.O M O O O M ⊥ 又3412,O M O M M O O ⋂=∴⊥平面34.O O M 同理可证34O O ⊥平面2,.O O N 平面12O O N ⋂平面34,O O M MN =∴球心O 在线段MN 上. 设球O 的半径为R ,则142442, 3.5,3,OO R OO R O O O N =-=-==2222222114,23,O N MN O N O M OM OO O M ∴==-==-=222244(2)4,(3)9R ON OO O N R --=-=--.,MN OM ON =+即22(2)4(3)923,R R --+--=解得6R =.故球O 的半径为6.15.答案:3;4π9解析:(1)PA ⊥平面,ABC BC ⊂平面ABC ,,PA BC ∴⊥又AB BC ⊥,且,PA AB A BC ⋂=∴⊥平面,PAB PB ⊂平面,PAB BC PB ∴⊥,所以PC 是两个直角三角形PAC 和PBC 的斜边,取PC 的中点O ,点O到四点P ,A ,B ,C 的距离相等,即点O 是三棱锥P ABC -的外接球的球心,2231(2)3,PC R =+==(2)当点M 是截面圆的圆心时,此时圆心到截面的距离最大,那么截面圆的半径最小,即此时的面积最小,点N 是AC 的中点,M 是ABC 的重心,112,366MN BN AC ON ∴====1122PA =,所以22116OM ON MN =+=,截面圆的半径222()3r R OM =-=,所以2min 4ππ9S r ==16.答案:25π,8π4⎡⎤⎢⎥⎣⎦解析:如图,设正三棱柱111ABC A B C -上、下底面中心分别为1,O O ,点P 是111A B C 中线1C D 上一点,G 是三棱锥P ABC -的外接球的球心.因为A ,B ,C 在球面上,所以球心在线段1O O 上,点P 也在球面上, 设三棱锥P ABC -外接球的半径为R ,ABC 外接圆的半径为r ,由正弦定理有260sin 32==r ,所以1r =,设11,O P x O G y ==,则OG =2,y PG CG R -==,在1Rt PGO 中,222R x y =+,在Rt CGO 中,2221(2)R y =+-,于是2221x y +=+2(2)y -,解得254.x y =-因为点P 是111A B C 中线1C D 上一点,所以10≤≤x ,于是451≤≤y ,所以222222554(2)1,216R x y y y y ⎡⎤=+=-+=-+∈⎢⎥⎣⎦,所以外接球的表面积225π4π,8π4S R ⎡⎤=∈⎢⎥⎣⎦球.17.答案:41π16解析:如图,由题意知三棱锥P-ABQ 的体积最大时,点Q 与点C 重合,即求三棱锥P-ABC 外接球的表面积.因为正方形ABCD 与正方形BCFE 的边长均为1,点P 为EF 的中点,所以51,2,AB BC AC BP PC =====.过点P 作PG BC ⊥,垂足为G ,由正方形ABCD 与正方形BCFE 所在平面互相垂直,得PG ⊥平面ABC .设三棱锥P-ABC 外接球的球心为O ,AC 的中点为1O ,连接1OO , 则1OO ⊥平面ABC.延长1O O 到点H ,使1O H PG =.连接PH ,OP ,OA ,设1OO x =, 则2222211,(1)22OH x x x ⎛⎫⎛⎫=-+=+- ⎪ ⎪ ⎪⎝⎭⎝⎭,解得38x =, 设三棱锥P-ABC 外接球的半径为R ,则2221314128264R x ⎛⎫=+=+= ⎪⎝⎭.故所求表面积241414π4ππ6416S R ==⨯=.。

专题11 多面体的外接球和内切球(教师版)

专题11 多面体的外接球和内切球(教师版)

棱锥 A − BCD 的外接球的表面积与三棱锥 A − BCD 的体积之比为( )
例题 5.(2023·浙江·校联考模拟预测)在三棱锥 ABCD 中,对棱 A=B C=D 2 2 , A=D B=C 5 ,
A=C B=D 5 ,则该三棱锥的外接球体积为________,内切球表面积为________.
【答案】 9 π 2
2 3
π
##
2π 3
【详解】因为三棱锥 A − BCD 每组对棱棱长相等,所以可以把三棱锥 ABCD 放入长方体中,
专题 11 多面体的外接球和内切球
一、结论
1.球与多面体的接、切
定义 1;若一个多面体的各顶点都在一个球面上,则称这个多面体是这个球的内接多面体,这个球是多面体
的外接球。
定义 2;若一个多面体的各面都与一个球的球面相切,则称这个多面体是这个球的外切多面体,这个球是多
面体的内切球。
类型一 球的内切问 题(等体积法)
设长方体的长、宽、高分别为 x 、 y 、 z ,如下图所示:
则 x2 + y2 = 2 2 , x2 + z2 =5 , y2 + z2 =5 ,解得 x= y= 2 , z = 1,
外接球直径 2R = x2 + y2 + z2 = 3 ,其半径为 R = 3 , 2
三棱锥 A − BCD 的体积V=
所在平面为α ,则平面α 经过点 H 且 AC ⊥ α ,设三棱锥 S − ABC 外接球的球心为 O,SAC, BAC 的中心分别
为 O1,O2 ,易知 OO1 ⊥ 平面 SAC, OO2 ⊥ 平面 BAC ,且 O, O1, O2 , M 四点共面,由题可得
= ∠ OMO1

球与多面体的外接、内切问题

球与多面体的外接、内切问题
注意:正多面体的内切球和外接球的球心重合.
二、 球与锥体的外接、内切问题 2、 球与正四面体的外接、内切问题
.
Rr 6 a 3
二、 球与锥体的外接、内切问题
2、 球与正四面体的外接、内切问题
设正四面体的的一个面的面积为 S,依题意得
VS ABC
1 S(R 3
r)

VS ABC
4VO ABC
① 外接球:
球心是正四面体的中心;半径源自R=6 4a3 4
h
② 内切球:
球心是正四面体的中心;半径 r=126a
V多
=
1 3
S表
r内
1h 4
二、 球与锥体的外接、内切问题
3、 球与正四棱锥的外接、内切问题
例. (2014·大纲全国) 正四棱锥的顶点都在同一球面上,若该棱锥
的高为 4,底面边长为 2,则该球的表面积为( )
2、求外接球的半径通常构造直角三角形利用 勾股定理进行求解
3、体积分割等体积法是求内切球半径的通用做法.
二、 球与锥体的外接、内切问题
A
二、 球与锥体的外接、内切问题 2、 球与正四面体的外接、内切问题
正四面体作为一个规则的几何体, 它既 存在外接球, 也存在内切球, 并且两心合一, 利用这点可顺利解决球的半径与正四面体 的棱长的关系.
棱柱
三棱柱 四棱柱
确定球心的位置,勾股定理法
棱锥
三棱锥 四棱锥
勾股定理法、等体积法、构造法
直三棱柱
正方体 长方体
正三棱锥 正四面体 其他三棱锥
正四棱锥
一、 球与柱体的外接、内切问题 1. 球与正方体的外接、内切问题
(1) 正方体的外接球
a 正方体的棱长为 ,

多面体与外接球的三种题型-【通用,经典教学资料】

多面体与外接球的三种题型-【通用,经典教学资料】

多面体与外接球的三种题型题型一(直接找直径)1、在三棱锥S-ABC 中,SA=AC=,SB=,BC=1,则三棱锥S-ABC 的外接球的表面积是 。

2、若三棱锥S-ABC 的所有顶点都在同一个球O 的球面上,SA 面ABC ,SA=,AB=1,AC=2,∠BAC=60°,求球O 的体积。

题型二(作轴截面构造Rt △)1、已知三棱锥S-ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 是球O 的直径,且SC=2,求此棱锥的体积。

2、一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的高为,底面周长为3,则这个球的体积为 。

23 323题型三(补形法)1、若三棱锥的三个侧面两两垂直,且侧棱长均为,则其外接球的表面积为2、一个几何体的三视图如图所示,其中主视图和侧视图是腰长为4的两个全等直角三角形,若该几何体的所有顶点都在同一个球面上,则该球的表面积为 。

3、已知S ,A ,B ,C 是球O 表面上的一点,SA 面ABC ,AB BC ,SA=AB=1,BC=,则球O 的表面积等于 。

4、四棱锥P -ABCD 的三视图如图所示,四棱锥P -ABCD 的五个顶点都在同一个球面上,E ,F 分别是棱AB ,CD 的中点,直线EF 被球面所截的线段长为,则该球的表面积为3⊥⊥2225、在三棱锥S -ABC 中,SA=BC=2,SB=AC=3,SC=AB=,则该三棱锥外接球的体积是 。

题型四(割补法)1、如图所示的四棱锥P -ABCD 中,底面ABCD 是边长为a 的正方形,PD 底面ABCD ,且PD=a ,PA=PA=a ,若在这个四棱锥内放一球,则此球的最大半径是 。

2、已知正四面体的外接球的半径为1,则此正四面体的体积为 。

3、已知三棱锥D -ABC 的顶点都在球O 的球面上,AB=4,BC=3,AB BC ,AD=12,且DA 平面ABC ,则三棱锥A -BOD 的体积是 。

与球有关的切、接问题(有答案)

与球有关的切、接问题(有答案)

与球有关的切、接问题1.球的表面积公式:S =4πR 2;球的体积公式V =43πR 3 2.与球有关的切、接问题中常见的组合: (1)正四面体与球:如图,设正四面体的棱长为a ,内切球的半径为r ,外接球的半径为R ,取AB 的中点为D ,连接CD ,SE 为正四面体的高,在截面三角形SDC 内作一个与边SD 和DC 相切,圆心在高SE 上的圆.因为正四面体本身的对称性,内切球和外接球的球心同为O .此时,CO =OS =R ,OE =r ,SE = 23a ,CE =33a ,则有R +r = 23a ,R 2-r 2=|CE |2=a 23,解得R =64a ,r =612a . (2)正方体与球:①正方体的内切球:截面图为正方形EFHG 的内切圆,如图所示.设正方体的棱长为a ,则|OJ |=r =a 2(r 为内切球半径). ②与正方体各棱相切的球:截面图为正方形EFHG 的外接圆,则|GO |=R =22a . ③正方体的外接球:截面图为正方形ACC 1A 1的外接圆,则|A 1O |=R ′=32a . (3)三条侧棱互相垂直的三棱锥的外接球:①如果三棱锥的三条侧棱互相垂直并且相等,则可以补形为一个正方体,正方体的外接球的球心就是三棱锥的外接球的球心.即三棱锥A 1-AB 1D 1的外接球的球心和正方体ABCD -A 1B 1C 1D 1的外接球的球心重合.如图,设AA 1=a ,则R =32a . ②如果三棱锥的三条侧棱互相垂直但不相等,则可以补形为一个长方体,长方体的外接球的球心就是三棱锥的外接球的球心.R 2=a 2+b 2+c 24=l 24(l 为长方体的体对角线长). 角度一:正四面体的内切球1.(2015·长春模拟)若一个正四面体的表面积为S 1,其内切球的表面积为S 2,则S 1S 2=________.解析:设正四面体棱长为a ,则正四面体表面积为S 1=4·34·a 2=3a 2,其内切球半径为正四面体高的14,即r =14·63a =612a ,因此内切球表面积为S 2=4πr 2=πa 26,则S 1S 2=3a 2π6a 2=63π. 角度二:直三棱柱的外接球2.(2015·唐山统考)如图,直三棱柱ABC -A 1B 1C 1的六个顶点都在半径为1的半球面上,AB =AC ,侧面BCC 1B 1是半球底面圆的内接正方形,则侧面ABB 1A 1的面积为( )A .2B .1 C. 2 D.22解析:选C 由题意知,球心在侧面BCC 1B 1的中心O 上,BC 为截面圆的直径,∴∠BAC =90°,△ABC 的外接圆圆心N 是BC 的中点,同理△A 1B 1C 1的外心M 是B 1C 1的中心.设正方形BCC 1B 1的边长为x ,Rt △OMC 1中,OM =x 2,MC 1=x 2,OC 1=R =1(R 为球的半径),∴⎝⎛⎭⎫x 22+⎝⎛⎭⎫x 22=1,即x =2,则AB =AC =1,∴S 矩形ABB 1A 1=2×1= 2.角度三:正方体的外接球3.一个正方体削去一个角所得到的几何体的三视图如图所示(图中三个四边形都是边长为2的正方形),则该几何体外接球的体积为________.解析:依题意可知,新的几何体的外接球也就是原正方体的外接球,要求的直径就是正方体的体对角线;∴2R =23(R 为球的半径),∴R =3,∴球的体积V =43πR 3=43π. 答案:43π角度四:四棱锥的外接球4.(2014·大纲卷)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( )A.81π4 B .16π C .9π D.27π4解析:选A 如图所示,设球半径为R ,底面中心为O ′且球心为O ,∵正四棱锥P -ABCD中AB =2,∴AO ′= 2.∵PO ′=4,∴在Rt △AOO ′中,AO 2=AO ′2+OO ′2,∴R 2=(2)2+(4-R )2,解得R=94,∴该球的表面积为4πR 2=4π×⎝⎛⎭⎫942=81π4,故选A. [类题通法]“切”“接”问题的处理规律1.“切”的处理解决与球的内切问题主要是指球内切多面体与旋转体,解答时首先要找准切点,通过作截面来解决.如果内切的是多面体,则作截面时主要抓住多面体过球心的对角面来作.2.“接”的处理把一个多面体的几个顶点放在球面上即为球的外接问题.解决这类问题的关键是抓住外接的特点,即球心到多面体的顶点的距离等于球的半径.[牛刀小试]1.(2015·云南一检)如果一个空间几何体的正视图、侧视图、俯视图都是半径等于5的圆,那么这个空间几何体的表面积等于( )A .100π B.100π3 C .25π D.25π3解析:选A 易知该几何体为球,其半径为5,则表面积为S =4πR 2=100π.2.(2014·陕西高考)已知底面边长为1,侧棱长为2的正四棱柱的各顶点均在同一个球面上,则该球的体积为( )A.32π3 B .4π C .2π D.4π3解析:选D 因为该正四棱柱的外接球的半径是四棱柱体对角线的一半,所以半径r =1212+12+(2)2=1,所以V 球=4π3×13=4π3.故选D. 3.已知正六棱柱的12个顶点都在一个半径为3的球面上,当正六棱柱的底面边长为6时,其高的值为( )A .3 3 B.3 C .2 6 D .2 3解析:选D 设正六棱柱的高为h ,则可得(6)2+h 24=32,解得h =2 3. 4.(2015·山西四校联考)将长、宽分别为4和3的长方形ABCD 沿对角线AC 折起,得到四面体A -BCD ,则四面体A -BCD 的外接球的体积为________.解析:设AC 与BD 相交于O ,折起来后仍然有OA =OB =OC =OD ,∴外接球的半径r =32+422=52,从而体积V =4π3×⎝⎛⎭⎫523=125π6. 5.一个圆锥过轴的截面为等边三角形,它的顶点和底面圆周在球O 的球面上,则该圆锥的体积与球O 的体积的比值为________.解析:设等边三角形的边长为2a ,则V 圆锥=13·πa 2·3a =33πa 3;又R 2=a 2+(3a -R )2,所以R =233a ,故 V 球=4π3·⎝⎛⎭⎫233a 3=323π27a 3,则其体积比为932. [高考全国课标卷真题追踪]1.(15课标1理)已知,A B 是球O 的球面上两点,090AOB ∠=,C 为该球面上的动点,若O ABC -三棱锥体积的最大值为36,则球O 的表面积为( C )(A)36π (B)64π (C)144π (D)256π2.(13课标1理)如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器注水,当球面恰好接触水面时测得水深为6cm,如不计容器的厚度,则球的体积为( A )(A )3cm 3500π (B )3cm 3866π (C )3cm 31372π (D )3cm 32048π 3.(12课标理)已知三棱锥S ABC -的所有顶点都在球O 的球面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =,则此棱锥的体积为( A )(A)26 (B)36 (C)23 (D )224.(12课标文)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为 ( B )(A )6π (B )43π (C )46π (D )63π5.(10新课标理)设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为( B )(A) 2a π (B) 273a π (C) 2113a π (D) 25a π 6.(10新课标文)设长方体的长、宽、高分别为2,,a a a ,其顶点都在一个球面上,则该球的表面积为( B )(A )23a π (B )26a π (C )212a π (D )224a π 7.(07新课标文)已知三棱锥S ABC -的各顶点都在一个半径为r 的球面上,球心O 在AB 上,SO ⊥底面ABC ,2AC r =,则球的体积与三棱锥体积之比是(D)A.π B.2π C.3π D.4π8.(13新课标2文)已知正四棱锥O ABCD -的体积为322,底面边长为3,则以O 为球心,OA 为半径的球的表面积为24π。

球的切和接问题以及特殊多面体的性质(4)

球的切和接问题以及特殊多面体的性质(4)

高考专题:球的切和接问题以及特殊多面体的性质一.球的截面的性质:用一个平面去截一个球,截面是圆面。

球的截面有以下性质: 1 .球心和截面圆圆心的连线垂直于截面。

2 .球心到截面圆的距离d 与球的半径R 及截面圆的半径r 有下面的关系:3. 球面被经过球心的平面截得的圆叫做大圆,被不经过球心的截面截得的圆叫做小圆。

4.球的关联问题的处理方法:找出或做出截面圆,构造出R ,r, d 的直角三角形求解。

如下图:其关键是球心和截面圆圆心的确定。

Ⅰ.球心的确定:(1) 正多面体都有外接球和内切球,它们都是同心球;球心是该正多面体的中心。

(2) 规则几何体若有外接球和内切球,则其球心都是该几何体的几何中心。

(3) 长方体的外接球直径是体对角线。

(4) 在空间中若干个公用斜边的直角三角形所组成的几何体,其外接球直径是该公共斜边。

(5) 存在内切球的几何体,其内切球半径的计算公式是:SV r 3=(其中V 是该几何体的体积,S 是该几何体的表面积)Ⅱ.截面圆圆心的确定:(1) 任意三角形都有外接圆和内切圆,其中外接圆半径由正弦定理法求解;内切圆半径的计算公式是CS r 2=(其中S 为该三角形面积,C 为该三角形面积周长)。

拓展:在平面几何中,存在内切圆的多边形,其内切圆半径的计算公式为C S r 2= (其中S 为该多边形的面积,C 为该多边形的周长)。

(2) 等边三角形的边长若为a ,则其外接圆半径为a 33,内切圆半径为a 63。

(3) 直角三角形的直角边a, b ; 斜边为c ;则其则其外接圆半径为2c ,内切圆半径为2a cb -+。

(4) 矩形的外接圆半径为对角线长的一半,无内切圆。

(5) 正方形的边长若为a ,则其外接圆半径为a 22,内切圆半径为a 21。

【考点训练】1.一个球的外切正方体的表面积的等于6cm 2,则此球的体积为( )A .334cm πB .386cm πC .361cm π D .366cm π2.已知球O 是棱长为1的正方体ABCD —A 1B l C l D 1的内切球,则平面ACD 1截球O 所得截面面积为: .3.已知三棱柱的底面是边长为3的正三角形,侧棱垂直于底面,若该三棱柱的外接球体积为332π,则该三棱柱的体积为: 。

多面体与球的切接问题专练

多面体与球的切接问题专练

多面体与球的切接问题专练一、选择题1.(2017·全国卷Ⅲ)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .π B.3π4 C.π2D.π4解析:选B 设圆柱的底面半径为r ,则r 2=12-⎝⎛⎭⎫122=34,所以圆柱的体积V =34π×1=3π4. 2.(2016·全国卷Ⅲ)在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )A .4π B.9π2 C .6πD.32π3解析:选B 设球的半径为R ,∵△ABC 的内切圆半径为6+8-102=2,∴R ≤2.又2R ≤3,∴R ≤32,∴V max =43×π×⎝⎛⎭⎫323=9π2. 3.已知正四面体A -BCD 的棱长为12,则其内切球的表面积为( ) A .12π B .16π C .20πD .24π解析:选D 法一:如图,作BF ⊥CD 于F ,AE ⊥BF 于E ,由A -BCD 为正四面体可知AE ⊥平面BCD ,设O 为正四面体A -BCD 的内切球的球心,则OE 为内切球的半径,连接OB .因为正四面体的棱长为12,所以BF =AF =63,BE =43,所以AE =122-(43)2=4 6.又OB 2-OE 2=BE 2,即(46-OE )2-OE 2=(43)2, 所以OE =6,则其内切球的半径是 6. 所以内切球的表面积为4π×(6)2=24π.法二:因为正四面体的棱长为12,其内切球半径为正四面体高的14,所以r =14×63×12=6,故其内切球的表面积为24π.4.三棱锥P -ABC 的四个顶点都在体积为500π3的球的表面上,底面ABC 所在的小圆面积为16π,则该三棱锥的高的最大值为( )A .4B .6C .8D .10解析:选C 依题意,设题中球的球心为O ,半径为R ,△ABC 的外接圆半径为r ,则4πR 33=500π3,解得R =5.由πr 2=16π,解得r =4.又球心O 到平面ABC 的距离为R 2-r 2=3,因此三棱锥P -ABC 的高的最大值为5+3=8.5.(2018·洛阳第一次统考)已知三棱锥P -ABC 的四个顶点均在某球面上,PC 为该球的直径,△ABC 是边长为4的等边三角形,三棱锥P -ABC 的体积为163,则此三棱锥的外接球的表面积为( )A.16π3B.40π3C.64π3D.80π3解析:选D 依题意,记三棱锥P -ABC 的外接球的球心为O ,半径为R ,点P 到平面ABC 的距离为h ,则由V P -ABC=13S △ABC h =13×34×42×h =163,得h =43.又PC 为球O 的直径,因此球心O 到平面ABC 的距离等于12h =23.又正△ABC 的外接圆半径为r =AB 2sin 60°=43,因此R 2=⎝⎛⎭⎫432+⎝⎛⎭⎫232=203,所以三棱锥P -ABC 的外接球的表面积等于4πR 2=803π.6.四棱锥P -ABCD 的底面ABCD 是边长为6的正方形,且PA =PB =PC =PD ,若一个半径为1的球与此四棱锥所有面都相切,则该四棱锥的高是( )A .6B .5 C.92D.94解析:选D 过点P 作PH ⊥平面ABCD 于点H .由题知,四棱锥P -ABCD 是正四棱锥,内切球的球心O 应在四棱锥的高PH 上.过正四棱锥的高作组合体的轴截面如图,其中PE ,PF 是斜高,M 为球面与侧面的一个切点.设PH =h ,易知Rt △PMO ∽Rt △PHF ,所以OM FH =POPF ,即13=h -1h 2+32,解得h =94. 7.(2018·成都一诊)如图,网格纸上小正方形的边长为1,粗实线画出的是某四棱锥的三视图,则该四棱锥的外接球的表面积为( )A .136πB .34πC .25πD .18π解析:选B 由三视图知,该四棱锥的底面是边长为3的正方形,高为4,且有一条侧棱垂直于底面,所以可将该四棱锥补形为长、宽、高分别为3,3,4的长方体,该长方体外接球的半径R 即为该四棱锥外接球的半径,所以2R =32+32+42,解得R =342,所以该四棱锥外接球的表面积为4πR 2=34π.8.(2018·湖北七市(州)联考)一个几何体的三视图如图所示,则该几何体外接球的表面积为( )A .36π B.112π3C .32πD .28π解析:选B 根据三视图可知,该几何体是一个四棱锥,其底面是一个边长为4的正方形,高是2 3.将该四棱锥还原成一个三棱柱,如图所示,则其底面是边长为4的正三角形,高是4,其中心到三棱柱的6个顶点的距离即为该四棱锥外接球的半径.因为三棱柱的底面是边长为4的正三角形,所以底面三角形的中心到三角形三个顶点的距离为23×23=433,所以其外接球的半径R=⎝⎛⎭⎫4332+22=283,故外接球的表面积S =4πR 2=4π×283=112π3. 9.某几何体的三视图如图所示,若这个几何体的顶点都在球O 的表面上,则球O 的表面积是( )A .2πB .4πC .5πD .20π解析:选C 根据三视图可知,该几何体为三棱锥,且其中边长为1的侧棱与底面垂直,底面为斜边长为2的等腰直角三角形,所以可以将该三棱锥补形为长、宽、高分别为2,2,1的长方体,所以该几何体的外接球O 的半径R =(2)2+(2)2+122=52,所以球O的表面积S =4πR 2=5π.10.底面为矩形的四棱锥P -ABCD 的所有顶点都在球O 的球面上,且AB =23,AD =2,它的最大体积为1633,则球O 的表面积为( )A .10πB .15πC .20πD .25π解析:选D 如图所示,设矩形ABCD 的对角线的交点为O1,当点P 在O 1O 的延长线上,并在球面上时,四棱锥P -ABCD 的体积最大,则有13×23×2×PO 1=1633,所以PO 1=4,连接OA ,设球O 的半径为R , 则PO =OA =R ,OO 1=4-R , O 1A =12AB 2+AD 2=2. 在Rt △AO 1O 中,OO 21+O 1A 2=OA 2,即(4-R )2+22=R 2,解得R =52,所以球O 的表面积为4πR 2=25π.11.已知底面为正三角形的三棱柱内接于半径为1的球,则此三棱柱的体积的最大值为( )A .1 B. 2 C. 3D .2解析:选A 如图,设球心为O ,三棱柱的上、下底面的中心分别为O 1,O 2,底面正三角形的边长为a ,则AO 1=23×32a =33a .由已知得O 1O 2⊥底面,在Rt △OAO 1中,由勾股定理得OO 1=12-⎝⎛⎭⎫33a 2=3·3-a 23,所以V 三棱柱=34a 2×2×3·3-a 23=3a 4-a 62,令f (a )=3a 4-a 6(0<a <3),则f ′(a )=12a 3-6a 5=-6a 3(a 2-2),令f ′(a )=0,解得a = 2.因为当a ∈(0,2)时,f ′(a )>0;当a ∈(2,3)时,f ′(a )<0,所以函数f (a )在(0,2)上单调递增,在(2,3)上单调递减.所以f (a )在a =2处取得极大值f (2)=4.因为函数f (a )在区间(0,3)上有唯一的极值,所以当a =2时,三棱锥的体积取得最大值为1,故三棱柱体积的最大值为1.12.(2018·广州综合测试)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马;将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥P -ABC 为鳖臑,PA ⊥平面ABC ,PA =AB =2,AC =4,三棱锥P -ABC 的四个顶点都在球O 的球面上,则球O 的表面积为( )A .8πB .12πC .20πD .24π解析:选C法一:将三棱锥P -ABC 放入长方体中,如图,三棱锥P -ABC 的外接球就是长方体的外接球.因为PA =AB =2,AC =4,△ABC 为直角三角形,所以BC =42-22=2 3.设外接球的半径为R ,依题意可得(2R )2=22+22+(23)2=20,故R 2=5,所以球O 的表面积为4πR 2=20π,选C.法二:利用鳖臑的特点求解,如图,因为四个面都是直角三角形,所以PC 的中点到每一个顶点的距离都相等,即PC 的中点为球心O ,易得2R =PC =20,所以球O 的表面积为4πR 2=20π.二、填空题13.已知球O 的半径为R ,A ,B ,C 三点在球O 的球面上,球心O 到平面ABC 的距离为32R ,AB =AC =BC =23,则球O 的表面积为________. 解析:设△ABC 外接圆的圆心为O 1,半径为r ,因为AB =AC =BC =23,所以△ABC 为正三角形,其外接圆的半径r =232sin 60°=2,因为OO 1⊥平面ABC ,所以OA 2=OO 21+r 2,所以R 2=⎝⎛⎭⎫32R 2+22,解得R 2=16,所以球O 的表面积为4πR 2=64π.答案:64π14.(2018·云南11校跨区调研)已知三棱锥P -ABC 的所有顶点都在表面积为289π16的球面上,底面ABC 是边长为3的等边三角形,则三棱锥P -ABC 体积的最大值为________.解析:依题意,设球的半径为R ,则有4πR 2=289π16,即R =178,△ABC 的外接圆半径为r =32sin 60°=1,球心到截面ABC 的距离h =R 2-r 2=⎝⎛⎭⎫1782-12=158,因此点P 到截面ABC 的距离的最大值等于h +R =178+158=4,因此三棱锥P -ABC 体积的最大值为13×34×(3)2×4= 3. 答案: 315.已知在三棱锥P -ABC 中,V P -ABC =433,∠APC =π4,∠BPC =π3,PA ⊥AC ,PB ⊥BC ,且平面PAC ⊥平面PBC ,则三棱锥P -ABC 外接球的体积为________.解析:取PC 的中点O ,连接AO ,BO ,设PC =2R ,则OA =OB =OC =OP =R ,∴O 是三棱锥P -ABC 外接球的球心.易知,PB =R ,BC =3R .∵∠APC =π4,PA ⊥AC ,O 为PC 的中点,∴AO ⊥PC .又平面PAC⊥平面PBC ,且平面PAC ∩平面PBC =PC ,∴AO ⊥平面PBC ,∴V P -ABC =V A -PBC =13×12×R ×3R ×R =433,解得R =2,∴三棱锥P -ABC 外接球的体积V =43πR 3=32π3.答案:32π316.(2018·长春质检)已知四棱锥P -ABCD 的底面为矩形,平面PBC ⊥平面ABCD ,PE ⊥BC 于点E ,EC =1,AB =6,BC =3,PE =2,则四棱锥P -ABCD 的外接球半径为______.解析:如图,由已知,得PC =5,PB =22,所以cos ∠PBC =8+9-52×22×3=22,sin∠PBC =22.设△PBC 的外接圆圆心为O 1,半径为r ,在△PBC 中,由正弦定理可得PCsin ∠PBC=2r ,即522=2r,解得r=102.设F为BC边的中点,连接O1F,则O1F=r2-BF2=12.设四棱锥P-ABCD的外接球球心为O,外接球半径为R,则R2=⎝⎛⎭⎫BD22+O1F2=4,所以四棱锥P-ABCD的外接球半径为2.答案:2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多面体与球的接切问题
⏹ 一、球的体积V=______,表面积S=_________
⏹ 二、如何确定简单多面体的外接球以及内切球
学习目标:
⏹ 1.会计算简单多面体与球的接切问题。

⏹ 2.提高空间想象能力以及计算能力。

专 题 要 点
(3)正四面体的外接球与内切球(正四面体可以看作是正方体的一部分)
(2)正方体的外接球、内切球及与各条棱相切的球:
①外接球:球心是正方体中心;半径r =32a(a 为正方体的棱

); ②内切球:球心是正方体中心;半径r =a 2(a 为正方体的棱长); ③与各条棱都相切的球:球心是正方体中心;半径r =22a(a 为正方体的棱长).
①外接球:球心是正四面体的中心;半径r=
6
4
a(a为正四面体
的棱长);
②内切球:球心是正四面体的中心;半径r=
6
12
a(a为正四面体
的棱长).
专题讲解
⏹例、求棱长为1的正四面体的外接球的体积
⏹例、棱长为3的正方体的顶点都在一个球面上,求该球的表面

链接高考
⏹小结:
⏹在空间,如果一个定点与一个简单多面体的所有顶点的距离都
相等,那么这个定点就是该简单多面体的外接球的球心.
⏹结论1:正方体或长方体的外接球的球心其体对角线的中点.⏹结论2:正棱柱的外接球的球心是上下底面中心的连线的中点.⏹结论3:直三棱柱的外接球的球心是上下底面三角形外心的连
线的中点.
⏹结论4:正棱锥的外接球的球心在其高上,具体位置可通过计
算找到
⏹若一个多面体的各面都与一个球的球面相切,则称这个多面
体是这个球的外切多面体,这个球是这个多面体的内切球。

⏹1、内切球球心到多面体各面的距离均相等,外接球球心到多面
体各顶点的距离均相等。

⏹2、正多面体的内切球和外接球的球心重合。

⏹3、正棱锥的内切球和外接球球心都在高线上,但不重合。

⏹4、基本方法:构造三角形利用相似比和勾股定理。

⏹5、体积分割是求内切球半径的通用做法。

巩固拓展:。

相关文档
最新文档