关于线性二自由度汽车模型的运动微分方程

合集下载

线性二自由度汽车模型

线性二自由度汽车模型

α1 −α2 = KayL
m: vehicle mass
16/81
α1-α 2
K > 0不足转向
α1 −α2 = KayL
K = 0中性转向
ay
K < 0过度转向
a y > 0.3 ~ 0.4 g,α1 − α 2与a y不再为线性关系 α和ωr急剧变化,出现半径迅 速增加或减小的现象。 a y对α1 − α 2关系用斜率表示,斜率 > 0 ⇒ 不足转向
β
+
L1ω r
u
−δ
α2
= υ − L2ω r
u
= β − L2ω r
u
FY1 = k1α1 FY 2 = k2α2
6/81
⎩⎨⎧kL11αk11α+1
k2α2 = m(uωr + υ − L2k2α2 = I zωr
)
FY1 + FY 2 ≈ m(uωr+υ)
L1FY1 − L2FY 2 ≈ I zωr
13/81
ωr δ
⎟⎞ ⎠
K <0
K =0
K >0
ucr uch ua
14/81
W过度转向汽车车速达到临界车速时将失 去稳定性。因为只要一个很小的转角δ, 横摆角速度增益ωr/δ就趋于无穷大。
W因为假设纵向速度为优先值,根据纵向 速度与角速度的关系可知,汽车转向半 径极小。这样,汽车必定发生激转,导 致侧滑或侧翻的发生。
5.3 线性二自由度汽车模型 对前轮角输入的响应
1 线性二自由度汽车模型的运动微分方程
☆忽略转向系的影响,以前轮转角作为输入; ☆只在地面上做平面运动,忽略悬架作用; ☆前进(纵轴)速度不变,只有沿y轴的侧向速度 和绕z轴的横摆运动(ay<0.4g) ; ☆驱动力不大,对侧偏特性无影响; ☆忽略空气阻力; ☆忽略因载荷变化引起左、右轮胎特性的变化; ☆忽略回正力矩的变化。

汽车理论5.3

汽车理论5.3
已知u、ωr、δ即可确定
1 2 。
21
第三节 线性二自由度汽车模型对前轮角输入的响应
2)转向半径的比R/R0
已知 R R0 1 Ku 2


R 1 Ku 2 R0
K=0, R/R0=1,汽车具有中性转向特点; K>0, R/R0>1,汽车具有不足转向特点;
K<0, R/R0<1,汽车具有过多转向特点。
8
1 u
第三节 线性二自由度汽车模型对前轮角输入的响应
二、前轮角阶跃输入下汽车的稳态响应
—等速圆周行驶 1.稳态响应
稳态时ωr为定值
0 v
r 0
代入运动微分方程式得
v 1 k1 k2 ak1 bk2 r k1 mur u u v 1 2 ak1 bk2 a k1 b 2 k2 r ak1 0 u u
2
度的影响。
第三节 线性二自由度汽车模型对前轮角输入的响应
2.两轮汽车模型及车辆坐标系 y
x
3
第三节 线性二自由度汽车模型对前轮角输入的响应
3.运动学分析
确定汽车质心(绝
对)加速度在车辆坐标
系的分量ax和ay。
沿Ox轴速度分 量的变化为
u u cos u v vsin
(1)
(2)


由式(2)得

r I Z
1 2 a k1 b 2k2 r ak1 u ak1 bk2
28


第三节 线性二自由度汽车模型对前轮角输入的响应
求导后得
1 2 r a k1 b 2 k 2 r ak1 I Z u ak1 bk 2

05-3 线性二自由度汽车模型

05-3 线性二自由度汽车模型
值不同,相位也要发生变化。
业 ¾ 输出、输入的幅值比是频率 f 的函数,称幅频特性。 工 ¾ 相位差也是 f 的函数,称为相频特性。
¾ 两者统称为频率特性。



2010-5-20
共55页
17
第三节 线性二自由度汽车模型对前轮角输入的响应

版 ωr + 2ω0ζωr + ω02ωr = B1δ + B0δ
B0δ 0 ω02
= uL 1+ Ku2
δ0
=
ωr δ
⎞ ⎟
δ0
⎠s
工业 即稳态横摆角速度
ωr0
=
ωr δ
⎟⎞ ⎠s
δ
0
车对应的齐次方程为 汽ωr + 2ω0ζωr + ω02ωr = 0

2010-5-20
共55页
5
第三节 线性二自由度汽车模型对前轮角输入的响应

其通解可由如下特征方程求得
业 式中
工 ζ = h 2ω0m′
汽车 B1
=
b1 m′
ω02
=
c m′
ζ—阻尼比。
B0
=
b0 m′

2010-5-20
共55页
3
第三节 线性二自由度汽车模型对前轮角输入的响应

前轮角阶跃输入的数学表达式为

t < 0,δ = 0 ⎫
转 向
院 t

0,δ
=
δ
0
⎪ ⎬
盘 转 角
学 t > 0,δ = 0 ⎪⎭
ω r = C e−ζω0tsin ω 0 1 − ζ 2 t + Φ

智能网联汽车技术教学课件项目七 无人驾驶汽车运动控制

智能网联汽车技术教学课件项目七 无人驾驶汽车运动控制
(2)路面超高对侧向运动的影响。当车辆上坡或者下坡时,由于车辆与水平 路面之间存 在一定的夹角,车辆自身的重力便会沿该道路有一定分量,从而对车 辆产生了附加转向 运动。
(3)空气动力对侧向运动的影响。空气动力在多方面影响着汽车的侧向 运动,主要表现 在当空气和车辆侧向有相对速度时所产生的侧向阻力,该阻力 会对转向带来一定的负面 影响。
ax 表示质心加速度沿x 轴(车辆坐标)分量,ay 表示质心加速度沿y 轴(车 辆坐标)分 量;由图7-4可以得出在t+Δt时刻,沿OX 轴速度分量的变化为:
由于Δθ很小且忽略二阶微量,则式(7-1)可变为 则质心加速度沿x轴的坐标分量ax 为 同理,可得汽车质心绝对加速度沿y轴上的分量ay 为 由图7-3可知,在考虑到前轮转角较小,即cosδ=1的情况下,车辆受到的外 力沿y轴 方向的合力与绕质心的力矩和为 其中,Fy1、Fy2为地面对前、后轮的侧向反作用力。 汽车前、后轴中点 的速度为u1、u2,质心偏转角为β,则可以得出如下关系:
3.车辆纵向运动的动力性与制动性 1)汽车的动力性 所谓汽车的动力性是指当车辆在良好的路面上直线行驶时,由汽车受到 的纵向外力决定的、所能达到的平均行驶速度。动力性是汽车各种性能中 最基本、最重要的性能。 评价车辆动力性主要有以下3个指标。 (1)车辆行驶中能达到的最大车速umax,即在水平良好的混凝土或沥青路 面上汽车能达 到的最高行驶速度。 (2)汽车从起动到速度达到所需用的时间t。
项目七
无人驾驶汽车运动控制
【项目要求】
学生通过该项目的学习了解车辆运动学模型、无 人驾驶汽车侧向控制单元研究、无人驾 驶汽车纵向 控制单元研究、无人驾驶汽车试验研究的工作原理和 技术特点。学生通过对车 辆运动学模型、无人驾驶 汽车侧向控制单元研究、无人驾驶汽车纵向控制单元 研究、无人驾 驶汽车试验研究的工作原理和技轮车的模 型来表示车辆的实际模型,如图7-3所示。

线性二自由度汽车模型的运动微分方程

线性二自由度汽车模型的运动微分方程

线性二自由度汽车模型的运动微分方程为了便于建立运动方程,做以下简化:(1)忽略转向系统的影响,直接以前轮转角作为输入;(2)忽略悬架的作用;车身只作平行于地面的平面运动,沿z轴的位移、绕y轴的俯仰角和绕x轴的侧倾角均为零,且F Zr Fzi ;(3)汽车前进速度u视为不变;(4)侧向加速度限定在0.4g —下,确保轮胎侧偏特性处于线性围;(5)驱动力不大,不考虑地面切向力对轮胎侧偏特性的影响,没有空气动力的作用在上述假设下,汽车被简化为只有侧向和横摆两个自由度的两轮摩托车模型。

閒代后护曲轮汽车枠即及车辆咐标丟分析时,令车辆坐标系原点与汽车质心重合。

首先确定汽车质心的(绝对)加速度在车辆坐标系中的分量。

"T与W为车辆坐标系的纵轴和横轴。

质心速度V l于f时刻在轴上的分量为|/<,在°匸轴上的分量为卜。

由于汽车转向行驶时伴有平移和转动,在'时刻,车辆坐标系中质心速度的大小与方向均发生变化,而车辆坐标系中的纵轴和横轴亦发生变化,所以沿'■轴速度分量变化为:(« + Av)sin A"=u cos A6? + cos A 0 it -vsin 0 Avsin \0考虑到△ 6很小并忽略二阶微量,上式变成:\u -K A0除以Ar并取极限,便是汽车质心绝对加速度在车辆坐标系\ox上的分量du dO *a -- ----- v——= n-va)x dt dt r同理得:叭"刊叫下面计算二自由度汽车的动力学方程< ------------------------------ --------------------------------------- ih二自由度汽车受到的外力沿匸"|轴方向的合力与绕质心的力矩和为》禺=洛心方"二11式中,如,比为地面对前后轮的侧向反作用力,即侧偏力;/为前轮转角考虑到’很小,上式可以写成:=片碣 + kya z I 工恢=ak l a ]-bk 2a 2\ 下面计算二自由度汽车的动力学方程二自由度汽车受到的外力沿 轴方向的合力与绕质心的力矩和为£幵=F”£OM+尽 11式中,呂|, F 伫为地面对前后轮的侧向反作用力,即侧偏力; 5为前轮转角 考虑到’很小,上式可以写成:*冋+k 2a 2 工虽=昭绚-风耳汽车前后轮侧偏角与其运动参数有关。

汽车理论第五章

汽车理论第五章

第二节 轮胎的侧偏特性 4)γ过大对汽车产生不良影 响 影响轮胎与路面的良好 接触
汽车轮胎
摩托车轮胎
5)外倾时产生的回正力矩
45
第二节 轮胎的侧偏特性
46
第三节 线性二自由度汽车模型对前轮角输入的响应
一、线性二自由度汽车模型运动微分方程
思考:车辆坐标系中,汽车共有多少个自由度?
1.建模中假设
1)忽略转向系统的影响,直接以前轮转角作为输入;
26
第二节 轮胎的侧偏特性
3.FY-α曲线
FY k
k—侧偏刚度。
FY一定时希望侧偏角越小 越好,所以 |k| 越大越好。
27
第二节 轮胎的侧偏特性
三、轮胎结构、工作条件对侧偏特性的影响
轮胎的尺寸、型式和结构参数对侧偏刚度有显著影响。
大尺寸轮胎
大尺寸轮胎
子午线轮胎
侧偏刚度大
钢丝子午线轮胎
斜交轮胎
侧偏刚度小
纤维子午线轮胎
小尺寸轮胎
28
第二节 轮胎的侧偏特性
(1)扁平率小,k大
B
H
扁平率=(H/B)×100%
29
第二节 轮胎的侧偏特性
一些车型轮胎的型号及扁平率
车型 新雅阁
奔驰 S320
奔驰 LORINSER
轮胎型号 普利斯通 205/65R15
米其林 225/60R16 W
米其林 275/30 ZR19
8
第一节 操纵稳定性概述
直线行驶性
7.直线行驶性能
评价参量
转向盘转角和(累计值)
侧向风敏感性 路面不平敏感性
评价参量
侧向偏移
操纵稳定性包含的内容
9
第一节 操纵稳定性概述

详细步骤MATLAB车辆两自由度操纵稳定性模型分析

详细步骤MATLAB车辆两自由度操纵稳定性模型分析

基于MATLAB的车辆两自由度操纵稳定性模型及分析汽车操纵稳定性是汽车高速安全行驶的生命线,是汽车主动安全性的重要因素之一;汽车操纵稳定性一直汽车整车性能研究领域的重要课题。

本文采用MATLAB仿真建立了汽车二自由度动力学模型,通过仿真分析了不同车速、不同质量和不同侧偏刚度对汽车操纵稳定性的影响。

研究表明,降低汽车行驶速度,增加前后轮侧偏刚度和减小汽车质量可以减小质心侧偏角,使固有圆频率增加降低行驶车速还可以使阻尼比增加,超调量及稳定时间减少。

车辆操纵稳定性评价主要有客观评价和主观评价俩种方法。

客观评价是通过标准实验得到汽车状态量,再计算汽车操纵稳定性的评价指标,这可通过实车实验和模拟仿真完成,在车辆开发初期可通过车辆动力仿真进行车辆操纵稳定性研究。

1二自由度汽车模为了便于掌握操纵稳定性的基本特性,对汽车简化为线性二自由度的汽车模型,忽略转向系统的影响,直接一前轮转角作为输入;忽略悬架的作用,认为汽车车厢只作用于地面的平面运动。

2 运动学分析确定汽车质心的(绝对)加速度在车辆坐标系的分量a a 和a a 。

Ox 与Oy 为车辆坐标系的纵轴与横轴。

质心速度a 1与t 时刻在Ox 轴上的分量为u ,在oy 轴上的分量为v 。

沿Ox 轴速度分量的变化为:()()cos sin cos cos sin sin u u u v v u u u v v θθθθθθ+∆∆--+∆∆=∆+∆∆---∆∆考虑到∆θ很小并忽略二阶微量,上式变成:除以∆t并取极限,便是汽车质心绝对加速度在车辆坐标系。

沿Ox 轴速度分量的变化为:u x r d d v u v dt dt a θω=-=-同理,汽车质心绝对加速度沿横轴oy 上的分量为:y rv u a ω=+二自由度动力学方程二自由度汽车受到的外力沿y 轴方向的合力与绕质心的力矩和为:1212cos a cos YY Y ZY Y b F F FM F Fδδ=+=-∑∑式中,a a 1,a a 2为地面对前后轮的侧向反作用力;δ为前轮转角。

第三章二自由度系统

第三章二自由度系统
为了完全确定物体的位置而选定的任意一组彼此独立的 坐标参数,称为这个物体的广义坐标。在选定坐标时,除去 直角坐标X、Y、Z之外,我们也可以用角度φ、θ及从物体 中的一点到某些固定点的距离等参数来确定物体在空间的位 置。
二自由度系统振动 / 不同坐标系的运动微分方程
以汽车的二自由度振动模型为例
汽车板簧以上部分被简化成为一根刚性杆,具有质量m和绕质心 的转动惯量Ic。质心位于C 点。分别在A点和B点与杆相联的弹性 元件k1、k2为汽车的前,后板簧。
若系统有 n 个自由度,则各项皆为 n 维矩阵或列向量
二自由度系统振动 / 运动微分方程
式中:
[M
]

m11 m21
m12
m22


m1

0
0
m2

[K
]

k11 k 21
[C]

c11 c21
k12
k
22


k1 k2

k2
c12
c22
2 ET x1x1

2 ET x12
m1
m12

2 ET x1x2

2 ET x2x1
m21
0
m22
2ET x2x2

2 ET x22
m2
[M
]

m11 m21
m12
m22


m1

0
0
m2

二自由度系统振动 / 能量法
(t ) (t)
如同在单自由度系统中所定义的,在多自由度系统中 也将质量、刚度、位移、加速度及力都理解为广义的。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性二自由度汽车模型的运动微分方程 为了便于建立运动方程,做以下简化:
(1)忽略转向系统的影响,直接以前轮转角作为输入;
(2)忽略悬架的作用;车身只作平行于地面的平面运动,沿z 轴的位移、绕 y 轴的俯仰角和绕 x 轴的侧倾角均为零,且
l r Z Z F F ;
(3)汽车前进速度u 视为不变;
(4)侧向加速度限定在0.4g 一下,确保轮胎侧偏特性处于线性范围;
(5)驱动力不大,不考虑地面切向力对轮胎侧偏特性的影响,没有空气动力的作用。

在上述假设下,汽车被简化为只有侧向和横摆两个自由度的两轮摩托车模型。

分析时,令车辆坐标系原点与汽车质心重合。

首先确定汽车质心的(绝对)加速度在车辆坐标系中的分量。


为车辆坐标系的纵轴和横轴。

质心速度
于时刻在
轴上的分量为
,在
轴上的分量为。

由于汽车转向行驶时伴有平移和转动,在时刻,车辆坐标系中质心速度的大小与方向均发生变
化,而车辆坐标系中的纵轴和横轴亦发生变化,所以沿
轴速度分量变化为:
考虑到很小并忽略二阶微量,上式变成:
除以并取极限,便是汽车质心绝对加速度在车辆坐标系上的分量
同理得:
下面计算二自由度汽车的动力学方程
二自由度汽车受到的外力沿轴方向的合力与绕质心的力矩和为
式中,,为地面对前后轮的侧向反作用力,即侧偏力;为前轮转角。

考虑到很小,上式可以写成:
下面计算二自由度汽车的动力学方程
二自由度汽车受到的外力沿轴方向的合力与绕质心的力矩和为
式中,,为地面对前后轮的侧向反作用力,即侧偏力;为前轮转角。

考虑到很小,上式可以写成:
汽车前后轮侧偏角与其运动参数有关。

如上图所示,汽车前后轴中点的速度为,;前后轮侧偏角为,;质心侧偏角为,;为与轴的夹角,其值为:
根据坐标系的关系,前后轮侧偏角为
由此,可以列出外力,外力矩与汽车参数的关系式为
所以,二自由度汽车的运动微分方程为
由此,可以列出外力,外力矩与汽车参数的关系式为
所以,二自由度汽车的运动微分方程为
上式可以变形为:
写成状态方程为:
中。

相关文档
最新文档