必修4课件3.2-4简单的三角恒等变换
2019年北师大版数学必修四课件:简单的三角恒等变换
∴0< α +β < ,∴ α +β = .
恒等式的证明 已知 5sin α=3sin(α-2β),求证:tan(α-β)+4tan β=0.
【解析】因为 5sin α =3sin(α -2β ), 所以 5sin[(α -β )+β ]=3sin[(α -β )-β ], 所以 5sin(α -β )cos β +5cos(α -β )sin β =3sin(α -β )cos β -3cos(α -β )sin β , 所以 2sin(α -β )cos β +8cos(α -β )sin β =0, 即 tan(α -β )+4tan β =0.
(������������������������+������������������������-������)(������������������������-������������������������+������)
=
������+������������������������ ������������������������
cos
������- ������
∴sin = cos ∴cos =
������ ������ ������ ������ ������������ ������
������ ������-������ ������
=4sin cos ,
������ ������ ������ ������ ������ ������ ������ ������
,或右边变同于左边,或将左右都进行变换使其左右相等.
问题3 三角恒等变换有哪些技巧?
(1)常值的代换:如“1”的代换就是一种特殊的常值
2019-2020人教A版数学必修4第3章 3.2 简单的三角恒等变换课件PPT
A.sinθ+π4 C.2 2sinθ+π4
B.2 2sinθ+34π D. 2sinθ+π4
C
[原式=2
2sin
θ×
22+cos
θ×
2
2
=2
2sin θcos
π4+cos θsinπ4=2
2sinθ+π4.]
第三章 三角恒等变换
3.2 简单的三角恒等变换
栏目导航
学习目标
核心素养
1.能用二倍角公式推导出半角公式, 体会三角恒等变换的基本思想方法, 以及进行简单的应用.(重点) 2.了解三角恒等变换的特点、变换技 巧,掌握三角恒等变换的基本思想方 法.(重点) 3.能利用三角恒等变换的技巧进行三 角函数式的化简、求值以及证明,进 而进行简单的应用.(难点、易混点)
栏目导航
(1)D [∵5π<θ<6π,∴θ2∈52π,3π,4θ∈54π,32π. 又 cos2θ=a,
∴sin4θ=-
1-2cos2θ=-
1-a 2 .]
栏目导航
(2)[解]
原式= 2csoinsα2α2+-cos2α2s2inα2+ 2csoinsα2α2-+cos2α2s2inα2.
思路点拨:法一:切化弦用二倍角公式由左到右证明;
法二:cos2α 不变,直接用二倍角正切公式变形.
栏目导航
[证明] 法一:用正弦、余弦公式.
左边=
cos2α αα
cosα2-
sin2 α
sin2 cos2
栏目导航
=cos2cα2o-s2αsin2α2=ccooss22αα2s-inα2sicno2sα2α2 αα
栏目导航
3.函数 f(x)=2sin x+cos x 的最大值为
简单的三角恒等变换优秀课件(4个课件)
思考6:参照上述分析,cosα cosβ , sinα sinβ 分别等于什么?其变换功能 如何?
1 c o sc a o s b = c o s ( ab ++ )c o s ( ab -) [ ] 2
1 s i n a s i n b = -[ c o s ( ab +)c o s ( ab -) ] 2
作业: P143习题3.2A组: 1(5)(6)(7)(8) ,2,3,4,5.
19、一个人的理想越崇高,生活越纯洁。 20、非淡泊无以明志,非宁静无以致远。 21、理想是反映美的心灵的眼睛。 22、人生最高之理想,在求达于真理。 便有了文明。 24、生当做人杰,死亦为鬼雄。 25、有理想的、充满社会利益的、具有明确目的生活是世界上最美好的和最有意义的生活。 26、人需要理想,但是需要人的符合自然的理想,而不是超自然的理想。 27、生活中没有理想的人,是可怜的。 28、在理想的最美好的世界中,一切都是为美好的目的而设的。 29、理想的人物不仅要在物质需要的满足上,还要在精神旨趣的满足上得到表现。 30、生活不能没有理想。应当有健康的理想,发自内心的理想,来自本国人民的理想。 31、理想是美好的,但没有意志,理想不过是瞬间即逝的彩虹。 32、骐骥一跃,不能十步;驽马十驾,功在不舍;锲而舍之,朽木不折;锲而不舍,金石可镂。——荀况 33、伟大的理想只有经过忘我的斗争和牺牲才能胜利实现。 34、为了将来的美好而牺牲了的人都是尊石质的雕像。 35、理想对我来说,具有一种非凡的魅力。 36、扼杀了理想的人才是最恶的凶手。 37、理想的书籍是智慧的钥匙。 人生的旅途,前途很远,也很暗。然而不要怕,不怕的人的面前才有路。—— 鲁 迅 2 人生像攀登一座山,而找寻出路,却是一种学习的过程,我们应当在这过程中,学习稳定、冷静,学习如何从慌乱中找到生机。 —— 席慕蓉 3 做人也要像蜡烛一样,在有限的一生中有一分热发一分光,给人以光明,给人以温暖。—— 萧楚女 4 所谓天才,只不过是把别人喝咖啡的功夫都用在工作上了。—— 鲁 迅 5 人类的希望像是一颗永恒的星,乌云掩不住它的光芒。特别是在今天,和平不是一个理想,一个梦,它是万人的愿望。—— 巴 金 6 我们是国家的主人,应该处处为国家着想。—— 雷 锋 7 我们爱我们的民族,这是我们自信心的源泉。—— 周恩来 8 春蚕到死丝方尽,人至期颐亦不休。一息尚存须努力,留作青年好范畴。—— 吴玉章 9 学习的敌人是自己的满足,要认真学习一点东西,必须从不自满开始。对自己,“学而不厌”,对人家,“诲人不倦”,我们应取这种态度。—— 毛泽东 10 错误和挫折教训了我们,使我们比较地聪明起来了,我们的情就办得好一些。任何政党,任何个人,错误总是难免的,我们要求犯得少一点。 犯了错误则要求改正,改正得越迅速,越彻底,越好。—— 毛泽东 38、理想犹如太阳,吸引地上所有的泥水。 9.君子欲讷于言而敏于行。 ——《论语》 译:君子不会夸夸其谈,做起事来却敏捷灵巧。 10.二人同心,其利断金;同心之言,其臭如兰。 ——《周易》 译:同心协力的人,他们的力量足以把坚硬的金属弄断;同心同德的人发表一致的意见,说服力强,人们就像嗅到芬芳的兰花香味,容易接受。 11.君子藏器于身,待时而动。 ——《周易》 译:君子就算有卓越的才能超群的技艺,也不会到处炫耀、卖弄。而是在必要的时刻把才能或技艺施展出来。 12.满招损,谦受益。 ——《尚书》 译:自满于已获得的成绩,将会招来损失和灾害;谦逊并时时感到了自己的不足,就能因此而得益。 13.人不知而不愠,不亦君子乎? ——《论语》 译:如果我有了某些成就,别人并不理解,可我决不会感到气愤、委屈。这不也是一种君子风度的表现吗?知缘斋主人 14.言必信 ,行必果。 ——《论语》 译:说了的话,一定要守信用;确定了要干的事,就一定要坚决果敢地干下去。 15.毋意,毋必,毋固,毋我。 ——《论语》 译:讲事实,不凭空猜测;遇事不专断,不任性,可行则行;行事要灵活,不死板;凡事不以“我”为中心,不自以为是,与周围的人群策群力,共同完成任务。 16.三人行,必有我师焉,择其善者而从之,其不善者而改之。——《论语》 译:三个人在一起,其中必有某人在某方面是值得我学习的,那他就可当我的老师。我选取他的优点来学习,对他的缺点和不足,我会引以为戒,有则改之。 17.君子求诸己,小人求诸人。 ——《论语》 译:君子总是责备自己,从自身找缺点,找问题。小人常常把目光射向别人,找别人的缺点和不足。很多人(包括我自己)觉得面试时没话说,于是找了一些名言,可以在答题的时候将其穿插其中,按照当场的需要或简要或详细解释一番,也算是一种应对的方法吧 1.天行健,君子以自强不息。 ——《周易》 译:作为君子,应该有坚强的意志,永不止息的奋斗精神,努力加强自我修养,完成并发展自己的学业或事业,能这样做才体现了天的意志,不辜负宇宙给予君子的职责和才能。 2.勿以恶小而为之,勿以善小而不为。 ——《三国志��
新课标人教A版高中数学必修四3.2简单的三角恒等变换课件 (共20张PPT)
二倍角的正弦,余弦,正切公式: sin 2 2sin cos
cos 2 cos2 sin2
降角升次
2cos2 1 1 2sin2
tan
2
2 tan 1 tan2
cos2 1 cos 2
2
tan2 1 cos 2 1 cos 2
sin2 1 cos 2
2
升角降次
sin2=
3
1 sin 2 3 1 cos 2
2
6
1 sin 2 3 cos 2 3
2
6
6
通过三角变换把形如 y=asinx+bcosx的函数 转化为形如 y=Asin(+)的函数, 从而使问题得到简化
1 3
3 2
sin
2
1 2
cos
2
3 6
1 sin 2 3
3 6 6
由于0 , 所以当 2 ,即 时,
2
2
思考 在例3证明过程中用到了哪些数学思想方法?
例3证明中用到换元思想, ①式是积化和差的形式, ②式是和差化积的形式;
在后面的练习142页当中还有六个关于积化和 差、和差化积的公式.
例4 求函数y sin x 3 cos x的周期,最大值和最小 值
分析:利用三角恒等变换,先把函数式化简,再求相 应的值.
解 y sin x 3 cos x
点评:例3是三角
2
1 2
sin
x
3 2
cos
x
恒等变换在数学中 应用的举例,它使 三角函数中对函数
2sin x cos cos x sin
3
3
的性质研究得到延 伸,体现了三角变 换在化简三角函数
人教课标版高中数学必修4《简单的三角恒等变换(第1课时)》名师课件
【解题过程】(1)∵
∴sin2 +asin cos -cos2 =1,解得a=2.
∴f(x)=sin2x+2sinxcosx-cos2x=sin2x-cos2x= sin 当2x- =2kπ- (k∈Z),
即x=kπ- (k∈Z)时,sin
有最小值-1,则f(x)的最小值为-
知识回顾 问题探究 课堂小结 随堂检测
②此公式不要死记硬背,只需同一个角的正余弦即可,所以可以从不 同的角度构造角,从而利用不同的公式进行合角, ③通常遇到的辅助角都是常见的特殊角,如果提完系数发现括号里不 是特殊角的正余弦,那么可用抽象的 来代替,再在旁边标注 的一 个三角函数值.
知识回顾 问题探究 课堂小结 随堂检测
活动4 巩固基础,检查反馈 例1:化简下列三角函数解析式为y=Asin(ωx+φ)+B的形式:
ABCD是扇形的内接矩形,记 积最大?并求出这个最大面积.
,问当角 取何值时,矩形ABCD的面
Q
D
C
【解题过程】
OA
BP
知识回顾 问题探究 课堂小结 随堂检测 知识梳理
(1)通过三角恒等变换推导辅助角公式并应用到三角函数中,对函
数
的性质进一步研究.
(2)通过用角为自变量建立函数模型,从而求解相应最值,既促进
简单的三角恒等变换(第1课时)
知识回顾 问题探究 课堂小结 随堂检测
两角和差的正余弦公式. 二倍角公式及变形.
检测下预习效果:
点击“随堂训练” 选择“《简单的三角恒等变换(第1课时)》预习自测”
知识回顾 问题探究 课堂小结 随堂检测
探究一:公式
●活动1 公式 你能把函数 ①
②
的变形过程.
的理论基础
6.简单的三角恒等变换
1
»复习与回顾
请写出二倍角的正弦、余弦、正切公式
S2: sin 2 2 sin cos
C 2: cos 2 cos sin 2 2s o c 1 1 2 n is
2 2
2
2 tan T2: tan 2 1 tan 2
2
2
, cos
2
2
, tan
2
2
.
半角公式:
S :
2
1 cos si n 2 2 1 cos cos 2 2
1 cos 2 tan 2 1 cos cos 2
C :
2
T :
2
si n
【练习】求证:
1 (1) sin cos [sin ( ) sin ( )] 2 1 ( 2) cos sin [sin ( ) sin ( )] 2
在区间 [0,
2 m的值及此函数当x∈R时的最小值及
] 上的最大值为6,求常数
取得最小值时x的集合.
【练习】教材复习参考题.
感受三角变换的魅力
提高练习:
辅助角
求函数 y 3 sin( 2 x ) cos2 x 的最小值 .
3
求函数递 增区间.
14
实践体会三角变换的魅力
提高练习:
【变式练习】
1 ( 3) cos cos [cos( ) cos( )] 2 1 (4) sin sin [cos( ) cos( )] 2
5sin sin 2 sin
人教a版必修四第三章3.2简单的三角恒等变换(函数综合)(共18张PPT)
Q
设矩形ABCD的面积为S,则
D
C
S AB BC (cos 3 sin )sin
3
sin cos 3 sin2
O αA B P
3
1 sin 2 3 (1 cos 2 ) 1 sin 2 3 cos 2 3
2
6
2
6
6
1 ( 3 sin 2 1 cos 2 ) 3 1 sin(2 ) 3
于是OA 3 DA 3 BC 3 sin O α A
BP
3
3
3
AB OB OA cos 3 sin
3
一、例题分析
例3、如图,已知OPQ是半径为1,圆心角为60°的
扇形,C是扇形弧上的动点,ABCD是扇形的内接形。
∠COP=α,求当α取何值时,矩形ABCD的面积最大?
并求出这个最大面积.
分析:考虑式子中是关于cosx和sinx的二次式,故可 考虑降幂升角,容易得
f ( x) sin 2x cos 2x 2
2 sin(2x ) 2
4
结合三角函数的图像和性质可求得结果
例2、已知a (5 3 cos x, cos x),b (sin x, 2cos x),
函数f
(x)
a
所以函数f ( x)的最小正周期是T
例2、已知a (5 3 cos x, cos x),b (sin x, 2cos x),
函数f
(x)
a
b
2
b
5sin(2x ) 7
62
(2)当 x 时,求函数f ( x)的值域。
6
2
解:(2)当 x 时, 2x ( , 7 )
函sin数(26f x( x)的6 )值2域(为12(,11,)1,7)故。6f
3.2简单的三角恒等变换课件人教新课标
[类题尝试] 已知函数 f(x)=sin2x-sin2x-π6,x∈R. (1)求 f(x)的最小正周期;
(2)求 f(x)在区间-π3,π4上的最大值和最小值. 解:(1)由已知,有 f(x)=1-c2os 2x-1-cos22x-π3 =12
12cos
2x+
3 2 sin
2x
-
1 2
cos
2x =
6 A. 6
B.-
6 6
30 C. 6
D.-
30 6
解析:由题意知α2∈0,π2,所以 cos α2>0,
α2=
1+cos 2
α=
30 6.
答案:C
3.已知 cos α=35,α∈32π,2π,则 sin α2等于(
)
A.
5 5
B.-
5 5
4
25
C.5
D. 5
解析:由题知α2∈34π,π,所以 sin α2>0,
2 θ 2
=
1 θθ
cos 2sin 2
=sin2 θ=右边.
所以原式成立.
法二 左边=((1+1+sinsiθn-θ+cocsoθs)θ)2+((1+1+sisninθθ-+cocsosθθ))2
=2((11++ssiinn
θ)2+2cos2 θ θ)2-cos2 θ
=2si4n+θ+4s2insiθn2 θ
1.半角公式
[知识提炼·梳理]
温馨提示 对于半角公式,要求会推导,不要求记忆.
2.辅助角公式
asin x+bcos x=
a2+b2sin(x+φ)cos φ=
a a2+b2,
sin φ= a2b+b2,其中 φ 称为辅助角,它的终边所在象
高中数学必修4第三章3.2简单的三角恒等变换
一、复习:两角和的正弦、余弦、正切公式:
sin sin cos cos sin
cos cos cos sin sin
tan
tan tan 1 tan tan
二sin 2 2sin cos
=3(cosx 2)2 1 33
又 x 2 , 1 cosx 1 ,
3 当x= 2
3
32
时,(cosx) min
1 2
,
y2max=145
;
当x=
3
时,(cosx) max
1 2
, ymin=
1 4.
七、y (a sinx+cosx)+bsinxcosx型
例7 求函数y sinx+cosx+sinxcosx的最值. <分析>注意到(sinx+cosx)2=1 2sinxcosx.可把sinx+cosx
sin2 1 cos 2
2
降幂升角公式
二、讲授新课:
例1.试以cos表示sin2 ,cos2 ,tan2 .
2
2
2
半角公式
sin 1 cos ,
2
2
cos 1 cos ,
2
2
tan 1 cos .
符号由α所在象限决定. 2
1 cos
2
1.半角公式
sin 1 cos
分析:要求当角取何值时,矩形ABCD的面积 S最大, 可分二步进行. ①找出S与之间的函数关系; ②由得出的函数关系,求S的最大值.
解 在Rt△OBC中,OB=cos,BC=sin 在Rt△OAD中,
简单的三角恒等变换
学习目标 要点疑点 深入探究 课堂检测
填要点·记疑点
以此为依据选择可以联系它们的适当公式进行转化变形,是三 角恒等变换的重要特点.例如,在二倍角公式中 2α 是 α 的二倍, α 是α2的二倍,那么 cos α 能用α2的三角函数表示出来吗?反过来, 你能用 cos α 表示出 sin2α2,cos2α2,tan2α2吗?
学习目标 要点疑点 深入探究 课堂检测
深入探究
反思与感悟 研究形如 f(x)=asin2ωx+bsin ωxcos ωx+ccos2ωx 的性质时,先化成 f(x)= a2+b2sin(ωx+φ)+c 的形式再解答.
学习目标 要点疑点 深入探究 课堂检测
课堂检测
跟 踪 训 练 2 已 知 函 数 f(x) = 3 sin 2x-π6 + 2sin2 x-1π2 (x∈R).
学习目标 要点疑点 深入探究 课堂检测
深入探究
(2)求函数 f(x)在区间π8,34π上的最小值和最大值. 解 因为 f(x)= 2sin2x-π4在区间π8,38π上为增函数,在区间 38π,34π上为减函数,又 fπ8=0,f38π= 2, f34π= 2sin32π-π4=- 2cos π4=-1, 故函数 f(x)在区间π8,34π上的最大值为 2,最小值为-1.
要点疑点 深入探究 课堂检测
和一些简单的应用.
填要点·记疑点
1.半角公式
(1)S 2
:sin
α2= ±
(2)C :cos 2
α2=
±
1-cos α 2;
1+cos α 2;
学习目标 要点疑点 深入探究 课堂检测
填要点·记疑点
±
(3)T :tan 2
α2=
高中数学必修四课件§3-2 简单的三角恒等变换课件
号决定,φ 与点(a,b)同象限.( √ )
3.sin x+ 3cos x=2sinx+π6.( × )
提示
sin x+
3cos
x=212sin
x+
3 2 cos
x=2sinx+π3.
2 题型探究
PART TWO
题型一 应用半角公式求值
例1
已知 sin θ=45,52π<θ<3π,求 cos
2θ和 tan
要证原式,可以证明11+ +ssiinn
4θ-cos 4θ+cos
44θθ=1-2tatnanθ2θ.
∵左边=sin sin
4θ+1-cos 4θ+1+cos
4θ= 2sin 4θ 2sin
2θcos 2θcos
2θ+2sin22θ 2θ+2cos22θ
= 2sin 2cos
2θcos 2θsin
2θ+sin 2θ+cos
知识点二 辅助角公式
辅助角公式:
asin x+bcos x=
a2+b2sin(x+θ).其中tan
θ=ba
思考辨析 判断正误
SI KAO BIAN XI PAN DUAN ZHENG WU
1.若 α≠kπ,k∈Z,则 tan
α2=1+sicnoαs
1-cos α
= α
sin α
恒成立.(
√
)
2.辅助角公式 asin x+bcos x= a2+b2sin(x+φ),其中 φ 所在的象限由 a,b 的符
跟踪训练 2
1-sin 化简:
α-cos
αsin
α2+cos
α 2(-π<α<0).
2-2cos α
解
人教A版高中数学必修四课件第三章3.2简单的三角恒等变换(共31张)
跟踪训练 2 已知函数 f(x)= 3sin2x-π6+2sin2x-1π2 (x∈R). (1)求函数 f(x)的最小正周期;
(2)求使函数 f(x)取得最大值的 x 的集合.
∴OA=
33DA=
33BC=
3 3 sin
α,
∴AB=OB-OA=cos
α-
3 3 sin
α.
设矩形 ABCD 的面积为 S,则 S=AB·BC
=cos
α-
3 3 sin
αsin
α=sin
αcos
α-
33sin2α
=12sin
2α-
63(1-cos
2α)=12sin
2α+
3 6 cos
2α-
3 6
前置学习
1.半角公式
1-cos α (1)S :sin α2=_±________2____;
2
1+cos α (2)C :cos α2=_±________2____;
2
1-cos α (3)T :tan α2=_±_____1_+__c_o_s_α_ (无理形式)
2
sin α
1-cos α
=_1_+__c_o_s__α__=___s_in__α____(有理形式).
3.2 简单的三角恒等变换
高一必修4
本节目标
1.能用二倍角公式导出半角公式以及万能公式,体会其中的三角恒等变换的 基本思想方法,以及进行简单的应用. 2.了解两角和与差的正弦、余弦公式导出积化和差、和差化积公式的基本方 法.理解方程思想、换元思想在整个变换过程中所起的作用. 3.了解三角恒等变换的特点、变换技巧,掌握三角恒等变换的基本思想方法, 能利用三角恒等变换对三角函数式化简、求值以及三角恒等式的证明和一些简 单的应用.
第四节 简单的三角恒等变换 课件(共106张PPT)
2.给值求值问题的解题策略 已知某些角的三角函数值,求另外一些角的三角函数值. 解题关键:把“所求角”用“已知角”表示. (1)当“已知角”有两个时, “所求角”一般表示为两个“已知角”的和或差 的形式或者和或差的二倍形式; (2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和、差或 倍数关系,然后应用诱导公式、和差公式、倍角公式求解.
(2)cos 40°+cos 60°+cos 80°+cos 160°=________.
[解析]
解法一:cos
20°cos
40°·cos
80°=sin
20°cos
20°cos 40°cos sin 20°
80°
1
=2sin
40°cos 40°cos sin 20°
80°
=14sins8in0°2c0o°s 80°
θ .
cos2
cos2
∵0<θ<π,∴0<2θ<π2,∴cos2θ>0,∴原式=-cos θ.
2.证明:cos θ-cos φ=-2sin
θ+φ 2 sin
θ-φ 2.
[证明] 因为θ=θ+2 φ+θ-2 φ,φ=θ+2 φ-θ-2 φ,
所以cos θ-cos φ
=cosθ+2 φ+θ-2 φ-cosθ+2 φ-θ-2 φ
第四章 三角函数 解三角形
第四节 简单的三角恒等变换
[复习要点] 能运用两角和与差的正弦、余弦、正切公式以及二倍角的正弦、 余弦和正切公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但 对这三组公式不要求记忆).
理清教材•巩固基础
知识点 半角公式(不要求记忆)
1-cos α 1.sin α2=_±_______2____;
3.2简单的三角恒等变换
数学C1版课件人教版必修4 第三章3.2 简单的三角恒等变换优思教辅共享课件分享人:教员–黄钟吕CONTENTS 半角公式的应用01积化和差、和差划积公式的应用02三角恒等式的证明03目录角的构造技巧与公式的灵活运用0405向量与三角知识的综合运用3.2简单的三角恒等变换重点:①半角的正弦、余弦、正切公式及推导.②积化和差公式及和差化积公式的推导.难点:公式的运用.1.半角公式、和积互化公式不要求记忆,要求能够结合题目特点选用公式.若想记忆公式可参照下列口诀:(1)半角公式无理半角常戴帽,半角确定帽前号;数1余弦加减连,余弦用加正弦减,半角正切不用记,同角弦切有关系.若要不用符号式,分母正弦分子减.(2)和差化积公式正和正余弦、正差正后迁、余加余弦积、余减反正弦.(3)积化和差公式正余正弦和,余正正弦差,余积余弦和,正积反余差.注:“反”即添负号换名称.2.倍角公式、半角公式与和(差)角公式的内在联系:3.注意下列问题(1)应用半角公式注意正负号的确定,半角公式根号前的正负号由α2所在的象限确定,能避免开方的尽量避免.(2)注意理解简单的三角变换的思路:①观察不同三角函数式结构形式方面的差异;②观察不同三角函数式所包含的角的差异,以及这些角的三角函数种类方面的差异.③依据“差异”选取变换途径及公式.(3)根据实际问题选用公式时,应从以下几个方面加以考虑:①运用公式之后,能否出现特殊角;②运用公式之后,能否进行提取公因式,能否约分,能否合并或消项;③运用公式之后,能否使三角函数式结构更加简单,各种关系更加明显,从而为下一步选用公式进行变换创造条件.(4)在应用和差化积公式时,必须是一次同名三角函数方可施行,若是异名,必须用诱导公式化为同名,若是高次函数,必须用降幂公式降为一次.对于三角函数的和差化积,有时因使用公式不同或选择解题的思路不同,化积结果可能不一致.引入辅助角公式也是一种化积公式,在解题中有广泛应用.[例1] 化简:1+sin θ-cos θ1+sin θ+cos θ+1+sin θ+cos θ1+sin θ-cos θ.[解析] 解法一:∵tan θ2=1-cos θsin θ=sin θ1+cos θ=1+sin θ-cos θ1+sin θ+cos θ, ∴1tan θ2=1+sin θ+cos θ1+sin θ-cos θ∴原式=tan θ2+1tan θ2=sin θ2cos θ2+cos θ2sin θ2=1cos θ2sin θ2=2sin θ.解法二:原式=2sin 2θ2+2sin θ2cosθ22cos 2θ2+2sin θ2cosθ2+2cos 2θ2+2sin θ2cos θ22sin 2θ2+2sin θ2cos θ2=sin θ2cos θ2+cos θ2sin θ2=1cos θ2sin θ2=2sin θ.解法三:原式=(1+sin θ-cos θ)2+(1+sin θ+cos θ)2(1+sin θ+cos θ)(1+sin θ-cos θ)=2(1+sin θ)2+2cos 2θ(1+sin θ)2-cos 2θ=4+4sin θ2sin θ+2sin 2θ=2sin θ.已知3π2<θ<2π,化简1+sin θ-1-sin θ=______.[解析] 原式=|sin θ2+cos θ2|-|sin θ2-cos θ2|,∵3π2<θ<2π,∴3π4<θ2<π,从而sin θ2+cos θ2<0,sin θ2-cos θ2>0, 则原式=-(sin θ2+cos θ2)-(sin θ2-cos θ2) =-2sin θ2.[例2] 已知cos α=35,α的终边在第四象限,求sin α2,cos α2,tan α2的值.[解析] 因为α是第四象限的角,所以 2k π+3π2<α<2k π+2π(k ∈Z )k π+3π4<α2<k π+π(k ∈Z ), 当k 为偶数时,α2是第二象限角, 此时,sin α2=1-cos α2=55,cos α2=-1+cos α2=-255; tan α2=-1-cos α1+cos α=-12;当k 为奇数时,α2是第四象限角,此时, sin α2=-1-cos α2=-55, cos α2=1+cos α2=255, tan α2=-1-cos α1+cos α=-12.已知|cos θ|=35,且5π2<θ<3π,则sin θ2=________,cosθ2=________,tan θ2=________.[答案] -255 -552[解析] ∵|cos θ|=35,5π2<θ<3π, ∴cos θ=-35,5π4<θ2<3π2. ∵cos θ=1-2sin 2θ2,∴sin θ2=-1-cos θ2=-1+352=-255. 又cos θ=2cos 2θ2-1,有cos θ2=-1+cos θ2=-55.∴tan θ2=sin θ2cos θ2=2.[例3]化简求值(1)求sin10°·sin30°·sin50°·sin70°的值;(2)求sin75°-sin15°的值.[解析](1)解法一:原式=-14(cos60°-cos40°)sin70°=-18sin70°+14sin70°cos40°=-18sin70°+18(sin110°+sin30°)=-18sin70°+18sin70°+116=116.解法二:原式=12cos20°cos40°cos80°=sin20°cos20°cos40°cos80°2sin20°=sin40°cos40°cos80°4sin20° =sin80°cos80°8sin20°=sin160°16sin20°=116.(2)解法一:sin75°-sin15°=2cos45°sin30° =2×22×12=22.解法二:sin75°-sin15°=cos15°-sin15° =2⎝⎛⎭⎪⎪⎫cos15°×22-sin15°×22 =2cos(15°+45°)=2cos60°=2×12=22.已知cos α-cos β=12,sin α-sin β=-13,则sin(α+β)的值为________.[答案] 1213[分析] 对于这类题目,前面我们曾用两边平方相加减产生过cos(α±β),但sin(α+β)的展开式为异名积,因此不能用前面用过的方法.如果两个等式分别用和差化积公式变形,再相除可得tan α+β2的值,进而可求sin(α+β)的值.[解析] ∵cos α-cos β=12,∴-2sin α+β2sin α-β2=12.①∵sin α-sin β=-13,∴2cos α+β2sin α-β2=-13.②①÷②得-tan α+β2=-32.∴tan α+β2=32. ∴sin(α+β)=2sin α+β2cos α+β2sin 2α+β2+cos 2α+β2=2tan α+β21+tan 2α+β2=2×321+94=1213.[例4] 证明:tan 3x 2-tan x 2=2sin xcos x +cos2x .[解析] 解法一:2sin x cos x +cos2x =sin xcos 3x 2cos x 2=sin ⎝ ⎛⎭⎪⎫3x 2-x 2cos 3x 2cos x 2=sin 3x 2cos x 2-cos 3x 2sin x 2cos 3x 2cos x 2=sin 3x 2cos 3x 2-sinx 2cos x 2=tan 3x 2-tan x 2.解法二:tan 3x 2-tan x 2=sin 3x 2cos 3x 2-sin x 2cos x 2=sin 3x 2·cos x 2-cos 3x 2·sin x 2cos 3x 2cos x 2=sin ⎝ ⎛⎭⎪⎫3x 2-x 2cos 3x 2cos x 2=sin x cos 3x 2cos x 2=2sin xcos x +cos2x .求证:cos2x +cos2y 1+cos2(x +y )=cos(x -y )cos(x +y ).[证明] 左边=2cos(x +y )cos(x -y )2cos 2(x +y )=cos(x -y )cos(x +y )=右边.[例5]设A、B、C是△ABC的三个内角,求证:sin2A+sin2B+sin2C=4sin A sin B sin C.[分析]左和右积,故考虑和差化积,然后利用A+B=π-C转化.[证明]∵A+B+C=π,∴sin C=sin[π-(A+B)]=sin(A+B).∴原式左边=2sin(A+B)cos(A-B)+sin2[π-(A+B)]=2sin(A+B)[cos(A-B)-cos(A+B)]=2sin C·(-2)sin A·sin(-B)=4sin A sin B sin C=右边.在△ABC中,求证:cos A+cos B+cos C=1+4sin A2sinB2sinC2.[证明] ∵A +B =π-C , ∴cos A +B 2=sin C 2,cos(A +B )=-cos C ,左边=2cos A +B 2cos A -B 2-cos(A +B )=2cos A +B 2(cos A -B 2-cos A +B 2)+1=1+2sin C 2·(-2)·sin A 2·sin(-B 2) =1+4sin A 2sin B 2sin C 2=右边.[例6]求sin210°+cos240°+sin10°cos40°的值.[分析]从不同的观察角度入手,可产生不同的解题思路.①从特殊角入手,∵40°=30°+10°,这样整个式子中只含10°角的正余弦,便于化简有解法一.②从平方关系sin2α+cos2α=1入手,可构造对偶式,这样两式相加减都容易化简,有解法二.③平方可降幂,积可化和差,然后由变形后的式子考虑下步变形方法有解法三.④从a 2+b 2+ab 入手考虑完全平方式(a +b )2,化同名,和差化积可产生特殊角,故有解法四.[解析] 解法一:因为40°=30°+10°,于是原式=sin 210°+cos 2(30°+10°)+sin10°cos(30°+10°)=sin 210°+⎝ ⎛⎭⎪⎪⎫32cos10°-12sin10°2+sin10° ·⎝ ⎛⎭⎪⎪⎫32cos10°-12sin10°=34(sin 210°+cos 210°)=34.解法二:设x =sin 210°+cos 240°+sin10°cos40°,y =cos 210°+sin 240°+cos10°sin40°,则x +y =1+1+sin10°cos40°+cos10°sin40°=2+sin50°=2+cos40°x -y =cos80°-cos20°-12=-sin50°-12=-cos40°-12,因此,2x =32,x =34.解法三:原式=1-cos20°2+1+cos80°2+12(sin50°-sin30°)=1+12(cos80°-cos20°)+12sin50°-14=34+12(-2sin50°sin30°)+12sin50°=34.解法四:原式=(sin10°+cos40°)2-sin10°·cos40°=(cos80°+cos40°)2-sin10°·cos40°=(2cos60°·cos20°)2-12(sin50°-sin30°)=1+cos40°2-12cos40°+14=34.解法五:令sin10°=a +b ,cos40°=a -b ,则a =12(sin10°+cos40°)=12(sin10°+sin50°)=sin30°cos20°=12cos20°,b =12(sin10°-cos40°)=12(sin10°-sin50°)=cos30°sin(-20°)=-32sin20°.原式=(a +b )2+(a -b )2+(a +b )(a -b )=3a 2+b 2=34cos 220°+34sin 220°=34.[点评]解法一:通过对该题中两个角的特点分析,巧妙地避开了和差化积与积化和差公式.当然运用降次、和积互化也是一般方法.解法二:利用正余弦函数的互余对偶,构造对偶式,组成方程组,解法简明.解法五:运用代数中方程的方法,将三角问题代数化处理,解法新颖别致,不拘一格,体现了数学的内在美.在此基础上,通过分析三角函数式中的角度数之间的特定关系,作推广创新.求值:sin220°+cos280°+3sin20°cos80°=________.[答案]1 4[解析]令x=sin220°+cos280°+3sin20°cos80°y=cos220°+sin280°+3cos20°sin80°,则x+y=2+3sin100°,x -y =-cos40°+cos160°-32=-2sin100°sin60°-32=-3sin100°-32,∴x =14.自己试解下列各题并总结你的解题体会. ①求sin 220°+cos 250°+sin20°cos50°的值; 求cos 273°+cos 247°+cos47°cos73°的值;②求sin 2α+cos 2(α+30°)+sin αcos(α+30°)的值; 求cos 2α+sin 2(α+30°)-cos αsin(α+30°)的值;③求sin2α+cos2(α+60°)+3sinαcos(α+60°)的值;求cos2α+sin2(α+60°)-3cosαsin(α+60°)的值;④若x+y=2kπ+π3(k∈Z),则sin2x+sin2y+sin x sin y为定值3 4;若x+y=2kπ+2π3(k∈Z),则sin2x+sin2y-sin x sin y为定值34;⑤若sin(β-α)=a2或sin(α+β)=-a2,则sin2α+cos2β+a sinαcosβ=1-14a 2.。
高中数学人教A版必修4课件:3-2简单的三角恒等变换
所以 cos θ=- 1-sin2 ������=-25. 于是
5π 4
7
<
������ 2
<
3π , 2
故 sin 2=-
������
1-cos������ =2
1- -25 2
7
=-5,
4
首页 探究一 探究二 探究三 思维辨析
Z 自主预习 H合作学习 D当堂检测
答案:(1)× (2)× (3)× (4)
.
(
首页 探究一 探究二 探究三 思维辨析
Z 自主预习 H合作学习 D当堂检测
I ZHU YU XI
EZUO XUEXI
ANGTANG JIAN
探究一
5π
用半角公式解决求值问题
24 ������ ������ ������ ������
【例 1】 已知 2 <θ<3π,且 sin θ=25,求 sin 2,cos 2,tan 2,cos 4的 值.
I ZHU YU XI
EZUO XUEXI
ANGTANG JIAN
3.做一做:已知 cos
������ = 2
1 α= ,且 5
α 为锐角,则 sin
������ = 2
,cos
.
解析:∵α∈ 0,
������ ∴2
∈
������ 2
π 0, 4
π 2
,
,
1-cos������ 2
∴sin
cos
������ 2
3.2 简单的三角恒等变换
-1-
首页
Z 自主预习 H合作学习 D当堂检测
I ZHU YU XI
EZUO XUEXI
高中数学 第三单元 三角恒等变换 3.2.2 半角的正弦、余弦和正切课件 新人教B版必修4.pptx
1-cos α 2,
1+cos α 2,
(S )
2
(C )
2
1-cos 1+cos
αα=1+sincoαs
1-cos
= α
sin α
α
.
(T )
2
8
题型探究
9
类型一 应用半角公式求值
例1
若π2<α<π,且 cos α=-35,则 sin 2α=
25 5
.
解析 因为 cos α=1-2sin2α2,
答案
αα
α
tan2α= sin cos
2α=
sin2·2cos α
2 cos2·2cos
2α=1+sincoαs 2
, α
α
αα
tan
2α= sin
2α= sin
2·2sin α
2α=1-sincoαs
α .
cos 2 cos 2·2sin 2
7 答案
梳理 正弦、余弦、正切的半角公式
sin α2= ± cos α2=± tan α2=±
sin α、cos α 都可以表示成 tan 2α=t 的“有理式”,将其代入式子中,
从而可以对式子求值.
11
跟踪训练 1
若 tan θ2+ 1 θ=m,则 sin θ=
2 m
.
tan 2
解析 因为 tanθ2+ 1 θ=m, tan2
即tanta2θ2n+θ2 1=m,所以tanta2θ2n+θ2 1=m1 ,
所以 2sin2α2=1-c2os α=45,
又因为π4<2α<π2,所以
sinα2=2
5
5 .
解析 10 答案
容易推出下列式子:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a Î [0,1]
p (k p, k p + )(k 3
Z)
例4
3 3 已知向量a = (cos x , - sin x ), 2 2
p x x b = (cos , sin ) ,其中 x Î [0, ] ,求函 2 2 2
数f(x)=a·-|a+b|的值域. b
ห้องสมุดไป่ตู้
3 [- , - 1] 2
若函数y=f(x)的图象关于直线x a(a 0) 对称,求a的最小值.
f (x )max =
2+ 2
f (x )min = 1
例2 已知函数f(x)=sin(x+α )+ cos(x-α )为偶函数,求α 的值.
p a = k p - (k 4
Z)
例3 已知函数
f (x ) = 2a cos x ( 3 sin x + cos x ) + a (a > 0)
2
(1)若对任意x∈R都有 f (x ) < 4 成立, 求a的取值范围; p (2)若 f (- ) = 4 ,求关于x的不等式 6 f (x ) > 8 的解集.
3.2 简单的三角恒等变换
第四课时
三角函数中的三角变换问题 (习题课)
例1 已知函数 2 2 f ( x) (sin x cos x) 2cos x (1)求f(x)的最小正周期和单调递减区 间; p (2)当 x Î [0, ] 时,求f(x)的最大值和 2 最小值. p 5p [k p + , k p + ](k Z ) T=π 8 8
f ( x) [2sin( x ) sin x]cos x 3 sin x 3
2
例5 已知函数
amin
12
例6 如图,正方形ABCD的边长为1 , P、Q分别为边AB,DA上的点,当△APQ的 周长为2时,求∠PCQ的大小.
D Q C
45°
A
P
B