恒定磁场的边界条件3 3 矢量磁位
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A A A A B
所以对于给定的B,可引入无数个A。原因是由亥姆霍兹定理, 一个矢量场的性质由该矢量场的散度和旋度唯一地确定,(3.50) 式只定义了矢量场A的旋度,没有定义散度,所以矢量场A是不 确定的。
为了使A是唯一的,令
A0
此时
3.51
A A A 2 2 0
nˆ B1 B2 0JmS
3.49
由H B M
0
,真空中 B1 0 H1 ,介质中 B2 0 H2 0 M
nˆ 0 H1 nˆ (0 H2 0 M ) 0JmS
nˆ 0 H1 nˆ (0 H2 0 M ) 0JmS
由于介质2表面没有传导电流,由(3.44)式 nˆ H1 H2 0
H2
B2
2
所以铁磁质表面处磁力线(磁感应 线)稀少并与界面垂直。
切向无磁力线 在理想导磁体内部仍然存在磁感应强度。
磁导率为无限大 的媒质称为理想导磁体。在理想导磁体
中不可能存在磁场强度,否则,由式 可B见= , H将需要无限
大的磁感应强度。产生无限大的磁感应强度需要无限大的电 流,因而需要无限大的能量,显然这是不可能的。因此,在 理想导磁体中不可能存在磁场强度。因为边界上磁场强度的 切向分量是连续的,可见,在理想导磁体表面上不可能存在 磁场强度的切向分量,换言之,磁场强度必须垂直于理想导 磁体表面。当然,在理想导磁体内部仍然存在磁感应强度。
磁质,边界条件(3.45)式、(3.46)式和(3.48)式仍然成
立。H1t H2t 由(3.46)式
3, .在45与磁B通1n垂直B2的n 界3面.4上6 ,磁感应tt强gg1度2 B是12 连3.48
续的。由于μ2>>μ1,给定B,铁磁质内的磁场强度H2≈0,
由边界条件(3.45)式
H1t=H2t0
A’不满足(3.51)式,使得A是唯一的。所以矢量磁位A是由 (3.50)式和(3.51)式引入的,(3.51)式是一个附加的条件, 称为库仑规范。
所以
3.41
H1 sin1 H2 sin2
由图3.17中可以看出,上式可以写为
H1t H2t 3.45
所以在两种磁介质的分界面上,H的切向分量是连续的。
2. B法向分量的边界条件
在两种磁介质的分界面上作一个极扁的跨过分界面两侧的小
扁状闭合柱面(高h为无穷小),圆柱形高斯面,设底面和顶面 的面积均等于ΔS,由恒定磁场的高斯定理(或应用磁通连续方程): 仿照2.2.1节中D的法向分量边界条件的推导方法可以导出
ÒS B dS 0
Ñ 可得
即: nˆ
或者
s
B
dS B1
B1 nr1S nr S B2
(B1 B2) 0
B2 nr2S nrS 0
3.47
B1n B2n 3.46
故:磁感应强度的法向分量连续
n$
B1
B1t
B1n
B1n
2 112
B2n
B1
B1t
1
2 B2t
B2
B2n B2
面,磁导率分别是1、2 ,两种
介质中的磁场强度分别是H1、H2, 图3.17 H切向分量的边界条件
与分界面法线的夹角分别是θ1, θ2,
单位法线矢量 由介nˆ 质2指向介质
1。在两种磁介质的分界面上作一 个极窄的跨过分界面两侧的矩形 回路ABCDA,这个小矩形回路的 两边平行于分界面,且分居于分 界面两侧,另外两边h垂直穿过分
3.2 恒定磁场的边界条件
3.2.1 两种磁介质界面上的边界条件
在不同磁介质的分界面上,由于 磁介质的磁导率存在突变,而且 在磁介质表面上一般还存在着束 缚电流,因此,B和H在经过分界 面时要发生突变。 B和H在分界面 两侧的变化关系称为B和H在分界 面上的边界条件。 1. H切向分量的边界条件
图3.17是两种磁介质的分界
上式中第二项和第四项积分为零,所以
Ñl H dl H1 l1 H2 l2 H1 H2 l1
sˆ 由图3.17中可以看出 l1 sˆ nˆl , 是回路包围的曲
面ΔS的单位法线矢量,所以上式可以写为
Ñl H dl H1 H2 (sˆ nˆ)l nˆ H1 H2 sˆl 3.41
B2t
3.B线和H线在分界面的折射
界面上无面电流时 仿照2.2.1节中推导(2.86)式的 方法,可以导出B线和H线在分界面 上发生折射的关系式
H 2sin 2 H 1sin 1 B2 cos 2 B1cos 1
B2=μ2H2, B1=μ1H1
tg1 1 tg2 2
3.48
Ò H1 sin1 H2 sin23.2.2 铁磁质表面的边界条B件 dS 约定铁磁质的下标为2,另一种介质的下S 标为1。对于铁
例题3.7 试导出介质表面磁化 电流密度Jms的表达式。 解:设图3.17中介质1是真空,介 质2是磁介质,介质2表面没有传 导电流时,安培环路定理可以写 为
Ñ l B dl 0 Imi i
上式右边是对环路包围的所有磁
化电流求和。用与推导(3.43)式
相同的方法可以导出 nˆ H1 H2 JS 3.43
代入上式可得
nˆ H1 H2 0 3.44
nˆ 0M 0JmS ,
JmS M nˆ
3.3 矢量磁位
3.3.1 矢量磁位A的引入
由·B=0和矢量恒等式·(×A)=0,B可以写为
B A 3.50
A称为矢量磁位,单位是特斯拉·米或韦伯/米。由(3.50) 式定义的A不是唯一的,例如设另一矢量A A ,ψ为 任一标量函数,则
Ñl H dl I0i 3.40
(3.40)式的右边i 可以写为
I0i
i
JS sˆl
沿 sˆ3方.42向 的分量
把(3.41)式和(3.42)式代入(3.40)式可得
nˆ H1 H2 JS 3.43
Ñ 界面上无面电流时
l H dl nˆ H1 H2 sˆl
nˆ H1 H2 Hale Waihona Puke Baidu 0 3.44
界面,且h→0。 AB=CD=l, BDC=DCA0 ,如图3.17中所示。
利用安培环路定理
Ñl H dl I0i 3.40 i
上式的左边可以写为
Ñ H dl l
AB H1 dl
H dl
BDC
CD H2 dl
H dl
DCA
由于矩形回路极窄, BDC=DCA=h 0 ,
所以对于给定的B,可引入无数个A。原因是由亥姆霍兹定理, 一个矢量场的性质由该矢量场的散度和旋度唯一地确定,(3.50) 式只定义了矢量场A的旋度,没有定义散度,所以矢量场A是不 确定的。
为了使A是唯一的,令
A0
此时
3.51
A A A 2 2 0
nˆ B1 B2 0JmS
3.49
由H B M
0
,真空中 B1 0 H1 ,介质中 B2 0 H2 0 M
nˆ 0 H1 nˆ (0 H2 0 M ) 0JmS
nˆ 0 H1 nˆ (0 H2 0 M ) 0JmS
由于介质2表面没有传导电流,由(3.44)式 nˆ H1 H2 0
H2
B2
2
所以铁磁质表面处磁力线(磁感应 线)稀少并与界面垂直。
切向无磁力线 在理想导磁体内部仍然存在磁感应强度。
磁导率为无限大 的媒质称为理想导磁体。在理想导磁体
中不可能存在磁场强度,否则,由式 可B见= , H将需要无限
大的磁感应强度。产生无限大的磁感应强度需要无限大的电 流,因而需要无限大的能量,显然这是不可能的。因此,在 理想导磁体中不可能存在磁场强度。因为边界上磁场强度的 切向分量是连续的,可见,在理想导磁体表面上不可能存在 磁场强度的切向分量,换言之,磁场强度必须垂直于理想导 磁体表面。当然,在理想导磁体内部仍然存在磁感应强度。
磁质,边界条件(3.45)式、(3.46)式和(3.48)式仍然成
立。H1t H2t 由(3.46)式
3, .在45与磁B通1n垂直B2的n 界3面.4上6 ,磁感应tt强gg1度2 B是12 连3.48
续的。由于μ2>>μ1,给定B,铁磁质内的磁场强度H2≈0,
由边界条件(3.45)式
H1t=H2t0
A’不满足(3.51)式,使得A是唯一的。所以矢量磁位A是由 (3.50)式和(3.51)式引入的,(3.51)式是一个附加的条件, 称为库仑规范。
所以
3.41
H1 sin1 H2 sin2
由图3.17中可以看出,上式可以写为
H1t H2t 3.45
所以在两种磁介质的分界面上,H的切向分量是连续的。
2. B法向分量的边界条件
在两种磁介质的分界面上作一个极扁的跨过分界面两侧的小
扁状闭合柱面(高h为无穷小),圆柱形高斯面,设底面和顶面 的面积均等于ΔS,由恒定磁场的高斯定理(或应用磁通连续方程): 仿照2.2.1节中D的法向分量边界条件的推导方法可以导出
ÒS B dS 0
Ñ 可得
即: nˆ
或者
s
B
dS B1
B1 nr1S nr S B2
(B1 B2) 0
B2 nr2S nrS 0
3.47
B1n B2n 3.46
故:磁感应强度的法向分量连续
n$
B1
B1t
B1n
B1n
2 112
B2n
B1
B1t
1
2 B2t
B2
B2n B2
面,磁导率分别是1、2 ,两种
介质中的磁场强度分别是H1、H2, 图3.17 H切向分量的边界条件
与分界面法线的夹角分别是θ1, θ2,
单位法线矢量 由介nˆ 质2指向介质
1。在两种磁介质的分界面上作一 个极窄的跨过分界面两侧的矩形 回路ABCDA,这个小矩形回路的 两边平行于分界面,且分居于分 界面两侧,另外两边h垂直穿过分
3.2 恒定磁场的边界条件
3.2.1 两种磁介质界面上的边界条件
在不同磁介质的分界面上,由于 磁介质的磁导率存在突变,而且 在磁介质表面上一般还存在着束 缚电流,因此,B和H在经过分界 面时要发生突变。 B和H在分界面 两侧的变化关系称为B和H在分界 面上的边界条件。 1. H切向分量的边界条件
图3.17是两种磁介质的分界
上式中第二项和第四项积分为零,所以
Ñl H dl H1 l1 H2 l2 H1 H2 l1
sˆ 由图3.17中可以看出 l1 sˆ nˆl , 是回路包围的曲
面ΔS的单位法线矢量,所以上式可以写为
Ñl H dl H1 H2 (sˆ nˆ)l nˆ H1 H2 sˆl 3.41
B2t
3.B线和H线在分界面的折射
界面上无面电流时 仿照2.2.1节中推导(2.86)式的 方法,可以导出B线和H线在分界面 上发生折射的关系式
H 2sin 2 H 1sin 1 B2 cos 2 B1cos 1
B2=μ2H2, B1=μ1H1
tg1 1 tg2 2
3.48
Ò H1 sin1 H2 sin23.2.2 铁磁质表面的边界条B件 dS 约定铁磁质的下标为2,另一种介质的下S 标为1。对于铁
例题3.7 试导出介质表面磁化 电流密度Jms的表达式。 解:设图3.17中介质1是真空,介 质2是磁介质,介质2表面没有传 导电流时,安培环路定理可以写 为
Ñ l B dl 0 Imi i
上式右边是对环路包围的所有磁
化电流求和。用与推导(3.43)式
相同的方法可以导出 nˆ H1 H2 JS 3.43
代入上式可得
nˆ H1 H2 0 3.44
nˆ 0M 0JmS ,
JmS M nˆ
3.3 矢量磁位
3.3.1 矢量磁位A的引入
由·B=0和矢量恒等式·(×A)=0,B可以写为
B A 3.50
A称为矢量磁位,单位是特斯拉·米或韦伯/米。由(3.50) 式定义的A不是唯一的,例如设另一矢量A A ,ψ为 任一标量函数,则
Ñl H dl I0i 3.40
(3.40)式的右边i 可以写为
I0i
i
JS sˆl
沿 sˆ3方.42向 的分量
把(3.41)式和(3.42)式代入(3.40)式可得
nˆ H1 H2 JS 3.43
Ñ 界面上无面电流时
l H dl nˆ H1 H2 sˆl
nˆ H1 H2 Hale Waihona Puke Baidu 0 3.44
界面,且h→0。 AB=CD=l, BDC=DCA0 ,如图3.17中所示。
利用安培环路定理
Ñl H dl I0i 3.40 i
上式的左边可以写为
Ñ H dl l
AB H1 dl
H dl
BDC
CD H2 dl
H dl
DCA
由于矩形回路极窄, BDC=DCA=h 0 ,