因式分解讲义
因式分解经典讲义(精)
第一章分解因式【知识要点】1 .分解因式(1)概念:把一个化成几个的形式,这种变形叫做把这个多项式分解因式。
(2 )注意:①分解因式的实质是一种恒等变形,但并非所有的整式都能因式分解。
②分解因式的结果中,每个因式必须是整式。
③分解因式要分解到不能再分解为止。
2•分解因式与整式乘法的关系整式乘法是_____________________________________________________ ___分解因式是_____________________________________________________ ___所以,分解因式和整式乘法为________ 系。
3•提公因式法分解因式(1 )公因式:几个多项式____________ 因式。
(2 )步骤:①先确定____________,②后____________________ 。
(3)注意:①当多项式的某项和公因式相同时,提公因式后该项变为1。
②当多项式的第一项的系数是负数时,通常先提出“”号。
4•运用公式法分解因式(1 )平方差公式:_____________________________(2 )完全平方公式:____________________________注:分解因式还有诸如十字相乘法、分组分解法等基本方法,做为补充讲解内容。
【考点分析】考点一:利用提公因式法分解因式及其应用【例1】分解因式:【随堂练习】1 .分解因式:,、小34“23小22(1) 2x y 10x y 2x y32(1) 4m 16m 26 m(2) 2x(y z) 3(y z)2(3)x(x y)(x y) x(x y)(4)(3a 4b)(7a 8b) (11a 12b)(7a 8b)号,再提公因式 2m ;( 2)题的公因式为 y z ;(3) 题的公因式为 x(x y) ;答案:(1) 2m(2m 28 »m13);(3)2xy(x y);【例:2】(1 )已知x y 5, xy 6 ,(2 ?)已知ba 6,ab7,解析:(1) 题:2x2y 2 x y 22xy(x(2)题:a|2bab2a b(a答案:(1) 60(2)42(4)题的公因式为7a 8b 。
因式分解ppt讲义
整式乘法 整式乘法 因式分解
(5).2πR+ 2πr= 2π(R+r)
因式分解
下列代数式从左到右旳变形是因式分解吗?
(1) a2 a a(a 1)
Байду номын сангаас
是
(2)(a 3)(a 3) a2 9
不是
(3)4x2 4x 1 (2x 1)2
不是
(4)x2 3x 1 x(x 3) 1
(5) x2 1 x( x 1 ) x
阐明
• 本课是在学生学习了整式乘法旳基础上,研究对整 式旳一种变形即因式分解,是把一种多项式转化成 几种整式相乘旳形式,它与整式乘法是互逆变形旳 关系.
你能发觉这两组等式之间 旳联络和区别吗? 它们旳左 右两边有何特点?
a(a+1)=__a_2+_a_____
a2+a=( a ) ( a+1)
(a+b)(a-b)=__a_2_-_b_2____ a2 - b2= ( a+b) ( a-b )
a2-2ab+b2=(a-b)2
十字相乘法
要点: 一拆(拆常数项), 二乘(十字相乘),
三验(验证十字相乘后旳和是否等于一次项.
x2 px q
x
a
x
b
x2+Px+q=(x+a)(x+b),其中p=a+b,q=ab
一般环节与注意点
1 一般环节: 先提公因式,再利用公式或十字相乘,后分组分 解,最终是重新整顿再分解.
注意: 1、要分解到不能再分为止,括号内合并同 类项后注意把数字因数提出来。
2、因式分解旳成果是连乘式。 3、因式分解旳成果里没有中括号。
因式分解讲义精讲
教育教学讲义
学员姓名:年级:学科教师:
上课时间:辅导科目:数学课时数:2
课题因式分解
教学目标讲解因式分解的三种方法 1 提取公因式法2用乘法公式因式分解3特殊的因式分解
教学内容
课前检测
知识梳理
6.1因式分解
谁能以最快速度求:当a=101,b=99时,a2-b2的值?
概念.像这样,把一个多项式化成几个整式的积的形式叫因式分解,有时,也把这一过程叫分解因式.
①左边是多项式,右边是整式;②右边是整式的乘积的形式.
1.填空(整式乘法,因式分解)
2.这两种运算是什么关系?(互逆)
图示表示:。
因式分解讲义(适合0基础的)
因式分解知识网络详解:因式分解的基本方法:1、提公因式法——如果多项式的各项有公因式,首先把它提出来。
2、运用公式法——把乘法公式反过来用,常用的公式有下列五个:平方差公式()()22a b a b a b -=+-; 完全平方公式()2222a ab b a b ±+=±; 3、分组分解法——适当分组使能提取公因式或运用公式。
要灵活运用“补、凑、拆、分”等技巧。
4、十字相乘法——))(()(2b x a x ab x b a x ++=+++ 【课前回顾】1.下列从左到右的变形,其中是因式分解的是( )(A )()b a b a 222-=-(B )()()1112-+=-m m m(C )()12122+-=+-x x x x (D )()()()()112+-=+-b ab a b b a a2.把多项式-8a 2b 3+16a 2b 2c 2-24a 3bc 3分解因式,应提的公因式是(),(A )-8a 2bc (B )2a 2b 2c 3(C )-4abc (D )24a 3b 3c 33.下列因式分解中,正确的是()(A )()63632-=-m m m m (B )()b ab a a ab b a +=++2(C )()2222y x y xy x --=-+-(D )()222y x y x +=+4.下列多项式中,可以用平方差公式分解因式的是()(A )42+a (B )22-a (C )42+-a (D )42--a5.下列各式中,能用完全平方公式分解因式的是().(A )4x 2-1(B )4x 2+4x -1(C )x 2-xy +y 2D .x 2-x +6.若942+-mx x 是完全平方式,则m 的值是()(A )3(B )4(C )12(D )±12 经典例题讲解:提公因式法:提公因式法是因式分解的最基本也是最常用的方法。
它的理论依据就是乘法分配律例:22x y xy -()()p x y q y x ---()()x a b y a b +-+变式练习:1.多项式6a 3b 2-3a 2b 2-21a 2b 3分解因式时,应提取的公因式是()A.3a 2bB.3ab 2C.3a 3b 2D.3a 2b 22.如果()222332x y mx x n -+=--,那么()A .m=6,n=yB .m=-6,n=yC .m=6,n=-yD .m=-6,n=-y3.()()222m a m a -+-,分解因式等于()A .()()22a m m --B .()()21m a m --C .()()21m a m -+D .以上答案都不能4.下面各式中,分解因式正确的是()A.12xyz -9x 2.y 2=3xyz(4-3xy)B.3a 2y -3ay+6y=3y(a 2-a+2)C.-x 2+xy -xz=-x(x 2+y -z)D.a 2b+5ab -b=b(a 2+5a)5.若a+b=7,ab=10,则22ab b a +的值应是()A .7B .10C .70D .176.因式分解1.6x 3-8x 2-4x2.x 2y(x -y)+2xy(y -x)3.()()x m ab m x a +-+4.()()()x x x --+-212运用公式法:把我们学过的几个乘法公式反过来写就变成了因式分解的形式: 平方差:)b a )(b a (b a 22-+=-完全平方:222)b a (b 2ab a ±=+±立方和:)b ab a )(b a (b a 2233+-+=+立方差:)b ab a )(b a (b a 2233++-=- 例1.把下列各式分解因式:(1)x 2-4y 2(2)22331b a +- (3)22)2()2(y x y x +--(4)442-+-x x例2.(1)已知2=+b a ,利用分解因式,求代数式222121b ab a ++的值 (2)已知0136422=+--+b a b a ,求b a +。
因式分解-讲义
因式分解(一)-一般方法多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.1.运用公式法在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)a2-b2=(a+b)(a-b);(2)a2±2ab+b2=(a±b)2;(3)a3+b3=(a+b)(a2-ab+b2);(4)a3-b3=(a-b)(a2+ab+b2).下面再补充几个常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);(7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数;(8)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数;(9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数.运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.例1 分解因式:(1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4;(2)x3-8y3-z3-6xyz;(3)a2+b2+c2-2bc+2ca-2ab;(4)a7-a5b2+a2b5-b7.例2 分解因式:a3+b3+c3-3abc.例3 分解因式:x15+x14+x13+…+x2+x+1.2.拆项、添项法因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.例4 分解因式:x3-9x+8.例5 分解因式:(1)x9+x6+x3-3;(2)(m2-1)(n2-1)+4mn;(3)(x+1)4+(x2-1)2+(x-1)4;(4)a3b-ab3+a2+b2+1.3.换元法换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.例6 分解因式:(x2+x+1)(x2+x+2)-12.例7 分解因式:(x2+3x+2)(4x2+8x+3)-90.例8 分解因式:(x2+4x+8)2+3x(x2+4x+8)+2x2.例9分解因式:6x4+7x3-36x2-7x+6.例10 分解因式:(x2+xy+y2)-4xy(x2+y2).1.(2)x10+x5-2;(4)(x5+x4+x3+x2+x+1)2-x5.2.(1)x3+3x2-4;(2)x4-11x2y2+y2;(3)x3+9x2+26x+24;(4)x4-12x+323.3.(1)(2x2-3x+1)2-22x2+33x-1;(2)x4+7x3+14x2+7x+1;(3)(x+y)3+2xy(1-x-y)-1;(4)(x+3)(x2-1)(x+5)-20.4、(1)x2-3xy-10y2+x+9y-2= ;(2)x2-y2+5x+3y+4= ;(3)xy+y2+x-y-2= ;(4)6x2-7xy-3y2-xz+7yz-2z2= ;(5)2x2-7xy-22y2-5x+35y-3= .因式分解(二)--求根法分解因式我们把形如a n x n+a n-1x n-1+…+a1x+a0(n为非负整数)的代数式称为关于x的一元多项式,并用f(x),g(x),…等记号表示,如f(x)=x2-3x+2,g(x)=x5+x2+6,…,当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x)f(1)=12-3×1+2=0;f(-2)=(-2)2-3×(-2)+2=12.若f(a)=0,则称a为多项式f(x)的一个根.定理1(因式定理) 若a是一元多项式f(x)的根,即f(a)=0成立,则多项式f(x)有一个因式x-a.根据因式定理,找出一元多项式f(x)的一次因式的关键是求多项式f(x)的根.对于任意多项式f(x),要求出它的根是没有一般方法的,然而当多项式f(x)的系数都是整数时,即整系数多项式时,经常用下面的定理来判定它是否有有理根.定理2的根,则必有p是a0的约数,q是a n的约数.特别地,当a0=1时,整系数多项式f(x)的整数根均为a n的约数.我们根据上述定理,用求多项式的根来确定多项式的一次因式,从而对多项式进行因式分解.例1 分解因式:x3-4x2+6x-4.例2 分解因式:9x4-3x3+7x2-3x-2.练习二1.用双十字相乘法分解因式:(1)x2-8xy+15y2+2x-4y-3;(2)x2-xy+2x+y-3;(3)3x2-11xy+6y2-xz-4yz-2z2.2.用求根法分解因式:(1)x3+x2-10x-6;(2)x4+3x3-3x2-12x-4;(3)4x4+4x3-9x2-x+2.3.用待定系数法分解因式:(1)2x2+3xy-9y2+14x-3y+20;(2)x4+5x3+15x-9.。
因式分解讲义
到底,应把后三项结合在一起,再应用完全平方公式和平方差公式。
例 2.分解因式: x2 y2 x y ____________
解: x2 y2 x y (x2 y2 ) (x y)
(x y)(x y) (x y) (x y)(x y 1) 说明:前两项符合平方差公式,把后两项结合,看成整体提取公因式。
6 / 12
ac bd 0 原式 0
说明:首先要充分利用已知条件 a2 b2 1,c2 d 2 1 中的 1(任何数乘以 1,其值不变),其次利用 分解因式将式子变形成含有 ac+bd 因式乘积的形式,由 ac+bd=0 可算出结果。
例 3. 分解因式: x3 2x 3 分析:此题无法用常规思路分解,需拆添项。观察多项式发现当 x=1 时,它的值为 0,这就意味着
形后再把条件带入,从而简化计算过程。
例 2. 已知 a b c 0,a 3 b3 c3 0 ,
求证: a5 b5 c5 0 证明: a 3 b3 c3 3abc (a b c)(a 2 b2 c2 ab bc ca) 把 a b c 0,a3 b3 c3 0 代入上式, 可得 abc 0 ,即 a 0或 b 0或 c 0 若 a 0,则b c , a5 b5 c5 0 若 b 0或 c 0 ,同理也有 a5 b5 c5 0 说明:利用补充公式确定 a,b,c 的值,命题得证。
因式分解讲义精讲
教育教学讲义 学员姓名: 年 级: 学科教师: 上课时间:辅导科目:数学 课时数:2 课 a因式分解 教学目标 讲解因式分解的三种方法1提取公因式法2用乘法公式因式分解3特殊的因式分解教学内容课前检测知识梳理6.1 Q 式今解谁能以最快速度求:当a=101 , b=99时,聲・*的值?概念•像这样,把一个多巩式化成几个整式的积的形式叫因式分解.有时■也把这一过程叫分解因式•下列代数式变形中,哪些足因武分解?哪些不是?为什么?①左边是多项式f 右边是整式;②右边是整式的乘积的形式・a( <a+l ) =a?+a;1 }; (a+b ) ( d —b )=^—62;決一bT ( a+5 ) ( a —b ) • 2十2a 十 1=( a+L )3运算运算 1・填空(整式乘法,因式分解) 2・这两种运算是什么关系?(互逆)图示表示:2譏3)3).例2;把下列各式分解因武:(1 ) am+im :(2) a 2-底因式分解・ 3・解决问题•(1 > Ja( O+2 ) (3 > x J -4= (x*2 ) < x-2 );(5 ) &一 (7) zzA 2—( b —2 > ; (9) (2 ) 3a 2+6a=3a( a+2 ):(4 ) x 2—4+3x= ( x4-2、( x —2 ) +3客; (6)x 2-4+3x=( x-h4)(x-1 );(8 ) | J 2=X 2^-2^4(10 )元-4= ( +2)( y/~x~-2 )• 尤耳2+⑴公因式的系数应取各项系数的最大公约数(当系数是整数时)⑵字母取各项的相同字母,且各字母的指数取最低次幕(3)系数和各项系数的最大公约数,公因式可以是数、单项式,也可以是多项式。
一、直接用公式:当所给的多项式是平方差或完全平方式时,可以宜接利用公式法分解因式。
例1、分解因式:(1) x2-9;(2) 9x2-6x+l.二、提公因式后用公式:当所给的多项式中有公因式时,一般要先提公因式,然后再看是否能利用公式法。
因式分解的四种方法(课件讲义).doc
因式分解的四种方法(讲义)课前预习1. 平方差公式:___________________________;完全平方公式:_________________________;_________________________.2. 对下列各数分解因数:210=_________; 315=__________;91=__________; 102=__________.3. 探索新知:(1)39999-能被100整除吗?小明是这样做的:3229999999999199(991)99(991)(991)9998009998100-=⨯-⨯=⨯-=⨯+-=⨯=⨯⨯所以39999-能被100整除.(2)38989-能被90整除吗?你是怎样想的?(3)3m m -能被哪些整式整除?知识点睛1. __________________________________________叫做把这个多项式因式分解.2. 因式分解的四种方法(1)提公因式法需要注意三点:①___________________________;②___________________________;③___________________________.(2)公式法两项通常考虑_____________,三项通常考虑_____________.运用公式法的时候需要注意两点:①___________________________;②___________________________.(3)分组分解法多项式项数比较多常考虑分组分解法,首先找____________,然后再考虑____________或者_____________.(4)十字相乘法十字相乘法常用于二次三项式的结构,其原理是:2()()()x p q x pq x p x q +++=++3. 因式分解是有顺序的,记住口诀:“___________________”;因式分解是有范围的,目前我们是在______范围内因式分解.精讲精练1. 下列由左到右的变形,是因式分解的是________________.①222233x y x y -=-⋅⋅; ②2(3)(3)9a a a +-=-;③22+1()()1a b a b a b -=+-+; ④222()mR mr m R r +=+; ⑤2()x xy x x x y -+=-;⑥24(2)(2)m m m -=+-; ⑦2244(2)y y y -+=-.2. 因式分解(提公因式法):(1)2212246a b ab ab -+;(2)32a a a --+; 解:原式=解:原式=(3)()(1)()(1)a b m b a n -+---;解:原式=(4)22()()x x y y y x ---;(5)1m m x x -+. 解:原式=解:原式=3. 因式分解(公式法):(1)249x -;(2)216249x x ++; 解:原式=解:原式=(3)2244x xy y -+-;(4)229()()m n m n +--; 解:原式=解:原式=(5)22(3)2(3)(43)(43)x y x y x y x y +-+-+-;解:原式=(6)2(25)4(52)x x x -+-;解:原式=(7)228168ax axy ay -+-;(8)44x y -; 解:原式=解:原式=(9)4221a a -+;(10)22222()4a b a b +-. 解:原式=解:原式=4. 因式分解(分组分解法):(1)2105ax ay by bx -+-;(2)255m m mn n --+;解:原式=解:原式=(3)22144a ab b ---;(4)22699a a b ++-; 解:原式=解:原式=(5)2299ax bx a b +--;(6)22244a a b b -+-.解:原式=解:原式=5. 因式分解(十字相乘法):(1)243x x ++;(2)26x x +-; 解:原式=解:原式=(3)223x x -++;(4)221x x +-; 解:原式=解:原式=(5)22512x x +-;(6)2232x xy y +-; 解:原式=解:原式=(7)2221315x xy y ++;(8)3228x x x --. 解:原式=解:原式=6. 用适当的方法因式分解:(1)222816a ab b c -+-;(2)22344xy x y y --; 解:原式=解:原式=(3)22(1)12(1)16a a ---+;(4)(1)(2)12x x ++-;解:原式=解:原式=(5)2(2)8a b ab -+;解:原式=(6)222221x xy y x y -+-++.解:原式=【参考答案】课前预习1. 22()()a b a b a b +-=-222222()2()2a b a ab b a b a ab b +=++-=-+2. 210=7×5×3×2;315=7×5×3×3;91=13×7;102=17×3×23. (2)328989898989-=⨯-289(891)89(891)(891)899088=⨯-=⨯+⨯-=⨯⨯∴38989-能被90整除3223(1)(1)(1)m m m m mm m m m m -=⋅-=-=+-()∴3m m -能被1,m ,m +1,m -1,m (m +1),m (m -1),(m +1)(m -1),m (m +1)(m -1)整除知识点睛1. 把一个多项式化成几个整式的积的形式2. (1)①公因式要提尽②首项是负时,要提出负号③提公因式后项数不变(2)平方差公式,完全平方公式①能提公因式的先提公因式②找准公式里的a 和b(3)公因式,完全平方公式,平方差公式3. 一提二套三分四查,有理数精讲精练1. ④⑥⑦2. (1)6(241)ab a b -+(2)2(1)a a a -+-(3)()()a b m n -+(4)3()x y -(5)1(1)m x x -+3. (1)(23)(23)x x +-(2)2(43)x +(3)2(2)x y --(4)4(2)(2)m n m n ++(5)29(2)x y -(6)(25)(2)(2)x x x -+-(7)28()a x y --(8)22()()()x y x y x y ++-(9)22(1)(1)a a +-(10)22()()a b a b +-4. (1)(5)(2)x y a b --(2)(5)()m m n --(3)(12)(12)a b a b ++--(4)(33)(33)a b a b +++-(5)()(31)(31)a b x x ++-(6)(2)(22)a b a b -+-5. (1)(1)(3)x x ++(2)(3)(2)x x +-(3)(3)(1)x x --+(4)(21)(1)x x -+(5)(4)(23)x x +-(6)()(32)x y x y +-(7)(5)(23)x y x y ++(8)(2)(4)x x x +-6. (1)(4)(4)a b c a b c -+--(2)2(2)y x y --(3)2(5)(3)a a --(4)(2)(5)x x -+(5)2(2)a b +(6)2(1)x y --赠送以下学习资料和倍差倍问题学习目标通过和倍、差倍问题的学习,除了掌握这类问题的解决方法以外,其重点要学习画线段图。
因式分解ppt课件
方式.
完全平方式的条件:(1)多项式是二次三项式;(2)首末
两项是两个数(或式子)的平方且符号相同,中间项是这
两个数(或式子)的积的2 倍,符号可以是“+”,也可以
是“-”.
感悟新知
知5-讲
2. 完全平方公式
两个数的平方和加上(或减去)这两个数
的积的2 倍,等于这两个数的和(或差)的平方.
即:a2±2ab+b2=(a±b)2 .
知4-讲
3. 运用平方差公式分解因式的步骤
一判:根据平方差公式的特点,判断是否为平方差,若负
平方项在前面,则利用加法的交换律把负平方项放在后面;
二定:确定公式中的a和b,除a和b是单独一个数或字母外,
其余不管是单项式还是多项式都必须用括号括起来,表示
一个整体;三套:套用平方差公式进行分解;四整理:将
(2)确定另一个因式,另一个因式即多项式除以公因式所
得的商;
(3)写成积的形式.
感悟新知
知3-讲
特别解读
1. 提公因式法实质上是逆用乘法的分配律.
2. 提公因式法就是把一个多项式分解成两个因式的积的形
式,其中的一个因式是各项的公因式,另一个因式是多
项式除以这个公因式所得的商.
感悟新知
知3-练
例 5 把下列多项式分解因式:
感悟新知
例 3 仔细阅读下面例题,解答问题:
知1-练
例题:已知把x2-4x+m分解因式后有一个因式是x
+3,求其另一个因式及m的值.
解:设另一个因式为x+n,则x2-4x+m=(x+3)(x
+n),即x2-4x+m=x2+(n+3)x+3n.
=-,
+=-,
所以
解得
=-.
因式分解ppt(共22张PPT)
规律总结
• 对多项式分解因式与整式乘法是方向相反的两种恒等变 形.
• 整式的乘法运算是把几个整式的积变为多项式的形式,
特征是向着积化和差的形式发展;
• 多项式的分解因式是把一个多项式化为几个整式乘积的
形式,特征是向着和差化积的形式发展.
• 因式分解要注意以下几点: 1.分解的对象必须是多项式.
• 把一个多项式化成几个整式的积的形式,这 种变形叫做因式分解。
• 因式分解也可称为分解因式。
因分解的结果要以积的形式表示
2.每个因式必须是整式,且每个因式的次数 都要低于原多项式的次数。
3.必须分解到每个多项式不能分解为止(具 体由所在的数集决定)。
想一想: 因式分解与整式乘法有什么联系?
2.分解的结果一定是几个整式的乘积的形式.
2:计算
(1) 8728713 (2) 1012992
=87(87+13) =8700
=(101+99)(101-99) =200×2 =400
3.若 x101,y99则 x22xyy2_ 4_
动脑筋
n2+n是奇数还是偶数?
2517-532能被120整除吗? 若n是整数,证明 (2n+1)2-(2n-1)2是8的倍数.
多项式的因式分解与整式乘法是方向相反的恒等式.
整式乘法
3x(x-1)= _____
(3).(5a-1) =25a -10a+1 解: ab-ac=a(b-c)
a(a+1)(a-1) a3-a=a(a+1)(a-1)
2
2
整式乘法
答: 由a(a+1)(a-1)得到a3-a的变形是整式乘法,由a3-a得到a(a+1)(a-1)的变形是把一个多项式化成几个整式的积的形式.
因式分解ppt课件
观察多项式的系数,可以发现其中的规律和特点,有助于因式分解的进行。
ห้องสมุดไป่ตู้
寻找公因式或公因子
提取公因式
通过观察多项式的各项,可以发现其 中的公因式,提取公因式是因式分解 的一种常用方法。
寻找公因子
在某些情况下,多项式中可能存在公 因子,通过寻找公因子可以简化因式 分解的过程。
灵活运用公式和分组方法
利用公式进行因式分解
在数学中存在许多公式可以用于因式分解,如平方差公式、 完全平方公式等,利用这些公式可以简化因式分解的过程。
分组方法
对于一些复杂的多项式,可以将其分组进行因式分解,这样 可以更好地理解和处理多项式。
04
因式分解的应用实例分析
代数式的化简与求值
代数式的化简
通过因式分解,可以将复杂的代数式 化简为简单的形式,便于计算和理解 。
$ax^n + bx^{n-1} + \ldots + y = a(x^m)^n + b(x^m)^{n-1} + \ldots + y$
因式分解的意义
01
02
03
简化计算
因式分解可以简化多项式 的计算过程,提高计算效 率。
便于应用
因式分解在解决实际问题 中具有广泛应用,如解方 程、求根、不等式等。
分组分解法
总结词
将多项式分组进行因式分解
详细描述
分组分解法是将多项式中的某些项进行分组,然后对每组进行因式分解的方法。这种方法可以简化多项式的结构 ,使其更容易进行因式分解。
03
因式分解的技巧与策略
观察多项式的结构特点
识别多项式的项数和各项的次数
观察多项式的项数和各项的次数,有助于确定因式分解的策略。
因式分解四种方法(讲义)
因式分解得四种方法(讲义)➢课前预习1.平方差公式:___________________________;完全平方公式:_________________________;_________________________.2.对下列各数分解因数:210=_________; 315=__________;91=__________; 102=__________.3.探索新知:(1)能被100整除吗?小明就是这样做得:所以能被100整除.(2)能被90整除吗?您就是怎样想得?(3)能被哪些整式整除?➢知识点睛1.__________________________________________叫做把这个多项式因式分解.2.因式分解得四种方法(1)提公因式法需要注意三点:①___________________________;②___________________________;③___________________________.(2)公式法两项通常考虑_____________,三项通常考虑_____________.运用公式法得时候需要注意两点:①___________________________;②___________________________.(3)分组分解法多项式项数比较多常考虑分组分解法,首先找____________,然后再考虑____________或者_____________.(4)十字相乘法十字相乘法常用于二次三项式得结构,其原理就是:3.因式分解就是有顺序得,记住口诀:“___________________”;因式分解就是有范围得,目前我们就是在______范围内因式分解.➢精讲精练1.下列由左到右得变形,就是因式分解得就是________________.①; ②;③; ④;⑤; ⑥;⑦.2.因式分解(提公因式法):(1); (2);解:原式= 解:原式=(3);解:原式=(4); (5).解:原式= 解:原式=3.因式分解(公式法):(1); (2);解:原式= 解:原式=(3); (4);解:原式= 解:原式=(5);解:原式=(6);解:原式=(7); (8);解:原式= 解:原式=(9); (10).解:原式= 解:原式=4.因式分解(分组分解法):(1); (2);解:原式= 解:原式=(3); (4);解:原式= 解:原式=(5); (6).解:原式= 解:原式=5.因式分解(十字相乘法):(1); (2);解:原式= 解:原式=(3); (4);解:原式= 解:原式=(5); (6);解:原式= 解:原式=(7); (8).解:原式= 解:原式=6.用适当得方法因式分解:(1); (2);解:原式= 解:原式=(3); (4);解:原式= 解:原式=(5);解:原式=(6).解:原式=【参考答案】➢课前预习1.2.210=7×5×3×2;315=7×5×3×3;91=13×7;102=17×3×23.(2)∴能被90整除∴能被1,m,m+1,m-1,m(m+1),m(m-1),(m+1)(m-1),m (m+1)(m-1)整除➢知识点睛1.把一个多项式化成几个整式得积得形式2.(1)①公因式要提尽②首项就是负时,要提出负号③提公因式后项数不变(2)平方差公式,完全平方公式①能提公因式得先提公因式②找准公式里得a与b(3)公因式,完全平方公式,平方差公式3.一提二套三分四查,有理数➢精讲精练1.④⑥⑦2.(1)(2)(3)(4)(5)3.(1)(2)(3)(4)(5)(6)(7)(8)(9)(10) 4.(1)(2)(3)(4)(5)(6) 5.(1)(2)(3)(4)(5)(6)(7)(8) 6.(1)(2)(3)(4)(5)(6)。
因式分解-讲义--资料
因 式 分 解类型二、公式法1、利用平方差公式因式分解:()()b a b a b a -+=-22注意:①条件:两个二次幂的差的形式;②平方差公式中的a 、b 可以表示一个数、一个单项式或一个多项式;③在用公式前,应将要分解的多项式表示成22b a -的形式,并弄清a 、b 分别表示什么。
例如:分解因式:(1)291x -; (2)221694b a -; (3)22)(4)(n m n m --+2、利用完全平方公式因式分解:()2222b a b ab a ±=+± 注意:①是关于某个字母(或式子)的二次三项式;②其首尾两项是两个符号相同的平方形式;③中间项恰是这两数乘积的2倍(或乘积2倍的相反数);④使用前应根据题目结构特点,按“先两头,后中间”的步骤,把二次三项式整理成 222)(2b a b ab a ±=+±公式原型,弄清a 、b 分别表示的量。
例如:分解因式:(1)2961x x +-; ⑵ 36)(12)(2+---n m n m 1682++x x典型例题:例1 用平方差公式分解因式:(1)22)(9y x x -+-; (2)22331n m - 说明 因式分解中,多项式的第一项的符号一般不能为负;分数系数一般化为整系数。
例2 分解因式:(1)ab b a -5;(2))()(44n m b n m a +-+. 说明 将公式法与提公因式法有机结合起来,先提公因式,再运用公式.例3 判断下列各式能否用完全平方公式分解因式,为什么?(1)962+-a a ; (2)982+-x x ; (3)91242--x x ; (4)223612y x xy ++-. 说明 可否用公式,就要看所给多项式是否具备公式的特点.例4 把下列各式分解因式:⑴ 442-+-x x ; ⑵ 22914942y x xy -- ⑶ mn n m 4422+-- 说明:在使用完全平方公式时,要保证平方项前的符号为正,当平方项前的符号是负号 时,先提出负号.例5 分解因式:⑴ 22363ay axy ax ++. ⑵ 22222)(624b a b a +-说明 ⑴分解因式时,首先考虑有无公因式可提,当有公因式时,先提再分解. ⑵分解因式必须进行彻底,直至每个因式都不能再分解为止.例6 分解因式:⑴ 22)(9))(2(6)2(n m n m m n n m +++---;⑵ 4224168b b a a +-;⑶ 1)2(2)2(222++++m m m m .⑷ 63244914b b a a +- ⑸ 1)2(6)2(92+---b a b a说明 在运用完全平方公式的过程中,再次体现换元思想的应用,可见换元思想是重 要而且常用思想方法,要真正理解,学会运用.例7 若25)4(22+++x a x 是完全平方式,求a 的值. 说明 根据完全平方公式特点求待定系数a ,熟练公式中的“a 、b ”便可自如求解.例8 已知2=+b a ,求222121b ab a ++的值. 说明 将所求的代数式变形,使之成为b a +的表达式,然后整体代入求值.例9 已知1=-y x ,2=xy ,求32232xy y x y x +-的值. 说明 这类问题一般不适合通过解出x 、y 的值来代入计算,巧妙的方法是先对所求的代数式进行因式分解,使之转化为关于xy 与y x -的式子,再整体代入求值.例10 证明:四个连续自然数的积加1,一定是一个完全平方数.说明 可用字母表示出四个连续自然数,通过因式分解说明结果是完全平方数.例11 已知x 和y 满足方程组⎩⎨⎧=-=+346423y x y x ,求代数式2249y x -的值。
七年级下-数学-因式分解-讲义
定义:把一个多项式化成几个整式的积的形式因式分解的意义与整式乘法的关系:互逆提取公因式法:)(c b a m mc mb ma ++=++因式分解的主要方法 平方差公式:()()b a b a b a -+=-22 因式分解 公式法完全平方公式:()2222b ab a b a +±=±因式分解的一般步骤:先看能否用提取公因式,再看能否用公式法因式分解的应用4.1 因式分解知识点:一般地,把一个多项式化成几个整式的积的形式,叫做因式分解,也叫分解因式。
考点①:判断因式分解。
关键:1、等式右边是几个整式乘积的形式2、是否分解彻底;3、用整式乘法来检验因式分解的正确性。
例1:下列各式从左到右的变形中,是因式分解的是()A. ()2132-22+-=+x x x B. ()()111222-+=-+xy xy xy y x C. ()x x y xy y x -=-2233 D. ()()y x y x y x 32329422++-=+- 例2:检验下列因式分解是否正确.(1) ()()1212122+-=-a a a(2) ()()3393-+=-x x x x x(3) ()()3824112++=+-m m m m(4) ()()y x y x y xy x +-=-+2222 考点②:已知因式或其中一个因式,求原多项式的系数。
关键:1、将因式的乘积用整式乘法做化简,再与原多项式一项一项对比。
2、若只知一个因式,则将另一个因式设为类似mx-n 的形式,再与已知因式相乘做化简,最后与原多项式对比。
例1:若()()43--x x 是多项式122+-ax x 分解因式的结果,则a 的值是______. 例2:若()3-x 是多项式122+-ax x 分解因式的结果,则a 的值是______. 例3:若()3-x 是多项式a x x +-72分解因式的结果,则a 的值是______.例4:甲、乙两名同学分解因式b ax x++2时,甲看错了b ,分解结果为()()42++x x ;乙看错了a ,分解结果为()()91++x x ,则.____=-b a考点③:将考点②反过来,已知原多项式和它的因式分解的其中一个因式,求另一个因式.例1:()ab aby abx ab 749147-=+--,括号里应填()A . y x 721++- B. y x 72-1+- C. y x 7-2-1 D. y x 721-+例2:已知将122-+x x 因式分解得到的一个因式是()3-x ,另一个因式是_________.考点④:利用因式分解简单计算.例1:(1)2012012- (2)223565-4.2 提取公因式法知识点一:公因式1. 一般地,一个多项式中每一项都含有的相同的因式,叫做这个多项式各项的公因式.2. 多项式各项的公因式应是各项系数的最大公约数与各项都含有的相同字母的最低次幂的积.知识点二:提取公因式法3. 如果一个多项式的各项含有公因式,那么可把该公因式提取出来进行因式分解,这种方法叫做提取公因式法。
《因式分解》ppt课件
出错。
常见错误及纠正方法
分解不彻底
有些学生在因式分解时,不能完全将多项式转化为整式的 积的形式。应指导学生检查每一步的分解是否正确,并确 保所有项都已正确分解。
误用公式
学生在使用公式法进行因式分解时,可能会误用公式。应 确保学生理解并记住正确的公式,并能够正确应用。
在几何图形中,通过因式分解可以计算图形的面积和周长,特别 是在处理一些不规则图形时。
分割与拼接图形
通过因式分解的方法,可以将一个几何图形分割成若干个简单图形, 或者将若干个简单图形拼接成一个复杂的图形。
解决几何问题
因式分解在解决一些几何问题中也有应用,如证明勾股定理、解决 几何图形的面积和体积等问题。
在解方程中的应用
分解因式解方程
对于一些一元二次方程,可以通过因式分解的方 法来求解,简化计算过程。
判断根的性质
通过因式分解,可以判断一元二次方程根的性质, 如根的和与积、根的判别式等。
解决代数问题
因式分解在解代数方程中有着广泛的应用,如求 解一元一次方程、分式方程等。
在几何图形中的应用
面积与周长的计算
THANK YOU
感谢各位观看
题目2: 把下列多项式分解因 式:3x^2 - 6xy + 3y^2。
题目3: 把下列多项式分解因 式:4a^2 - 8ab + 4b^2。
进阶练习题
提升技巧难度
题目2: 把下列多项式分解因式:(2a + b)^2 - (a b)^2。
题目1: 把下列多项式分解因式:(x + 2y)^2 - (x y)^2。
重要性
总结词
因式分解在数学中具有重要意义,是解决许多数学问题的关 键步骤。
因式分解经典讲义【范本模板】
第六讲、分解因式第一部分:方法介绍提公因式法。
:ma+mb+mc=m(a+b+c)1、多项式3222315520m n m n m n +-的公因式是( ) A 、5mn B 、225m n C 、25m n D 、25mn2.把(x -y )2-(y -x )分解因式为( ) A .(x -y )(x -y -1) B .(y -x)(x -y -1) C .(y -x )(y -x -1) D .(y -x )(y -x +1)3、用提提公因式法分解因式5a (x -y )-10b ·(x -y),提出的公因式应当为( ) A 、5a -10b B 、5a +10b C 、5(x -y) D 、y -x4、nx ny - 5、()()m m n n n m -+-6、计算 9992+9997、已知:x +y=21,xy=1。
求x 3y +2x 2y 2+xy 3的值.运用公式法.(1)(a+b )(a —b ) = a 2—b 2 ----———-—a 2-b 2=(a+b )(a —b );(2) (a ±b)2 = a 2±2ab+b 2 —-— a 2±2ab+b 2=(a ±b )2;(3) (a+b )(a 2-ab+b 2) =a 3+b 3-————- a 3+b 3=(a+b)(a 2—ab+b 2);(4) (a —b )(a 2+ab+b 2) = a 3-b 3 —-—-——a 3-b 3=(a-b)(a 2+ab+b 2). 下面再补充两个常用的公式:(5)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c )2;(6)a 3+b 3+c 3—3abc=(a+b+c )(a 2+b 2+c 2—ab-bc-ca);例1、若k —12xy+9x 2是一个完全平方式,那么k 应为( )A 。
2 B.4 C 。
2y 2 D 。
因式分解的拓展(精讲)(解析版)--2023届初升高数学衔接专题讲义
2023年初高中衔接素养提升专题讲义第一讲因式分解的拓展(精讲)(解析版)【知识点透析】因式分解定义:把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式。
【方法精讲】一.提公因式法提取公因式法:把一个多项式各项都有的公因式提到括号外边来.符号语言:)(c b a m mc mb ma ++=++【例1】因式分解3(2)(2)x x x ---.【解析】提取公因式,原式=)13)(2(+-x x .【变式】因式分解324(1)2(1)q p p -+-.【解析】提取公因式,原式=)424()1(]2)1(4[)1(22pq q p p q p -+-=+--.【例2】计算9879879879871232684565211368136813681368⨯+⨯+⨯+⨯.【解析】原式=987)521456268123(1368987=+++⨯.【变式1】(2022·广东汕头·一模)已知4m n +=,5mn =-,则22m n mn +=________.【答案】20-【解析】∵m +n =4,mn =-5,∴m 2n +mn 2=mn (m +n )=-5×4=-20.故答案为:-20.【变式2】(2022·湖南娄底·七年级期中)因式分解:2229612abc a b abc -+;【答案】()23324ab c ab c -+【解析】:()222296123324abc a b abc ab c ab c -+=-+;二.公式法公式法:利用乘法公式的逆变换对多项式进行因式分解.常见的公式如下:(1)a 2-b 2=_))((b a b a -+_;(平方差公式)(2)a 2±2ab +b 2=_2)(b a ±_;(完全平方公式(两个数))(3)a 3±b 3=_))((22b ab a b a +± _;(立方和差公式)(4)a 3±3a 2b +3ab 2±b 3=_3)(b a ±_;(完全立方公式)(5)a 2+b 2+c 2+2ab +2bc +2ac =_2)(c b a ++_;(完全平方公式(三个数))【例3】因式分解22(2)(31)a a +--.【解析】法一:原式=)14)(23()132)(132(+-=+-+-++a a a a a a 法二:原式=)14)(23(310816944222+-=++-=-+-++a a a a a a a a .【变式】(2022·福建省泉州实验中学八年级期中)因式分解:(1)42−16+16;(2)2−+16−.【答案】(1)4−22;(2)−+4−4【解析】(1)先提取公因式,再利用完全平方公式分解即可求解;(2)先进行公式变形为2−−16−,再提取公因式,最后用平方差公式分解即可(1)解:42−16+16=42−4+4=4−22;(2)解:2−+16−=2−−16−=−2−16=−+4−4;【例4】.(2022·上海外国语大学尚阳外国语学校七年级阶段检测)多项式的乘法公式中,除了平方差公式,完全平方公式之外,还有立方和公式与立方差公式如下:立方和公式:()()2233a b a ab b a b+++=+立方差公式:()()2233a b a ab b a b -++=-如果把公式逆运用,则成为因式分解中的立方和与立方差公式.根据以上材料,请完成下列问题:(1)因式分解:99a b +(2)因式分解:66a b -(3)已知:6631a b ab a b +==+,,的值【答案】(1)(a+b)(a 2−ab+b 2)(a 6−a 3b 3+b 6);(2)(a −b)(a+b)(a 4+a 2b 2+b 4).(3)322【详解】(1)因式分解:a 9+b 9=(a 3)3+(b 3)3=(a 3+b 3)(a 6−a 3b 3+b 6)=(a+b)(a 2−ab+b 2)(a 6−a 3b 3+b 6);(2)因式分解:a 6−b6=(a 2)3−(b 2)3=(a 2−b 2)(a 4+a 2b 2+b 4)=(a −b)(a+b)(a 4+a 2b 2+b 4);(3)∵a+b=3,ab=1,∴a 2+b 2=(a+b)2−2ab=7,∴a 6+b 6=(a 2+b 2)(a 4−a 2b 2+b 4)=[(a+b)2−2ab][(a 2+b 2)2−2a 2b 2−a 2b 2]=7×(49−3×1)=322.【变式1】因式分解52(2)(2)x x y x y x -+-.【答案】原式=)1)(1)(2(22++--x x x y x x .【解析】原式=)1)(1)(2()1)(2())(2(223225++--=--=--x x x y x x x y x x x x y x 【变式2】分解下列因式(1)38x +(2)34381a b b -【解析】:(1)333282(2)(42)x x x x x +=+=+-+(1)3433223813(27)3(3)(39)a b b b a b b a b a ab b -=-=-++【变式3】分解因式:(1)30.12527b -(2)76a ab -【解析】:(1)中应先提取公因式再进一步分解;(2)中提取公因式后,括号内出现66a b -,可看着是3232()()a b -或2323()()a b -.(1)333220.125270.5(3)(0.53)[0.50.53(3)]b b b b b -=-=-+⨯+2(0.53)(0.25 1.59)b b b =-++(2)76663333()()()a ab a a b a a b a b -=-=+-22222222()()()()()()()()a ab a ab b a b a ab b a a b a b a ab b a ab b =+-+-++=+-++-+三.十字相乘法十字相乘法:对于二次三项式或可看作二次三项式的多项式分解因式.【例5】(2022·上海闵行·七年级期中)在因式分解的学习中我们知道对二次三项式2+++B 可用十字相乘法方法得出2+++B =++,用上述方法将下列各式因式分解:(1)2+5B −62=__________.(2)2−4+2+32+6=__________.(3)2−5−−6−2=__________.(4)20182−2017×2019−1=__________.【答案】(1)(x -y )(x +6y )(2)(x -3a )(x -a -2)(3)(x +a -3b )(x -a -2b )(4)(20182x 2+1)(x -1)【分析】(1)将-6y 2改写成-y ·6,然后根据例题分解即可;(2)将3a 2+6a 改写成−3−+2,然后根据例题分解即可;(3)先化简,将B +62−2改写−3+−2−,然后根据例题分解即可;(4)将2017×2019改写成(2018-1)(2018+1),变形后根据例题分解即可;(1)解:原式=2+(−+6p +−⋅6=(x -y )(x +6y );(2)解:原式=2+−3−+2+−3−+2=(x -3a )(x -a -2);(3)解:原式=2−5B +B +62−2=2−5B +3−2+=2+−3++−2−+−3+−2−=(x +a -3b )(x -a -2b );(4)解:原式=20182−2018-12018+1−1=201822−20182-1−1=201822+1−20182−1=(20182x +1)(x -1).【例6】.(2023·山东济宁·八年级期末)【知识背景】八年级上册第121页“阅读与思考”中,我们利于因式分解是与整式乘法方向相反的变形这种关系得到:()()()2x p q x pq x p x q +++=++.【方法探究】对于多项式()2x p q x pq +++我们也可这样分析:它的二次项系数1分解成1与1的积;它的常数项pq 分解成p 与q 的积,按图1所示方式排列,然后交叉相乘的和正好等于一次项系数()p q ++.所以()()()2x p q x pq x p x q +++=++例如,分解因式:256x x ++它的二次项系数1分解成1与1的积;它的常数项6分解成2与3的积,按图2所示方式排列,然后交叉相乘的和正好等于一次项系数5.所以()2562(3x x x x ++=++).类比探究:当二次项系数不是1时,我们也可仿照上述方式进行因式分解.例如,分解因式:226x x --.分析:二次项系数2分解成2与1的积;常数项-6分解成-1与6(或-6与1,-2与3,-3与2)的积,但只有当-2与时按如图3所示方式排列,然后交叉相乘的和正好等于一次项系数-1.所以()22623(2)x x x x --=+-.【方法归纳】一般地,在分解形如关于x 的二次三项式2ax bx c ++时,二次项系数a 分解成1a 与2a 的积,分别写在十字交叉线的左上角和左下角;常数项c 分解成1c 与2c 的积,分别写在十字交叉线的右上角和右下角,把1a ,2a ,1c ,2c 按如图4所示方式排列,当且仅当1221a c a c b +=(一次项系数)时,2ax bx c ++可分解因式.即21122()()ax bx c a x c a x c ++=++.我们把这种分解因式的方法叫做十字相乘法.【方法应用】利用上面的方法将下列各式分解因式:(1)256x x -+;(2)21021x x +-;(3)()()22247412x x x x -+-+【答案】(1)(x -2)(x -3)(2)(2x +3)(5x -7)(3)2(2)x -(x -1)(x -3)【解析】(1)256x x -+=(x -2)(x -3).(2)21021x x +-=(2x +3)(5x -7).(3)()()22247412x x x x -+-+=22(44)(43)x x x x -+-+=2(2)x -(x -1)(x -3).【变式1】将下列各式分解因式(1)2615x x --;(2)231310x x -+.【解析】(1)原式=)53)(32(-+x x ;(2)原式=)5)(23(---x x .【变式2】(1)42222459x y x y y --;(2)223129x xy y ++.【答案】(1)原式=)94)(1(222-+x x y ;(2)原式=)33)(3(y x y x ++.【变式3】把下列各式因式分解:(1)226x xy y+-(2)222()8()12x x x x +-++【解析】:(1)222266(3)(2)x xy y x yx x y x y +-=+-=+-.(2)22222()8()12(6)(2)x x x x x x x x +-++=+-+-(3)(2)(2)(1)x x x x =+-+-【例7】(提高型):分解因式613622-++-+y x y xy x .【解析】设613622-++-+y x y xy x =)2)(3(n y x m y x +-++,∵)2)(3(n y x m y x +-++=mn y m n x n m y xy x--+++-+)23()(622,∴613622-++-+y x y xy x =mn y m n x n m y xy x --+++-+)23()(622,对比左右两边相同项的系数可得⎪⎩⎪⎨⎧-==-=+613231mn m n n m ,解得⎩⎨⎧=-=32n m .∴原式=)32)(23(+--+y x y x .【变式】(1)2910322-++--y x y xy x ;(2)6752322+++++y x y xy x .解:原式=)12)(25(-++-y x y x 原式=)2)(32(++++y x y x 四.分组分解法根据多项式各项的特点,适当分组,分别变形,再对各组之间进行整体分解(先部分后整体的分解方法)【例8】.(2022·甘肃省兰州市教育局八年级期中)【阅读学习】课堂上,老师带领同学们学习了“提公因式法、公式法”两种因式分解的方法.分解因式的方法还有许多,如分组分解法.它的定义是:将一个多项式分组后,可提公因式或运用公式继续分解的方法叫分组分解法.使用这种方法的关键在于分组适当,而在分组时,必须有预见性.能预见到下一步能继续分解.例如:(1)()()()()()()am an bm bn am bm an bn m a b n a b a b m n +++=+++=+++=++;(2)()2222222121(1)(1)(1)x y y x y y x y x y x y ---=-++=-+=++--.【学以致用】请仿照上面的做法,将下列各式分解因式:(1)1ab a b --+;(2)22444x xy y -+-.【拓展应用】已知:7x y +=,5x y -=.求:2222x y y x --+的值.【答案】(1)(1)(1)a b --;(2)(22)(22)x y x y -++-;【拓展应用】45.【详解】(1)1ab a b --+()()()()111ab a b a b =---=--(2)()()()()22222444444422222x xy y x xy y x y x y x y -+-=--+=--=-++-【拓展应用】()()()()222222222x y y x x y x y x y x y --+=-+-=-++∵7x y +=,5x y -=,代入得:原式=()(2)5(72)45x y x y -++=⨯+=.将下列各式分解因式(1)3232()()x x y y +-+;(2)32x x +-.【答案】(1)原式=))((22y x y xy x y x ++++-(2)原式=)2)(1(2++-x x x 【解析】(1)原式=))(())(()()(222233y x y x y xy x y x y x y x -++++-=-+-))((22y x y xy x y x ++++-=;(2)原式=)2)(1()1()1)(1(11223++-=-+++-=-+-x x x x x x x x x .【例9】分解因式:(1)32933x x x +++;(2)222456x xy y x y +--+-.解:(1)32933x x x +++=32(3)(39)x x x +++=2(3)3(3)x x x +++=2(3)(3)x x ++.或32933x x x +++=32(331)8x x x ++++=3(1)8x ++=33(1)2x ++=22[(1)2][(1)(1)22]x x x +++-+⨯+=2(3)(3)x x ++.(2)222456x xy y x y +--+-=222(4)56x y x y y +--+-=22(4)(2)(3)x y x y y +----=(22)(3)x y x y -++-.或222456x xy y x y +--+-=22(2)(45)6x xy y x y +----=(2)()(45)6x y x y x y -+---=(22)(3)x y x y -++-.【变式】(1)323x x +-;(2)222(1)41m n mn n -+-+.【答案】(1)原式=)3)(1(2++-x x x (2)原式=)1)(1(+-+++-n m mn n m mn .【解析】(1)原式=)3)(1(22123++-=-+-x x x x x (2)原式=2222222221214n mn m mn n m n mn m n m -+-++=+-+-)1)(1()()1(22+-+++-=--+=n m mn n m mn n m mn .五.换元法换元法分解因式:是将多项式中的某一部分用新的变量替换,从而使较复杂的数学问题得到简化【例10】.(2022·福建漳州·八年级期中)阅读下列材料:在因式分解中,把多项式中某些部分看作一个整体,用一个新的字母代替(即换元),不仅可以简化要分解的多项式的结构,而且能使式子的特点更加明显,便于观察如何进行因式分解,这种方法就是换元法.对于()()22525312x x x x ++++-.解法一:设25x x y +=,则原式()()2231256y y y y =++-=+-()()()()()()()2226156512351y y x x x x x x x x =+-=+++-=+++-;解法二:设22x m +=,5x n =,则原式()()()()211212m n m n m n m n =+++-=+++-()()()()()()()2224356512351m n m n x x x x x x x x =+++-=+++-=+++-.请按照上面介绍的方法解决下列问题:(1)因式分解:()()2241479x x x x -+-++;(2)因式分解:()()()2221x y xy x y xy +-+-+-;(3)求证:多项式()()()()21236x x x x x +++++的值一定是非负数.【答案】(1)(1)()42x -(2)()()2211x y --(3)见解析【解析】(1)解:解法一:设2x x y -=,则原式()()179y y =+++2816y y =++()24y =+()2244x x =-+()42x =-;方法二:设214x m x n +=-=,,则原式()()=69m n m n ++++()()269m n m n =++++()23m n =++()22143x x =+-+()2244x x =-+()42x =-;(2)解:设x y m xy n +==,,则原式()()()2221m n m n =--+-2222421m mn m n n n =--++-+()22221m mn m n =--+-()()22211m m n n =-+++()21m n =--()21x y xy =+--()()2211x y =--;(3)解:()()()()21236x x x x x +++++()()2227656x x x x x =+++++,设26x m x n +==,,则原式()()2=75m n m n n +++221236m mn n =++()26m n =+()2266x x =++,∵()22660x x ++≥,∴()()()()212360x x x x x ++++≥+,∴多项式()()()()21236x x x x x +++++的值一定是非负数.【变式1】将下列各式分解因式(1)221639a b ab ++;【答案】原式=)13)(3(++ab ab (2)22(1)(2)12x x x x ++++-【解析】原式=)5)(2(12)1()1(22222++-+=-+++++x x x x x x x x .)5)(1)(2(2++-+=x x x x .【变式2】(1)x 6-7x 3-8(2)(x +1)(x +2)(x +3)(x +4)+1【解析】(1)原式=)1)(42)(1)(2()1)(8(2233+-+++-=+-x x x x x x x x ;(2)原式=1)65)(45(1)3)(2)(4)(1(22+++++=+++++x x x x x x x x 2222)55(11)55(++=+-++=x x x x .六.配方法【例题11】.(2022·上海·七年级期末)阅读理解:对于形如222x ax a ++这样的二次三项式,可以用公式法将它分解成2()x a +的形式.但对于二次三项式2223x ax a +-,就不能直接运用公式了.此时,我们可以在二次三项式2223x ax a +-中先加上一项2a ,使它与22x ax +的和成为一个完全平方式,再减去2a ,整个式子的值不变,于是有:2223x ax a +-=222223x ax a a a ++--=22()4x a a +-=22()(2)x a a +-=(3)()x a x a +-,像这样,先添一适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.请利用“配方法”进行因式分解:(1)2815x x -+;(2)4224a a b b ++.【答案】(1)(3)(5)x x --(2)2222()()a b ab a b ab +++-【解析】(1)原式=28161615x x a -+-+=2(4)1x --=(41)(41)x x -+--=(3)(5)x x --;(2)42244224222a a b b a a b b a b ++=++-=22222()a b a b +-=2222()()a b ab a b ab +++-.七.因式分解的应用【例题12】.(2022·江苏扬州·七年级期中)阅读下列材料:若一个正整数x 能表示成22a b -(a ,b 是正整数,a b >)的形式,则称这个数为“明礼崇德数”,a 与b 是x 的一个平方差分解,例如22532=-,所以5是“明礼崇德数”3与2是5的平方差分解;再如:()22222222M x xy x xy y y x y y =+=++-=+-(,x y 为正整数),所以M 也是“明礼崇德数”,(x y +)与y 是M 的一个平方差分解.(1)判断9“明礼崇德数”(填“是”或“不是”);(2)已知()2x y +与2x 是P 的一个平方差分解,求代数式P ;(3)已知2223818N x y x y k =-+-+(,x y 是正整数,k 是常数,且1x y >+),要使N 是“明礼崇德数”,试求出符合条件的k 值,并说明理由.【答案】(1)是(2)222x y y +(3)k =-19【解析】(1)解∶∵22954=-,∴9是“明礼崇德数”;故答案为:是(2)解:()()2222P x y x =+-42242x x y y x =++-222x y y =+;(3)解:2223818N x y x y k =-+-+()()2224436919x x y y k=++-++++()()22223319x y k=+-+++2219k=+-+++∵N 是“明礼崇德数”,∴19+k =0,∴k =-19.【例题13】.已知a b =22a b ab -的值.【答案】【解析】【分析】先利用提公因式法把22a b ab -进行因式分解,再代入计算即可.【详解】解:∵()22a b ab ab a b -=-,又a =b∴a b =-=1ab +=-=,∴()221a b ab ab a b -=-=⨯=【变式1】.(1)因式分解:()()211x x x +-+.(2)先化简,再求值:22169124x x x x ++⎛⎫+÷ ⎪+-⎝⎭,其中3x =.【答案】(1)1x +;(2)23x x -+,16【解析】【分析】(1)直接提公因式即可;(2)先算括号内的部分,将除法变乘法,最后约分化简后代入求值即可.【详解】(1)原式=()()11x x x ++-=x +1;(2)原式=212(3)22(2)(2)x x x x x x ++⎛⎫+÷ +++-⎝⎭23(2)(2)2(3)x x x x x ++-=⋅++23x x -=+,当3x =时,原式=3233-+16=.【变式2】.(2022·湖北十堰·八年级期末)阅读理解题:已知二次三项式x 2﹣4x +m 有一个因式是x +3,求另一个因式及m 的值.解:设另一个因式为x +n ,依题意得x 2﹣4x +m =(x +3)(x +n ).即x 2﹣4x +m =x 2+(n +3)x +3n ,比较系数得:343n m n +=-⎧⎨=⎩,解得217m n =-⎧⎨=-⎩.∴另一个因式为x﹣7,m的值为﹣21仿照上述方法解答下列问题:(1)已知二次三项式2x2+3x﹣k有一个因式是2x﹣1,求另一个因式及k的值;(2)已知2x2﹣13x+p有一个因式x﹣4,则p=.【答案】(1)另一个因式为x+2,k的值为2(2)20(1)解:(1)设另一个因式为x+m,则2x2+3x—k=(2x—1)(x+m),即2x2+3x—k=2x2+(2m—1)x—m,比较系数得:213 mk m-=⎧⎨-=-⎩,解得22 mk=⎧⎨=⎩,∴另一个因式为x+2,k的值为2;(2)解:设另一个因式为(2x+m),由题意,得:2x2﹣13x+p=(x﹣4)(2x+m),则2x2﹣13x+p=2x2+(m﹣8)x﹣4m,∴8134mp m-=-⎧⎨=-⎩,解得520 mp=-⎧⎨=⎩,故答案为:20.。
因式分解1讲义模板
教学目标
重点、难点
考点及考试要求 教学内容
一、因式分解的意义 把一个多项式化成为几个整式的积的形式,叫做多项式的因式分解. 总结:(1)因式分解是多项式的一种恒等变形,也是单项式与多项式,多项式与多项式相乘的逆变 形. (2)分解因式是对多项式而言的,且分解的结果必须是整式的积的形式. (3)分解因式都是在指定的数集内进行(如无特殊说明,一般指有理数),其结果要使每一个因式不 能再分解为止. 二、提公因式法 (1)公因式:多项式中每一项都含有的因式,叫公因式. (2)提公因式法:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多 项式化成几个因式乘积的形式,这种分解因式的方法叫做提公因式法. (3)公因式的构成: ①系数:各项系数的最大公约数; ②字母:各项都含有相同字母; ③指数:相同字母的最低次幂. 提公因式时要一次提尽.公因式可以是单项式,也可以是多项式。 练习: (1)2x2y-xy (2)6a2b3-9ab2 (3)x(a-b)+y(b-a) (4)ax+ay+bx+by
a 4 1 a 2 1 a 1a 1
4、对某些多项式还要了解经过一定变形后才能分解的因式,如:分解 x 2 4 xy 3 y 2 的因式,此题用 现有的方法还不能分解因式.但若适当处理后配成完全平方,就可以继续分解.
x 2 4 xy 3 y 2 x 2 4 xy 3 y 2 y 2 y 2 x 2 4 xy 4 y 2 y 2 x 2 y y 2 x 2 y y x 2 y y x y x 3 y
(2)3ax2+6axy+3ay2
(3)4x2-12x+9
(4)16x4+24x2+9;
北师大版八年级数学下册 第四章因式分解的四种方法(讲义及答案)
因式分解的四种方法(讲义)➢ 课前预习1. 平方差公式:___________________________;完全平方公式:_________________________;_________________________.2. 探索新知:(1)39999-能被100整除吗?小明是这样做的:3229999999999199(991)99(991)(991)9998009998100-=⨯-⨯=⨯-=⨯+-=⨯=⨯⨯所以39999-能被100整除.(2)38989-能被90整除吗?你是怎样想的?(3)3m m -能被哪些整式整除?➢ 知识点睛1. __________________________________________叫做把这个多项式因式分解.2. 因式分解的四种方法(1)提公因式法需要注意三点:①_____________;②_______________;③_________________.(2)公式法两项通常考虑_____________,三项通常考虑_____________.(3)分组分解法如果一个多项式适当分组,使分组后各组之间有公因式或可应用公式,那么这个多项式就可以用分组的方法分解因式。
多项式项数比较多常考虑分组分解法,首先找 ,然后再考虑 或者_______.(4)十字相乘法十字相乘法常用于二次三项式的结构,其原理是:2()()()x p q x pq x p x q +++=++ 因式分解是有顺序的,记住口诀:“ 竖分常数交叉验,横写因式不能乱 ”;➢ 精讲精练1. 下列由左到右的变形,是因式分解的是________________.①222233x y x y -=-⋅⋅; ②2(3)(3)9a a a +-=-;③22+1()()1a b a b a b -=+-+; ④222()mR mr m R r +=+; ⑤2()x xy x x x y -+=-;⑥24(2)(2)m m m -=+-; ⑦2244(2)y y y -+=-.2. 因式分解(提公因式法):(1)2212246a b ab ab -+; (2)32a a a --+; (3)()(1)()(1)a b m b a n -+---;解:原式=解:原式= 解:原式=(4)22()()x x y y y x ---; (5)1m m x x -+. 解:原式=解:原式=3. 因式分解(公式法):(1)249x -;(2)216249x x ++; 解:原式=解:原式=(3)2244x xy y -+-;(4)229()()m n m n +--; 解:原式=解:原式=(5)22(3)2(3)(43)(43)x y x y x y x y +-+-+-;解:原式=(6)2(25)4(52)x x x -+-;解:原式=(7)228168ax axy ay -+-;(8)44x y -; 解:原式=解:原式=(9)4221a a -+; (10)22222()4a b a b +-. 解:原式=解:原式=4. 因式分解(分组分解法):(1)2105ax ay by bx -+-;(2)255m m mn n --+; 解:原式=解:原式=(3)22144a ab b ---; (4)22699a a b ++-; 解:原式=解:原式=(5)2299ax bx a b +--;(6)22244a a b b -+-. 解:原式=解:原式=5. 因式分解(十字相乘法):(1)243x x ++;(2)26x x +-; 解:原式=解:原式=(3)223x x -++;(4)221x x +-; 解:原式=解:原式=(5)22512x x +-;(6)2232x xy y +-; 解:原式=解:原式=(7)2221315x xy y ++;(8)3228x x x --. 解:原式=解:原式=6. 用适当的方法因式分解:(1)222816a ab b c -+-;(2)22344xy x y y --; 解:原式= 解:原式=(3)22(1)12(1)16a a ---+;(4)(1)(2)12x x ++-; 解:原式=解:原式=(5)2(2)8a b ab -+;(6)222221x xy y x y -+-++. 解:原式=解:原式=【参考答案】➢ 课前预习1. 22()()a b a b a b +-=-222222()2()2a b a ab b a b a ab b +=++-=-+2. 210=7×5×3×2;315=7×5×3×3;91=13×7;102=17×3×23. (2)328989898989-=⨯-289(891)89(891)(891)899088=⨯-=⨯+⨯-=⨯⨯∴38989-能被90整除3223(1)(1)(1)m m m m mm m m m m -=⋅-=-=+-()∴3m m -能被1,m ,m +1,m -1,m (m +1),m (m -1),(m +1)(m -1),m (m +1)(m -1)整除 ➢ 知识点睛1. 把一个多项式化成几个整式的积的形式2. (1)①公因式要提尽②首项是负时,要提出负号③提公因式后项数不变(2)平方差公式,完全平方公式①能提公因式的先提公因式②找准公式里的a 和b(3)公因式,完全平方公式,平方差公式3. 一提二套三分四查,有理数➢ 精讲精练1. ④⑥⑦2. (1)6(241)ab a b -+(2)2(1)a a a -+-(3)()()a b m n -+(4)3()x y -(5)1(1)m x x -+3. (1)(23)(23)x x +-(2)2(43)x +(3)2(2)x y --(4)4(2)(2)m n m n ++(5)29(2)x y -(6)(25)(2)(2)x x x -+-(7)28()a x y --(8)22()()()x y x y x y ++-(9)22(1)(1)a a +-(10)22()()a b a b +-4. (1)(5)(2)x y a b --(2)(5)()m m n --(3)(12)(12)a b a b ++--(4)(33)(33)a b a b +++-(5)()(31)(31)a b x x ++-(6)(2)(22)a b a b -+-5. (1)(1)(3)x x ++(2)(3)(2)x x +-(3)(3)(1)x x --+(4)(21)(1)x x -+(5)(4)(23)x x +-(6)()(32)x y x y +-(7)(5)(23)x y x y ++(8)(2)(4)x x x +-6. (1)(4)(4)a b c a b c -+--(2)2(2)y x y --(3)2(5)(3)a a --(4)(2)(5)x x -+(5)2(2)a b +(6)2(1)x y --。
因式分解ppt课件
02
03
04
因式分解的基本概念:定义、 性质、方法等
因式分解的技巧:提公因式、 平方差公式、十字相乘法等
因式分解的应用:代数式化简 、解方程等
Hale Waihona Puke 学习方法:理论学习、练习、 小组讨论等
因式分解的应用与重要性
01
02
03
04
代数式化简
利用因式分解简化复杂的代数 式,提高计算效率
解方程
通过因式分解将方程转化为多 个简单方程,便于求解
因式分解的作用
有助于理解方程的解 法
可以用于解决一些数 学问题,如求根、解 方程等
可以将一个复杂的多 项式简化成易于理解 的形式
课程目标和学习方法
掌握因式分解的基本方法 学习如何将一个多项式分解成几个整式的乘积
通过练习,达到能够快速、准确地完成因式分解的目标
02
因式分解的基本概念
整式和因式的定义
分解6a4b3+18a3b2+12a2b
首先,我们可以发现6a4b3和18a3b2可以组合成一项,得到(6a4b3+18a3b2),接着观察多项式,我 们可以发现12a2b可以单独列出来,所以原多项式可以分解为(6a4b3+18a3b2)+12a2b。
应用题中的例子
在一个水池设计中,需要将一个圆形的水池分割成若干个小 的区域,这时候就需要使用到因式分解的方法,将圆形水池 的面积分解成若干个小的面积之和,这样就可以更加方便地 进行设计和规划。
掌握因式分解的方法
因式分解的方法有很多种,初学者可能难以掌握。解决办 法是加强对方法的学习,可以通过大量的练习来掌握。
解决因式分解的问题
因式分解的问题可能比较复杂,初学者可能难以解决。解 决办法是加强对问题的分析,学会拆解问题,找出合适的 解决方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
形后再把条件带入,从而简化计算过程。
例 2. 已知 a b c 0,a 3 b3 c3 0 ,
求证: a5 b5 c5 0 证明: a 3 b3 c3 3abc (a b c)(a 2 b2 c2 ab bc ca) 把 a b c 0,a3 b3 c3 0 代入上式, 可得 abc 0 ,即 a 0或 b 0或 c 0 若 a 0,则b c , a5 b5 c5 0 若 b 0或 c 0 ,同理也有 a5 b5 c5 0 说明:利用补充公式确定 a,b,c 的值,命题得证。
例 3. 若 x 3 y 3 27,x 2 xy y 2 9 ,求 x 2 y 2 的值。 --
--
解: x 3 y 3 (x y)(x 2 xy y 2 ) 27
且 x 2 xy y 2 9
x y 3,x2 2xy y 2 9 (1)
又 x 2 xy y 2 9
解: a2 2ab b2 2ac c2 2bc
(a b)2 2c(a b) c2
(a b c)2
a 1 m 1,b 1 m 2,c 1 m 3
2
2
2
原式 (a b c)2
(
1 2
m
1)
(1 2
m
2)
(1 2
m
3)
2
1 m2 4
说明:本题属于条件求值问题,解题时没有把条件直接代入代数式求值,而是把代数式因式分解,变
6.计算与求值 29×20.03+72×20.03+13×20.03-14×20.03.
7、.先化简,再求值
a(8-a)+b(a-8)-c(8-a),其中 a=1,b= 1 ,c= 1 . 22
8、已知 2x y 1 , xy 2 ,求 2x 4 y 3 x3 y 4 的值. 8
方法二·公式法
多项式的公因式应是各项所共有的最高因式,公因式的系数原则上是不定的。但对整系数的多项式, 其公因式的系数一般取所有系数的最大公约数;对分数系数的多项式,其公因式的系数一般取所有分母的 最小公倍数分之一;公因式的字母取各项共有的字母,各相同字母的指数取其次数最低的。公因式可以是 单项式也可以是多项式,有时要进行适当变形才能出现公因式。
1. 因式分解的对象是多项式; 2. 因式分解的结果一定是整式乘积的形式; 3. 分解因式,必须进行到每一个因式都不能再分解为止; 4. 公式中的字母可以表示单项式,也可以表示多项式; 5. 结果如有相同因式,应写成幂的形式; 6. 题目中没有指定数的范围,一般指在有理数范围内分解;
知识点二:因式分解基本方法
(2)
两式相减得 xy 0
所以 x 2 y 2 9
说明:按常规需求出 x,y 的值,此路行不通。用因式分解变形已知条件,简化计算过程。
常见题型:
例 1:因式分解: x 3 4xy 2 ________。 解: x3 4xy2 x(x2 4 y2 ) x(x 2 y)(x 2 y)
【知识精读】 把乘法公式反过来,就可以得到因式分解的公式。
主要有:平方差公式
a 2 b2 (a b)(a b)
完全平方公式
a 2 2ab b2 (a b)2
立方和、立方差公式 a 3 b3 (a b) (a 2 ab b2 )
运用公式法分解因式的关键是要弄清各个公式的形式和特点,熟练地掌握公式。但有时需要经过适当 的组合、变形后,方可使用公式。
用公式法因式分解在求代数式的值,解方程、几何综合题中也有广泛的应用。因此,正确掌握公式法 因式分解,熟练灵活地运用它,对今后的学习很有帮助。
下面我们就来学习用公式法进行因式分解
--
--
题型展示:
例 1. 已知: a 1 m 1,b 1 m 2,c 1 m 3 ,
2
2Leabharlann 2求 a2 2ab b2 2ac c2 2bc 的值。
--
环球雅思学科教师辅导教案
授课主题 教学目标
授课日期及时段
因式分解
1、 使学生理解并掌握因式分解的概念 2、 能够熟练的运用提公因式法公式法、分组分解法、十字相乘法来解决常见的因
式分解题
教学内容
因式分解
知识点一:因式分解的概念及注意事项
因式分解是把一个多项式分解成几个整式乘积的形式,它和整式乘法互为逆运算,在初中代数中占有重要地位和作用, 在其它学科中也有广泛应用,学习本章知识时,应注意以下几点。
A. 6(x 2) x(2 x) (x 2)(6 x)
B. x3 2x2 x x(x2 2x)
C. a(a b)2 ab(a b) a(a b)
D. 3x2n 6xn 3xn(x 2)
提高练习
1、如果 b-a=-6,ab=7,那么 a2b ab2 的值是( )
A.42
B.-42
C.13
D.-13
2、若 4x3-6x2=2x2(2x+k),则 k=________.
3、.2(a-b)3-4(b-a)2=2(a-b)2(________). 4、.36×29-12×33=________.
--
--
5、分解因式
(1) (x y)( x y) (x y)2
(2) 8a(x y)2 4b( y x)
题型展示: 1、将下列各式分解因式:
(1) 3a(x y) - 2b(x y) ;
(2)12(m n)2 18(m n)3 ;
(3) 3(2x y) 6( y 2x)3 ;
(4) 1 a 2b( p2 q) 3 ab2 (q p2 )2 ;
4
8
2、下列分解因式结果正确的是( )
方法一·提公因式法
1、提公因式法分解因式的一般形式,如: ma+mb+mc=m(a+b+c).
这里的字母 a、b、c、m 可以是一个系数不为 1 的、多字母的、幂指数大于 1 的整式. 2、提公因式法分解因式,关键在于观察、发现多项式的公因式. 3、找公因式的一般步骤
--
--
(1)若各项系数是整系数,取系数的最大公约数; (2)取相同的字母,字母的指数取较低的; (3)取相同的多项式,多项式的指数取较低的. (4)所有这些因式的乘积即为公因式. 4、注意事项: