理论力学平面基本力系
合集下载
理论力学2.2、平面任意力系的合成与平衡
m F1 OA F2 OB F1 ( OB OA) F1 AB
m F1 OA F2 OB F1 ( OA OB ) F1 AB
3
力 线 作用在刚体上的力可以离开其作用线而平 平 行移动到刚体上任意位置处,但必须对刚体 移 附加一个力偶,附加力偶的力偶矩等于原力 定 对平移后所得新力作用点的力矩。 理
求细绳的拉力和A、B两处的支持力。
解、研究对象:AB,受力 如图所示,则有:
Fix Fiy mD
0 0
(Fi )
0
FB FD G FA c
FA
os
sin 0
FB
BD
G
AB 2
0 sin
FA
AD
0
FA 115.5(N) FB 72.2(N ) FD 129.9(N) 12
例2.2-6、匀质细杆AB长度为L,重量为mg,静 止在半径为r的光滑半圆槽内(图2.2-17),
L=3r;求AB杆与水平线之间的夹角
解、研究对象:AB杆,受力如 图所示,则有:
Fix 0 Fiy 0 mO (Fi ) 0
FB FB
cos(2 ) FD sin sin(2 ) FD cos
d mO 2402 3.39(m) FR 709 .5
xE
d
sin
3.39 sin 70.8
3.59(m)
y yE tan 70.8 (x xE ) y 2.87x 10.31 0
10
课堂练习题(图示):
m F1 OA F2 OB F1 ( OA OB ) F1 AB
3
力 线 作用在刚体上的力可以离开其作用线而平 平 行移动到刚体上任意位置处,但必须对刚体 移 附加一个力偶,附加力偶的力偶矩等于原力 定 对平移后所得新力作用点的力矩。 理
求细绳的拉力和A、B两处的支持力。
解、研究对象:AB,受力 如图所示,则有:
Fix Fiy mD
0 0
(Fi )
0
FB FD G FA c
FA
os
sin 0
FB
BD
G
AB 2
0 sin
FA
AD
0
FA 115.5(N) FB 72.2(N ) FD 129.9(N) 12
例2.2-6、匀质细杆AB长度为L,重量为mg,静 止在半径为r的光滑半圆槽内(图2.2-17),
L=3r;求AB杆与水平线之间的夹角
解、研究对象:AB杆,受力如 图所示,则有:
Fix 0 Fiy 0 mO (Fi ) 0
FB FB
cos(2 ) FD sin sin(2 ) FD cos
d mO 2402 3.39(m) FR 709 .5
xE
d
sin
3.39 sin 70.8
3.59(m)
y yE tan 70.8 (x xE ) y 2.87x 10.31 0
10
课堂练习题(图示):
理论力学23-平面汇交力系与平面力偶系
平衡方程的解法
通过代入法或消元法求解 平衡方程,得到各个力的 具体数值。
平面汇交力系的实例分析
实例一
分析一个固定在墙上的梯子的受力情 况,梯子受到的重力和人对梯子的推 力在同一直线上,可以合成一个合力 ,合力方向与重力方向相反。
实例二
分析一个水平放置的杠杆的受力情况 ,杠杆受到的重力和人对杠杆的压力 在同一直线上,可以合成一个合力, 合力方向与重力方向相反。
理论力学23-平面汇交力 系与平面力偶系
目录 CONTENT
• 平面汇交力系 • 平面力偶系 • 平面汇交力系与平面力偶系的联
系 • 习题与解答 • 总结与展望
01
平面汇交力系
平面汇交力系的合成
1 2
平面汇交力系合成的基本原理
根据力的平行四边形法则,将两个或多个力合成 一个合力。
力的三角形法则
解答4
根据力矩的平行四边形法则, 求出平面力偶系的总力矩。
05
总结与展望
总结
定义:作用在物体上的力,其作用线都在同一平面内且相交于一点。 平衡条件:合力为零。
总结
• 解题方法:利用力的合成与分解,将汇交力系简化为单一 的力或力的合成。
总结
定义
作用在物体上的力偶,其力偶矩 矢量都在同一平面内。
04
习题与解答
习题
题目1
题目2
题目3
题目4
求平面汇交力系的合力
求平面汇交力系的合力 矩
求平面力偶系的合力矩
求平面力偶系的总力矩
解答
01
02
03
04
解答1
根据力的平行四边形法则,求 出平面汇交力系的合力大小和
方向。
解答2
根据合力矩定理,求出平面汇 交力系的合力矩。
理论力学 第三章 平面力系
FBl cos M 0
得
M 20 k N m FB 4.62 kN l cos 5 m cos 30
FA FB 4.62kN
故
目录
第三章 平面力系\力的平移定理
3.3 力的平移定理
作用于刚体上的力,可平行移动到刚体内任一指定点,但必须 在该力与指定点所决定的平面内同时附加一力偶,此附加力偶的矩 等于原力对指定点之矩。 平面一般力系向一点简化的理论基础是力的平移定理。
设平面汇交力系F1、F2、…、Fn中各力在x、y轴上的投影分 别为Xi、Yi,合力FR在x、y轴上的投影分别为XR、YR,利用公式
F Fx Fy Xi Yj
分别计算式FR=F1+F2+…+Fn=ΣF 等号的左边和右边,可得 FR = XR i+YR j 以及 F1+F2+…+Fn=(X1i+Y1j)+(X2i+Y2j)+…+(Xni+Ynj) =(X1+X2+…+Xn)i+(Y1+Y2+…+Yn)j 比较后得到 X R X1 X 2 X n X YR Y1 Y2 Yn Y 目录
返回
第三章 平面力系
如图(a)所示水坝,通常取单位长度坝段进行受力分析,并将坝 段所受的力简化为作用于坝段中央平面内的一个平面力系[图(b)]。
返回
第三章 平面力系
第三章 平面力系
3.1 平面汇交力系的合成与平衡 3.2 平面力偶系的合成与平衡 3.3 力的平移定理 3.4 平面一般力系向一点简化 3.5 平面一般力系的平衡方程及其应用
第三章 平面力系\平面力偶系的合成与平衡
《理论力学》基本力系
接触点处受到法向约束力的作用。
03
铰链约束
铰链约束是指两个构件通过销钉或铰链连接在一起,并能绕销钉或铰链
相对转动。这种约束只能限制物体沿垂直于销钉轴线的运动,而不能限
制物体绕销钉的转动。
平衡条件及求解方法
平面力系的平衡条件
平面任意力系平衡的充分必要条件是,力系的主矢和主矩都为零。即所有各力在x轴和y轴 上的投影的代数和分别等于零;所有各力对任意一点之矩的代数和也等于零。
汇交力系平衡条件应用
平衡条件
汇交力系平衡的充分必要条件是合力为零,即力多边形自行封闭。
应用
在静力学中,汇交力系平衡条件可应用于求解未知力、判断物体是否平衡等问题 ;在动力学中,可用于分析物体的运动状态及受力情况。
04 平面任意力系简化与平衡
平面任意力系简化方法
向一点简化
选择适当的一点,将力系中的各 力向该点平移,得到一个等效的 平面汇交力系和一个平面力偶系。
主矢和主矩
平面任意力系向作用面内任一点 简化时,一般可得到一个力和一 个力偶,这个力称为该力系的主 矢,这个力偶的矩称为该力系对
简化中心的主矩。
合力矩定理
平面任意力系的合力对作用面内 任一点之矩,等于力系中各分力
对于同一点之矩的代数和。
简化结果分析
当主矩为零时,主矢也为零
01
说明该力系本身是平衡的,或者可以合成为一个合力。
合力矩
主矩表示原力系对物体的 总体转动效应,其大小和 方向由主矩矢量确定。
平衡条件
当且仅当主矢和主矩都为 零时,空间任意力系才处 于平衡状态。
空间任意力系平衡条件应用
静力学问题
利用空间任意力系的平衡条件,可以解决各种静力学问题, 如物体的平衡、刚体的平衡等。
理论力学平面力系的简化和平衡
原力偶系的合力偶矩
n
M Mi i 1
只受平面力偶系作用的刚体平衡充要条件:
n
M Mi 0 i 1
对BC物块对B点取矩,以逆时针为正列方程应为:
M 2 M B (FC ) M FCY a FCx b M FC (b a) cos45 0
[例] 在一钻床上水平放置工件,在工件上同时钻四个等直径 的孔,每个钻头的力偶矩为 m1m2 m3 m4 15Nm 求工件的总切削力偶矩和A 、B端水平反力?
两轴不平行即 条件:x 轴不 AB
可,矩心任意
连线
mA (Fi ) 0 mB (Fi ) 0 mC (Fi ) 0
③三矩式 条件:A,B,C不在
同一直线上
上式有三个独立方程,只能求出三个未知数。
4. 平面一般力系的简化结果分析
简化结果: 主矢R ,主矩 MO ,下面分别讨论。 ① R =0, MO =0,则力系平衡,下节专门讨论。 ② R =0,MO≠0 即简化结果为一合力偶, MO=M 此时刚
解除约束,可把支反
力直接画在整体结构
的原图上)
解除约束
由
mA (Fi
)
0
P2a N B
3a0,
N B
2P 3
X 0 XA 0
Y 0 YB NB P0,
YA
P 3
2.5物体系统的平衡、静定与超静定问题
1、物体系统的平衡问题 物体系统(物系):由若干个物体通过约束所组成的系统叫∼。 [例]
外力:外界物体作用于系统上的力叫外力。 内力:系统内部各物体之间的相互作用力叫内力。
N2个物体受平面汇交力系(或平面平行力系)
X 0 Y 0
2*n2个独立平衡方程
N3个物体受平 X 0 面任意力系 Y 0
理论力学 第二章
扭矩扳手
2-3 平面力对点之矩的概念及计算
一、力对点的矩(力矩) 力对点的矩(力矩)
M O ( F ) = ± F ⋅ d ,单位N•m或KN•m 单位N KN•
→
→
① ②
是代数量。 M O ( F ) 是代数量。
M O ( F ) 正负判定: 正负判定:
→
→
M O (F ) (F
+
→ →
-
③ 当F=0或d=0时, O (F ) =0。 =0或 =0时 M =0。 点O为矩心,d为力臂。 为矩心, 为力臂。 角 形面积,或是矢量积的模。 面积,或是矢量积的模。 ④ M O (F ) = ± 2⊿AOB= r × F 2⊿AOB= 力对点0矩的大小等于2 力对点0矩的大小等于2倍三
Fx = X i , F y = Y j
F = X +Y
2 2
→
→ →
→
X cos α = F
Y cos β = F
2-2 平面汇交力系合成与平衡的解析法
区分力沿轴的分力和力在两轴上的投影: 区分力沿轴的分力和力在两轴上的投影: 力沿轴的分力和力在两轴上的投影 • 分力是矢量,投影是代 分力是矢量, 数量,二者性质不同。 数量,二者性质不同。 • 在直角坐标系中,投影 在直角坐标系中, 的大小与分力的大小相 但在斜角坐标系中, 同,但在斜角坐标系中, 二者不等。 二者不等。
∑F = 0 ix
− FBA + F cos60 − F2 cos30 = 0 1
o o
∑F =0 iy
FBC − F cos30 − F cos60 = 0 1 2
o o
F = F2 = P 1
解得: FC = 27 32kN 解得: B .
理论力学5平面任意力系
P
1m
q
C
2m
A
2m
B
43
P
1m
q
C
XA
2m
A
YA
2m
XB
B
YB
解: ( 1 ) 取整体为研究对象,画受力图.
44
P
1m
q
C
XA
2m
A
2m
XB
B
YA
MA( F ) = 0
YB
- 4 × 3 × 1.5 - 20 × 3 + 4 YB = 0
YB = 19.5 kN
45
P
1m
q
C
XA
2m
2m
A
FR 0, M O (F ) 0
(一)基本平衡方程
Fx = 0 Fy = 0 Mo ( F ) = 0
(一力矩式)
能解 3 个未知量
16
(二)平面任意力系平衡方程旳其他形式
(1) 二力矩式
MA ( Fi ) = 0 MB ( Fi ) = 0 Fx = 0
投影轴 x 不能与矩心 A 和 B 旳连线垂直.
a
G3 A
C
e G1 L G2
B
NA
b
NB
1、满载时,当重物距离右轨最远时,易右翻。 当起重机平衡 m B( F ) = 0 - G1 ·e - G2 ·L - NA ·b+ G3 ·(a+ b) = 0
NA = [ - G1 ·e - G2 ·L + G3 ·( a+ b)] / b
33
a
G3 A
XA = 14.14 kN
Fy = 0
YA
理论力学第2章平面任意力系
空载时轨道A 、 B的约束反力,并问此起重机在使用过程中有无翻
倒的危险。
解:
(1)起重机受力图如图
(2)列平衡方程 :
MA 0:
Q
Q(6 2) RB 4 W 2 P(12 2) 0
MB 0:
Q(6 2) W 2 P(12 2) RA 4 0
6m
解方程得:
W
P
12m
RA 170 2.5P
FR' Fi Fxi Fy j
MO MO (Fi )
3. 平面任意力系的简化结果
(1)FR´= 0,Mo ≠ 0, (2)FR´ ≠ 0,Mo = 0, (3)FR´≠ 0,Mo ≠ 0, (4)FR´= 0,Mo = 0,
合力偶,合力偶矩,MO MO (Fi )
合力,合力作用线通过简化中心O。
3
F2
j
F3
x
(437.6)2 (161.6)2
F1
1 1
100
Oi
1 2
466.5N
200
MO 21.44N m
y
合力及其与原点O的距离如图(c) 。 MO
x
y
d
x
O
FR FR′ 466.5N FR´
FR
O
d MO 45.96mm
(b)
(c)
FR
10
例11 水平梁AB受按三角形分布的载荷作用,如图示。载荷的
M
l
l
30
B
D
° F
3l
P
q
A
21
解:T字形刚架ABD的受力如图所示。
M
l
l
Fx 0
30
B
FAx 1 • q • 3a Fcos30 0
理论力学第4章-平面任意力系
FAx
FAy MA
解:(1)取悬臂刚架为研究对象,受力图。
(2)列平衡方程
Fx 0
FAx F 0
Fy 0
FAy 3q 0
解之得
MA(F) 0
M A F 4 3q 1.5 0
FAx 5kN FAy 6kN M A 11 kN m(与假设相反)
4.5.2 平面平行力系的平衡方程 作用线分布在同一平面内且相互平行的力系,称为平 面平行力系。
MO (F ) 2 OAB面积
(1)当力F通过矩心O时,力对该矩心的力矩为零。 (2)当力F沿作用线移动时,不改变该力对任一点的矩。
力对点之矩的解析式:
MO (F ) Fd Fr sin( ) Fr sin cos Fr cos sin
Fr cos Fx
r cos x
Fr sin Fy
合力矢 作用线的方程。
MO FRx
O
38.66
F Ry
F R
(x, y) FRx
400 x + 500 y = 2726.7
O
FRy
FR
4.5 平面任意力系、平面平行力系平衡方程 4.5.1 平面任意力系的平衡方程 平面任意力系平衡的必要与充分条件为:力系的
主矢以及对作用面内任一点的主矩都等于零,即
r sin y
MO (F ) xFy yFx (4-4)
y
Fy
F
y
r O d
A Fx
x
x
4.2 力线平移定理
力线平移定理: 作用在刚体上A点的力F可以平行 移到任一点B,但必须同时附加一个力偶,此附加力 偶的矩等于原来的力F对B点的矩。
[证] 力 F
力系 F, F1, F1' 力F1 力偶(F, F1')
理论力学平面任意力系
齿轮II上旳力偶矩M;轴 承A,B处旳约束力。
解: 取齿轮I及重物C ,画受力图.
M B 0 Pr F R 0 F 10 P1
由 Fr taan 200 3.64 P1
t
X 0 FBx Fr 0 FBx 3,64P1
Y 0 FBy P P2 F 0 FBy 32P1
[例1]
静定(未知数三个)
静不定(未知数四个)
[例2]
物体系统(物系): ——由若干个物体经过 约束所构成旳系统。
超静定拱
[P62 思索题 3-10]
超静定梁
超静定桁架
3-3 物体系旳平衡•静定与超静定问题
二、物体系统旳平衡问题
外力:外界物体作用于系统上旳力。 内力:系统内部各物体之间旳相互作用力。
R
主矢
FR 0 FR 0
主矩
MO 0
MO 0 MO 0
MO 0
最终成果
阐明
合力 合力作用线过简化中心
合力 合力偶
合力作用线距简化中心M O FR
与简化中心旳位置无关
平衡
与简化中心旳位置无关
3-2 平面任意力系旳平衡条件与平衡方程
一、平面任意力系平衡旳充要条件为:
力系旳主矢
FR
'和对于任一点旳主矩
独立方程旳数目
平面力偶系
mi 0
1
平面平行力系 Y 0, mo (F ) 0
2
平面汇交力系
X 0
2
Y 0
平面任意力系
X 0
Y
0
3
mO (F i ) 0
3-3 物体系旳平衡•静定与超静定问题
独立方程数目≥未知数数目时,是静定问题 (可求解) 独立方程数目<未知数数目时,是超静定问题(静不定问题)
解: 取齿轮I及重物C ,画受力图.
M B 0 Pr F R 0 F 10 P1
由 Fr taan 200 3.64 P1
t
X 0 FBx Fr 0 FBx 3,64P1
Y 0 FBy P P2 F 0 FBy 32P1
[例1]
静定(未知数三个)
静不定(未知数四个)
[例2]
物体系统(物系): ——由若干个物体经过 约束所构成旳系统。
超静定拱
[P62 思索题 3-10]
超静定梁
超静定桁架
3-3 物体系旳平衡•静定与超静定问题
二、物体系统旳平衡问题
外力:外界物体作用于系统上旳力。 内力:系统内部各物体之间旳相互作用力。
R
主矢
FR 0 FR 0
主矩
MO 0
MO 0 MO 0
MO 0
最终成果
阐明
合力 合力作用线过简化中心
合力 合力偶
合力作用线距简化中心M O FR
与简化中心旳位置无关
平衡
与简化中心旳位置无关
3-2 平面任意力系旳平衡条件与平衡方程
一、平面任意力系平衡旳充要条件为:
力系旳主矢
FR
'和对于任一点旳主矩
独立方程旳数目
平面力偶系
mi 0
1
平面平行力系 Y 0, mo (F ) 0
2
平面汇交力系
X 0
2
Y 0
平面任意力系
X 0
Y
0
3
mO (F i ) 0
3-3 物体系旳平衡•静定与超静定问题
独立方程数目≥未知数数目时,是静定问题 (可求解) 独立方程数目<未知数数目时,是超静定问题(静不定问题)
第二章 理论力学平面力系
特殊时用 几 何法(解力三角形)比较简便。
2、一般对于受多个力作用的物体,且角度不特殊或 特殊,都用解析法。 3、投影轴常选择与未知力垂直,最好使每个方程中 只有一个未知数。
4、对力的方向判定不准的,一般用解析法。
5、解析法解题时,力的方向可以任意设,如果求出
负值,说明力方向与假设相反。对于二力构件,
力系分为:平面力系、空间力系 ①平面汇交力系 平面力系 ②平面平行力系(平面力偶系是其中的特殊情况 ) ③平面一般力系(平面任意力系) 平面汇交力系: 各力的作用线都在同一平面内且 汇交于一点的力系。 研究方法:几何法,解析法。
例:起重机的挂钩。
2.1 平面汇交力系的合成与平衡
2.1.1 平面汇交力系合成的几何法与平衡的几何条件 1、几何法
Y X
87.46 8.852, 83.55O 9.88
由于FRx为负,FRY为正,故 在第二象限,合力 FR的作用线通过汇交点O,如图2.12
【例2.5】
如图2.1 3所示为建筑工地使用的 井架把杆装置,杆AB的一端铰接在井架上, 另一端用钢索BC与井架连接。重物通过卷扬 机由绕过滑轮BC的钢索起吊。已知重物 Fw=2kN,把杆重量、滑轮的重量及滑轮的大 小不计,滑轮的轴承是光滑的。试求钢索BC 的拉力和把杆AB所受的力。
由图2.14(b)可知 DB CB cot l cot 30 0 tan 0.866 AB 2l 2l 40.90 将 40.90 代入方程并求解得 FA 13.2 KN FB 8.66 KN
解题技巧及说明: 1、一般地,对于只受三个力作用的物体,且角度
2、主矢和主矩
主矢:力系各力的矢量和,即 主矩:力系中各力对于任选简化中心O之矩的矢量和,即
理论力学(哈工大版本)第二章平面力系
解:注意到CB为二力构件,画受力图
M AC F Cd F C 2 12 F C 2
224 18 2F (NCcm) 0.255F 2
Mi 0 MAC M 0
F C 3137N
理论力学
.
C(Nm)
37
[例]图示杆系,已知M,l,求A、B处约束力。
l
l
FA 解:1、 AD为二力杆。
D
B
A
2、研究对象: 整体
解:取滑轮B为研究对象, 忽略滑轮的大小,画受力图。 FBA
y
FBC D
60
B
列平衡方程
B
F2 60
x
Fx 0, FBA F c1os 60 F2 cos 30 0
30
Fy 0,FBC F co1 s 30 F2 cos 60 0
F1
30
当由平衡方程求得
G
解方程得杆AB和BC所受的力: 某一未知力的值为
FR F1F2 Fn F
i
3、平面汇交力系平衡的几何法
平面汇交力系平衡的必要和充分条件是: 该力系的合力等于零。
FR F1F2 Fn F 0 i
上述方程的几何表达为:该力系的力多边形自行封闭。
用几何方法求平面汇交力系平衡时,要做出自行封 闭的力多边形,一般只适合三个力的平衡问题。
理论力学
作出相应的力多边形。
F
FD
F
A
OE EA24 cm
FB
tan DE 6
OE 24
arctan 1 140
4
由力三角形图可得
O
B E FB
sin180
FB
F 750N FD
D
sin
清华大学 李俊峰教授 理论力学 第三章平面力系_
;定滑轮半径为 ,动滑轮半径为 ,且
,
。
求
、E 支座的约束力及
BD 杆 所 受 的 力 。
解:取整体为研究对象,受力如图(a)。由平衡方程
解得
,
,
为方便求解二力杆 BD 的受力,取图(b)所示系统为研究对象。有
得 再取 DE 杆为研究对象,受力如图(c),由平衡方程
解得 2. 静定与静不定概念
(杆 BD 受拉)
解得
m §3-4 平面力系的平衡条件和平衡方程 1. 平面力系的平衡条件 平面力系平衡的必要和充分条件是:力系的主矢和主矩都等于零
2. 平面力系的平衡方程
(3-7)
(3-8) 即力系中各力在坐标轴上投影的代数和分别等于零,各力对任意点之矩的代数和等于零。
三个独立的平衡方程,可解三个未知量。 3. 平衡方程的其它形式 主矢和主矩分别等于零的条件还可用其它形式的平衡方程表示。
(1)二矩式(图 3-11)
式中 A ,B 连线不能与 x 轴垂直。 ③三矩式(图 3-12)
(3-9)
(3-10) 式中 A 、B 、C 三点不能共线。 4. 平面平行力系的平衡方程 由式(3-8)、式(3-9)和式(3-10)可推出各种特殊的平面力系的平衡方程。平面平行力系 的平衡方程为
式中 轴与各力平行,A 为平面上任一点。另一组形式是
每种力系的独立平衡方程数 是一定的,因而能求解未知量的个数 也是一定的。静定与
静不定问题或超静定问题可如下表所述:
本章将讨论平面任意力系(简称平面力系)的简化和平衡问题,介绍简单桁架的内力计算。 §3-1 力的平移定理 定理:作用在刚体上某点 A 的力 F 可平行移到任一点 B ,平移时需附加一个力偶,附加 力 偶 的 力 偶 矩 等 于 力 F 对 平 移 点 B 的 力 矩 。 如 图 3-3 所 示 。
理论力学4 平面一般力系
力F ′+ 力偶( F , F ′′)
3
说明: 说明 力线平移定理揭示了力与力偶的关系: ①力线平移定理揭示了力与力偶的关系:力 (例断丝锥) 例断丝锥)
力+力偶 力偶
有关, ②力平移的条件是附加一个力偶m,且m与d有关,m=F•d 力平移的条件是附加一个力偶 , 与 有关 ③力线平移定理是力系简化的理论基础。 力线平移定理是力系简化的理论基础。
Fx = 0, FAx − FT cos 30 0 = 0 ∑
Fy = 0, FAy + FT sin300 − P −Q = 0 ∑
1 ∑ M A = 0, FT 2 ⋅ 6a − P ⋅ 3a − Q ⋅ 4a = 0 F T = 17 . 33 kN 解得: F Ax = 15 . 01 kN 解得: F 22 Ay = 5 . 33 kN
a a 两力作用线过x1 = 和x2 = 3 2
17
§3-4
平面一般力系的平衡条件与平衡方程
一 平面任意力系的平衡方程 平面任意力系平衡的充要条件是: 力系的主矢和对任意点的主矩都等于零
r ′ 即 FR = 0
Mo = 0
FR′ = (∑ Fx )2 + (∑ Fy )2
MO = ∑MO (Fi )
∑ F = 0, F = 0 ∑ Fy = 0, FAy + FBy − P − q ⋅ 2a = 0
9
固定端(插入端) 固定端(插入端)约束 说明 ① 认为Fi这群力在同一平面内; 雨搭 ② 将Fi向A点简化得一力和一力偶; ③ FA方向不定可用正交分力FAX, FAY 表示; ④ FAX, FAY, MA为固定端约束反力;
FR FYA FXA
理论力学-平面任意力系
平面任意力系可能由 多个力的叠加构成, 具有较高的复杂性。
平面任意力系的特点
多方向性
平面任意力系可以有从不同方向作用的力。
多点作用性
平面任意力系可以有多个作用点。
力的大小不同
平面任意力系中的力可以有不同的大小。
力的叠加
平面任意力系可能由多个力的叠加构成。
平面任意力系的合力和力矩求解方法
1
合力求解方法
Hale Waihona Puke 理论力学-平面任意力系通过本讲,你将深入了解平面任意力系的定义、特点、合力和力矩求解方法、 平衡条件、实际应用,以及解题步骤。准备好开始你的力学之旅吧!
平面任意力系的定义
1 什么是平面任意
力系?
平面任意力系是指位 于同一平面内的多个 力的集合。
2 力的方向和作用点 3 任意力系的复杂性
力可以有不同的方向 和不同的作用点,但 都在同一平面内。
将所有力按照矢量法则相加,求
力矩求解方法
2
得合力的大小和方向。
通过力矩定理,求得平面任意力
系的力矩。
3
力矩的方向
力矩的方向垂直于力的平面。
平面任意力系的平衡条件
力的平衡
合力为零,即所有力合成为零。
力矩的平衡
力矩的合力为零。
平面任意力系的实际应用
1 桥梁结构分析
分析桥梁结构的受力 情况。
2 机械设计
设计和优化机械系统 中的力的分布。
3 建筑结构设计
分析建筑结构的静力 平衡。
案例分析:平面任意力系的解题步骤
1
Step 1
分析力的大小和方向。
2
Step 2
计算合力和合力矩。
3
Step 3
《平面力系》PPT课件_OK
解力三角形:
FN
F
cos
又:
cos
R2
(Rh)2 R
1 R
h(2Rh)
FN
FR h (2R h)
9
2.2 平面汇交力系合成与平衡的解析法
再研究球,受力如图: 作力三角形
解力三角形:
P FN sin
又sin
Rh R
FN FN
FNB= 0时为
球离开地面
P FN sin
F R R h P F(Rh)
(2)力偶对作用面内任一点的矩,与矩心的位置无关。
力偶对点O的矩为Mo(F,F′),则
M o (F , F ) M o (F ) M o (F ) F(x d) Fx Fd
力偶矩是一个代数量,其绝对值等于力的 大小与力偶臂的乘积,正负号表示力偶的 转向:一般以逆时针转向为正,反之为负。
记为M(F,F′) 简记为M。
2.2 平面汇交力系合成与平衡的解析法
[例] 已知 P=2kN ,求CD所受的力和A处的约束反力。
解:①以AB杆为研究对象 ②画受力图 ③列平衡方程求解
F x 0 RA cos SCD cos 450 0
F y 0 PRAsin SCD sin450 0
tan EB 0.4 1
AB 1.2 3
M Fd 2 AABC
力偶矩的单位:N·m。
Fix 0 Fiy 0
称为平面汇交力系的平衡方程。
14
2.2 平面汇交力系合成与平衡的解析法
例:如图所示,重物P=20kN,用钢丝绳挂在支架的滑轮 上,钢丝绳的另一端缠绕在铰车D上。杆AB与BC铰接,并 以铰链A、C与墙连接。如两杆和滑轮的自重不计,并忽略 摩擦和滑轮的大小,试求平衡时杆AB和BC所受的力。
理论力学第二章
F F3 F4
M Fd ( F3 F4 )d F3d F4 d M1 M 2
在同平面内的任意个力偶可以合成为一个合力偶, 合力偶矩等于各个力偶矩的代数和。
M Mi
i 1
n
2.2.4 平面力偶系的平衡条件
所谓力偶系的平衡,就是合力偶的矩等于零。因此, 平面力偶系平衡的必要和充分条件是:所有各力偶矩 的代数和等于零,即
F R F 1 F 2 F n F
如果一力与某一力系等效,则此力称为该 力系的合力。
2.1.2 平面汇交力系平衡的几何条件
平面汇交力系平衡的必要与充分条件是: 该力系的合力等于零。用矢量式表示为:
Fi 0
平面力偶系的合成结果为
M O M 1 M 2 M n M O ( F1 ) M O ( F2 ) M O ( Fn ) M O ( Fi )
平面汇交力系力,FR′ 平面力 偶 系力偶,MO
(主矢,作用在简化中心) (主矩,作用在该平面上)
理论 力 学
河南科技大学建筑工程学院工程力学系
第二章 平面力系
平面力系:各力作用线位于同一平面的力系。 本章主要介绍平面力系的简化与平衡。 各力作用线位于同一平面且相交于一点的力系称为平面 汇交力系。
F1 A F2
F3
F4
2.1 平面汇交力系
2.1.1 平面汇交力系合成的几何法
c F1 A F3 F12 FR a d F4 e
RB
2、研究对象: 整体 m N AD RB l 思考:CB杆受力情况如何?
RC
m
RB
[例6]图示杆系,已知m,l。求A、B处约束力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
F1
A F2
F4 F3
F1
A
B F2
FR
C
F3
D
F4
E
§2–1 平面共点力系合成的几何法 与平衡的几何条件
平面共点力系的合成结果
平面共点力系可以合成为一个力,合力作用在力系的公
共作用点,它等于这些力的矢量和,并可由这力系的力多边形 的封闭边表示。
n
矢量的表达式: FR= F1+ F2+ F3+ ···+ Fn F i i1
比较下面两力多边形
F1
A
B F2
F5
E
C
F3
D
F4
F1
A
B F2
F5
E
C
F3
D
F4
§2–1 平面共点力系合成的几何法 与平衡的几何条件
例题 2-1
例 2–1 水平梁AB中点C作用着力F,其大小等于2 kN, 方向与梁的轴线成60º角,支承情况如图所示,试求固定铰链 支座A和活动铰链支座B的约束力,梁的自重不计。
F
A
24
C
O
BE
6
D
第二章 平面基本力系
例题2-2
§2–1 平面共点力系合成的几何法 与平衡的几何条件
解:1. 取制动蹬ABD作为研究对象。 2. 画出受力图。
O
3. 应用平衡条件画出F,FB 和FD的闭合力三角形。
I
F
FD
O
J
K
FB
例题 2-2
F
A
C BE
D
24
6
F
A
B FB
FD D
第二章 平面基本力系
结论:力在某轴上的投影,等于力的模乘以力与该轴正向间
夹角的余弦。
反之,当投影Fx,Fy 已知时,则可求出力 F 的大小和方向:
F Fx2 Fy2
cosFx , cosFy
F
F
§2–2 平面共点力系合成的解析法
与平衡的解析条件
合力投影定理
合力投影定理
合力在任一轴上的投影,等于它的各分力在同一轴上的 投影的代数和。
§2–1 平面共点力系合成的几何法 与平衡的几何条件
4. 由几何关系得
O E E A 2c 4m
ta nDE 61
OE24 4
arct1an142' O
4
由力三角形可得
sin 18 0
FB si n F
例题 2-2
F
A
C BE
D
24
6
F
A
5. 代入数据求得
FB=750 N 方向自左向右。
J
第二章 平面基本力系
F1
A F2
F4 F3
F1
A
B F2
FR
FR
C
F3
D
F4
E
§2–1 平面共点力系合成的几何法 与平衡的几何条件
3. 共点力系平衡的几何条件
共点力系平衡的充分必要几何条件为: 该力系的力多边形自行闭合,即力系中各力的矢量和于零。
F0
F5 F4
F1 A
F2 F3
F1
A
B F2
F5
E
C
F3
D
F4
§2–1 平面共点力系合成的几何法 与平衡的几何条件
Fx= F1x+ F2x+ F3x
F1 A
B F2 C
F
F3
D
x
a bd c
(b)
推广到任意多个力F1,F2, Fn组成的平面共点力系,可得
F x= F1x+ F2x+ + Fnx = Fx
§2–2 平面共点力系合成的解析法
与平衡的解析条件
合力投影定理
2.平面共点力系合成的解析法
根据合力投影定理得
A
B
C
30º
a
a
第二章 平面基本力系
例题2-1
§2–1 平面共点力系合成的几何法 与平衡的几何条件
例题 2-1
解: 1. 取梁AB作为研究对象。
2. 画出受力图。
3. 应用平衡条件画出F,FA 和FB的闭合力三角形。
4. 解得 FA=Fcos 30=17.3 kN FB=Fsin 30=10 kN
第二章 平面基本力系
§2–1合成的几何法与 平衡的几何条件
§2–1 平面共点力系合成的几何法 与平衡的几何条件
1. 平面力系的基本类型
汇交力系 —— 各力的作用线均汇交于一点的力系。
共点力系 —— 各力均作用于同一点的力系。 力 偶 —— 作用线平行、指向相反而大小相等的两个力。
平面力系 —— 各力的作用线都在同一平面内的力系。否则
A
A FA
C
a
a
B
30º
D
F 60º C
E
60º FB
F
K
30º FA
B 30º FB
H
第二章 平面基本力系
§2–1 平面共点力系合成的几何法 与平衡的几何条件
例题 2-2
例2–2 如图所示是汽车制动机构的一部分。司机踩到制动 蹬上的力F=212 N,方向与水平面成=45。当平衡时,BC水平 ,AD铅直,试求拉杆所受的力。已知EA=24 cm,DE=6 cm点E 在铅直线DA上,又B,C,D都是光滑铰链,机构的自重不计。
为空间力系。
共点力系
平面力系的类型
力偶系 任意力系
1平面力系的基本类型
§2–1 平面共点力系合成的几何法 与平衡的几何条件
2. 合成的几何法
表达式:FR = F1+ F2+ F3+ F4
F1
A F2
F4 F3
F1 B F2
A
FR
C
F3
D
F4
E
§2–1 平面共点力系合成的几何法 与平衡的几何条件
力的多边形规则 把各力矢首尾相接,形成一条有向折线段(称为力链)。 加上一封闭边,就得到一个多边形,称为力多边形。
O
I
F
FD
FB
B FB
FD D
K
§2–2 平面共点力系合成的解析法 与平衡的解析条件
合力投影定理 平面共点力系合成的解析法 平面共点力系平衡的解析条件
§2–2 平面共点力系合成的解析法 与平衡的解析条件
1. 合力投影定理
y
力在坐标轴上的投影
Fx Fcos
Fy Fcos
b´
B
Fy
a´
F
A
O a Fx b xFra bibliotek证明:
以三个力组成的共点力系为例。设有三个共点力F1,F2,F3
如图a。
F1 A
F1 A
B F2 C
F2 F3
(a)
F
F3
D
x
(b)
§2–2 平面共点力系合成的解析法
与平衡的解析条件
合力投影定理
各力在 x 轴上投影 F1x= ab , F2x= bc , F3x= -dc 合力 F 在 x 轴上投影得 Fx= ad 由图知 ad = ab + bc + (-dc)
静力学
§2–1 平面共点力系合成的几何法
第
与平衡的几何条件
二
章
§2–2 平面共点力系合成的解析法
与平衡的解析条件
平
面
基
§2–3 两个平行力的合成
本
力
系
§2–4 平面力偶系的合成与平衡条件
目录
§2–1 平面共点力系合成的几何法 与平衡的几何条件
平面力系的基本类型 平面共点力系合成的几何法 平面共点力系平衡的几何条件
y
F x F 1 x F 2 x F n x F ix
A Fx
F y F 1 y F 2 y F n y F i y Fy Fy
F B
x
合力的大小
O
Fx
F F x 2 F y 2 F ix 2 F iy 2
合力F的方向余弦
co s F xF ix, co s F yF iy