第五章电极过程扩散动力学 (2)

合集下载

电极过程动力学‘’

电极过程动力学‘’

12
界面荷电层的结构和电势分布
■ 在浓溶液( >0.1摩尔/升)中,由于溶液中的离子浓度很大,剩余
电荷(离子)的集中不会严重破坏溶液只离子的分布;又若电极表面 电荷密度也较大,使界面间剩余电荷的静电引力远大于溶液中离子热 运动的干扰,致使溶液中的剩余电荷也倾向于紧密地分布在界面上, 则在溶液相内不存在电荷分布或电势分布的问题。这时形成所谓“紧 密双电层”。其结构与一个荷电的平板电容器相似。紧密双电层的厚 度约等于溶液中水化离子的半径。在紧密层内因不存在离子电荷,故 有恒定的电场强度,亦即电势梯度不变,电势分布呈线性。 ■ 在稀溶液(<0.01摩尔/升)中,离子浓度较小,又若电极表面电荷密 度也较小。则由于离子热运动的干扰将使溶液中的剩余电荷不可能全 部集中排列在界面上,遂使溶液中的剩余电荷分布具有一定的“分散 性”。在这种情况下,形成的界面荷电层包括“紧密层”和分散层两 部分。此时相应的电势分布分为两部分:在“紧密层”中为线形分布; 在“分散层”中,由于异号电荷的弥散分布,电势分布呈非线形。因 此,电极与溶液本体之间总的电势差实际上包括两个组成部分:紧密 层中的电势差和分散层中的电势差。
19
理想情况下的稳态过程
在远离电极表面的液体中,传质过程主要依靠对流作用来实现;而 在电极表面附近液层中,起主要作用的是扩散传质过程.在一般情况下, 难以截然划分这两种过程的作用范围。为了便于单独研究扩散传质的 规律,设计一种理想的情况,并假设溶液中存在大量惰性电解质,因而可 以忽视电迁传质作用。
18
稳态扩散和非稳态扩散
电极反应开始进行后,必然引起电极表面附近液层中反应粒子的浓
度变化,破坏了反应前浓度均匀分布的平衡状态,随着电极表面液层中
出现的浓度差,同时发生了扩散传质过程.在电极反应的初始阶段,指向 电极表面的扩散传质不中以完全补偿电极反应所引起的反应粒子的消 耗,因而随着电极反应的进行,将使浓度变化继续向深处发展.习惯上将 这种扩散过程的初始发展阶段称为“非稳态阶段”或“暂态阶段”。 然而,,当出现浓度差的范围延伸到电极表面附近的薄液层以外,以 致出现了较强的对流传质过程时,则指抽电极表面的反应粒子的流量已 中以完全补偿由于电极反应而引起的消耗.这时电极表面附近液层中的 浓度差仍然存在,但却不再发展,称为“稳态扩散阶段”。

第五章电荷转移步骤动力学与电化学极化PPT课件

第五章电荷转移步骤动力学与电化学极化PPT课件
第五章 电荷转移步骤动力学 与电化学极化
5.1 电化学极化概述 5.2 电化学步骤的基本动力学方程 5.3 电化学步骤的基本动力学参数 5.4 稳态电化学极化动力学方程 5.5 电化学极化与浓差极化的比较
1
5.1 电化学极化概述
液相传质过程发生于“电极/溶液”表面附近 的液层中,即扩散层中。
电化学步骤(电荷转移步骤)则发生于“电极 /溶液”界面上。
但必须注意: (1)上述关系只使用于简单的电极反应; (2)注意浓度的单位换算,浓度单位一般用 “mol / cm3”。当生成不溶的独立相时,其浓度取 110-3 mol/cm3
35
5.4 稳态电化学极化动力学方程
当一定大小的电流流过电极时,电极电位偏离其 平衡电极电位。当达到稳态时,即电极过程各个步 骤的进行速度不再随时间而改变,电极电位与外电
22
电化学平衡
当电极体系处在平衡态时,电极上没有净反应发
生,阳极反应速率( ia0 )与阴极反应速率( ic0 )
相等。
zacRexp(W10
RnTF平)zccoexp(W20
nF平)
RT
写成对数形式并整理后得:
平(W10nF W20
2.3RTlgzc)2.3RTlgco nF za nF cR
平 0' 2.n3RFTlgccR o
ia0 = ic0= i0
交换电流密 度
19
对于阳极反应 = - 平=a
所以有: a2 .3 n RF lT g i02 .3 n RF lT g ia2 .3 n RF lT g iia 0
对于阴极反应 = - 平=-c
所以有: c 2 .3 n RlF T g i0 2 .3 n RlF T g ic 2 .3 n RlF T g iic 0

第五章 电化学步骤的动力学

第五章    电化学步骤的动力学
改变电极电势———就可以直接改变电化学步骤和整个电极反应 的进行速度。
5.1 改变电极电势对电化学步骤活化能的影响 电极电势改变了后阳极 反应和阴极反应的活化能 分别变成:

W W1 F
' 1
'
(5.1a)

W2 W2 F
(5.1b)

和 分别表示改变电极电势对阴极和阳极

k e
阳极过程和阴极过程的电流密度 阳极:
nF 0 ia nFKcR exp 平 RT
=

nF i exp a RT
0
阴极:
nF 0 ic nFKcO exp 平 RT
0 * a R
nF 0 * 1 ik nFKk cO exp RT
z R F 1 c c R exp RT zO F 1 * 0 cO cO exp RT
* R 0
1
z R zO n,
0 i
0

根据能斯特方程式,电极的平衡电极电位 e 可写成下列通式,即:
RT a氧化态 RT aO 0 e ln e ln nF a还原态 nF a R
0 e
5.4

电极电势的“电化学极化”
定义:若体系处于平衡电势下,则 ia ik ,因 而电极上不会发生净电极反应。当电极上 有净电流通过时,由于 ia ik ,故电极上的 平衡状态受到了破坏,电极电势或多或少 会偏离平衡电势,我们称这种现象为电极 电势发生了“电化学极化”。 这时流过电极表面的净电流密度等于:
a
0
I i0

电极过程动力学 ppt课件

电极过程动力学  ppt课件

§1.1 电极过程动力学的发展
电化学科学的发展大致可以分为三个阶段:电化学热 力学、电化学动力和现代电化学。
电化学热力学研究的是处在平衡状态的电化学体系, 涉及的主要问题是电能和化学能之间的转换的规律。
从19世纪末到20世纪初,在热力学基本原理被牢固地 确立后,用热力学方法研究电化学现象成了电化学研 究的主流,取得了重大的进展,使“电化学热力学” 这部分内容趋于成熟,成为物理化学课程的经典组成 部分。
研究电极过程动力学的首要目的在于找出整个电极过程的控制步 骤,并通过控制步骤来影响整个电极过程的进行速度,而这又建立 在对电极过程基本历程的分析和弄清个分步骤动力学特征的基础 之上。
电极的极化
处在热力学平衡状态的电极体系,因正、负方向的反应速度相等, 净反应速度等于零.相应的平衡电极电势可由Nernst公式计算.当 有外电流通过时,净反应速度不等于零,即原有的热力学平衡受到 破坏,致使电极电势偏离平衡电势,这种现象在化学上称为电极的” 极化现象” 。
“电极/溶液”界面上的电场强度常用界面上的相间电势差---电极电势表 示,
随着电极电势的改变,不仅可以连续改变电极反应的速度,而且可
以改变电极反应的方向。以后还将看到,即使保持电极电势不变,改变
界面层中的电势分布也会对电极反应速度有一定的影响。因而研究“电
极/溶液”界面的电性质,即电极、溶液两相间的电势差以及界面层中的
电化学—研究载流子(电子、空穴、离子)在电化学 体系(特别是离子导体和电子导体的相界面及其邻近 区域)中的运输和反应规律的科学。
电化学所研究的内容有:
(1)电解质溶液理论(离子水化、离子互吸、离子缔合及电导 理论等);
(2)电化学平衡(可逆电池、电极电位、电动势与热力学函数 间关系等);

第5~9章 思考题答案

第5~9章 思考题答案

第五章思考题1. 在电极界面附近的液层中,是否总是存在着三种传质方式?为什么?每一种传质方式的传质速度如何表示?答:电极界面附近的液层通常是指扩散层,可以同时存在着三种传质方式(电迁移、对流和扩散),但当溶液中含有大量局外电解质时,反应离子的迁移数很小,电迁移传质作用可以忽略不计,而且根据流体力学,电极界面附近液层的对流速度非常小,因此电极界面附近液层主要传质方式是扩散。

三种传质方式的传质速度可用各自的电流密度J来表示。

2. 在什么条件下才能实现稳态扩散过程?实际稳态扩散过程的规律与理想稳态扩散过程有什么区别?答:当电极反应所消耗的反应粒子数和扩散补充来的反应粒子数相等,就可以达到一种动态平衡状态,即扩散速度与电极反应速度相平衡。

这时反应粒子在扩散层中各点的浓度分布不再随时间变化而变化,而仅仅是距离的函数;扩散层的厚度不再变化;离子的浓度梯度是一个常数,这就是稳态扩散过程。

理想条件下,人为地把扩散区和对流区分开了,因此理想稳态扩散过程中,扩散层有确定的厚度;而实际情况下,扩散区与对流区是相互重叠、没有明显界限的,只能根据一定的理论来近似求得扩散层的厚度。

二者在扩散层内都是以扩散作用为主。

因此二者具有相似的扩散动力学规律,但推导实际情况下的稳态扩散动力学公式需要借用理想稳态扩散的动力学公式。

3. 旋转圆盘电极和旋转圆环圆盘电极有什么优点?它们在电化学测量中有什么重要用途?答:旋转圆盘电极和旋转圆环圆盘电极上各点的扩散层厚度是均匀的,因此电极表面各处的电流密度分布均匀。

这克服了平面电极表面受对流作用影响不均匀的缺点。

它们可以测量并分析极化曲线,研究反应中间产物的组成及其电极过程动力学规律。

4. 试比较扩散层、分散层和边界层的区别。

扩散层中有没有剩余电荷?答:根据扩散传质理论,紧靠电极表面附近,有一薄层,此层内存在反应粒子的浓度梯度,这层叫做扩散层;电极表面的荷电粒子由于热运动而倾向于均匀分布,从而使剩余电荷不可能完全紧贴着电极表面分布,而具有一定的分散性,形成所谓分散层;靠近电极表面附近的液流层叫做边界层,越接近电极表面,其液流流速越小。

电化学理论与方法 第五章 电极过程概述

电化学理论与方法 第五章 电极过程概述

整个测量极化曲线的线路是由两个回路组成的。其中极化 回路中有电流通过,用以控制和测量通过研究电极的电流 密度。测量回路用以测量研究电极的电位,该回路中几乎 没有电流通过。
5.2 原电池和电解池的极化图
1、原电池的极化图
断路时电池的电动势为
E c平- a平
(5.3)
通电后,电流从阳极流入,从阴极流出,在溶液中 形成与电动势方向相反的欧姆降。
5.3 电极过程基本历程和速度控制步骤
一、电极过程的基本历程
电极过程是由一系列性质不同的单元步骤串连组成的 复杂过程,大致由以下各单元串连组成:
(1)反应粒子向电极表面附近液层迁移,称为液相传质步骤。
(2)反应粒子在电极表面或电极表面附近液层中进行电化学反 应前的某种转化过程(前置转化 )。
(3)反应粒子在电极/溶液界面上得到或失去电子,生成还原 反应或氧化反应的产物。 (4)反应产物在电极表面或表面附近液层中进行电化学反应后 的转化过程(随后转化 )。
(5.6)
通电后,电流从阳极流入,从阴极(负极)流出,在溶 液中形成与电动势方向相同的欧姆降。电池的端电压为
V a c IR
E ( c a ) IR

(5.7)
V ( a平 a ) ( c平 c ) IR
V超= a c
电子运动速度>电极反应速度,极化作用>去极化 作用。阳极上,电子流出电极的速度大,造成正电荷 的积累,阳极电极电位向正移动 ;阴极上,电子流 入电极的速度大,造成负电荷的积累 ,阴极电极电 位向负移动。

理想极化电极:通电时不存在去极化作用,流 入电极的电荷全部在电极上不断积累,只起改 变电极电位(改变双电层结构)。

现代电化学-第5章电极反应动力学

现代电化学-第5章电极反应动力学
1.描述平衡状态下的动力学特征
i i i0
F K c O e x p n RF 平 T F K c R e xF R p平 T
∴ 平=RFTlnK KRFTlnccO R
平=0,
RTlncO nF cR
22
2. 用 i 0 表示电化学反应速度
i i0 exp F
设:电化学反应步骤为控制步骤,此时
cis ci0
传质处于准平衡态
由 根化 据F学ra动rd力a学y定知律:得: vkcexpRGT
i nFkcOexpRGT i nFkcRexpRGT 15
将 GG0nF 代入,得:
GG0nF
inkc F O e x p G 0R nT F nK F cO e x p R nF T
• i0 ic id:
只出现电化学极化 ,此时:
c
RT
F
ln
ic i0
46
• ic id i0:
接近于完全浓差极化的情况 ,动力学规 律无法由混合公式得出,需按浓差极化 公式分析。
• ic id i0: 既接近于完全浓差极化又存在电化学极 化,混合公式任何一项均不可忽略。
47
混合控制下的极化曲线
改变1 V 改变 G 50 KJ mol-1,
对于1
nm的电化学界面,109
Vm-1 40
(4) i0与电极动力学性质的关系
极化 性能
i00 i0 小 i0 大 i0 理想 容易 难 不能
可逆 完成全
程度 不行


完全 可以
2 .3R 03 T 2 .3R 03 T
c zFlg i0 zFl41g ic
Tafel曲线
c2.3 zR 0 Fl3 Tg i02.3 zR 0 Fl3 Tg ic 42

第五章电极过程扩散动力学

第五章电极过程扩散动力学
s c0 c Ag Ag
l
(5-4)
稳态扩散的电流密度:
i F (J Ag ) FDAg
s c0 c Ag Ag
l
(5-5)
26
将式(5-5)扩展为一般形式,
对于反应:
O ne R
稳态扩散的电流密度:
ci0 cis (5-6) i nF ( J i ) nFDi l s 极限扩散电流密度:当 ci =0时的扩散电流密
11
2、电极过程的速度控制步骤
速度控制步骤 :串连的各反应步骤中反应速度 最慢的步骤。 常见的极化类型: 浓差极化:液相传质步骤成为控制步骤时引起的 电极极化。指单元步骤(1) 电化学极化:由于电化学反应迟缓而控制电极过 程所引起的电极极化。指单元步骤(3)
12
3、准平衡态
当电极反应以一定速度的进行时,非控制步 骤的平衡态几乎未破坏,这种状态叫做准平 衡态。 对准平衡态下的过程可用热力学方法而无需 用动力学方法处理,使问题得到简化。
阴极极 化
阳极极 化
不锈钢在硫酸中的极化 曲线
8
三、电极过程的基本历程和速度控制步 骤
1、电极过程的基本历程
液相传质步骤 前置的表面转化步骤
电子转移步骤
随后的表面转化步骤
新相生成步骤和反应后的液相传质步骤
9
例 银氰络离子在阴极还原的电极过程 :
图5-1银氰络离子在阴极还原过程示意图
19
传质作用的区域: 电极表面及 其附近的液 层区域划分: 双电层区、 扩散层区、 对流区。
s’ c
s
cc
0
c0 cs
c
c
双电层区
扩散区

电化学原理-第五章-液相传质步骤动力学-2015修订

电化学原理-第五章-液相传质步骤动力学-2015修订

y u 1/ 6 1/ 2 1/ 2 0
n0 知
y1/2


u 1/ 0
2
而旋转圆盘电极上各点的切向速度:
u0 2n0 y
所以:
u01/ 2 y1/ 2 (2n0)1/ 2 常数
y 有:
Di1/3 1/6 常数
即:旋转圆盘电极上各点的扩散层
厚度与y值无关。
1、电极表面附近的液流现象及传质作用 2、扩散层的有效厚度 3、对流扩散的动力学规律
摩擦力
y0
边界层:存在流速梯 度的区域。
电极表面上各点,边 界层厚度不同。
动力粘滞
层流
y0
边界层
根据流体力学理论 可知:
边界层厚度:
B y / u0 (5.10)
动力粘滞系数:


粘度系数 密度
当 j 很小时,由于 j jd
则 (5.40) 简化为:
RT(1 j )
nF
jd (5.41)
对数 直线 关系 关系


0

RT nF
ln OcO0

RT nF
ln(1
j jd

作极化曲线。

0 2.由3RT
nF
log

O cO0

2.3RT nF
log(1
液相传质步骤动力学
液相传质常是电极反应的限制步骤。 1mol / L 时电极反应最大速度可达 105 A / cm2
实际电化学反应装置的最高电流密度极少 超过几 A / cm2 表明电化学反应的潜力未发挥出来。
通过减缓或增加液相传质来控制电极反应速度。 采用多孔膜和选择透过性薄膜减少干扰组分对 电极反应的影响。

电极过程动力学

电极过程动力学

电极过程动力学电极过程动力学是电化学中的一个重要分支,它着重研究电极电荷转移过程和相关的动力学机制。

电极过程动力学的研究对象包括电化学反应速率、电极化学反应的机理以及电化学反应的动态过程等。

本文将从电极反应速率、电位调控机理以及实际应用方面对电极过程动力学进行详细的介绍和分析。

一、电极反应速率1. 项里反应速率常数项里反应速率常数是衡量电极反应速率的重要参数。

它表示单位时间内反应物和产物之间的数量变化率。

在计算过程中,可以根据电荷转移过程中的动力学机制来确定项里反应速率常数。

通常情况下,项里反应速率常数与反应物和产物之间的活化能和电荷转移系数有关。

一般来说,项里反应速率常数越大,反应速率越快。

2. 泊松分布模型泊松分布模型是一种根据电子传输动力学研究电极反应速率的经典方法。

泊松分布模型假设电子从电极表面进入液相中的分布满足泊松分布。

据此,可以利用该模型计算出电极反应速率以及与之相关的电极化学反应机理。

然而,实际情况中,由于电极表面可能存在着非均匀性和多孔性等特征,泊松分布模型过于理想化,难以准确预测电极反应速率。

3. 热力学因素对电极反应速率的影响热力学因素对电极反应速率有着重要的影响。

根据热力学定律,电位差和电极之间的电势差会影响电子传输和离子转移速率。

当电极电位愈高,电位差就愈大,因此,电子和离子的传输速率就变得更快。

此外,反应物和产物之间的物理和化学吸附现象也会影响电极反应速率。

这些因素的影响程度需要结合具体的条件和反应机理来进行考虑。

二、电位调控机理1. 电位和电场电位是电子在电场作用下所具有的势能差。

由于电场力是由电荷带来的,因此,电位和电场强度是密切相关的。

在电极过程动力学中,电位的变化会影响电子传输过程,进而影响电极化学反应的速率和机理。

2. 离子选择电位离子选择电位可以影响电极的电化学反应机理和速率。

当电极表面存在多种离子时,离子选择电位会决定电极表面上离子种类的比例。

因此,在研究电极过程动力学时,需要对离子选择电位进行分析和控制。

电化学 第5章 表面转化步骤

电化学 第5章 表面转化步骤

第5章 表面转化步骤在前面的两章中,我们讨论了两个基本步骤(电化学为控步和扩散为控步的电极过程动力学)的动力学。

如果从溶液中扩散到电极表面来的粒子能直接参加电化学步骤反应(得失电子),并直接形成最终产物,那么整个电极反应就只有扩散和电子得失这两步就足够了。

然而许多研究表明,往往反应粒子的主要存在形式(即初始反应粒子)并不能直接参加电化学反应,它们扩散到电极表面后,往往需经某种转化步骤变成容易反应的形式;同样,电化学步骤中形成的初始产物也往往需要经某种转化步骤形成最终产物。

0**0R R R O O O s nes −−→−−−→−−−→−−−→−−−→−-+扩散转化转化扩散这些转化反应主要发生在S M /界面上,或电极表面附近的薄层溶液中,故称表面转化步骤。

表面转化步骤既可以是化学步骤,如离解、复合等,也可以是吸脱附或新相生成步骤。

其共同特点是它们的反应速度常数一般与电极电势无关。

作为电极过程的基本步骤之一,表面转化步骤在其绝对速度相对较小时也有可能成为整个过程的控制步骤或参与过程的控制,因此也有其自身的动力学规律。

我们通过本章转少的时间将简要的将其特征、规律给大家介绍一下。

[例1]:碱性镀锌液中+2Zn是以与-OH 形成络离子的形式存在的,反应粒子的主要存在形式为-24)(OH Zn ,还有其他形式如:-3)(OH Zn 、2)(OH Zn 、+)(OH Zn 、+2Zn 等,即配位数不同的络离子或络合物,NaOH 为络合剂。

阴极还原时,是哪种粒子在电极上放电呢?是否是主要存在形式-24)(OH Zn 放电?不一定。

研究证实,放电粒子(易于反应)是2)(OH Zn ,而2)(OH Zn 浓度较低,单靠溶液中原有的2)(OH Zn 难以源源不断地供应给电极反应,故必有一从主要形式到反应形式(放电形式)的转化过程(化学过程)。

Zn OH Zn OH Zn e −−→−−−→−-+-2224)()(转化(主要存在形式转化为易反应形式) 即在电化学步骤之前有一转化步骤,是在表面附近液层中进行的。

电化学基本原理与应用-第5章

电化学基本原理与应用-第5章

第5章液相传质过程与浓差极化主要内容5.1 液相传质方式与基本方程5.2 平面电极上的稳态扩散传质过程5.3 浓差极化动力学方程5.4 电迁移对稳态扩散的影响液相传质过程是电极过程中必不可少的过程,涉及反应物离子向电极表面的传质过程以及生成物向溶液本体的传质过程。

由于电极过程中传质过程速度的缓慢而引起的电极极化现象为“浓差极化”。

本章将介绍液相传质过程中的规律以及浓差极化控制的电极过程的动力学方程。

为了简单,在讨论浓差极化时,假设电子转移速度很快,远远大于液相传质速度。

5.1 液相传质方式与基本方程5.1 液相传质方式与基本方程5.1.1 液相传质的三种方式5.1.2 三种液相传质的比较5.1.3 液相传质的基本方程5.1.1 液相传质的三种方式(1)对流溶液中物质的粒子随着流动的液体一起运动,此时液体与离子之间没有相对运动,这种传质方式叫对流。

包括:自然对流(温度差、密度差等),强制对流(搅拌等)。

对流可以增加单位时间内到达电极表面的粒子数目。

采用对流流量πc,i 来描述溶液中i离子的对流传质速度。

πc,i :粒子i 在单位时间、垂直于运动方向的单位截面积上流过的量,单位(mol •m -2•s -1) ;v x :与电极表面垂直方向上的液体的流速,单位(m •s -1);c i :为i 离子的浓度,单位(mol •m -3)。

ix i c c v •=,π(2)电迁移当所研究的粒子带有电荷(即为离子)时,在电场力的作用下,将引起带电粒子迁移。

电迁移作用引起的所研究粒子的传质速。

度为πe,i显然:当研究对象(反应物或生成物)不带电荷时,如为中性分子,则不存在电迁移。

(3)扩散当溶液中某一组分存在浓度差,即在不同区域内某组份的浓度不同时,该组份将自发的从高浓度区域向低浓度区域移动,这种液相传质运动叫扩散。

稳态扩散时,即扩散区域内各点浓度不随时间而变化,这时可用Fick第一定律计算扩散速度。

(3)传质发生的区域电极表面附近的液层可以分为双电层区、扩散层区、对流区。

电化学原理第5章:液相传质步骤动力学介绍

电化学原理第5章:液相传质步骤动力学介绍

Ci0 Cis1 Cis4
1
100
非稳态扩
ci f(x,t)
• 稳态扩散:扩散的速度不 断提高,扩散补充的反应

dc 常数 dx
离子数与电极反应消耗的
反应粒子数相等,扩散层
扩散层厚度δ随时间变化
稳态扩散:
ci f(x) dc 常数 dx
中,各点的反应粒子浓度
分布不再随时间的变化而 变化,仅仅是距离的函数。

2 0.62nFD2 / 3 1/ 61/( ci0 cis)
jd nFDi
ci0

0.62nFD2 / 3 1/ 6 1/ 2 ci0
(5.19)
3、旋转圆环-圆盘电极

控制盘电极和环电极 之间的电位差,研 究电极过程的中间 产物。
5.2.4、电迁移对稳态扩散过程的影响 1、电解质溶液中的电迁移现象
四、电迁移对稳态扩散过程的影响
5.2.1 理想条件下的稳态扩散
1.理想条件:排除电迁移的影响,区分扩散区 和对流区,人为地创造一种单纯的扩散过程
0 s c Ag c Ag
强烈搅拌
管径极小
C0
K
大量局外 电解质
dc c c 常数 dx l
0 s
Ag

NO 3
2.理想稳态扩散的动力学规律
液相传质步骤控制的动力学规律,然后再考虑其他
单元步骤对它的影响。
液相传质动力学,实际上是讨论电极表面物质浓度 变化的速度(向电极表面传输物质的速度)。
与电极反应的速度有关,但如果我们假定电极反应
速度很快,那么这种物质浓度的变化速度主要取决
于液相传质的方式及其速度。
因此.我们要先研究液相传质的几种方式。

第五章 电化学步骤动力学

第五章  电化学步骤动力学
第五章
电化学步骤动力学
如果电化学反应步骤的速度很慢,成为整个过程的控制步骤, 如果电化学反应步骤的速度很慢,成为整个过程的控制步骤, 电极过程的速度就将由电化学反应步骤的速度控制。 电极过程的速度就将由电化学反应步骤的速度控制。 由电化学步骤缓慢所引起的极化叫电化学极化。 由电化学步骤缓慢所引起的极化叫电化学极化。 电化学极化 电化学步骤控制的电极过程的动力学规律就是电化学步骤的动 力学规律。 力学规律。 因此找到了影响电化学步骤的反应速度的主要因素, 因此找到了影响电化学步骤的反应速度的主要因素,也就找到 了影响电极过程速度的主要因素, 了影响电极过程速度的主要因素, 电化学步骤动力学就是研究电极过程处于电化学反应步骤所控 制时的动力学规律或动力学特征。 制时的动力学规律或动力学特征。
5.1巴特勒-伏尔摩方程 5.1
一.电化学极化经验公式
过电位服从一个半经验公式: 过电位服从一个半经验公式:
与电极材料、电极表 面状态、溶液组成和 温度有关 它只在一定的电流 范围内适用
1905年塔费尔根据大量实验事实, 1905年塔费尔根据大量实验事实,发现氢离子的放电过程中其放电 年塔费尔根据大量实验事实
a,b的物理意义不明确,不 , 的物理意义不明确 的物理意义不明确, 能说明电位的变化是怎样影 响电极反应速度的。 响电极反应速度的。
即电极电位直接影响到电子在两相间的传递, 即电极电位直接影响到电子在两相间的传递,直接与电化学步骤的 快慢有关。 快慢有关。 为了从理论上证明这个公式的合理性, 为了从理论上证明这个公式的合理性,必须从理论上来进行推导和 说明,因此必须建立起描叙电化学步骤动力学状态的方程。 说明,因此必须建立起描叙电化学步骤动力学状态的方程。
电极过程最重要的特征就是电极电位对电极反应速度的影响, 电极过程最重要的特征就是电极电位对电极反应速度的影响,这种影 响有直接的,也有间接的。 响有直接的,也有间接的。 直接影响主要指对电化学步骤的活化能的影响, 直接影响主要指对电化学步骤的活化能的影响,主要影响电极表面上 参加反应粒子的浓度。 参加反应粒子的浓度。 当扩散步骤成为控制步骤,电位的变化是由于参加反应的粒子的浓度 当扩散步骤成为控制步骤, 变化而引起的,可用能斯特方程计算电位变化,这种影响称为“ 变化而引起的,可用能斯特方程计算电位变化,这种影响称为“热力 学方式” 学方式”。 如果电子转移步骤是电极过程的控制步骤时, 如果电子转移步骤是电极过程的控制步骤时,电极电位直接影响电子 转移步骤和整个电极反应过程的速度,这种影响称为“ 转移步骤和整个电极反应过程的速度,这种影响称为“动力学方 式” 。

化学电极过程扩散动力学

化学电极过程扩散动力学

3.反应粒子在电极/溶液界面得到电子或失去电子--电化学反应步骤
4.反应产物在电极表面或表面附近液层中进行电化学反应后的转化过程 --后置转化步骤
5.a)当反应产物不可溶时,反应物生成新相--新相生成步骤
b)当反应产物可溶时,产物粒子从电极表面向溶液本体或液态电极内 部迁移--反应后的液相传质步骤
第四章
程速度。电极过程中最慢的步骤被称为控制步骤。
所谓的控制步骤它表达了如下三个意思: 1、控制步骤是电极过程中最慢的单元步骤,在稳态情况下电极过程中的每
个步骤的速度都应当等于这个最慢步骤的速度.
2、与速度有关的整个过程的动力学特征与最慢步骤的动力学特征相同,即 最慢步骤的动力学特征就是整个电极过程的动力学特征。 3、只要改变了这个控制步骤的速度,也就改变了整个过程的速度。
4.1 电极过程
二、电极过程的步骤
对于任何一个原电池或电解池来说,整个电池体系的电化学反应过程
至少包括阳极过程、阴极过程和反应物质在本体溶液中的传递过程。
这三个过程是在不同的区域内进行的,并有不同的特征,而且彼此具 有一定的独立性。因此研究电化学反应,可把电池反应分解成单个过
程来研究。
物质在本体溶液中的传质过程不涉及物质的化学变化,对电极过程有 影响的是电极表面附近液层的传质过程,但这种在电极表面附近液层
4.1 电极过程
三.电极过程的控制步骤
如果液相传质是电极过程中最慢的步骤,电极过程就处于扩散控制, 所造成的极化叫做浓差极化; 如果电化学反应步骤是电极过程的最慢步骤,电极过程就处于电化 学步骤控制,所造成的极化叫电化学极化, 如果反应由液相传质步骤和电化学步骤共同控制,就说整个电极过 程处于混合控制。 对电极过程的研究重要的是抓住两点:电极过程区别与其它过程的 最基本的特征——电极电位对电极反应素的的影响;电极过程中的 关键环节——速度控制步骤。

电化学原理-201x第五章501-1-wu

电化学原理-201x第五章501-1-wu
非稳态扩散过程: 随时间变化的扩散过程
ci ci (x,t) ci (x), ci (x) / t 0 J扩,i Didci (x) / dx 常数
整理课件
两种扩散过程举例: Ag+(S)+e→Ag(s)在如下装置中的电沉积
对流区和扩散 区截然分开
容器A中只存 在对流传质。
C0
毛细管内只存在 扩散传质。
c
s i
达到稳态后:
稳态浓 度分布
浓差极化的范围
5
ci0 cis
被限制在长度为l 的毛细管内
dc i 0 dt
l
dci 常 数整理课件 dx
dci ci0 cis
dx
l
2、理想稳态扩散的动力学规律
根据菲克第一定律,稳态下的 i 粒子的扩散流量
dci ci0 ciS dx l
J扩 ,i Did dcxi Di ci0 lciS
CS
I≠0
Cs <C0
x
非稳态:cc(x,t) 稳态:c c(x)
c(x,t)/ t 整0理课件
c / t 0
无对流情况下的非稳态过程——不会演 化到稳态
1 、0、1秒 ;2、1秒 ;3、10秒;4、100秒
整理课件
电极表面附近:i 离子的扩散流量<电极反应消耗量
非稳态扩散过程:浓度随时间 t 位置x变化的过程
当cSi = 0 即“完全浓差极化”时, 得极限扩散电流密度:
d jdnF ici0D nF i2/3u D 0 1 整/2 理课 件1/6y1/2ci0
j理想nF 和实D i际ddc稳ix态x扩0. 散动力d学dcxi规x律0 比c较i0d:ciS.
a. 理想稳态扩散 d l

电极过程动力学‘’

电极过程动力学‘’
◆电极材料的化学性质与表面状况。这方面的因素可称之为影响电极 表面反应能力的“化学因素”。大量实验事实 表明,通过控制这些因 素,可以大幅度的改变电极反应的速度。
◆“电极/溶液”界面上的电场强度。这方面的因素可称之为影响电 极反应速度的“电场因素”,它是通过影响反应的活化能来起作用的。 ■“电极/溶液”界面上的电场强度常用界面上的相间电势差---电极电 势表示,随着电极电势的改变,不仅可以连续改变电极反应的速度,而 且可以改变电极反应的方向。以后还将看到,即使保持电极电势不变, 改变界面层中的电势分布也会对电极反应速度有一定的影响。因而研究 “电极/溶液”界面的电性质,即电极、溶液两相间的电势差以及界面 层中的电势分布情况,对于研究电极过程动力学显得特别重要,也是本 章主要讨论的内容。
电极过程的主要特征及其研究方法
■ 只要有电流通过“电极/溶液”界面,电极表面上就会发生电极反应, 同时在电极表面附近的薄层液体中发生与电极反应直接有关的传质过 程(有时还发生化学变化)。习惯上把这些过程合并起来处理,统称 为电极过程。 ■ 电极过程是一种复杂过程,按其反应类型,它是一个异相氧化还原 过程,又因这种过程发生在“电极/溶液”的荷电界面上,所以与化学 反应相比,有如下三个特征:
研究“电极/溶液”界面结构的实验方法
研究“电极/溶液”界面构造的经典方法是:一方面 实验测量界面两侧的剩余电荷q和界面电势 ,并找出 q~关系;另一方面提出一定的界面构造模型,并计算其 物理参数。如果通过实验测得的界面参数与按理论模型推 算的结果较好地吻合,就可以认为所假设的界面构造模型 在一定程度上反映了界面的真实图象。
电毛细曲线
■ 对于汞—溶液体系,其界面张力取决于这 一界面所处的状态,其中包括表面的荷电状态。 构成汞表面剩余电荷的同性带电粒子彼此排斥, 力图使界面扩大,致使界面张力降低。 ■ 若在理想极化条件下将“汞/溶液”界面极 化至不同电势,同时测定相应的界面张力。则 由其关系可以推测界面剩余电荷密度及由此引 起的界面构造的变化。表征-关系的曲线称 为“电毛细曲线”。 ■ 对于液态金属通常采用毛细管静电计法测 定电毛细曲线。毛细管静电计的基本结构见左 图

电极过程和电极过程动力学

电极过程和电极过程动力学

5.电极过程和电极过程动力学5.1电化学装置的可逆性:化学反应可逆性;热力学上可逆性5.2电极的极化5.3电极过程的控制步骤:电极反应的特点;电极反应的控制步骤5.4电荷转移动力学方程5.5交换电流密度与电极反应速度常数5.6稳态极化时的电极动力学方程5.7浓差极化及其电机动力学方程5.8化学极化分解电压E分:在可逆情况下使电解质有效组元分解的最低电压,称为理论分解电压(V e)。

理论分解电压是阳极平衡电极电位(εe(A))与阴极平衡电极电位(εe(K))之差。

Ve=εe(A)- εe(K)(10 - 5)当电流通过电解槽,电极反应以明显的速度进行时,电极反应将会明显偏离平衡状态,而成为一种不可逆状态,这时的电极电位就是不平衡电位,阳极电位偏正,阴极电位偏负。

这时,能使电解质熔体连续不断地发生电解反应所必需的最小电压叫作电解质的实际分解电压。

显然,实际分解电压比理论分解电压大,有时甚至大很多。

实际分解电压简称分解电压(V),是阳极实际析出电位(ε(A))和阴极析出电位(ε(K))之差。

V=ε(A)- ε(K)(10 - 6)当得知阴、阳极在实际电解时的偏离值(称为超电位)就可以算出某一电解质的实际分解电压。

分解电压符合能斯特方程,可以表示为如下形式:式中E i,E0分别表示实际和标准状态下组元i的分解电压;a i__组元的活度;n i __组元在熔盐中的化合价;F __ 法拉弟常数;可以看出,温度和电解质组成均会影响分解电压电极极化电解时的实际分解电压比理论分解电压要大很多,这是由于电流通过电解槽时,电极反应偏离了平衡状态。

通常将这种偏离平衡电极电位的现象称为极化现象。

电解过程实际分解电压和理论分解电压之差称为超电压。

⏹电解电极反应一般包含1:☐(1)反应离子由熔体向双电层移动并继续经双电层向电极表面靠近。

这一阶段在很大程度上靠扩散实现,扩散则是由于导电离子在熔体和双电层外界的浓度差别引起的。

☐(2)反应离子在电极表面进行电极反应前的转化过程,如表面吸附等;☐(3)在电极上的电子传递- - 电化学氧化或电化学还原反应;☐(4)反应产物在电极表面进行反应后的转化过程,例如自电极表面的脱附,反应产物的复合、分解和其它化学反应;☐(5)反应产物形成新相,或反应产物自电极表面向电解质熔体的传递。

电化学原理-液相传质步骤动力学

电化学原理-液相传质步骤动力学

对流传质的推动力,对于自然对流来说是由于密度差 或温度差的存在,其实质是溶液的不同部分存在着重 力差; 强制对流推动力是搅拌外力。
扩散传质的推动力是由于存在着浓度差,或者说是由 于存在着浓度梯度,其实质是由于溶液中的不同部位 存在着化学位梯度。
(2)从所传输的物质粒子的情况来看:
电迁移所传输的物质只能是带电粒子,即是电解质溶 液中的阴离子或阳离子。
因为在一般情况下,扩散层的厚度为10-3-10-2cm,从宏观 来看,非常接近于电极表面,根据流体力学可知,在如此 靠近电极表面的流层中,液体对流的速度很小,越靠近电 极表面,对流速度越小。因此在这个区域对流传质的作用 很小。
当溶液中含有大量局外电解质时,反应离子的迁移数很小。 在这种情况下考虑传质作用时,反应粒子的电迁移传质作 用可以忽略不计。因此,可以说扩散传质是扩散层中的主 要传质方式。在许多实际的电化学体系中,电解质溶液中 往往都含有大量的局外电解质。 因此,在考虑扩散层中的传质作用时,往往只考虑扩散作 用,通常所说的电极表面附近的液层,也主要指的是扩散 层。以后凡不加特殊说明时,都是按这种思路来处理问题。 在稳态扩散层内存在着浓度梯度,若表面反应粒子浓度 为 ,溶液本体中的反应粒子浓度为 ,扩散层厚度为δ, 0 Cs 则浓度梯度为 。 C
在电极反应的初期,由于反应粒子浓度变化不太大,浓度 梯度较小,向电极表面扩散过来的反应粒子的数量远远少
于电极反应所消耗的数量,而且扩散所发生的范围主要在
离电极表面较近的区域内;
随着电极反应的不断进行,由于扩散过来的反应粒子的 数量远小于电极反应的消耗量,因此使浓度梯度加大, 同时发生浓度差的范围也不断扩展,这时,在发生扩散 的液层(可称作扩散层)中,反应粒子的浓度随着时间 的不同和距电极表面的距离不同而不断的变化,如图 5.1所示。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电极过程动力学:有关电极过程的历程、速度 及其影响因素的研究内容的统称,
电极过程动力学研究的范围:包括在电极表面 进行的电化学过程和电极表面附近薄层电解质 中的传质过程及化学过程。
4
二、电极的极化现象
1、几个概念
极化:有电流通过时,电极电位偏离平衡电位 的现象 过电位:在一定电流密度下,电极电位与平衡 电位的差值 平
第五章 电极过程扩散动力学
主要内容:
电极反应中的传质方式,扩散电流和电迁移电流, 对流扩散理论,旋转圆盘电极,理想条件下和 真实条件下的稳态扩散过程。
教学要求:
1.了解扩散电流和电迁移电流, 2.理解对流扩散理论,旋转圆盘电极,理想条 件下和真实条件下的稳态扩散过程。 3.掌握电极反应中的传质方式。
dc i Ji D ( ) i dx
(5-3)
18
二、液相传质的三种方式的比较
1、三种传质方式区别
传质运动的推动力: 电迁移——电场力 对流:自然对流——密度差或温度差,均为重力差 强制对流——搅拌外力 扩散——浓度梯度,实质是化学位梯度 传输的物质粒子: 电迁移——带电粒子:阴、阳离子 扩散和对流——离子、分子等形式的物质微粒
16
2、对流:
对流:一部分溶液与另一部分溶液之间的相 对流动。 动画
对流两大类 : 自然对流:密度差或温度差而引起的对流 强制对流:用外力搅拌溶液引起的对流 对流流量: Ji cix (5-2)
17
3、扩散
扩散:溶液中某一组分自发地从高浓度区域向 低浓度区域移动。 动画
扩散分为稳态扩散和非稳态扩散, 稳态扩散引起的扩散流量:
极化值:有电流通过时的电极电位(极化电位) 与静止电位的差值 静
5
2、极化产生的原因
电流流过电极时,产生一对矛盾作用: 动画
极化作用—电子的流动在电极表面积累电荷, 使电极电位偏离平衡状态的作用 ;
去极化作用—电极反应吸收电子运动传递的电 荷,使电极电位恢复平衡状态的作用 。 极化是由上述两种作用联合作用的结果。
2
§5-1电极过程概述
一、概述
1、电池反应
电池反应包括三个部分 :阳极反应过程、阴极 反应过程和反应物质在溶液中的传递过程(液 相传质过程)
2、研究一个电化学体系的方法
研究一个电化学体系中的电化学反应时,应把 整个电池反应分解成单个的过程加以研究
3
电极过程:在电化学中,把发生在电极/溶液 界面上的电极反应、化学转化和电极附近液层 中的传质作用等一系列变化的总和
6
实质:电极反应速度跟不上电子运动速度而造 成电子在界面的积累,即内在原因正是电子运 动速度 和电极反应速度的矛盾。 两种特殊现象: V反 0 理想极化电极 如: Pt电极,滴汞电极(DME) V反很大 理想不极化电极 如:甘汞电极(SCE)
7
3、极化曲线
极化曲线:过电位(过电极 电位)随电流密度变化的关 系曲线。 极化度:极化曲线上某一点 的斜率 从极化曲线上求得任一电流 密度下的过电位或极化值; 了解整个电极过程中电极电 位变化的趋势和比较不同电 极过程的极化规律
13
四.电极过程的特征
异相催化反应
电极可视为催化剂 ,可以人为控制
复杂的多步骤的串连过程,其动力学规律 取决于速度控制步骤
14
五、电极过程动力学研究的目的和方法
目的:使电极反应按照人们所需要的方向和 速度进行。 方法:
弄清电极反应的历程;找出电极过程的速度控 制步骤; 测定控制步骤的动力学参数;测定 非控制步骤的热力学平衡常数或其他有关的 热力学数据。
11
2、电极过程的速度控制步骤
速度控制步骤 :串连的各反应步骤中反应速度 最慢的步骤。 常见的极化类型: 浓差极化:液相传质步骤成为控制步骤时引起的 电极极化。指单元步骤(1) 电化学极化:由于电化学反应迟缓而控制电极过 程所引起的电极极化。指单元步骤(3)
12
3、准平衡态
当电极反应以一定速度的进行时,非控制步 骤的平衡态几乎未破坏,这种状态叫做准平 衡态。 对准平衡态下的过程可用热力学方法而无需 用动力学方法处理,使问题得到简化。
19
传质作用的区域: 电极表面及 其附近的液 层区域划分: 双电层区、 扩散层区、 对流区。
s’ c
s
c c0
c0 cs
c
c
双电层区
扩散区
对流区
如图5.2所示。
xs0
x1
d

x2
x
20
图பைடு நூலகம்.2阴极极化时扩散厚度示意图
2、三种传质方式的相互影响
只有当对流与扩散同时存在时才能实现稳态扩 散过程,把一定强度的对流作用的存在,作为 实现稳态扩散过程的必要条件。 没有大量的局外电解质存在时,电迁移将对扩 散作用产生影响,电迁移和扩散之间可能是相 互叠加作用,也可能是相互抵消的作用。
21
§5-3 稳态扩散传质过程
一、稳态扩散概念
非稳态扩散:反应粒子浓度随时间和距离不断变
化的扩散过程。
稳态扩散:扩散速度与电极反应速度相平衡,反
15
§5-2 液相传质的三种方式
一、液相传质的三种方式
1、电迁移
电迁移:电解质溶液中的带电粒子在电场作用下 沿着一定的方向移动。 动画
电迁移流量: J c c U E (5-1) i i i i i
电迁移流量与i离子的淌度成正比,与电场强度 成正比,与i离子的浓度成正比,即与i离子的 迁移数有关。
10
(1)液相传质
2 2 (溶液深处) → Ag (电极表面附近) Ag (CN )3 (CN )3
2 → Ag (2)前置转化 Ag ( CN ) CN (CN )3 2 (3)电子转移(电化学反应)
+e→ Ag (CN ) Ag (吸附态) 2 CN 2
(4)生成新相或液相传质 Ag(吸附态) →Ag(结晶态) 2CN- (电极表面附近) →2CN-→(溶液深处)
阴极极 化
阳极极 化
不锈钢在硫酸中的极化 曲线
8
三、电极过程的基本历程和速度控制步 骤
1、电极过程的基本历程
液相传质步骤 前置的表面转化步骤
电子转移步骤
随后的表面转化步骤
新相生成步骤和反应后的液相传质步骤
9
例 银氰络离子在阴极还原的电极过程 :
图5-1银氰络离子在阴极还原过程示意图
相关文档
最新文档