第二章 沉淀法
合集下载
重量法

减少或消除方法
改变沉淀条件,重结晶或陈化
2.后沉淀(继沉淀):
溶液中其他本来难以析出沉淀的组分(杂质离子) 在该沉淀表面继续沉积的现象
溶液中被测组分析出沉淀之后在与母液放置过程中,
注:继沉淀经加热、放置后会更加严重
消除方法——缩短沉淀与母液的共置时间
示例
例:草酸盐的沉淀分离中
2 2
例:金属硫化物的沉淀分离中
H2S ( Cu 2 , Zn 2 CuS 长时间 CuS ZnS
长时间放置,CuS表面吸附S 2 [ S 2 ] 当[ Zn 2 ][S 2 ] K SP( ZnS ) ZnS 逐渐沉积
3.提高沉淀纯度措施
重量法的二个关键: 一要完全; 二要纯净 沉淀完全是指被测组分残留在溶液中很少 1. 沉淀的类型 2. 沉淀的形成
1. 沉淀的类型
(1)晶形沉淀:颗粒直径0.1~1μm, 排列整齐,结构紧密, 比表面积小,吸附杂质少 易于过滤、洗涤 例:BaSO4↓(细晶形沉淀) MgNH4PO4↓(粗晶形沉淀) (2)无定形沉淀:颗粒直径﹤0.02μm 结构疏松 比表面积大,吸附杂质多 不易过滤、洗涤 例: Fe2O3•2H2O↓ (3)凝乳状沉淀:颗粒直径界于两种沉淀之间 例:AgCl↓
注:
因为酸度变化,构晶离子会与溶液中的H+或OH-反应, 从而使沉淀溶解度增大。
降低了构晶离子的浓度,使沉淀溶解平衡移向溶解,
4. 配位效应:存在配位剂与构晶离子形成配位体,
使沉淀的溶解度增大的现象称为~
讨论:
1)配位效应促使沉淀-溶解平衡移向溶解一方, 从而增大溶解度 2)当沉淀剂本身又是配位剂时,应避免加入过多; 既有同离子效应,又有配位效应,应视浓度而定
第二章_沉淀法

Hale Waihona Puke 中性盐沉淀蛋白质的基本原理:
蛋白质和酶均易溶于水,因为该分子的-COOH、-NH2 和-OH都是亲水基团,这些基团与极性水分子相互作用形成 水化层,包围于蛋白质分子周围形成1nm~100nm颗粒的亲水 胶体,削弱了蛋白质分子之间的作用力,蛋白质分子表面极 性基团越多,水化层越厚,蛋白质分子与溶剂分子之间的亲 和力越大,因而溶解度也越大。 亲水胶体在水中的稳定因素有两个:即电荷层和水化膜。 因为中性盐的亲水性大于蛋白质和酶分子的亲水性,所以加 入大量中性盐后,夺走了水分子,破坏了水膜,暴露出疏水 区域,同时又中和了电荷,破坏了亲水胶体,蛋白质分子即 形成沉淀。盐析示意图如下页图 所示。
②
硫酸铵盐析
A.固体法:最常用的是固体硫酸铵加入法。 将其研成细粉,在搅拌下缓慢均匀少量多次地 加入粗制品溶液中,接近计划饱和度时,加盐 的速度更要慢一些,尽量避免局部硫酸铵浓度 过大而造成不应有的蛋白质沉淀。在此过程 中,溶液中的硫酸铵的浓度会不断提高,水分 子会不断与硫酸铵结合,当加入的硫酸铵使溶 液浓度达到“盐析点”时,蛋白质就沉淀出来。
二、制备蛋白质 影响蛋白质溶解度的外界因素:
溶液的pH 离子强度 介电常数 温度 主要类型: 1.盐析法 2.有机溶剂沉淀法 3.蛋白质沉淀法 4.聚乙二醇沉淀法 5.选择性沉淀法 6.结晶沉淀法
1.盐析法
盐析法的根据是蛋白质在稀盐溶液中溶解度会随 盐浓度的增高而上升,当盐浓度增高到一定数值时, 其溶解度又逐渐下降,直至蛋白质析出(盐析)。
B.作盐析曲线
将每个分级沉淀 部分分别重新溶解 于一定体积的适宜 pH缓冲液中, 根据其蛋白质或 酶含量和相对应的 硫酸铵浓度之间的 关系作图, 即可得到如图2-1 所示的典型盐析曲 线。
蛋白质和酶均易溶于水,因为该分子的-COOH、-NH2 和-OH都是亲水基团,这些基团与极性水分子相互作用形成 水化层,包围于蛋白质分子周围形成1nm~100nm颗粒的亲水 胶体,削弱了蛋白质分子之间的作用力,蛋白质分子表面极 性基团越多,水化层越厚,蛋白质分子与溶剂分子之间的亲 和力越大,因而溶解度也越大。 亲水胶体在水中的稳定因素有两个:即电荷层和水化膜。 因为中性盐的亲水性大于蛋白质和酶分子的亲水性,所以加 入大量中性盐后,夺走了水分子,破坏了水膜,暴露出疏水 区域,同时又中和了电荷,破坏了亲水胶体,蛋白质分子即 形成沉淀。盐析示意图如下页图 所示。
②
硫酸铵盐析
A.固体法:最常用的是固体硫酸铵加入法。 将其研成细粉,在搅拌下缓慢均匀少量多次地 加入粗制品溶液中,接近计划饱和度时,加盐 的速度更要慢一些,尽量避免局部硫酸铵浓度 过大而造成不应有的蛋白质沉淀。在此过程 中,溶液中的硫酸铵的浓度会不断提高,水分 子会不断与硫酸铵结合,当加入的硫酸铵使溶 液浓度达到“盐析点”时,蛋白质就沉淀出来。
二、制备蛋白质 影响蛋白质溶解度的外界因素:
溶液的pH 离子强度 介电常数 温度 主要类型: 1.盐析法 2.有机溶剂沉淀法 3.蛋白质沉淀法 4.聚乙二醇沉淀法 5.选择性沉淀法 6.结晶沉淀法
1.盐析法
盐析法的根据是蛋白质在稀盐溶液中溶解度会随 盐浓度的增高而上升,当盐浓度增高到一定数值时, 其溶解度又逐渐下降,直至蛋白质析出(盐析)。
B.作盐析曲线
将每个分级沉淀 部分分别重新溶解 于一定体积的适宜 pH缓冲液中, 根据其蛋白质或 酶含量和相对应的 硫酸铵浓度之间的 关系作图, 即可得到如图2-1 所示的典型盐析曲 线。
第二章 沉淀法

(六)选择性变性沉淀法
• 选择一定的条件使溶液中存在 的某些杂蛋白变性沉淀而不影 响所需蛋白质的方法
(七)结晶
• 不同晶体沉淀性质+盐或有机 溶剂使接近结晶物溶解度。 • 饱和度硫酸铵或刚出现混浊, 调节等电点,使温度下降 • 晶种。
常用的沉淀类型
蛋白质: • 盐析法 • 有机溶剂沉淀法 • 蛋白质沉淀法 • 聚乙二醇沉淀法 • 选择性沉淀法 • 结晶沉淀法 核酸步骤: DNP/RNP复合物的解聚→多糖等杂质的 消除→ DNA与RNA的分离→核酸沉淀
(一)盐析法
• 盐浓度增高到一定数值后, 水活性降低,导致蛋白质分子 表面电荷逐渐被中和,水化膜 相继被破坏,最终引起蛋白质 分子间相互聚集并从溶液中析 出。 • 常用盐:硫酸铵 少量多次缓慢加入 • 盐析的影响因子:蛋白质浓度, 离子强度和离子类型,pH,温度.
(四)蛋白质沉淀法
• 所用的试剂仅对一类或一种蛋 白质沉淀起作用。 • 常见试剂:碱性蛋白质,凝集 素和重金属等. • 碱性蛋白质:多价阳离子,除 能有效地沉淀核酸物质外,还 能沉淀某些蛋白质。 • 重金属沉淀法:在低温下进行 • 凝集素:与糖蛋白有明显凝集 作用。
(五)聚乙二醇沉淀法
• PEG和右旋糖苷硫酸钠等水溶 性非离子型聚合物可使蛋白质 发生沉淀作用.沉淀的条件温 和,不会引起蛋白质变性.
第二章
沉淀法
一、基本原理
• 根据各种物质的结构差异性
(蛋白质分子表面疏水和亲水 基团之间比例的差异性)来改
变溶液的某些性质(如pH,极
性,离子强度,金属离子等)
进而导致有效成分的溶解度发
生变化。
二、沉淀的类型
可逆沉淀反应:在温和条件下沉淀的蛋白质 可以重新溶解形成溶液。蛋白质胶体溶液的稳定性被破坏。 又称为非变性沉淀。 如:等电点沉淀法、盐析法、有机溶剂沉淀法 不可逆沉淀反应:在剧烈条件下,沉淀的蛋白质不能再 重新溶解形成溶液。又称为变性沉淀。蛋白质胶体溶液 的稳定性不仅被破坏,且蛋白质的结构和性质也被破坏 了。 如:加热沉淀、强酸碱沉淀、重金属盐沉淀和生物碱沉淀
第二章 沉淀法

法。
7、沉淀法的优缺点
优点:操作简单、经济、浓缩倍数高。 缺点:针对复杂体系而言,分离度不高、
选择性不强。
8、沉淀法的分类
根据所加入的沉淀剂的不同,沉淀法可以分为: (1)盐析法; (2)等电点沉淀法; (3)有机溶剂沉淀法;
(4)亲和沉淀法;
(5)选择性沉淀法。 (6)复合盐沉淀法; (7)非离子型聚合物沉淀法; (8)聚电解质沉淀法;
对起始浓度为 30g/L的COMb溶液,大部分蛋白质在硫
酸铵饱和度为 58-65%之间沉淀出来; 但对稀释10倍的 COMb溶液,饱和度达到66%时才开始 沉淀,而相应的沉淀范围为66-73%饱和度。
11、盐析注意事项
选择适宜饱和度 采用分步盐析 盐析的成败决定于溶液的pH值与离子强度,稳定pH 用磷酸
二、蛋白质的溶解特性
蛋白质是由疏水性各不相同的 20 种氨基酸组成的 两性高分子电解质,形成荷电区。 在水溶液中,多肽链中的疏水性氨基酸残基具有向 内部折叠的趋势,形成疏水区。疏水性氨基酸含量 高的蛋白质的疏水区大,疏水性强。
亲水性氨基酸残基分布在蛋白质立体结构的外表面, 形成亲水区。
因此,蛋白质由不均匀分布的荷电基团形成荷电区、 亲水区和疏水区。
三、盐析
Salt induced precipitation
1、定义
概念:在高浓度的中性盐存在下,蛋白质(酶)等 生物大分子物质在水溶液中的溶解度降低,产生沉 淀的过程。 盐析是可逆的,而变性是不可逆的
早在1859年,中性盐盐析法就用于从血液中分离蛋 白质,随后又在尿蛋白、血浆蛋白等的分离和分级 中使用,得到了比较满意的结果。
盐析注意事项
硫酸铵的使用 硫酸铵中常含有少量的重金属离子,对蛋白质巯基有 敏感作用,使用前用H2S处理 高浓度的硫酸铵溶液一般呈酸性(pH=5.0左右),使 用前也需要用氨水调节至所需pH。 硫酸铵容易吸潮,计算饱和度需注意 固体硫酸铵加入后体积变大加入固体盐后体积的变化 已考虑在表中; 盐析后一般放臵半小时至一小时,待沉淀完全后才过 滤或离心。过滤多用于高浓度硫酸铵溶液,因为此种 情况下,硫酸铵密度较大,若用离心法需要较高离心 速度和长时间的离心操作,耗时耗能。离心多用于较 低浓度硫酸铵溶液。
7、沉淀法的优缺点
优点:操作简单、经济、浓缩倍数高。 缺点:针对复杂体系而言,分离度不高、
选择性不强。
8、沉淀法的分类
根据所加入的沉淀剂的不同,沉淀法可以分为: (1)盐析法; (2)等电点沉淀法; (3)有机溶剂沉淀法;
(4)亲和沉淀法;
(5)选择性沉淀法。 (6)复合盐沉淀法; (7)非离子型聚合物沉淀法; (8)聚电解质沉淀法;
对起始浓度为 30g/L的COMb溶液,大部分蛋白质在硫
酸铵饱和度为 58-65%之间沉淀出来; 但对稀释10倍的 COMb溶液,饱和度达到66%时才开始 沉淀,而相应的沉淀范围为66-73%饱和度。
11、盐析注意事项
选择适宜饱和度 采用分步盐析 盐析的成败决定于溶液的pH值与离子强度,稳定pH 用磷酸
二、蛋白质的溶解特性
蛋白质是由疏水性各不相同的 20 种氨基酸组成的 两性高分子电解质,形成荷电区。 在水溶液中,多肽链中的疏水性氨基酸残基具有向 内部折叠的趋势,形成疏水区。疏水性氨基酸含量 高的蛋白质的疏水区大,疏水性强。
亲水性氨基酸残基分布在蛋白质立体结构的外表面, 形成亲水区。
因此,蛋白质由不均匀分布的荷电基团形成荷电区、 亲水区和疏水区。
三、盐析
Salt induced precipitation
1、定义
概念:在高浓度的中性盐存在下,蛋白质(酶)等 生物大分子物质在水溶液中的溶解度降低,产生沉 淀的过程。 盐析是可逆的,而变性是不可逆的
早在1859年,中性盐盐析法就用于从血液中分离蛋 白质,随后又在尿蛋白、血浆蛋白等的分离和分级 中使用,得到了比较满意的结果。
盐析注意事项
硫酸铵的使用 硫酸铵中常含有少量的重金属离子,对蛋白质巯基有 敏感作用,使用前用H2S处理 高浓度的硫酸铵溶液一般呈酸性(pH=5.0左右),使 用前也需要用氨水调节至所需pH。 硫酸铵容易吸潮,计算饱和度需注意 固体硫酸铵加入后体积变大加入固体盐后体积的变化 已考虑在表中; 盐析后一般放臵半小时至一小时,待沉淀完全后才过 滤或离心。过滤多用于高浓度硫酸铵溶液,因为此种 情况下,硫酸铵密度较大,若用离心法需要较高离心 速度和长时间的离心操作,耗时耗能。离心多用于较 低浓度硫酸铵溶液。
第二章 沉淀法..

(3)多价阳离子的作用 蛋白质和多价阳离子(如Zn2+和Cu2+等)能 结合形成复合物,使蛋白质在有机溶剂中的 溶解度降低。这对在高浓度溶剂中才能沉淀 的蛋白质特别有益。 例如,在某些蛋白质溶液中只要加入0.0050.02nmol/L Zn2+,就可大大减少有机溶剂的 用量,而将蛋白质沉淀出来。
三、 蛋白质沉淀剂
四、聚乙二醇沉淀作用
水溶性非离子型聚合物,可使蛋白质发生沉淀作用。
沉淀作用较满意的聚合物是分子量在400-6000之间的聚 乙二醇。 优点:条件温和,不易引起蛋白质变性,沉淀较完全, 应用范围广。 缺点:易受各种因子如pH、离子强度、蛋白质浓度及聚 合物分子量的影响。
五、选择性沉淀法
根据各种蛋白质在不同物理化学因子(如温度、 酸碱度和有机溶剂等)作用下稳定性不同的特 点,用适当的选择性沉淀法,即可使杂蛋白变 性沉淀,而欲分离的有效成分则存在于溶液中 (或者发生可逆性沉淀),从而达到纯化有效 成分的目的。
原理:等电点、热变性、酸碱变性和特殊 的可逆沉淀作用 优点:选择性较强,方法简单,种类较多
缺点:应用范围较窄 应用范围:各种生物大分子物质的沉淀
六、 结晶
—改变溶解度产生沉淀的方法
蛋白质沉淀:晶体沉淀和无定形沉淀 结晶过程是纯化过程。在提纯阶段,当某一纯蛋白质 溶液的浓度达到较高(5%-30%)水平时,若条件适合, 就能产生一定形状的结晶。当蛋白质溶液中混有杂质 时,即使条件适合,也得不到整齐的结晶,或无结晶 形成。 用显微镜观察结晶的有无及形状,为判断提纯物质纯 化程度的一种方法。
透析时注意:
(1)透析袋的处理
新的透析袋用蒸馏水洗净,无漏洞时,即可使用。 除去透析袋中所含盐类时,处理方法: 将透析袋置500毫升含1mmo1/L EDTA-Na2的2%碳酸氢钠 溶液中煮沸10分钟,用干净镊子或戴橡皮手套取出,蒸 馏水煮沸、漂洗后,可使用。用过的透析袋同样处理后, 能重复使用。 保存:泡在蒸馏水中置低温(4℃)或泡在70%的乙醇中 保存。
第二章 沉淀分离法

常用的无机元素及化合物的挥发形式
表 2-9 无机元素及化合物的挥发形式 挥发形式 元素及化合物 单质 卤素、I2(升华) 氧化物 CO2、SO2、RuO4、OsO4、SeO2、TeO2、 As 2O3 氢化物 NH3、P H3、 As H3、 Sb H3、 H2S、 H2Se、 H2Te、 卤化氢等 氟化物 BF3、SiF4 氯化物 HgCl2、 Ce Cl4、 AsCl3、 SbCl3、 SnCl4、 SeCl2、 SeCl4、 SeCl6、 TeCl2、TeCl4、CrO2Cl2 溴化物 CdBr2、 CeBr4、 AsBr3、SbBr2、 3、SnBr4 酯类 B( OCH3) 3、 B(OCH2CH3) 3
依据原理:容度积原理.
沉淀分离法:
1. 对沉淀的要求:
(1)沉淀溶解度必须很小 (2)沉淀易于过滤 (3)沉淀力求纯净
2. 常用的沉淀剂
2.1 无机沉淀剂 氢氧化物、氨、硫化物等沉淀剂 2.2 有机沉淀剂 草酸、铜试剂、铜铁试剂
一、 常量组分的富集和沉淀分离
1、无机沉淀剂 1)氢氧化物沉淀 大多数金属离子能形成M(OH)n↓,且溶 解度差别大,可控制pH实现分离 缺点 • 选择性较差 • 共沉淀现象严重 • 故分离效果不理想
2)硫酸盐沉淀 硫酸作沉淀剂,浓度不能太高,因易形成 MHSO4盐加大溶解度, 沉淀碱土金属和Pb2+, CaSO4 溶解度大,加入乙醇降低溶解度。 3)卤化物沉淀 氟化稀土和与Mg(II), Ca(II), Sr(II), Th(IV)氟化物 沉淀,冰晶石法沉淀铝 在pH=4.5 Al(III)与NaF生成 (NaAlF6)法沉淀分离Al(III),与Fe(III),Cr(III), Ni(II), V(V)Mo(VI)等分离
第二章催化剂的制备-沉淀法

陈化胶凝
溶胶
(加胶溶剂)胶溶
干燥
焙烧
催化剂
金属醇盐胶溶法制备催化剂的Sol-Gel过程
Formation of a hydrogel
Aging of a hydrogel Solvent removal Heat treatment
Four main steps in the sol–gel preparation
浸渍法 离子交换法
催化剂的成型
1、沉淀法
在金属盐溶液中加入沉淀剂,生成 难溶金属盐或金属水合氧化物,从 溶液中沉淀出来,再经老化、过滤、 洗涤、干燥、焙烧、成型、活化等 工序制得催化剂或催化剂载体
—— 广泛用于制备高含量的非贵金属、 (非)金属氧化物催化剂或催化剂载体
沉淀法的生产流程
形成沉淀的条件
关键:瞬间混合—快速搅拌
Ni(NO3)2 + HNO3溶液 = 1.1
NaNO3溶液 = 1.2
Na2SiO3溶液 = 1.3
(防止形成结构或组成不均匀的沉淀) Ni/SiO2制备 (苯选择加氢 催化剂) 形成均匀的水溶胶或胶冻, 再经分离、洗涤、干燥、焙
烧、还原即得催化剂
导晶沉淀法 借助晶化导向剂(晶种)引导非晶型沉淀转化为晶型沉淀 的快速有效方法 — 预加少量晶种引导结晶快速完整形成 例:制备高硅钠型分子筛(丝光沸石、X型、Y型分子筛)
沉淀剂不直接加入待沉淀溶液中,而是首先把待沉淀溶液 与沉淀剂母体混合,形成一个十分均匀的体系,然后调节 温度,使沉淀剂母体逐步转化为沉淀剂,从而使沉淀缓慢 进行,得到均匀纯净的沉淀物
例:制取氢氧化铝沉淀
(NH2)2CO +
3H2O
90~100℃ 2NH4+
第二章 沉淀分离法

Fe3+、Cr3+、Ce4+ 、 Be2+、Cu2+、 Ti4+、Zr4+、Hf4+、 Ag+、 Hg2+、 Bi3+、Sn4+、V (Ⅵ) Pb2+ 、 Sb3+、 U(Ⅳ) 、 Nb(Ⅴ) Sn2+、Mo (Ⅵ) Ta(Ⅴ) 、W(Ⅵ)等 V (Ⅴ) 、 U (Ⅵ) Au (Ⅲ) 、稀土等
化学与材料科学学院
二、沉淀分离法的特点
(characteristic of precipitation method)
三、沉淀的类型与形成条件
(types of precipitation and their formation conditions)
四、无机沉淀剂沉淀法
(inorganic precipitator )
----使某些高价Mn+沉淀 其它微溶性碳酸盐或氧化物的悬浊液, 如:BaCO3、CaCO3、PbCO3、MgO的悬浊液具 有同样的功效,仅控制的pH范围各不相同而已。 HAc-NaAc也能达到同样的效果.
化学与材料科学学院
第一节 沉淀分离法
原理: ZnO + H2O Zn2+ +2OHZn(OH)2
因此,控制[H+]即可控制[S2-] 。
常见阳离子: 2+ Hg 2+ Pb + 3+ Ag Fe As(Ⅲ,Ⅴ) 3+ Bi 3+ Al Sb ( Ⅲ , Ⅴ ) 2+ Cu 2+ 3+ Hg2 Cr Sn( Ⅱ , Ⅳ ) 2+ Cd Ⅰ Ⅱ Ⅲ
0.3mol/L[H+] l硫化物沉淀
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(上海农科院产品),混匀,置于65℃的水浴中10分钟(中间摇
动一次)。
(5)离心。从水浴中取出离心管,依加入苯酚和氯
仿各350ul(酚和氯仿的体积与抽提液的体积大约相
等),充分混匀5分钟,在12000rpm/min下离心5分钟。
(6)将上清液转移到1.5ml 离心管中,加入2ulRNA酶
调整硫酸铵溶液饱和度计算表
B.饱和溶液法 这是一种使蛋白质脱水沉淀比较温
和的力法。其操作是在蛋白质溶液中逐步加人预先调好pH的 饱和硫酸铵溶液,不同饱和硫酸铵溶液,不同饱和度所需的 硫酸铵的量可用下列公式表示:
V=V0
S2-S1 S3-S2
V表示需要加入硫酸铵溶液的体积(ml); V0表示原来溶剂的体积(m1); S1和S2含义同上; S3表示需要加入硫酸铵溶液的饱和度(一般用百分之百)。
子排列有规则,后者分子排列无规则
在提纯阶段,当某一蛋白质浓度达到5%- 30%水平时,只要 条件合适,就能产生一定形状的晶体。
三、制备核酸
1.DNP/RNP复合物的解聚
(1)去污剂 十二烷基硫酸钠(SDS) 十二烷基肌氨酸钠[CH3(CH2)10CON(CH3)CH2COO-Na+]、 脱氧胆酸钠(DOC)、 聚氧乙基十六烷基酚醚(Triton x一100)
第二章 沉淀法
第一节 第二节 基本原理与沉淀类型 应用实例
第一节
基本原理与沉淀类型
一、基本原理 二、制备蛋白质 三、制备核酸
一、基本原理
根据各种物质结构不同,改变溶质的性质,致使 抽提液有效成分溶解度变化。
沉淀(precipitation):在溶液中加入沉淀剂使溶质的溶解 度降低,形成固相从溶液中析出,从而达到分离的一种技术。
②盐析:[盐]高时,S(蛋白质的溶解度)随[盐]增加而
降低;
1. 盐析法
(1) (2) 盐分级沉淀 盐析曲线制作
(3)
(4)
盐析的影响因子
脱盐
(1)盐分级沉淀
①盐的选择:常选用硫酸铵,其优点:
a.溶解度大,对温度不敏感.(水的温度=25℃,硫酸铵的饱和溶解度=769g,当水的 温度=0℃时,其饱和溶解度高=679g,这是其他盐类所不具备的。)
蛋白质浓度以及聚合物分子质量的影响。
5.选择性沉淀法
选择一定的条件使杂蛋白等非目的物变性沉淀而得到分离提纯。 ⑴ 热变性:利用生物大分子对热的稳定性不同,加热升高
温度使非目的生物大分子变性沉淀而保留目的物在溶液中。
⑵ 表面活性剂和有机溶剂变性:使对表面活性剂和有机溶 剂敏感性强的杂蛋白变性沉淀。通常在冰浴或冷室中进行。 ⑶ 选择性酸碱变性:利用对 pH值的稳定性不同而使杂蛋 白变性沉淀。在分离纯化流程中常附带分离纯化的步骤。
(2)凝集素:为一种特殊的蛋白质,对糖蛋白中糖链的末端序 列具有明显、特异的凝集力。如伴刀豆球蛋白与含有葡萄糖、 甘露糖等分子的糖蛋白能发生特异的凝集沉淀作用,通过离心 操作可把糖蛋白和一般蛋白质分开,再用单糖作抑制剂就能使
其解离。该沉淀法反应条件较温和,专一性强。
(3)重金属:重金属盐(如铅盐、汞盐)作为蛋白质沉淀剂,也 能将蛋白质或酶得到纯化。由于重金属会使蛋白质变性,因此 应用时要控制在较温和的条件下进行,并要及时通过透析方法
(2)盐析曲线的制作
如果要分离一种新的蛋白质和酶,则应先确定沉淀该 物质的硫酸铵饱和度。具体操作方法如下:
蛋 白 质 量 或 酶 活 力
(mg)
10
20 30
40
50
60
70
80
90 100
硫铵饱和度%
(3)影响盐析的因素
①盐的种类:影响KS,KS越大,效果越好
② 溶质的起始浓度
③ 盐析剂用量
DNA的提取实例
水稻叶片中提取DNA
(1)称取-剪碎。称取约0.1g叶片,剪碎后放在2ml离心管中。
(2)液氮提取。置离心管于液氮中,用竹签将叶片捣碎。
(3)进一步粉碎。每个离心管中加三粒钢珠(使用之前最好在液氮 里浸一下),而后置振荡器上高速振荡3次,每次20秒(将叶片进 一步粉碎)。 (4)抽提。取出离心管中的钢珠,加600~700ul的抽提液BufferA
b.分级效果好.有些抽提液经过加适量硫酸铵的一步分级沉淀处理后,就可除去杂
蛋白75%以上;
c.有稳定蛋白质结构的作用.将2-3 mol/L硫酸铵盐析的蛋白质置低温下保存一年,
其性质没有变化;
d.价格低廉,废液可以肥田。 但是用硫酸铵或其他盐类进行分级沉淀都有一个共同的缺点,即得到 的样品欲继续纯化时,需花一定时间脱盐。
此法比加入固体硫酸铵沉淀法温和,但是对 于大体积样品不适用。因为硫酸铵溶液的大量加 入,将导致样品溶液体积增加。例如,当样品达 到50%硫酸铵饱和度时,其体积增加一倍。
C.透析法:透析袋放入一定浓度的大体积溶液中, 通过透析作用来改变蛋白质溶液中的盐浓度, 沉淀蛋白质。
此法仅在要求较精确、样品体积小的试验使用。
案例
如从酵母菌细胞中纯化醇脱氢酶时采用了改变温度的选 择性沉淀法,即酵母于粉中加0.066mol/L磷酸氢二钠溶液, 37℃水浴保温2h,室温搅拌3h,离心收集上清液,升温至 55℃,保持20min后迅速冷却,离心去除热变性蛋白,上清液 即为热稳定的醇脱氢酶溶液。
6.结晶沉淀法
蛋白质沉淀可分为晶体沉淀和无定形沉淀两类,前者分
完全后再离心与过滤。在低浓度硫酸铵中盐析可采用离心分 离,高浓度硫酸铵常用过滤方法。各种饱和度下需加固体硫 酸铵的量。 (1)计算法 X=G(p2-p1)/1-Ap2 G为经验常数,0℃ 515,20 ℃ 513 A为常数 0 ℃ 0.27 20 ℃ 0.29 P2、P1为初始和最终溶液的饱和度 X为1L溶液所需加入的硫酸铵的克数 (2)查表法
(8)将离心管中的洒精倒出,自然晾干(约15分钟),然后加入 60ul的TE,混匀后放在-20℃的冰箱内保存,待用。
TE:三羟甲基氨基甲烷-HCl 加EDTA配置而成的 PH在8
总
1. 2. 3. 4.
结
随堂练习
P35课后习题2、3
沉淀法也称溶解度法。其基本原理是:根据各种物 质的结构差异(如蛋白质分子表面疏水基团与亲水基
团之间比例的差异)来改变溶液的某些性质(如pH、极
性、离子强度、金属离子等),就能使抽提液中的有效 成分的溶解度发生变化。
二、制备蛋白质
1. 盐析法 2. 有机溶剂沉淀法
3. 蛋白质沉淀法
4. 聚乙二醇沉淀法
常用有机溶剂:乙醇、甲醇、丙酮等。
优点: ①分辨能力比盐析法高,一种溶质只在一个比较窄的有机溶 剂范围内沉淀; ②沉淀不需脱盐; ③有机溶剂密度低,与沉淀物密度差大,容易进行固液分离; ④有机溶剂容易蒸发,不会在成品中残留,适用于食品、药 品的制备。
缺点:容易引起蛋白质变性失活,并且有机溶剂易燃、易爆, 对安全要求较高。
注意事项 (1)低温下操作 防止有机溶剂的放热使蛋白变性
(2)中性盐作用
增加蛋白质溶解度,防变性
结合蛋白质,致其溶解度降低
(3)多价阳离子作用
3.蛋白质沉淀法
蛋白质沉淀法所用的试剂则仅对一类或一种蛋白质沉淀起 作用,常见的有碱性蛋白质、凝集素和重金属等。 (1)碱性蛋白质:如鱼精蛋白,除能有效地沉淀核酸物质外, 还能沉淀某些蛋白质。当把鱼精蛋白加入部分纯化的酵母磷 酸果糖激酶溶液时,溶液中的酶蛋白便吸附到鱼精蛋白核酸 沉淀物上。沉淀物用磷酸缓冲液洗脱后,收得的磷酸果糖激 酶的纯度比原来提高了9倍。
把蛋白质与重金属尽快分开。
4.聚乙二醇沉淀法
“聚乙二醇” ) , 简写为 PEG ,HOCH2(CH2OCH2)nCH2OH(n>4)
本方法的优点是:
①操作条件温和,不易引起生物大分子变性。 ②沉淀效能高,少量的PEG即可以沉淀相当多的生物大分子。 ③沉淀后有机聚合物容易去除。 因此应用范围颇广。但是,它也受各种因子如pH、离子强度、
(2)DNA与RNA的分离 ①盐析法:在提取DNA时,RNA属杂质;反之,DNA
是杂质。根据它们在不同浓度的盐中溶解度不同达到 分离的目的。 ②酶水解法:提取DNA时,可用RNase水解RNA杂质; 在提取RNA时,可用DNase水解DNA杂质。 注意点
3.核酸沉淀
在核酸溶液中加入某些有机溶剂和非离子型聚 合物等试剂时,核酸会被有效地沉淀出来。
(1)有机溶剂 ①乙醇-盐溶液:核酸的钠盐或钾盐在多数有 机溶剂(如乙醇、异丙醇)中是不溶解的。
②异丙醇
在含DNA(或大分子rRNA)的溶液中,加入0.3mol/L NaAC 和0.54~1倍体积的异丙醇,放置短时间后,经离心即可得 到核酸沉淀物质,而多糖及小分子RNA则分布于上清液中。 缺点:但异丙醇沸点高,从核酸中不易除去,蔗糖、 NaCl等 在低温下易和DNA产生共沉淀。
④温度和pH:影响β值而影响S。尤其是影响相对溶解度
⑤杂质
(4)脱盐:凝胶过滤法和透析法
透析法注意事项
①透析带处理:用蒸馏水洗净,检查无漏洞
②透析液选择:一般为低离子强度中性缓冲液
③掌握透析时间:搅拌,样品液与透析液体积 比为1:10,3h.
2 .有机溶剂沉淀法 ⑴基本原理
①降低水溶液的介电常数。向溶液中加入有机溶剂能降低溶 液的介电常数,减小溶剂的极性,从而削弱了溶剂分子与蛋白 质分子间的相互作用力,导致蛋白质溶解度降低而沉淀。 ②由于使用的有机溶剂与水互溶,它们在溶解于水的同时从 蛋白质分子周围的水化层中夺走了水分子,破坏了蛋白质分子 的水膜,因而发生沉淀作用。
5. 选择性沉淀法
6. 结晶沉淀法