07-4第三十六讲 渐开线齿廓的啮合特性
简述渐开线齿廓的啮合特点
简述渐开线齿廓的啮合特点渐开线齿廓是一种常见的齿轮啮合方式,其特点是具有曲率变化的齿廓。
在渐开线齿轮啮合中,两个齿轮的齿廓曲线是相互匹配的,使得齿轮之间可以顺畅地啮合,并传递动力。
渐开线齿廓的啮合特点可以从以下几个方面来描述:1. 齿廓曲线的特殊性:渐开线齿廓是一种特殊的曲线,具有曲率变化的特点。
与其他齿轮啮合方式相比,渐开线齿廓的曲率变化更加平滑,使得齿轮在啮合过程中的运动更加稳定。
这种平滑的曲线使得渐开线齿廓具有较高的传动效率和较低的噪声。
2. 齿廓的中心扩展:渐开线齿廓的中心扩展是指齿廓曲线中心的轨迹不是一个点,而是一个曲线。
这种中心扩展使得齿轮在啮合过程中可以实现相对滑动,减小了啮合时的摩擦和磨损,提高了齿轮的寿命和可靠性。
同时,中心扩展还可以使得渐开线齿轮在高速运动时具有更好的动平衡性能。
3. 齿廓的变位特性:渐开线齿轮的齿廓变位是指齿廓曲线在垂直于齿轮轴线方向上的变化。
齿廓变位可以使得齿轮在啮合过程中实现平稳的传动,减小冲击和振动。
同时,齿廓变位还可以改变齿轮的传动特性,如变速、变转矩等,提高了齿轮传动的灵活性和适应性。
4. 齿廓的接触特性:渐开线齿轮的齿廓接触是指齿轮齿廓之间的接触区域。
由于渐开线齿廓的特殊曲线形状,齿轮在啮合过程中的接触区域相对较大,使得齿轮传递的载荷分布更加均匀,减小了齿轮的磨损和损伤。
同时,齿廓接触还可以改善齿轮的传动效率和承载能力,提高齿轮传动的可靠性。
总的来说,渐开线齿廓具有曲率变化、中心扩展、变位特性和接触特性等特点,在齿轮传动中具有重要的应用价值。
通过合理设计和制造渐开线齿轮,可以实现高效稳定的传动,提高齿轮传动的可靠性和使用寿命。
渐开线和渐开线齿廓啮合传动的特点7月4
一、 回顾上节课内容
1、齿轮传动的特点
作用:传递空间任意两轴(平行、相交、交错)的旋 转运动,或将转动转换为移动。 优点: ①传动比准确、传动平稳。 ②载荷和速度范围大,载荷:0~几万千瓦, 速度:0~高达300 m/s。 ③效率高(η→0.99)、使用寿命长、工作安全可靠。 ④可实现平行轴、相交轴和交错轴之间的传动。 缺点: 要求较高的制造和安装精度,加工成本高、 不适宜远距离传动(如单车)。 动画1
BK-发生线,
渐开线 k rk 发生线 B O
A r
b
θk
rb -基圆 θ k-AK段的展角
纯滚动 对纯滚动运动而言,物体与平 面之接触点於接触那一瞬间为静止的, 没有任何的滑动。接触点为相对速度瞬 心点(瞬时速度相等的重合点)。
基圆
动画
:怎样由一条渐开线得到渐开线 齿轮的齿廓呢?
2.渐开线的特性 (1)发生线沿基圆滚过的长度,等 于基圆上被滚过的圆弧长度。
2、分类:按传动时两轮轴的相对位置分
直齿圆柱齿轮传动 平面齿轮机构 (轴平行)
斜齿圆柱齿轮传动
人字齿轮传动
外啮合齿轮传动 内啮合齿轮传动 齿轮与齿条传动
轴相交--圆锥齿轮传动(直齿、斜齿、曲线齿) 空间齿轮机构 轴交错--交错轴斜齿轮传动 蜗杆传动.
3.齿廓曲线的选择
渐开线 摆线 变态摆线
圆弧 抛物线
:渐开线各点的 曲率半径有无变化? 怎样变化?
课堂练习1:
1)K点离基圆越远,曲率半径BK 越 大 ,渐开 线越趋于平直 。 2)K点离基圆越近,曲率半径BK越 小 ,渐开 线越 弯曲 。 3)当K点与基圆上的点A重合时,曲率半径等 于 。 0
K
(3)渐开线形状取决于基圆的大小
渐开线齿廓啮合的特点
渐开线齿廓啮合的特点
渐开线齿廓是一种常见的齿轮啮合形式,在机械传动中具有重要
的作用。
渐开线齿廓啮合的特点在于,既能保持齿轮的高传动效率,
又能有效减少齿面接触应力和噪声,具有平稳、可靠的传动特性,被
广泛应用于各种机械传动装置中。
渐开线齿廓的设计和制造需要涉及到齿廓的数学计算、加工精度
等诸多方面。
一般而言,渐开线齿廓是利用曲线发生器(如伯努利曲线)来生成的,其曲率半径呈指数增长或递减的特点使得齿轮相对位
置的微小变化不会对啮合产生影响。
同时,渐开线齿廓还需要考虑齿
顶高度、齿宽、齿数等因素,以保证其在实际应用中能够满足传动要求。
在渐开线齿廓的啮合过程中,齿轮的动力学特性也有所改变。
在
轴向载荷和转矩作用下,齿轮会产生变形和扭曲,从而对齿面接触应
力和噪声产生影响。
为了减小这些负面影响,可以采用齿轮优化设计、表面处理、润滑和降噪等多种手段,使齿轮的运转更加平稳、可靠、
低噪声。
总之,渐开线齿廓啮合具有很多独特的特点和优点,但也需要充
分注意其设计和制造的细节问题。
只有在实际应用中能够兼顾传动效率、安全可靠和降噪等多个方面,才能够更好地满足各种机械传动装
置的需求。
渐开线齿廓的啮合特点
渐开线齿廓的啮合特点
1. 渐开线齿廓的啮合能保证传动比恒定呢,就好比我们跑步的速度一直稳定,不会突然变快或变慢,你想想看,要是齿轮传动比不稳定,那机器不就乱套啦!
2. 渐开线齿廓的啮合具有可分性呀,这就像搭积木,哪怕把积木拆开再组合,依然能搭出原来的样子,多厉害!你说要是没这可分性,齿轮维修得多麻烦!
3. 它的齿廓间相对滑动小哦,这就如同轻轻滑过的微风,不会造成太多磨损,那不是能让齿轮更耐用嘛!
4. 渐开线齿廓的啮合使得同时啮合的齿数多呢,就好像一群小伙伴一起用力推东西,力量更大更稳定,多棒啊!
5. 渐开线齿廓能实现平稳传动哟,你想想那种丝滑的感觉,就像坐顺滑的滑梯一样,要是不平稳,那多吓人!
6. 渐开线齿廓还具有中心距可变性呀,这不就像是有弹性的绳子,可以拉长缩短都没问题,要是没这特性,很多情况都没法应用啦!
7. 渐开线齿廓的重合度大呢,就好像我们重叠很多东西来增加厚度,这样传动更可靠呀,多牛!
8. 渐开线齿廓的安装和制造都比较方便哦,可不是嘛,就像搭简单的拼图一样,容易操作,多好呀!
9. 渐开线齿廓的这些啮合特点,让它在各种机械中都大显身手呢,真的是超级厉害!所以啊,渐开线齿廓真的是机械传动里不可或缺的重要角色呀!。
渐开线齿轮正确啮合传动的条件
渐开线齿轮正确啮合传动的条件
渐开线齿轮是机械传动中常用的齿轮。
通过特殊的齿形设计,可以有
效减小齿轮啮合时的冲击声和振动。
为了确保渐开线齿轮正确啮合传动,下文将介绍渐开线齿轮正确啮合传动的条件。
一、模数相同
模数是齿轮啮合时的重要参数,是指齿轮齿廓中心线与齿轮基圆半径
的比值。
渐开线齿轮存在着一定的齿形偏差,为了确保齿轮正常运转,必须保证啮合齿轮的模数相同。
如果模数不相同,则可能会出现齿轮
摩擦、冲击等问题,导致传动不稳定。
二、齿数差应符合规定范围
齿数差是指两个啮合齿轮齿数之差的绝对值。
对于渐开线齿轮而言,
为了保证齿轮的表面质量和传动效率,在齿数差的选择上也有一定规
定范围。
齿数差过大容易导致齿轮旋转不平稳,从而产生磨损和噪音。
三、修形误差小
齿轮的修形误差是指在齿轮制造过程中,由于加工误差等原因导致的
齿形不完全符合设计要求的程度。
对于渐开线齿轮而言,修形误差应
尽量小,特别是要保证主要参数修形误差在要求范围内,否则将影响
齿轮啮合效果。
四、基圆半径一致
基圆是齿轮齿形的重要参数之一,也是齿轮的基本形态,其半径决定
了齿距、模数、齿形等。
在选用齿轮时,必须保证啮合齿轮的基圆半
径一致,否则将导致齿轮间摩擦力大,磨损加剧,从而影响齿轮的使
用寿命。
总之,以上四点是渐开线齿轮正确啮合传动的条件,其中每一点都非
常重要,只有在各个方面都有保证的情况下,齿轮啮合传动才能顺畅,保证齿轮的正常运转。
渐开线齿廓的形成与啮合特点
渐开线齿廓的形成与啮合特点
形成原理:
渐开线齿廓是由齿轮齿侧面的直线(称为侧面线)和齿根圆的一部分(称为基圆)组成。
侧面线与基圆的交点构成了齿槽的啮合点。
渐开线齿
廓的形成主要是通过给定齿数、压力角和齿轮传动比等参数,利用特定的
公式计算而得。
啮合特点:
1.线接触。
渐开线齿廓的啮合面积较小,只有一个点或一小段线接触,这样能够实现对点接触的要求,减小了齿轮的摩擦和接触磨损,提高了传
动效率。
2.平稳传动。
渐开线齿廓具有相对平滑的啮合传动特性,能够减小振
动和冲击,使传动更加平稳。
3.轴向移动。
渐开线齿廓的特点使得齿轮在转动过程中能够自动沿轴
向方向进行微小的移动,可以自动适应齿轮间隙的变化。
这样能够保证齿
轮的啮合正常,并且减小了噪声和振动。
4.高承载能力。
渐开线齿廓的啮合传动是通过多点接触来实现的,使
得载荷能够均匀分布在齿面上,提高了齿轮的承载能力。
5.较小的齿根强度。
由于渐开线齿廓的齿根圆的一部分构成了齿轮的
齿槽,在齿根处可能出现较大的应力集中,降低了齿根的强度。
因此在设
计中需要合理选择齿廓参数,以确保齿轮的强度和可靠性。
6.减小中心距误差的影响。
由于渐开线齿轮通过自动的轴向移动来适应齿间隙变化,可以减小中心距误差对齿轮啮合性能的影响,提高传动的准确性。
总之,渐开线齿廓的形成和啮合特点使得其广泛应用于各种机械传动中,能够实现平稳、高效、可靠的传动效果。
07-4第三十六讲渐开线齿廓的啮合特性(精)
O1 ω1 rb1 N1 P N2 rb2 ω2 O2 K C2 C1
= rb2 /rb1
——基圆之反比。
实际安装中心距略有变化时,不影响i12,这 一特性称为运动可分性,对加工和装配很有利。
由于上述特性,工程上广泛采用渐开线作为齿轮的齿 廓曲线。
JM
返回
第三十六讲 渐开线齿廓的啮合特性
1、渐开线齿廓能保证定传动比传动 两齿廓在任意点K啮合时,过K作两齿廓 的法线N1N2,是基圆的切线,为定直线。 两轮中心连线也为定直线,故交点 P必为定点。
N2 ω1 rb1 N1 P K C2 C1
K’
i12=ω 1/ω 2=O2P/ O1P=const
rb2
ω2 O2
工程意义:i12为常数可减少因速度变化所产生的附加动载荷、 振动和噪音,延长齿轮的使用寿命,提高机器的工作精度。 2、齿廓间正压力方向不变 N1N2是啮合点的轨迹,称为啮合线 该线又是接触点的法线,正压力总是沿法线方向, 故正压力方向不变。该特性对传动的平稳性有利。
JM
返回
3、运动可ห้องสมุดไป่ตู้性 △ O1N1P≌△O2N2P 故传动比又可写成: i12=ω 1/ω 2=O2P/ O1P
渐开线齿廓及其啮合特点
对齿轮加工,这话的意思是:刀具在基圆内所切的曲 线不是渐开线。
渐开线在基圆上的起始点 A处的曲率半径为零。
渐开线齿廓及其啮合特点
4、渐开线的形状取决于基圆的大小。即同一基圆展开的 渐开线的形状完全相同。 在相同展角处: (如图10-7) rb↓→渐开线越弯曲,曲率半径↓; rb↑→渐开线越平直,曲率半径↑; rb→∞,则渐开线成为直线,齿条 的齿廓是直线的渐开线。 5、基圆内无渐开线。 ∵ 渐开线是从基圆开始向外展开的。
度瞬心。
∴ 发生线BK即为渐开线在点K的法线。 又∵发生线恒切于基圆。 ∴ 渐开线上任一点的法线必切于基圆。
渐开线齿廓及其啮合特点
3、线段BK是渐开线在K点的曲率半径,B点是渐开线在 K点的曲率中心。 推论: 渐开线愈接近于基圆的部分, 曲率半径愈小,渐开线愈弯曲; 渐开线愈远离基圆的部分, 曲率半径愈大,渐开线愈平直;
渐开线齿廓及其啮合特点
2. 渐开线的特性
(1) 发生线上沿基圆滚过的 长度等于基圆上被滚过的弧长, 即KN=AN。 (2) 发生线NK是即为渐开线 在K 点的法线,又因发生线恒切 于基圆故知渐开线上任意点的法 线恒切于基圆。 (3) 切点N是渐开线上K点的 曲率中心,线段 NK 是渐开线在 K点的曲率半径。渐开线 越接近 基圆的部分曲率半径越小,渐开 线越弯曲,在基圆上曲率半径为 零。
渐开线齿廓及其啮合特点
(4) 渐开线的渐开线曲率半径越大, 当基圆半径趋于无穷大时,渐开 线变成直线。齿条的齿廓就是这 种直线齿廓。 (5) 基圆内无渐开线。
渐开线齿廓及其啮合特点
渐开线齿廓及其啮合特点
3. 渐开线函数
从基圆起点A到任一点K的渐开线所对应的圆心角,称为渐
开线的展角θK。由于KN=AN,由图8-5得
渐开线齿廓及其啮合特点
渐开线齿廓及其啮合特点如下:
齿廓形状:渐开线的形状是一个圆的渐开线,这个圆在一个平面上沿一个直线作纯滚动。
因此,渐开线齿廓的特点是各齿廓在各圆上的压力角不同。
标准规定分度圆上的压力角为α,其标准值为20°。
啮合特点:
(1)定传动比:渐开线齿轮的啮合角是不变的,因此齿轮的传动比也是恒定的。
这意味着齿轮在转动过程中不会出现速度波动,传动效率高。
(2)可分性:渐开线齿轮的传动比也可以表示为基圆半径的反比。
当两轮的中心距略有改变时,只要两齿轮的基圆半径相应改变,其传动比仍能维持不变。
这一特点对渐开线齿轮的制造和安装都非常有利。
(3)齿廓间正压力方向不变:在齿轮传动过程中,齿廓间的正压力方向始终与接触点的公法线方向一致,并随啮合角的改变而改变。
渐开线齿廓的啮合特性PPT资料优秀版
这些特性对齿 一对渐开线齿轮制成后,两轮的基圆半径已确定,即使安装时两轮中心距略有变化,其传动比也不改变。
掌握渐开线齿廓啮合特性。
轮传动有何影响? 渐开线齿廓啮合过程:四线合一。
哈尔滨职业技术学院
《机械设计与应用》学习情境2 传动零部件的设计与选用
任务2 直齿圆柱齿轮传动的设计与选用
掌握渐开线齿廓啮合特性。 所属课程:机械设计与应用
哈尔滨职业技术学院
《机械设计与应用》学习情境2 传动零部件的设计与选用
任务2 直齿圆柱齿轮传动的设廓啮合特性。 具有分析啮合特性的能力。
《机械设计与应用》学习情境2 传动零部件的设计与选用
任务2 直齿圆柱齿轮传动的设计与选用
一、渐开线齿廓传动比恒定不变
1.渐开线齿廓啮合过程:四线合一。 2.传动比恒定不变。
哈尔滨职业技术学院
《机械设计与应用》学习情境2 传动零部件的设计与选用
任务2 直齿圆柱齿轮传动的设计与选用
二、渐开线齿轮传动中心距的可分性
具授有课分 教析师沿啮:着合李特敏公性的法能力线。的方向。 渐渐开开线 线齿齿廓廓啮啮合合表过过程程明::两四四线线齿合合一一廓。。间法向作用力方向不 渐二开、线 渐齿开变廓线,啮齿合轮从时传体动而现中出心传哪距动些的特可平性分?性稳。这也是渐开线齿 这所些属特 课性程廓对:传齿机轮械动传设动计的有与何应一影用大响?优点。
渐开线齿廓的啮合特性
所属课程:机械设计与应用 所属专业:机械制造与自动化 数控技术
模具设计与制造等
哈尔滨职业技术学院
《机械设计与应用》学习情境2 传动零部件的设计与选用
任务2 直齿圆柱齿轮传动的设计与选用
渐开线齿廓的啮合特性
渐开线齿廓符合齿廓啮合基本定律
ha=ha*m
( 7-9)
hf=(ha*+c*)m
( 7-10)
式中 ,ha*和c*分别称为齿顶高系数和顶隙系数 , 对于圆柱齿轮 ,其标准值按正常齿制和短齿制规定为:
正常齿 ha*= 1 c*=0.25 短齿 ha*=0.8 c*=0.3
9.顶隙
顶隙是指一对齿轮啮合时 ,一个齿轮的齿顶圆到 另一个齿轮的齿根圆的径向距离 。顶隙有利于润滑油 的流动 。顶隙按下式计算:
的公切线 ,它与啮合线
N1N2间的夹角称为啮合 角 。啮合角等于齿廓在节
圆上的压力角“ ′ , 由于渐
开线齿廓的啮合线是一条
C
定直线N1N2 ,故啮合角 的大小始终保持不变 。啮
合角不变表示齿廓间压力 N2 方向不变 ,若齿轮传递的
力矩恒定; 则轮齿之间 、
r2
轴与轴承之间压力的大小
和方向均不变 ,这也是渐
开线齿轮传动的一大优点。
7.3.5 渐开线齿轮的可分性 当一对渐开线齿轮制成之后 ,其基圆半径是不能
改变的 , 因此下式可见i 不变
即使两轮的中心距稍有改变(节圆变化) ,其角速比 仍保持原值不变 ,这种性质称为渐开线齿轮传动的可 分性 。这是渐开线齿轮传动的另一重要优点 ,给齿轮 的制造 、安装带来了很大方便。
c=c*m
7.4.2 标准齿轮 若一齿轮的模数 、分度圆压力角 、齿顶高系数、
齿根高系数均为标准值 ,且其分度圆上齿厚与齿槽宽 相等 ,则称为标准齿轮 。因此 ,对于标准齿轮
标准直齿圆柱齿轮传动的参数和几何尺寸计算公式 列于表7-2。
表7-2 标准直齿圆柱齿轮传动的参数和几何尺寸计算公式
名 称 代号
( 7-3)
7.3.3 渐开线齿廓的压力角
渐开线齿廓教案
渐开线齿廓
课题:渐开线齿廓
教学目的和要求:使学生掌握渐开线的形成,渐开线的性质,渐开线齿廓的啮合特性 重点:渐开线的性质,渐开线齿廓的啮合特性难点:渐开线齿廓的啮合特性
教学方法:讲解
计划课时:2课时
教学过程:
复习:齿轮传动的类型和应用特点
新授:
一、渐开线的形成
在平面上,一条动直线(发生线)沿着一个固定的圆(基圆)作纯滚动时,此动直线上一点的轨迹,称为圆的渐开线。
二、渐开线的性质
1、发生线在基圆上滚过的线段长度NK ,等于基圆上被滚过的一段弧长NC 。
2、渐开线上任意一点的法线必定与基圆相切。
3、渐开线上各点的曲率半径不相等。
4、渐开线上的形状取决于基圆的大小。
5、基圆内无渐开线。
6、渐开线上各点的齿形角不相等。
三、渐开线齿廓的啮合特性
啮合线:
渐开线齿廓的啮合点K 始终是沿着21N N 移动,即21N N 是啮合点K 的轨迹,称为啮合线。
节点:
啮合线与两轮中心连线的交点P 称为节点。
节圆:
以21O O 为圆心,过节点P 所作的两个相切的圆称为节圆。
啮合角:
过P 点的两节圆的公切线tt (即P 点处的运动方向)与啮合线21N N 所夹的锐角α'称为啮合角。
渐开线齿廓的啮合特性
1、能保证传动比的恒定
2、具有传动的可分离性
3、齿廓间具有相对滑动
小结:渐开线齿廓
作业:P71。
齿廓啮合基本定律(课件分享)
rf r ra
齿顶高ha 齿根高 hf 齿全高 h= ha+hf
O
齿宽- B
齿廓啮合基本定律(课件分享)
8
(二)齿轮基本参数的计算公式
1、分度圆与模数
设一齿轮的齿数为 z,其任一圆的直径为di ,该圆上的齿距为pi,则
• 模数——
数
人为地把 。
pi / 规d定i 为一些p简i单z的有理数,该比值称为模
于齿条齿形角。 (3)凡与齿条分度线平行的任一直线上的齿距和模
数都等于分度线上的齿距和模数。
齿廓啮合基本定律(课件分享)
42
2、渐开线齿轮齿条的啮合特点
r1
节线 (分度线)
n
o1
1
rb1
k
p
v2 (a)
n N1
1 2
r1
节线 分度线
n
o1
1
rb1
N1
p
k
v2
(b)
n
1 2
(1)齿轮齿条传动的中心距为齿轮中心到齿条分度线的垂直距离。齿轮齿条 传动也具有中心距可变性。
齿廓啮合基本定律(课件分享)
44
r1
节线 (分度线)
n
o1 1
ቤተ መጻሕፍቲ ባይዱ
n rb1
k
p
v2 (a)
N1
1
2
r1
节线 分度线
n
o1
1
rb1
N1
p
k
v2
(b)
(3)齿轮齿条传动时无论中心距增大还是减小,其啮合角始终不 变,且数值上等于齿条齿廓的齿形角。
n
1 2
渐开线标准齿轮的啮合
O1 ω1
B2 N1
K
定义:实际啮合线B1B2 与基圆齿距Pb比值。
ω2
重合度的大小表示一对齿轮传动过程
中,同时在啮合线上轮齿啮合的对数它,是齿
O2
轮承载能力大小和平稳性好坏的一个重要指
标。
渐开线标准齿轮的啮合
第三节 连续传动条件及重合度
二、连续传动条件及重合度
2、连续传动条件 为保证连续传动,要求: B1B2≥ pb
3、重合度 ε
pb
N2 B1
O1 ω1
B2 N1
K
连续传动条件是: ε≥1 (理论上)
ω2
为保证可靠工作,工程上要求:ε≥>[1ε] 1.1~1.4
表 [ε]的推荐值:
O2
使用场合 一般机械制造业 汽车拖拉机 金属切削机
[ε]
1.4
1.1~1.2
1.3
总结
1.正确啮合的条件 m1 m2 m
1 2
已经从B2点进入啮合。 B1B2 > pb
当前一对齿到B1点将要
NN B1
22
脱离啮合时,后一对齿正好从B2点进入啮合。 B1B2 = pb
渐开线标准齿轮的啮合
第三节 连续传动条件及重合度
二、连续传动条件及重合度 2、连续传动条件
为保证连续传动,要求: B1B2≥ pb
3、重合度 ε
pb
N2 B1
N1N2——理论上可能的最
长啮合线段--理论啮合线段。
B2
NN
11
设设设计计计:::潘潘潘存存存云云云
NN B1
22
N1、N 2 -啮合极限点
渐开线标准齿轮的啮合
第三节 连续传动条件及重合度
第三节渐开线齿廓的形成及特点
N1
C
N
K
O2
二、渐开线齿廓的啮合特点 ——满足齿廓啮合基本定律
渐开线齿轮的传动比
基圆的公切线是一 条定直线,与连心线只 能交于固定点C,因此 能实现传动比恒定的传 动。
O1
N1
C
N
i
O2 C O1C
K
N
r '2 r '1 rb 2 rb 1
N2
O2
二、渐开线齿廓的啮合特点 ——满足齿廓啮合基本定律
二、渐开线齿廓的啮合特点 ——中心距可分性
当齿轮制成后,基 圆半径rb已确定,传动 比i=rb2 /rb1, 即使有制 造、安装的误差或轴承 磨损导致中心距变更时, 其传动比仍保持不变, 这一特性称为中心距可 分性。它给齿轮的制造 和安装带来了很大的方 便。 由于上述特性,工 程上广泛采用渐开线齿 廓曲线。
i
O2C O1C
r '2 r '1
rb 2 rb1
渐开线齿轮的传动比等于节圆半径的反 比,也等于基圆半径的反比。啮合点一定在 公切线 N1N2 上移动, N1N2 称为啮合线。 过节点作的圆称为节圆,一对齿轮啮合时 才出现节圆,单个齿轮没有节圆,也就不存在 节点。 一对齿轮传动时,相当于它的一对节圆 作纯滚动。
二、渐开线齿廓的啮合特点 ——中心距可分性
齿轮工、车工和铣工配换交 换齿轮时,都凭目测安装,安装 中心距与设计中心距可能会有误 差,这对齿轮传动质量会有影响 吗?
1 r rb 2 i12 2 r rb1
' 2 ' 1
齿轮制成后,基圆半径已 定,即使中心距稍有变动, 传动比仍不变。
二、渐开线齿廓的啮合特点
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、渐开线齿廓能保证定传动比传动 两齿廓在任意点K啮合时, 两齿廓在任意点K啮合时,过K作两齿廓 的法线N 是基圆的切线,为定直线。 的法线N1N2,是基圆的切线,为定直线。 两轮中心连线也为定直线,故交点P必为定点 两轮中心连线也为定直线,故交点 P必为定点。 定点。
K’ N2 rb2 ω2 O2 ω1 rb1 N1 K P C2 C1
i12=ω1/ω2=O2P/ O1P=const P=const ω
工程意义:i12为常数可减少因速度变化所产生的附加动载荷、 工程意义: 为常数可减少因速度变化所产生的附加动载荷、 振动和噪音,延长齿轮的使用寿命,提高机器的工作精度。 振动和噪音,延长齿轮的使用寿命,提高机器的工作精度。 2、齿廓间正压力方向不变 N1N2是啮合点的轨迹,称为啮合线 是啮合点的轨迹,称为啮合线 该线又是接触点的法线,正压力总是沿法线方向, 该线又是接触点的法线,正压力总是沿法线方向, 故正压力方向不变。该特性对传动的平稳性有利。 故正压力方向不变。该特性对传动的平稳性有利。
JM
返回
3、运动可分性 △ O1N1P≌△O2N2P 故传动比又可写成: 故传动比又可写成: i12=ω1/ω2=O2P/ O1P ——基圆之反比。 ——基圆之反比。 基圆之反比 实际安装中心距略有变化时,不影响i 实际安装中心距略有变化时,不影响i12,这 一特性称为运动可分性 对加工和装配很有利。 一特性称为运动可分性,对加工和装配很有利。 运动可分性,
O1 ω1 rb1 N1 K P N2 rb2 ω2 O2 C2 C1
= rb2 /rb1
由于上述特性, 由于上述特性 , 工程上广泛采用渐开线作为齿轮的齿 廓曲线。 廓曲