九年级上相似三角形教案及练习精华版附答案
初三数学相似三角形典例及练习(含答案)
初三数学相似三角形(一)相似三角形是初中几何的一个重点,同时也是一个难点,本节复习的目标是:1。
理解线段的比、成比例线段的概念,会根据比例线段的有关概念和性质求线段的长或两线段的比,了解黄金分割.2. 会用平行线分线段成比例定理进行有关的计算、证明,会分线段成已知比。
3. 能熟练应用相似三角形的判定和性质解答有关的计算与证明题。
4. 能熟练运用相似三角形的有关概念解决实际问题本节的重点内容是相似三角形的判定定理和性质定理以及平行线分线段成比例定理。
本节的难点内容是利用判定定理证明两个三角形相似以及相似三角形性质的应用。
相似三角形是平面几何的主要内容之一,在中考试题中时常与四边形、圆的知识相结合构成高分值的综合题,题型常以填空、选择、简答或综合出现,分值一般在10%左右,有时也单独成题,形成创新与探索型试题;有利于培养学生的综合素质。
(二)重要知识点介绍: 1。
比例线段的有关概念: 在比例式::中,、叫外项,、叫内项,、叫前项,a b cda b c d a d b c a c ==() b 、d 叫后项,d 叫第四比例项,如果b=c ,那么b 叫做a 、d 的比例中项。
把线段AB 分成两条线段AC 和BC,使AC 2=AB ·BC ,叫做把线段AB 黄金分割,C 叫做线段AB 的黄金分割点。
2. 比例性质: ①基本性质:a b cdad bc =⇔= ②合比性质:±±a b c d a b b c d d=⇒= ③等比性质:……≠……a b c d m n b d n a c m b d n a b===+++⇒++++++=()03。
平行线分线段成比例定理:①定理:三条平行线截两条直线,所得的对应线段成比例,如图:l 1∥l 2∥l 3。
则,,,…AB BC DE EF AB AC DE DF BC AC EFDF===②推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。
华师大版初中数学九年级上册23.3.1《相似三角形教案(含答案)
华师大版初中数学重点知识精选掌握知识点,多做练习题,基础知识很重要!华师大初中数学和你一起共同进步学业有成!相似三角形1.相似三角形【知识与技能】1.知道相似三角形的概念;2.能够熟练地找出相似三角形的对应边和对应角;3.会根据概念判断两个三角形相似,能说出相似三角形的相似比,由相似比求出未知的边长;4.掌握利用“平行于三角形一边的直线,和其它两边(或两边的延长线)相交所构成的三角形与原三角形相似”来判断两个三角形相似.【过程与方法】在探索活动中,发展发现问题、解决问题的意识和合作交流的习惯.【情感态度】培养学生严谨的数学思维习惯.【教学重点】掌握相似三角形的定义、表示法,并能根据定义判断两个三角形是否相似.【教学难点】熟练找出对应元素,在此基础上根据定义求线段长或角的度数.一、情境导入,初步认识复习:什么是相似形?识别两个多边形是否相似的标准是什么?二、思考探究,获取新知1.相似三角形的有关概念:由复习中引入,如果两个多边形的对应边成比例,对应角都相等,那么这两个多边形相似.三角形是最简单的多边形.由此可以说什么样的两个三角形相似?如果两个三角形的三条边都成比例,三个角对应相等,那么这两个三角形相似,如在△ABC 与△A ′B ′C ′中,∠A=A ′,∠B=∠B ′,∠C=∠C ′,C A AC C B BC B A AB ''=''='',那么△ABC 与△A ′B ′C ′相似,记作△ABC ∽△A ′B ′C ′.“∽”是表示相似的符号,读作“相似于”,这样两个三角形相似就读作“△ABC 相似于△A ′B ′C ′”.由于∠A=∠A ′,∠B=∠B ′,∠C=∠C ′,所以A 与A ′是对应顶点,B 与B ′是对应顶点,C 与C ′是对应顶点,书写相似时,通常把对应顶点写在对应位置上,以便比较容易找到相似三角形中的对应角、对应边.如果记C A AC C B BC B A AB ''=''=''=k ,那么这个比值k 就表示这两个相似三角形的相似比.相似比就是它们的对应边的比,它有顺序关系.如△ABC ∽△A ′B ′C ′,它的相似比为k ,即指B A AB ''=k ,那么△A ′B ′C ′与△ABC 的相似比应是BA AB '',就不是k 了,应为多少呢?同学们想一想. 如果△ABC ∽△A ′B ′C ′,相似比k=1,你会发现什么呢?C A AC C B BC B A AB ''=''=''=1,所以可得AB=A ′B ′,BC=B ′C ′,AC=A ′C ′,因此这两个三角形不仅形状相同,而且大小也相同,这样的三角形称之为全等三角形,全等三角形是相似三角形的特例.试问:①全等的两个三角形一定相似吗?②相似的两个三角形会全等吗?2.△ABC 中,D 是AB 上任意一点,过D 作DE ∥BC,交AC 边于E ,那么△ADE 与△ABC 是否相似?【分析】判断它们是否相似,由①对应角是否相等,②对应边是否成比例去考虑.能否得对应角相等?根据平行线性质与一个公共角可以推出①,而对应边是否成比例呢?可根据平行线分线段成比例的基本事实,推得BC DE AC AE =,通过度量发现ABAD BC DE =,所以可以判断出△ADE 与△ABC 相似.思考 (1)你能否通过演绎推理证明你的猜想?(2)若是DE ∥BC,DE 与BA 、CA 延长线交于E 、D ,那么△ADE 与△ABC 还会相似吗?试试看,如果相似写出它们对应边的比例式.【归纳结论】平行于三角形一边的直线和其他两边(或两边的延长线)相交所构成的三角形与原三角形相似.例1 如图,在△ABC 中,点D 是边AB 的三等分点,DE ∥BC ,DE=5,求BC 的长.解:∵DE ∥BC,∴△ADE ∽△ABC ,∴DEBC=ADAB=13,∴BC=3DE=15.三、运用新知,深化理解1.如图所示,DE ∥BC.(1)如果AD=2,DB=3,求DE ∶BC 的值;(2)如果AD=8,DB=12,AC=15,DE=7,求AE 和BC 的长.2.如图,梯形ABCD 中,AD ∥BC,点E 是边AD 的中点,连接BE 交AC 于点F ,BE 的延长线交CD 的延长线于点G.(1)求证:BCAE GB GE ; (2)若GE=2,BF=3,求线段EF 的长.相信自己,就能走向成功的第一步教师不光要传授知识,还要告诉学生学会生活。
九年级上相似三角形的判定教案及练习精华版
学生编号学生姓名授课教师辅导学科九年级数学教材版本上教课题名称相似三角形的判定课时进度总第()课时授课时间7月14日教学目标1.了解相似比的定义,掌握判定两个三角形相似的方法:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。
2.培养学生的观察﹑动手探究、归纳总结的能力,感受相似三角形与相似多边形;相似三角形与全等三角形的区别与联系,体验事物间特殊与一般的关系。
3.让学生经历从实验探究到归纳证明的过程,发展学生的合情推理能力。
重点难点重点:判定两个三角形相似的预备定理难点:探究两个三角形相似的预备定理的过程同步教学内容及授课步骤知识点归纳:1、相似三角形的概念对应角相等,对应边成比例的三角形叫做相似三角形。
相似用符号“∽”来表示,读作“相似于”。
相似三角形对应边的比叫做相似比(或相似系数)。
2.相似三角形的等价关系:(1)反身性:对于任一△ABC,都有△ABC∽△ABC;(2)对称性:若△ABC∽△A’B’C’,则△A’B’C’∽△ABC(3)传递性:若△ABC∽△A’B’C’,并且△A’B’C’∽△A’’B’’C’’,则△ABC∽△A’’B’’C’’。
3、三角形相似的判定(1)三角形相似的判定方法①定义法:对应角相等,对应边成比例的两个三角形相似②平行法:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似③判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似,可简述为两角对应相等,两三角形相似。
④判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应相等,并且夹角相等,那么这两个三角形相似,可简述为两边对应成比例且夹角相等,两三角形相似。
⑤判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似,可简述为三边对应成比例,两三角形相似课程引入:1、相似三角形的定义是什么?如果///,,CCBBAA∠=∠∠=∠∠=∠,//////CAACCBBCBAAB==,那么ΔABC∽ΔA/B/C/2、相似三角形与全等三角形有什么内在的联系呢?全等三角形是相似比为 1 的特殊的相似三角形。
九年级数学上册《相似三角形》教案华东师大版
福建省泉州市泉港三川中学九年级数学上册《24.3 .1 相似三角形》教案华东师大版【学习目标】1.通过一些具体的情境和应用,深化对三角形的理解和认识.2.能利用相似三角形的性质,分析和解决有关实际问题.【基础知识精讲】1.相似三角形的定义对应角相等,对应边成比例的三角形叫做相似三角形.2.能根据相似三角形的定义,判断两个三角形是否相似.要判断是否相似,必须满足两个条件:①所有的对应边成比例;②所有的对应角相等.如两个等腰三角形未必相似.3.利用相似三角形定义进行计算,即相似三角形对应边成比例,对应角相等的应用,这里特别强调两个三角形的对应关系.能够熟练掌握下面5个常见的相似基本图形:【学习方法指导】1.有一块三角形草坪,周长为500 m,一边长100 m,另两边长相等,若在这块草坪图纸上这条边长为5 cm,求该草坪另两边在图纸上的长度.2.若△ABC∽△A′B′C′,且△ABC三边之比为2∶3∶4,而△A′B′C′的最大边为12 cm,那么△A ′B ′C ′的周长多大?3.小明要做两个形状相同的三角形框架,其中一个框架三边为30 cm 、40 cm 、50 cm ,而另一个三角形框架现在只有一条60 cm 的木条,小明应该再找两根多长的木条呢?相似三角形单元检测题一 选择题1.在△ABC 中,DE ∥BC ,交AB 于D ,交AC 于E ,且AD ∶DB =1∶2,则下列结论正确的是( )A .BC DE =21B .BC DE =31 C .的周长的周长ABC ADE ∆∆=21 D .ABC ADE S S ∆∆=31 2.如图1,ABCD 中,AE ∶ED =1∶2,S △AEF =6 cm 2,则S △CBF 等于( ) A .12 cm 2 B .24 cm 2 C .54 cm 2 D .15 cm 23.下列说法中正确的是( )A .位似图形可以通过平移而相互得到B .位似图形的对应边平行且相等C .位似图形的位似中心不只有一个D .位似中心到对应点的距离之比都相等二、填空题1.△ABC ∽△A ′B ′C ′,相似比是3∶4,△ABC 的周长是27 cm ,则△A ′B ′C ′的周长为________.2.两个相似多边形对应边的比为3∶2,小多边形的面积为32 cm 2,那么大多边形的面积为________.3.若两个三角形相似,且它们的最大边分别为6 cm 和8 cm ,它们的周长之和为35 cm ,则较小的三角形的周长为________.4.在矩形ABCD 中,E 、F 分别为AB 、CD 的中点,如果矩形ABCD ∽矩形BCFE ,那么AD ∶AB=________,相似比是________,面积比是________.5.已知,如图2,A′B′∥AB,B′C′∥BC,且OA′∶A′A=4∶3,则△ABC与________是位似图形,位似比为________;△OAB与________是位似图形,位似比为________.6.已知:△ABC∽△A′B′C′,它们的周长之差为20,面积比为4∶1,则△ABC和△A′B′C′的周长是___________________________7.如图1,∠ADC=∠ACB=900,∠1=∠B,AC=5,AB=6,则AD=______.8.如图2,AD∥EF∥BC,则图的相似三角形共有_____对.9.如图3,正方形ABCD中,E是AD的中点,BM⊥CE,AB=6,则BM=______.10.ΔABC的三边长为,,2,ΔA'B'C'的两边为1和,若ΔABC∽ΔA'B'C',则ΔA'B'C'的笫三边长为________.11.两个相似三角形的面积之比为1∶5,小三角形的周长为4,则另一个三角形的周长为_____.12.如图4,RtΔABC中,∠C=900,D为AB的中点,DE⊥AB,AB=20,AC=12,则四边形ADEC的面积为__________.13.如图5,RtΔABC中,∠ACB=900,CD⊥AB,AC=8,BC=6,则AD=____,CD=_______.14.如图6,矩形ABCD中,AB=8,AD=6,EF垂直平分BD,则EF=_________.15.如图7,ΔABC中,∠A=∠DBC,BC=,SΔBCD∶SΔABC=2∶3,则CD=______.16.如图8,梯形ABCD中,AD∥BC,两腰BA与CD的延长线相交于P,PF⊥BC,AD=3.6,BC=6,EF=3,则PF=_____.17.如图9,ΔABC中,DE∥BC,AD∶DB=2∶3,则SΔADE∶SΔABE=___________.18.如图10,正方形ABCD内接于等腰ΔPQR,∠P=900,则PA∶AQ=__________.19.如图11,ΔABC中,DE∥FG∥BC,AD∶DF∶FB=1∶2∶3,则S四边形DFGE∶S四边形FBCG=_________.20、已知:在△ABC中,P是AB上一点,连结 CP ,当满足条件∠ACP=或∠APC=或AC2= 时,△ACP∽△ABC.21.如图12,ΔABC中,中线BD与CE相交于O点,SΔADE=1,-则S四边形BCDE-=________.22、如图,一电线杆AB的影子分别落在了地上和墙上,某一时刻,小明竖起1米高的直杆,量得其影长为0.5米,此时,他又量得电线杆AB落在地上的影子BD长3米,落在墙上的影子CD的高为2米。
(完整版)《相似三角形的性质》教案
《相似三角形的性质》教案课标要求了解相似三角形的性质定理:相似三角形对应线段的比等于相似比;面积比等于相似比的平方.教学目标知识与技能:1.了解相似三角形的性质定理:相似三角形对应线段的比等于相似比;面积比等于相似比的平方;2.能够运用相似三角形的性质定理解决相关问题.过程与方法:通过操作、观察、猜想、类比等活动,进一步提高学生的思维能力和推理论证能力.情感、态度与价值观:通过对性质的发现和论证,提高学习热情,增强探究意识.教学重点相似三角形性质定理的理解与运用.教学难点探究相似三角形面积的性质,并运用相似三角形的性质定理解决问题.教学流程一、情境引入三角形中有各种各样的几何量,如三条边的长度,三个内角的度数,高、中线、角平分线的长度,以及周长、面积等等.问题:如果两个三角形相似,那么它们的这些几何量之间有什么关系呢?引出课题:今天,我们就来研究相似三角形的这些几何量之间的关系.二、探究归纳回顾:从相似三角形的定义出发,能够得到相似三角形的什么性质?相似三角形的对应角相等,对应边成比例.问题:相似三角形的其他几何量可能具有哪些性质?探究:如图1,△ABC∽△A′B′C′,相似比为k,它们对应高、对应中线、对应角平分线的比各是多少.图1图2问题1:如图2,△ABC ∽△A ′B ′C ′,相似比为k ,分别作△ABC 和△A ′B ′C ′对应高AD 和A ′D ′.AD 和A ′D ′的比是多少?追问:对应高在哪两个三角形中,它们相似吗?如何证明?解:∵△ABC ∽△A ′B ′C ′∴∠B =∠B ′∵△ABD 和△A ′B ′D ′都是直角三角形∴△ABD ∽△A ′B ′D ′ ∴==''''AD AB k A D A B 问题2:它们的对应中线、角平分线的比是否也等于相似k ?结论:相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比. 问题3:如果△ABC ∽△A ′B ′C ′,相似比为k ,对应线段的比呢?推广:相似三角形对应线段的比等于相似比.问题4:如果△ABC ∽△A ′B ′C ′,相似比为k ,它们的周长有什么关系?结论:相似三角形的周长比等于相似比.思考:相似三角形面积比与相似比有什么关系?如图,△ABC ∽△A ′B ′C ′,相似比为k ,分别作△ABC 和△A ′B ′C ′对应高AD 和A ′D ′.21212ABCA B C BC AD S BC AD k k k S B C A DB C A D ∆'''∆⋅==⋅=⋅=''''''''⋅ 结论:相似三角形面积比等于相似比的平方.三、应用提高例:如图,在△ABC 和△DEF 中,AB =2DE ,AC =2DF ,∠A =∠D .若△ABC 的边BC 上的高是6,面积为125,求△DEF 的边 EF 上的高和面积.解:在△ABC 和△DEF 中,∵AB =2DE ,AC =2DF ,1.2DE DF AB AC ∴== ∵∠A =∠D ,∴△DEF ∽△ABC ,△DEF 与△ABC 的相似比为1.2∵△ABC 的边 BC 上的高是6,面积为125,∴△DEF 的边 EF 上的高为163,2⨯= 面积为211253 5.2⨯=()应用:1.判断(1)一个三角形的各边长扩大为原来的5倍,这个三角形的角平分线也扩大为原来的5倍;( )(2)一个三角形的各边长扩大为原来的9倍,这个三角形的面积也扩大为原来的9倍.( )2.如图,△ABC 与△A ′B ′C ′相似,AD 、BE 是的△ABC 高,A ′D ′、B ′E ′是的△A ′B ′C ′高,求证.AD BE A D B E =''''3.在一张复印出来的纸上,一个三角形的一条边由原来的2cm 变成了6cm ,放缩比例是多少?这个三角形的面积发生了怎样的变化?四、体验收获说一说你的收获.相似三角形的性质:1.对应角相等,对应边成比例(对应边的比等于相似比)2.对应高线、对应中线、对应角平分线的比等于相似比3.对应周长比等于相似比4.对应面积比等于相似比的平方五、拓展提升1.两个相似三角形的周长之比是2:3,它们的面积之差是60cm2那么它们的面积之和是多少?2.如图,这是比例尺为1:1000的一块三角形草坪的图形,则草坪的实际面积是多少?3cm2cm3.如图,△ABC 的面积为100,周长为80,AB=20,点D 是AB 上一点,BD=12,过点D 作DE∥BC,交AC于点E.(1)求△ADE 的周长和面积;(2)过点E 作EF∥AB,EF 交BC 于点F,求△EFC 和四边形DBFE 的面积.六、课内检测1.用放大镜看一个三角形,一条边由原来的1cm变成5cm,那么看到的图案面积是原来的()A.5倍B.15倍C.25倍D.30倍2.两个等腰直角三角形的斜边比为1:2,则它们的周长比为()A.1:1 B.1:2 C.1:4 D.23.两个相似三角形最长边分别是20cm和16cm,它们的周长之和为90cm,则较大三角形的周长为()A.40cm B.50 cm C.60 cm D.70 cm4.两个相似三角的对应高分别为6cm和4cm,则这两个三角形的周长比为_____,面积比为_____.5.已知两个相似三角形面积之比为9:25,其中一个周长为36,则另一个的周长为_______.七、布置作业必做题:教材42页习题27.2第6题.选做题:教材43页习题27.2第12题.附:板书设计教学反思:。
(完整word版)九年级数学相似三角形知识点及习题
相似三角形要点一、本章的两套定理第一套(比例的有关性质): b a n d b m c a n d b n m d c b a =++++++⇒≠+++=== :)0(等比性质 涉及概念:①第四比例项②比例中项③比的前项、后项,比的内项、外项④黄金分割等。
二、有关知识点:1.相似三角形定义: 对应角相等,对应边成比例的三角形,叫做相似三角形。
2.相似三角形的表示方法:用符号“∽”表示,读作“相似于”。
3.相似三角形的相似比: 相似三角形的对应边的比叫做相似比。
4.相似三角形的预备定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截成的三角形与原三角形相似。
5.相似三角形的判定定理:(1)三角形相似的判定方法与全等的判定方法的联系列表如下:类型斜三角形 直角三角形 全等三角形的判定 SASSSS AAS (ASA ) HL 相似三角形的判定 两边对应成比例夹角相等 三边对应成比例 两角对应相等一条直角边与斜边对应成比例 从表中可以看出只要将全等三角形判定定理中的“对应边相等”的条件改为“对应边成比例”就可得到相似三角形的判定定理,这就是我们数学中的用类比的方法,在旧知识的基础上找出新知识并从中探究新知识掌握的方法。
6.直角三角形相似:(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。
(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
7.相似三角形的性质定理:(1)相似三角形的对应角相等。
(2)相似三角形的对应边成比例。
(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。
(4)相似三角形的周长比等于相似比。
(5)相似三角形的面积比等于相似比的平方。
8.相似三角形的传递性 如果△ABC ∽△A 1B 1C 1,△A 1B 1C 1∽△A 2B 2C 2,那么△ABC ∽A 2B 2C 2三、注意1、相似三角形的基本定理,它是相似三角形的一个判定定理,也是后面学习的相似三角形的判定定理的基础,这个定理确定了相似三角形的两个基本图形“A ”型和“ X ”型。
北师大版数学九年级上册4.4探索三角形相似的条件最新精品导学案附答案解析
(1)两个角对应相等. (2)三条边对应成
比例. (3)两条边对应成比例且夹角相等。理解时,可类比全等三角形的判定方法.在
(1)中,只要满足两个
角对应相等,这两个三角形就相似,解题时关键是寻找对应角,一般地,在解题过程中要特别注意“公共
角”“对顶角”“同角的余角 (或补角 )”等相等的角 .dvzfvkwMI1
如图 4-50 所示, AB BC CA ,所以△ ABC∽△ DEF. DE EF FD
拓展 本条件中的“三边对应成比例”中的“对应”二字可以去掉,因为在三角形中不会出现另外的
情况。如果是四边形或四边形以上的多边形,那么“对应”二字是必须有的.
xHAQX74J0X
知识点 3 相似三角形判定条件三
两边对应成比例且夹角相等的两个三角形相似.
“夹”字,判定的结果有可能是错误的. LDAYtRyKfE
知识点 4 相似三角形判定方法的作用 (1)用来判定两个三角形相似. (2)用来证明角相等、线段成比例. (3)为计算线段的长度与角的大小创造条件.
知识点 5 如何判定两个三角形相似 判定两个三角形相似的思考过程是:
(1)先找对应角相等,可通过平行线或作平行线来寻找.
4.4 探索三角形相似的条件
学习目标、重点、难点
【学习目标】
(1) 相似三角形的判定条件 (2) 相似三角形的判定方法的作用
【重点难点】 如何判定 2 个三角形相似
知识概览图
相似三角形的条件
相似三角形的判定 相似三角形判定方法的 判定两个三角形相似的
作用 方法
新课引
你能回想起两个三角形全等的判定方法吗 ?类比这些方法,你能找到相似三角形的判定方法吗
当给出的已知元素边、角混杂时,常考虑使用“两边对应成比例且夹角相等”的判定方法判定两个三
九年级数学上册《相似三角形的性质》教案、教学设计
在学生小组讨论环节,我会将学生分成若干小组,每组4-6人。给出以下讨论题目:
1.请列举出相似三角形的性质,并尝试用简洁的语言解释每个性质。
2.请举例说明相似三角形在实际问题中的应用。
3.你认为相似三角形的性质与全等三角形的性质有哪些联系和区别?
要求学生在小组内进行充分讨论,分享各自的观点和想法。在此过程中,我会巡回指导,关注学生的讨论进度,适时给予提示和引导。
2.培养学生运用几何图形描述和分析问题的能力,提高他们的逻辑思维和推理能力。
3.引导学生将相似三角形的性质应用于实际生活,培养他们的应用意识和创新能力。
(二)教学难点
1.相似三角形性质的推导和证明,尤其是其中的比例关系和角度关系。
2.学生在解决实际问题时,如何将相似三角形的性质灵活运用。
3.培养学生合作交流能力,提高他们在团队中的参与度和贡献度。
2.相似三角形的性质:详细讲解相似三角形的性质,如对应角相等、对应边成比例等,并结合实际例子进行解释。
3.相似三角形的判定方法:介绍判定相似三角形的方法,如AA、SSS、SAS等,并通过典型例题进行讲解。
4.相似三角形的应用:展示相似三角形在实际问题中的应用,如测量、设计等,让学生体会几何知识在实际生活中的价值。
(五)总结归纳,500字
在总结归纳环节,我会从以下几个方面进行:
1.知识点回顾:引导学生回顾本节课所学的相似三角形的定义、性质、判定方法及应用。
2.学习方法总结:让学生总结自己在学习相似三角形过程中的心得体会,分享有效的学习方法。
3.情感态度与价值观:强调几何知识在实际生活中的重要性,激发学生学习几何的兴趣和热情。
1.学生对相似三角形定义的理解程度,以及对相似性质的认识和运用能力。
九年级数学上册教案及备课素材-相似三角形判定定理的证明
*4.5 相似三角形判定定理的证明1.会证明相似三角形判定定理;(重点)2.运用相似三角形的判定定理解决相关问题.(难点)一、情景导入相似三角形的判定方法有哪些? 答:(1)两角对应相等,两三角形相似; (2)两边对应成比例且夹角相等,两三角形相似;(3)三边对应成比例,两三角形相似. 怎样证明这些结论呢?二、合作探究探究点:相似三角形的判定定理【类型一】 根据条件判定三角形相似如图所示,给出以下条件:①∠B =∠ACD ;②∠ADC =∠ACB ;③AC CD =ABBC;④AC2=AD ·AB .其中能单独判定△ABC ∽△ACD 的个数为( )A.1B.2C.3D.4解析:在图中已知两个三角形有一对公共角,只要再找一对角相等,或夹公共角的两组对应边成比例即可判定两个三角形相似.题中有三个条件可以单独判定△ABC ∽△ACD ,分别是①②④.①②是根据有两组角分别对应相等的两个三角形相似来判定的;④是根据两组对应边成比例且夹角相等的两个三角形相似来判定;③虽然两边对应成比例,但不能得到其夹角相等,所以不能判定两个三角形相似.故选C.方法总结:利用两边分别对应成比例且夹角相等的方法判定两个三角形相似时,一定要注意必须是对应成比例的两边的夹角相等,若不是夹角相等,则不能判定这两个三角形相似. 【类型二】 探索三角形相似的条件如图,已知AB ⊥BD ,CD ⊥BD .(1)若AB =9,CD =4,BD =10,请问在BD 上是否存在点P ,使以P 、A 、B 三点为顶点的三角形与以P 、C 、D 三点为顶点的三角形相似?若存在,求BP 的长;若不存在,请说明理由;(2)若AB =9,CD =4,BD =12,请问在BD 上存在多少个点P ,使以P 、A 、B 三点为顶点的三角形与以P 、C 、D 三点为顶点的三角形相似?并求BP 的长;(3)若AB =9,CD =4,BD =15,请问在BD 上存在多少个点P ,使以P 、A 、B 三点为顶点的三角形与以P 、C 、D 三点为顶点的三角形相似?并求BP 的长;(4)若AB =m ,CD =n ,BD =l ,请问在m 、n 、l 满足什么关系时,存在以P 、A 、B 三点为顶点的三角形与以P 、C 、D 三点为顶点的三角形相似的一个点P ?两个点P ?三个点P ?解:(1)设BP =x ,则DP =10-x .若△ABP ∽△CDP ,则AB CD =BP DP ,即94=x10-x ,解得x =9013;若△ABP ∽△PDC ,则ABPD =BP CD ,即910-x =x4,此时方程无解.综上,存在这样的点P ,此时BP =9013;(2)设BP =x ,则DP =12-x . 若△ABP ∽△CDP ,则AB CD =BP DP ,即94=x12-x ,解得x =10813;若△ABP ∽△PDC ,则AB PD =BP CD ,即912-x =x 4,解得x =6. 综上所述,存在两个这样的点P ,此时BP =6或10813; (3)设BP =x ,则DP =15-x . 若△ABP ∽△CDP ,则AB CD =BP DP ,即94=x15-x ,解得x =13513;若△ABP ∽△PDC ,则ABPD=BP CD ,即915-x =x 4,解得x =3或12. 综上所述,存在三个这样的点,此时BP =13513,3或12; (4)设BP =x ,则DP =l -x . 若△ABP ∽△CDP ,则AB CD =BP DP ,即m n=xl -x,解得x =ml m +n ;若△ABP ∽△PDC ,则AB PD=BPCD ,即ml -x =x n,得方程x 2-lx +mn =0,Δ=l 2-4mn .当Δ=l 2-4mn <0时,存在以P 、A 、B 三点为顶点的三角形与以P 、C 、D 三点为顶点的三角形相似的一个点P ;当Δ=l 2-4mn =0时,存在以P 、A 、B 三点为顶点的三角形与以P 、C 、D 三点为顶点的三角形相似的两个点P ;当Δ=l 2-4mn >0时,存在以P 、A 、B 三点为顶点的三角形与以P 、C 、D 三点为顶点的三角形相似的三个点P .方法总结:由于相似情况不明确,因此要分两种情况讨论,注意要找准对应边.三、板书设计相似三角形判定定理的证明⎩⎪⎨⎪⎧判定定理1判定定理2判定定理3本课主要是证明相似三角形判定定理,以学生的自主探究为主,鼓励学生独立思考,多角度分析解决问题,总结常见的辅助线添加方法,使学生的推理能力和几何思维都获得提高,培养学生的探索精神和合作意识.4.5 相似三角形判定定理的证明一、教学目标:知识与技能:正确理解并掌握相似三角形的判定定理的证明方法过程与态度: 让学生经历从实验探究到归纳证明的过程,发展学生的合情推理能力。
23.3.3 相似三角形的性质(5) 华东师大版数学九年级上册教案
23.3.3相似三角形的性质一、学情分析本班学生已经建立了学习小组,经历了很多合作学习的过程,所以学生参与有关性质探究活动的热情应该比较高,但是基于本班学生平常学习的状况,部分学生的逻辑推理能力和灵活运用所学知识解决实际问题的能力还有待提高,期待在小组学习中,通过互助学习解决这部分同学的困惑。
二、教案1、教材分析本节教学内容是本章的重要内容之一。
本节内容是在完成对相似三角形的判定条件进行研究的基础上,进一步探索研究相似三角形的性质,从而达到对相似三角形的定义、判定和性质的全面研究。
从知识的前后联系来看,相似三角形可看作是全等三角形的拓展,相似三角形的性质研究也可看成是对全等三角形性质的进一步拓展研究。
另外相似三角形的性质还是研究相似多边形性质的基础,也是研究圆中线段关系的有效工具。
2、教学目标1.经历“直观感觉――尝试猜想――合情推理――知识应用”的活动过程,探索相似三角形的性质,并会用相似三角形的性质解决相应的数学问题。
2.通过运用相似三角形的性质解决简单问题,进一步发展合情推理能力和初步的逻辑推理能力。
3.在探究中,开发、培养学生的逻辑推理能力,进一步发展学生的探究意识。
3、重点难点重点:探索并掌握相似三角形的性质,并进行简单运用难点:探索相似三角形性质的过程。
4、授课类型:新授课5、学法指导运用观察猜想、合作探究、总结归纳等方法来解决问题6、教学课时:1课时7、教学过程(详案)个人智慧展示一、知识引入相似三角形有何性质?想一想:在三角形中,除了边,角,还有哪些量?思考: 如果两个三角形相似,那么以上这些量之间有什么关系呢?设计意图:本环节采用开门见山,以旧知识引入本节课的当分猜想:当两三角形相似时,相应高、中线、角平分线的比与相似比有什么关系?设计意图:引导学生对全等三角形的对应边和对应线段的比的分析,通过分析发现规律,并由此猜想相似三角形的相应,相似比满足吗?相似三角形面积的比等于相似比的平方设计意图:对相似三角形面积之比的证明既需要运用三角形面积公式,又需要运用相似三角形对应高之比与对应边之比等于相似比的结论,使新旧知识有机地结合在一起,增强了学,分别等于多少?设计意图:提升运用的给出,作为课后思考,鼓励学生整合所学习的知识,也体现了分层教学,照顾学有余力的同学。
北师大版九年级数学上册 4.7:相似三角形的性质 导学案(含答案)
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
【跟踪训练 3】如图所示,在▱ABCD 中,点 E 是 CD 的延长线上一点,且 DE=12CD,BE 与 AD 交于点 F.
(1)求证:△ABF∽△CEB; (2)若△DEF 的面积为 2,求▱ABCD 的面积.
解:(1)证明:∵四边形 ABCD 为平行四边形, ∴∠A=∠C,AB∥CD,AD∥BC,AB=CD. ∴∠ABF=∠E. ∴△ABF∽△CEB. (2)∵AD∥BC, ∴△DEF∽△CEB.∴SS△△CDEEBF=(DCEE)2.
A.5∶9
B.4∶9
Байду номын сангаас
C.16∶81
D.2∶3
【跟踪训练 1】如图,把△ABC 沿着 BC 的方向平移到△DEF 的位置,它们重叠部分的面积是 △ABC 面积的一半.若 BC= 3,则△ABC 移动的距离是(D)
A.
3 2
B.
3 3
C.
6 2
D.
3-
6 2
3/6
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
【跟踪训练 2】如图,在▱ABCD 中,E 为 CD 的中点,AE 与 BD 相交于点 F.若△DEF 的面积为 2,则▱ABCD 的面积为 24.
【例 2】如图,在 Rt△ABC 中,∠ACB=90°,点 M 是斜边 AB 的中点,MD∥BC,且 MD=CM, DE⊥AB 于点 E,连接 AD,BD.
A.30
B.27
C.14
D.32
4.如果两个相似三角形的周长比为 1∶2,那么它们某一组对应边上的高之比为 1∶2.
5.如图,在梯形 ABCD 中,AD∥BC,两腰的延长线相交于点 P.若 S△PAD∶S 梯形 ABCD=1∶2,且 BC=2 6,求 AD 的长.
九年级数学 相似三角形的判定(教案、导学案)
27.2相似三角形27.2.1 相似三角形的判定第3课时相似三角形的判定(3)【知识与技能】1.掌握“两角对应相等的两个三角形相似”的判定方法以及直角三角形中特有的判定相似的方法.2.能运用相似三角形的判定方法解决具体问题.【过程与方法】在观察、动手探究等活动中,掌握判定三角形相似的方法,体会转化思想.【情感态度】经历从实验探究到归纳证明的过程,发展学生的探究、交流能力和推理能力.【教学重点】掌握相似三角形的判定定理3及直角三角形中特有的相似判定方法. 【教学难点】探究两个判定定理的过程及其证明方法.一、情境导入,初步认识观察展示教师用的大三角板(45°和45°) 及学生用小三角尺(45°和45°),请学生们观察这样的两个三角形相似吗?对应相等,这样的两个三角形相似吗?【教学说明】教师简要回顾学过的相似三角形的判定方法1,2后,提出“还有没有其它的 方法来判定两个三角形相似呢?”,进而展示所准备好的三角尺,让学生获得感性认识,顺理成章地提出思考,激发学生求知欲望.二、思考探究,获取新知问题1 作△ABC 和△A ′B ′C ′,使∠A=∠A ′,∠B=∠B ′,分别度量这两个三角形的边长,计算C A AC C B BC B A AB '''''',,的值,你有什么发现? 由此你能作出一个怎样的猜想?【教学说明】让全班同学动手画图,并按要求独立完成探索过程,获得结论后,与同伴交流;只要画图和测量尽可能准确,则会得到它们 的比值相等,从而初步了解“有两个角对应相等的两个三角形相似”的结论.教师巡视,对出现偏差的结论应予以帮助,查找问题,尽量让他们也能获得正确结论.问题2 如图,在△ABC 和△A ′B ′C ′中,∠A=∠A ′,∠B=∠B ′,则△ABC ~△A ′B ′C ′吗?说说你的理由.【教学说明】教师应引导学生论证上述结论,在学生动笔前给予适当点拨,让学生能独立完成说理.在巡视时,对有困难的学生给予指导,并给出足够的时间,锻炼学生的合情推理能力.对应相等,那么这两个三角形相似.试一试如图,点D是AB边上一点,且∠ACD=∠B,试问:图中是否存在能够相似的二角形?如果存在,请指出来,并说明理由. 【教学说明】现学现用,巩固所学新知识.问题3对于直角三角形,我们知道“有一条直角边和斜边对应相等的两个直角三角形是全等的”,那么如果两个直角三角形中,有一条直角边与斜边的比对应相等,这样的两个直角三角形相似吗?【教学说明】教师应先与学生一道交流,找出两个直角三角形的已知条件有哪些(用图形和符号语言来表述),从这些条件到所探讨的结论之间还缺少什么条件,能否通过推理计算获得相应条件,从而引出利用勾股定理来探讨第三条对应边之间关系而获得结论.然后让学生独立完成,或相互交流获得论证过程.直角三角形相似的特殊判定方法:斜边和直角边对应成比例的两个直角三角形相似.三、典例精析,掌握新知例1教材P35例2.例2如图,Rt△ABC中,CD是斜边AB边上的高线.求证:(1)△ABC~△CBD;(2)CD2=AD•DB.【教学说明】例1可让学生自主探究,独立完成,再相互交流.例2则需师生共同探讨,利用直角三角形及高线定义找出图中能够相等 的角,从而获得相似的三角形有哪些,进而可解决问题.但它的证明过程仍可由学生自己完成,教师再挑选两至三份作业予以展示,共同评析,达到掌握本节知识的目的.四、运用新知,深化理解1.底角相等的两个等腰三角形是否相似?顶角相等的两个等腰三角形呢?证明你的结论.2.如图,AD 、BE 是AABC 的高线,它们相交于点 F.求证:AF • DF=BF • EF.3. 如图,△ABC 中,CD 是边AB 上的高,且BD CD CD AD ,试求∠ACB 的大小.【教学说明】1,3两题分别应用本节的两种三角形相似的判定方法来获得结论,是对本节知识较好的理解与掌握的体现,而第2题则是用一般三角形相似的判定方法来解决直角三角形中的相似问题,具有代表性.这些练习可根据实际情况选做,要求学生自主完成或相互交 流来得到结论.在完成上述题目后,教师引导学生完成创优作业中本课时的“名师导学”部分.五、师生互动,课堂小结1.本节学习两种判定三角形相似的方法,它们分别是什么?2.总结一下判定两个直角三角形相似的方法.【教学说明】釆用师生互动方式进行,教师设问,学生抢答,进行必要的知识梳理.1.布置作业:从P42〜44习题27.2中选取.2.完成创优作业中本课时的“课时作业”部分.本课时应强调学生自主探究的原则,让学生通过观察、实验、动手探究等方式掌握判定三角形相似的方法.整堂课应注重转化思想的运用,本课时难点在于探究两个判定定理的过程及其证明方法,教师教学时讲解要尽可能详尽.教学过程中,应鼓励学生相互交流探讨,以提高学生的学习热情.27.2.1相似三角形的判定第3课时相似三角形的判定(3)——相似三角形的判定3和直角三角形相似的判定一、新课导入1.课题导入情景:拿一个含30°角的三角尺,让学生判断其内、外轮廓构成的两个含30°角的直角三角形是否相似.问题1:你是怎么判定的?能用前面学习的判定定理判定它们相似吗?问题2:我们由三角形全等的SSS和SAS的判定方法类似地得到了三角形相似的判定定理,那么能否同样地由三角形全等的ASA或AAS类比得到相应的三角形相似的判定方法呢?(板书课题)2.学习目标(1)知道两角分别相等的两个三角形相似;知道斜边、直角边成比例的两个直角三角形相似.(2)能证明结论“斜边、直角边成比例的两个直角三角形相似”.(3)能灵活选择适当的方法证明两个三角形相似.3.学习重、难点重点:相似三角形的判定方法3以及直角三角形相似的判定方法.难点:定理的证明.二、分层学习1.自学指导(1)自学内容:教材P35.(2)自学时间:8分钟.(3)自学方法:仿照上课时探究1,2完成探究提纲.(4)探究提纲:①探究:与同伴合作,一人先画△ABC,另一人再画△A′B′C′,使得∠A=∠A′,∠B=∠B′.a.操作判断:分别测量这两个三角形的边长,计算,,AB AC BC A B A C B C ''''''的值,你有什么发现?∠C=∠C′ 吗?由此你得到一个什么样的猜想?b.交流比较:把你的结果跟你周围的同学比较,你们的结论相同吗?c.归纳猜想:两角分别相等的两个三角形相似.d.推理证明:已知△ABC 和△A′B′C′中,∠A=∠A′,∠B=∠B′.求证:△ABC ∽△A′B′C′.证明:在A′B′上截取A′D=AB,过D 作DE ∥B′C′交A′C′于点E.∵DE ∥B′C′,∴△A′DE ∽△A′B′C′.又∵∠A=∠A′,∠B=∠B′,DE ∥B′C′,AB=A′D,∴∠A′DE=∠B′=∠B.∴△ABC ≌△A′DE.∴△ABC ∽△A′B′C′.e.推理格式:∵∠A=∠A′,∠B=∠B′,∴△ABC ∽△A′B′C′.②教材P35例2:如图,Rt △ABC 中,∠C=90°,AB=10,AC=8,E 是AC 上一点,AE=5,ED ⊥AB,垂足为D,求AD 的长.a.AB,AC,AE,AD 分别是哪两个三角形的边?这两个三角形相似吗?b.怎样证明这两个三角形相似?由此可以得到关于AB,AC,AE,AD 的一个怎样的比例式?c.写出你的解答过程.AB,AC 是△ABC 的边,AE,AD 是△AED 的边,这两个三角形相似.∵ED ⊥AB,∴∠EDA=90°,又∵∠C=90°,∠A=∠A,∴△AED ∽△ABC.∴AD AE AC AB =.∴AD=·AC AE AB=4. ③如图,若∠B=∠AED ,则△ADE ∽△ACB 吗?为什么?△ADE ∽△ACB.理由:∵∠B=∠AED,∠A=∠A,∴△ADE∽△ACB.④底角相等的两个等腰三角形相似吗?顶角相等的两个等腰三角形相似吗?证明你的结论.(相似,证明略)2.自学:学生参照自学指导进行自学.3.助学(1)师助生:①明了学情:了解学生对三角形相似的判定定理3的掌握情况.②差异指导:根据学情进行指导.(2)生助生:小组内相互交流、研讨.4.强化:∠A=∠A′,∠B=∠B′△ABC∽△A′B′C′.1.自学指导(1)自学内容:教材P36.(2)自学时间: 6分钟.(3)自学方法:注意怎样根据已知条件选择合适的定理.(4)自学参考提纲:①由已知∠C=∠C′=90°,AB ACA B A C='''',能根据定理“两边成比例且夹角相等的两个三角形相似”证明两个三角形相似吗?为什么?(不能,∠C和∠C′并非对应两边的夹角)②选择定理“三边成比例的两个三角形相似”证明两个三角形相似,还差什么条件?AB BC A B B C=''''③能否像前面三个判定定理的证明一样,构造一个与已知的一个三角形全等而与已知的另一个三角形相似的中间三角形的方法来证明呢?④如图,在Rt△ABC中,∠C=90°,CD是斜边AB上的高.求证:a.△ACD∽△ABC;b.△CBD∽△ABC.证明:∵CD⊥AB,∴∠ADC=∠CDB=90°.∴∠ADC=∠ACB=∠CDB.a.在△ACD和△ABC中,∵∠A=∠A,∠ADC=∠ACB,∴△ACD∽△ABC.b.在△CBD和△ABC中,∵∠B=∠B,∠CDB=∠ACB,∴△CBD∽△ABC.⑤如果Rt△ABC的两条直角边分别为3和4,那么以3k和4k(k>0)为直角边的直角三角形一定与Rt△ABC相似吗?为什么?(相似,理由:两边成比例且夹角相等的两个三角形相似)2.自学:学生参照自学指导进行自学.3.助学(1)师助生:①明了学情:直角三角形相似判定定理的归纳与证明.②差异指导:根据学情进行指导.(2)生助生:生生互动交流、研讨.4.强化(1)直角三角形相似的判定方法.(2)点学生口答后,点3位学生板演,并点评.三、评价1.学生学习的自我评价:这节课你学到了些什么?有哪些收获和不足?2.教师对学生的评价:(1)表现性评价:从学习态度、参与程度、思维状况等方面进行评价.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思).本课时应以学生自主探究为原则,让学生通过观察、实验、动手操作等方式探究并掌握判定三角形相似的方法.在这节课中,通过设计问题和启发、引导,让学生悟出学习方法和途径,培养学生独立学习的能力.整堂课应注重转化思想的运用,难点在于探究两个判定定理的过程及其证明方法,教师教学时讲解要尽可能详尽.教学过程中,应鼓励学生相互交流探讨,以提高学生的学习热情.一、基础巩固(70分)1.(10分)如图,当∠ADE=∠C(答案不唯一)时,△ABC∽△AED(填写一个条件).第1题图第2题图2.(10分)如图,在方格纸中,△ABC和△EPD的顶点均在格点上,要使△ABC ∽△EPD,则点P所在的格点为(C)A.P1B.P2C.P3D.P43.(10分)如图,△ABC中,AB=AC,∠A=36°,∠ABC的平分线交AC于点D,求证:△ABC∽△BDC.证明:∵AB=AC,∠A=36°,BD平分∠ABC,∴∠ABD=∠DBC=36°,∴∠A=∠DBC.在△ABC和△BDC中,∠A=∠DBC,∠C=∠C.∴△ABC∽△BDC.4. (10分)如图,AD是Rt△ABC的斜边上的高.若AB=4 cm,BC=10 cm,求BD 的长.解:∵AD⊥BC,∠BAC=90°,∴∠ADB=∠CAB.∴△ABD∽△CBA,∴BD BA AB CB=,即4410BD=,BD=1.6(cm).5.(30分)从下面这些三角形中,选出相似的三角形.①、⑤、⑥相似,③、④、⑧相似,②和⑦相似.二、综合应用(20分)6.(20分)如图,△ABC中,D在线段BC上,∠BAC=∠ADC,AC=8,BC=16.(1)求证:△ABC∽△DAC;(2)求CD的长.(1)证明:∵∠BAC=∠ADC,∠C=∠C,∴△ABC∽△DAC.(2)解:∵△ABC∽△DAC,∴CD ACCA BC=,即8816CD=,∴CD=4.三、拓展延伸(10分)7.(10分)如图,M是Rt△ABC的斜边BC上异于B、C的一个定点,过M点作直线截△ABC,使截得的三角形与△ABC相似,这样的直线共有(C)A.1条B.2条C.3条D.4条。
相似三角形的性质教案(完美版)
在线分享文档地提升自我By :麦群超相似三角形的性质一、教学目标 知识与技能2. 能熟练运用三角形相似的性质进行量的计算.过程与方法对性质定理的探究经历观察——猜想——论证——归纳的过程,培养学生主动探究、合作交流的习惯和严谨治学的态度 情感态度与价值观在学习和探讨的过程中,体验特殊到一般的认知规律;通过对生活问题的解决,体会数学知识在实际中的广泛应用 二、重、难点重点:相似三角形性质定理的探索、理解及应用难点:相似三角形性质定理的探索、理解及应用 三、教学过程(一)、课前导学:学生自学课本内容,并完成下列问题 1.相似三角形的对应角______ ,对应边 . 2.相似三角形的判定方法有那些? 三边对应 的两个三角形相似.两边 且夹角 的两个三角形相似.对应 的两个三角形相似. 直角三角形相似的判定定理:两边和它们的夹角对应 的两个三角形相似.3.回顾交流:读图,思考回答如下问题(1)三角形中有哪几条主要线段?(2)全等三角形具有哪些性质?(3)全等三角形对应边上的高、中线、角平分线相等吗?请说明。
2.(1)如果△ABC ∽△A'B'C'的相似比为2,那么△ABC 与'''C B A △的周长比是多少? 面积比呢?1. 掌握相似三角形的相似比与对应高、中线、角平分线、周长,面积的比存在的等量关系,掌握相似三角形周长比、面积比与相似比之间的关系在线分享文档让每个人平等地提升自我:麦群超(2)如果△ABC ∽△A'B'C'的相似比为k ,那么△ABC 与的周长比是多少? 面积比呢?【结论】相似三角形的周长比等于 .相似三角形的面积比等于 . (二)、合作、交流、展示例1、已知:如图,△ABC∽△A′B′C′,相似比为k ,AD 与A′D′分别是△ABC 和△A′B′C′的高, 求证:【结论】:相似三角形对应高的比等于 。
【思考】:如果两个三角形是直角三角形,钝角三角形时结果还成立吗?试试看!2、证明:相似三角形对应中线的比、对应角平分线的比等于相似比【结论】:相似三角形对应中线、对应角平分线的比等于 。
北师大版数学九年级上册4.4.2探索三角形相似的条件优秀教学案例
二、教学目标
五、案例亮点
1.生活情境的导入:本节课通过展示实际生活中的三角形相似现象,如建筑设计中的相似三角形应用,引导学生关注数学与现实生活的联系。这样的导入方式不仅激发了学生的学习兴趣,还让学生明白了相似三角形在实际生活中的应用价值,提高了学生的学习积极性。
2.问题导向的教学策略:本节课以问题为导向,引导学生提出问题并自主探索相似三角形的判定方法。在解决问题的过程中,教师及时给予反馈和指导,帮助学生克服困难,引导学生正确思考。这种教学策略不仅培养了学生的思维能力,还提高了学生解决问题的能力。
3.引导学生进行小组反思,让学生总结自己在解决问题过程中的收获和不足,促进学生的自我成长。
(四)反思与评价
1.让学生在课后进行自我反思,总结自己在本节课中学到了什么,还有什么需要改进的地方。
2.组织学生进行同伴评价,鼓励学生相互鼓励、相互学习,提高学生的学习积极性。
3.教师对学生的学习情况进行评价,关注学生的知识掌握情况、思维能力以及合作态度等方面,为下一步教学提供参考。
四、教学内容与过程
(一)导入新课
1.利用多媒体展示一个生活中的实例,如建筑设计中的相似三角形应用,引导学生关注相似三角形的实际意义。
2.提出问题:“你们认为什么是相似三角形?它们有什么特点?”让学生进行思考,激发学生的学习兴趣。
3.总结相似三角形的定义,并提出本节课的学习目标,让学生4.4.2探索三角形相似的条件优秀教学案例
九年级数学相似三角形的性质及应用(教师版)知识点+典型例题+详细答案
相似三角形的性质及应用【学习目标】1、探索相似三角形的性质,能运用性质进行有关计算;2、通过典型实例认识现实生活中物体的相似,能运用图形相似的知识解决一些简单的实际问题(如何把实际问题抽象为数学问题).【要点梳理】要点一、相似三角形的性质1.相似三角形的对应角相等,对应边的比相等.2. 相似三角形中的重要线段的比等于相似比.相似三角形对应高,对应中线,对应角平分线的比都等于相似比.3. 相似三角形周长的比等于相似比∽,则由比例性质可得:4. 相似三角形面积的比等于相似比的平方∽,则分别作出与的高和,则2 1122=1122ABCA B CBC AD k B C k A DSk S B C A D B C A D '''''''⋅⋅⋅⋅=='''''''''⋅⋅△△要点诠释:相似三角形的性质是通过比例线段的性质推证出来的.要点二、相似三角形的应用1.测量高度测量不能到达顶部的物体的高度,通常使用“在同一时刻物高与影长的比例相等”的原理解决.要点诠释:测量旗杆的高度的几种方法:平面镜测量法影子测量法手臂测量法标杆测量法2.测量距离测量不能直接到达的两点间的距离,常构造如下两种相似三角形求解。
1.如甲图所示,通常可先测量图中的线段DC、BD、CE的距离(长度),根据相似三角形的性质,求出AB的长.2.如乙图所示,可先测AC、DC及DE的长,再根据相似三角形的性质计算AB的长. 要点诠释: 1.比例尺:表示图上距离比实地距离缩小的程度,比例尺= 图上距离/ 实际距离; 2.太阳离我们非常遥远,因此可以把太阳光近似看成平行光线.在同一时刻,两物体影子之比等于其对应高的比; 3.视点:观察事物的着眼点(一般指观察者眼睛的位置);4. 仰(俯)角:观察者向上(下)看时,视线与水平方向的夹角.【典型例题】类型一、相似三角形的性质1. △ABC∽△DEF,若△ABC的边长分别为5cm、6cm、7cm,而4cm是△DEF中一边的长度,你能求出△DEF的另外两边的长度吗?试说明理由.【答案】设另两边长是xcm,ycm,且x<y. (1)当△DEF中长4cm线段与△ABC中长5cm线段是对应边时,有, 从而x=cm,y=cm. (2)当△DEF中长4cm线段与△ABC中长6cm线段是对应边时,有, 从而x=cm,y=cm. (3)当△DEF中长4cm线段与△ABC中长7cm线段是对应边时,有, 从而x=cm,y=cm. 综上所述,△DEF的另外两边的长度应是cm,cm或cm,cm或cm,cm三种可能.2.如图所示,已知△ABC中,AD是高,矩形EFGH内接于△ABC中,且长边FG在BC上,矩形相邻两边的比为1:2,若BC=30cm,AD=10cm.求矩形EFGH的面积.【答案】∵四边形EFGH是矩形,∴EH∥BC,∴△AEH∽△ABC.∵AD⊥BC,∴AD⊥EH,MD=EF.∵矩形两邻边之比为1:2,设EF=xcm,则EH=2xcm.由相似三角形对应高的比等于相似比,得,∴,∴,∴.∴ EF=6cm,EH=12cm.∴举一反三1、如图,在和中,,,,的周长是24,面积是48,求的周长和面积.【答案】在和中,, . 又∵∽,相似比为. 的周长为,的面积是.2、有同一三角形地块的甲、乙两地图,比例尺分别为1∶200和1∶500,求:甲地图与乙地图的相似比和面积比.【答案】设原地块为△ABC,地块在甲图上为△A1B1C1,在乙图上为△A2B2C2. ∴△ABC∽△A1B1C1∽△A2B2C2 且,, ∴, ∴.3、如图,直角三角形纸片的两直角边长分别为6、8,按如图那样折叠,使点A与点B 重合,折痕为DE,则S△BCE:S△BDE等于() A. 2:5 B.14:25 C.16:25 D. 4:21【答案】B.【解析】由已知可得AB=10,AD=BD=5,设AE=BE=x, 则CE=8-x, 在Rt△BCE中,x2-(8-x)2=62,x=, 由△ADE∽△ACB得, S△BCE:S△BDE=(64-25-25):25=14:25,所以选B.4、在锐角△ABC中,AD,CE分别为BC,AB边上的高,△ABC和△BDE的面积分别等于18和2,DE=2,求AC 边上的高.【答案】过点B 做BF⊥AC,垂足为点F ,∵AD,CE 分别为BC,AB 边上的高,∴∠ADB=∠CEB=90°,又∵∠B=∠B,∴Rt△ADB∽Rt△CEB,∴,BD AB BD BEBE CBAB CB ==即,且∠B=∠B,∴△EBD∽△CBA,∴221189BED BCADE AC SS⎛⎫=== ⎪⎝⎭△△,∴13DE AC =,又∵DE=2,∴AC=6,∴11862ABC AC BF S =⋅=∴△,B F=.5、已知:如图,在△ABC 与△CAD 中,DA∥BC,CD 与AB 相交于E 点,且AE︰EB=1︰2,EF∥BC 交AC 于F 点,△ADE 的面积为1,求△BCE 和△AEF 的面积.【答案】∵DA∥BC, ∴△ADE∽△BCE. ∴S △ADE :S △BCE =AE 2:BE 2. ∵AE︰BE=1:2, ∴S △ADE :S △BCE =1:4. ∵S △ADE =1, ∴S △BCE =4. ∵S△ABC:S△BCE=AB:BE=3:2,∴S△ABC=6. ∵EF∥BC,∴△AEF∽△ABC. ∵AE:AB=1:3,∴S△AEF:S△ABC=AE2:AB2=1:9.∴S△AEF==.6、如图,已知中,,,,,点在上,(与点不重合),点在上.(1)当的面积与四边形的面积相等时,求的长. (2)当的周长与四边形的周长相等时,求的长.【答案】(1)∵,∽. (2)∵的周长与四边形的周长相等.=6,∽.类型二、相似三角形的应用3. 如图,我们想要测量河两岸相对应两点A、B之间的距离(即河宽) ,你有什么方法?【答案】如上图,先从B点出发与AB成90°角方向走50m到O处立一标杆,然后方向不变,继续向前走10m到C处,在C处转90°,沿CD方向再走17m到达D处,使得A、O、D在同一条直线上.那么A、B之间的距离是多少? ∵AB⊥BC,CD⊥BC ∴∠ABO=∠DCO=90° 又∵∠AOB=∠DOC ∴△AOB∽△DOC. ∴ ∵BO=50m,CO=10m,CD=17m ∴AB=85m 即河宽为85m.4. 如图:小明欲测量一座古塔的高度,他站在该塔的影子上前后移动,直到他本身影子的顶端正好与塔的影子的顶端重叠,此时他距离该塔18 m,已知小明的身高是1.6 m,他的影长是2 m.(1)图中△ABC与△ADE是否相似?为什么?(2)求古塔的高度.【答案】(1)△ABC∽△ADE.∵BC⊥AE,DE⊥AE,∴∠ACB=∠AED=90°∵∠A=∠A,∴△ABC∽△ADE(2)由(1)得△ABC∽△ADE∴∵AC=2m,AE=2+18=20m,BC=1.6m,∴∴DE=16m即古塔的高度为16m。
九年级数学上册《相似三角形的性质及其应用》教案、教学设计
6.课后布置综合性、实践性作业,让学生将所学知识应用于实际情境,提高学生的几何建模和解决问题的能力。
-例如,让学生设计一幅利用相似三角形原理的图案,或解决生活中的实际问题。
7.开展课后辅导和个性化教学,关注学生的个体差异,使每个学生都能在原有基础上得到提高。
(2)学生通过观察、分析,总结相似三角形的性质,如对应角相等、对应边成比例等。
(3)教师引导学生运用相似三角形的性质解决实际问题,如求线段长度、角度大小等。
(4)教师讲解相似三角形判定方法,如AA、SAS、SSS等,并结合实例进行分析。
(三)学生小组讨论
1.教学内容:相似三角形性质的应用问题。
2.教学活动设计:
-对于学习困难的学生,教师可以提供针对性的辅导,帮助他们克服难点,提高学习效果。
四、教学内容与过程
(一)导入新课
1.教学活动设计:通过展示实际生活中含有相似三角形元素的图片,如建筑物的立面图、艺术作品等,引发学生对相似三角形的关注。
教师引导学生观察这些图片,并提出问题:“这些图片中有什么共同特征?它们在几何学中有什么特别之处?”
(1)学生分享本节课的收获,教师点评并补充。
(2)教师强调相似三角形在实际生活中的重要性,激发学生学习兴趣。
(3)教师布置课后作业,巩固所学知识。
(4)教师鼓励学生继续探索相似三角形的相关知识,为后续学习打下基础。
五、作业布置
为了巩固学生对相似三角形性质的理解和应用,以及培养学生的几何思维和问题解决能力,特布置以下作业:
(二)教学难点
1.相似三角形性质的推导和应用,尤其是相似三角形面积比等于相似比的平方这一结论的理解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学生编号学生姓名授课教师辅导学科九年级数学教材版本上教课题名称相似三角形课时进度总第()课时授课时间7月28日教学目标掌握相似三角形的概念、性质及判定方法,能够灵活应用相似三角形的性质和判定方法方法解决实际问题。
重点难点重点:相似三角形的概念、判定定理和相似三角形的性质难点:如何根据问题的结论,在较复杂的图形中找到所要证明的相似三角形.同步教学内容及授课步骤知识点归纳:1、三角形相似的判定方法(1)定义法:对应角相等,对应边成比例的两个三角形相似。
(2)平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似。
(3)判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
简述为:两角对应相等,两三角形相似。
(4)判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。
简述为:两边对应成比例且夹角相等,两三角形相似。
(5)判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。
简述为:三边对应成比例,两三角形相似。
(6)判定直角三角形相似的方法:①以上各种判定均适用。
②如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
③直角三角形被斜边上的高分成的两个直角三角形与原三角形相似。
#直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。
每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。
如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有射影定理如下:(1)(AD)2=BD·DC,(2)(AB )2=BD ·BC , (3)(AC )2=CD ·BC 。
注:由上述射影定理还可以证明勾股定理。
即 (AB )2+(AC )2=(BC )2。
典型例题:例1 如图,已知等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ‖AB ,BG 分别交AD ,AC 于E 、 F ,求证:BE 2=EF·EG证明:如图,连结EC ,∵AB =AC ,AD ⊥BC , ∴∠ABC =∠ACB ,AD 垂直平分BC∴BE =EC ,∠1=∠2,∴∠ABC-∠1=∠ACB-∠2, 即∠3=∠4,又CG ∥AB ,∴∠G =∠3,∴∠4=∠G又∵∠CEG =∠CEF ,∴△CEF ∽△GEC ,∴EG CE =CE EF∴EC 2=EG· EF ,故EB 2=EF·EG 【解题技巧点拨】本题必须综合运用等腰三角形的三线合一的性质,线段的垂直平分线的性质和相似三角形的基本图形来得到证明.而其中利用线段的垂直平分线的性质得到BE=EC ,把原来处在同一条直线上的三条线段BE ,EF ,EC 转换到相似三角形的基本图形中是证明本题的关键。
例2 已知:如图,AD 是Rt △ABC 斜BC 上的高,E 是AC 的中点,ED 与AB 的延长线相交于F ,求证:BA FB =ACFD证法一:如图,在Rt △ABC 中,∵∠BAC =Rt ∠,AD ⊥BC , ∴∠3=∠C ,又E 是Rt △ADC 的斜边AC 上的中点,∴ED=21AC =EC ,∴∠2=∠C ,又∠1=∠2,∴∠1=∠3, ∴∠DFB =∠AFD ,∴△DFB ∽△AFD ,∴FD FB =AD BD(1)又AD 是Rt △ABC 的斜边BC 上的高,∴Rt △ABD ∽Rt △CAD ,∴AD BD =AC BA(2) 由(1)(2)两式得FD FB =AC BA ,故BA FB =AC FD证法二:过点A 作AG ∥EF 交CB 延长线于点G ,则BA FB =AG FD(1)∵E 是AC 的中点,ED ∥AC ,∴D 是GC 的中点,又AD ⊥GC ,∴AD 是线段GC 的垂直平分线,∴AG =AC (2)由(1)(2)两式得:BA FB =AC FD,证毕。
【解题技巧点拨】本题证法中,通过连续两次证明三角形相似,得到相应的比例式,然后通过中间比“AD BD”过渡,使问题得证,证法二中是运用平行线分线段成比例定理的推论,三角形的中位线的判定,线段的垂直平分线的判定与性质使问题得证.一、如何证明三角形相似例1、如图:点G 在平行四边形ABCD 的边DC 的延长线上,AG 交BC 、BD 于点E 、F ,则△AGD ∽ ∽ 。
A B C DE FG 1234ABC D A B C D E FShanghai Qiu Shi Continuation School英才乐园例2、已知△ABC 中,AB=AC ,∠A=36°,BD 是角平分线,求证:△ABC ∽△BCD例3:已知,如图,D 为△ABC 内一点连结ED 、AD ,以BC 为边在△ABC 外作∠CBE=∠ABD ,∠BCE=∠BAD求证:△DBE ∽△ABC例4、矩形ABCD 中,BC=3AB ,E 、F ,是BC 边的三等分点,连结AE 、AF 、AC ,问图中是否存在非全等的相似三角形?请证明你的结论。
二、如何应用相似三角形证明比例式和乘积式例5、△ABC 中,在AC 上截取AD ,在CB 延长线上截取BE ,使AD=BE ,求证:DF •AC=BC •FE例6:已知:如图,在△ABC 中,∠BAC=900,M 是BC 的中点,DM ⊥BC 于点E ,交BA 的延长线于点D 。
求证:(1)MA 2=MD •ME ;(2)MDMEAD AE =22例7:如图△ABC 中,AD 为中线,CF 为任一直线,CF 交AD 于E ,交AB 于F ,求证:AE :ED=2AF :FB 。
ABCD E M 12AB C D E FKShanghai Qiu Shi Continuation School英才乐园三、如何用相似三角形证明两角相等、两线平行和线段相等。
例8:已知:如图E 、F 分别是正方形ABCD 的边AB 和AD 上的点,且31==AD AF AB EB 。
求证:∠AEF=∠FBD例9、在平行四边形ABCD 内,AR 、BR 、CP 、DP 各为四角的平分线, 求证:SQ ∥AB ,RP ∥BC例10、已知A 、C 、E 和B 、F 、D 分别是∠O 的两边上的点,且AB ∥ED ,BC ∥FE ,求证:AF ∥CD例11、直角三角形ABC 中,∠ACB=90°,BCDE 是正方形,AE 交BC 于F ,FG ∥AC 交AB 于G ,求证:FC=FG例12、Rt △ABC 锐角C 的平分线交AB 于E ,交斜边上的高AD 于O ,过O 引BC 的平行线交AB 于F ,求证:AE=BF课堂反馈教学目标完成: 照常完成 □ 提前完成 □ 延后完成 □ 学生接受程度: 完全能接受□ 部分能接受□ 不能接受 □ 学生课堂表现: 很积极 □ 比较积极 □ 一般 □学部主任 审核等第A.优秀 □B.良好 □C.一般 □D.较差 □ABCDEFGABCDS PRQOAB CD E FA BCDEFO 123ABCDFGE课后作业专案学生姓名所属年级九年级辅导学科数学任课教师作业时限90分钟布置时间7月28日一、填空题1.已知:在△ABC中,P是AB上一点,连结CP,当满足条件∠ACP= 或∠APC= 或AC2= 时,△ACP∽△ABC.2.两个相似三角形周长之比为4∶9,面积之和为291,则面积分别是。
3.如图,DEFG是Rt△ABC的内接正方形,若CF=8,DG=42,则BE=。
4.如图,直角梯形ABCD中,AD‖BC,AD⊥CD,AC⊥AB,已知AD=4,BC=9,则AC=。
5.△ABC中,AB=15,AC=9,点D是AC上的点,且AD=3,E在AB上,△ADE与△ABC相似,则AE的长等于。
6.如图,在正方形网格上画有梯形ABCD,则∠BDC的度数为。
7.△ABC中,AB=AC,∠A=36°,BC=1,BD平分∠ABC交于D,则BD=,AD=,设AB=x,则关于x的方程是 .8.如图,已知D是等边△ABC的BC边上一点,把△ABC向下折叠,折痕为MN,使点A落在点D处,若BD∶DC=2∶3,则AM∶MN= 。
二、选择题9.如图,在正△ABC 中,D 、E 分别在AC 、AB 上,且AC AD =31,AE=BE ,则有()A .△AED ∽△BEDB .△AED ∽△CBDC .△AED ∽△ABDD .△BAD ∽△BCD10.如图,在△ABC 中,D 为AC 边上一点,∠DBC =∠A ,BC=6,AC =3,则CD 的长为( )A.1B.23C.2D.2511.如图,□ABCD 中,G 是 BC 延长线上一点,AG 与 BD 交于点E ,与DC 交于点F ,则图中相似三角形共有( ) A .3对B .4对C .5对D .6对12. P 是Rt △ABC 的斜边BC 上异于B 、C 的一点,过点P 作直线截△ABC ,使截得的三角形与△ABC 相似,满足这样条件的直线共有( ) A .1条B.2条C .3条D .4条13.如图,在直角梯形 ABCD 中,AB =7,AD =2,BC=3,若在 AB 上取一点P ,使以P 、A 、D 为顶点的三角形和以P 、B 、C 为顶点的三角形相似,这样的P 点有( )A .1个B .2个C .3个D .4个三、解答下列各题14.如图,长方形ABCD中,AB=5,BC=10,点P从A点出发,沿AB作匀速运动,1分钟可以到达B点,点Q从B点出发,沿BC作匀速直线运动,1分钟可到C点,现在点P点Q同时分别从A点、B点出发,经过多少时间,线段PQ恰与线段BD垂直?15.已知:如图,正方形DEFG内接于Rt△ABC,EF在斜边BC上,EH⊥AB于H.求证:(1)△ADG≌△HED;(2)EF2=BE·FC作业完成质量(教师填写)A.优秀 B.良好 C.一般 D.较差家长签名(监督完成)(答案)例1分析:关键在找“角相等”,除已知条件中已明确给出的以外,还应结合具体的图形,利用公共角、对顶角及由平行线产生的一系列相等的角。
本例除公共角∠G 外,由BC ∥AD 可得∠1=∠2,所以△AGD ∽△EGC 。
再∠1=∠2(对顶角),由AB ∥DG 可得∠4=∠G ,所以△EGC ∽△EAB 。
例2分析:证明相似三角形应先找相等的角,显然∠C 是公共角,而另一组相等的角则可以通过计算来求得。
借助于计算也是一种常用的方法。
证明:∵∠A=36°,△ABC 是等腰三角形,∴∠ABC=∠C=72°又BD 平分∠ABC ,则∠DBC=36° 在△ABC 和△BCD 中,∠C 为公共角,∠A=∠DBC=36°∴△ABC ∽△BCD例3分析: 由已知条件∠ABD=∠CBE ,∠DBC 公用。