初中八年级上册数学教案:梯形
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中八年级上册数学教案:梯形
初中八年级上册数学教案:梯形教学目标
知识与技能
1、知道梯形、等腰梯形、直角梯形的有关概念;能说出并证明等腰梯形的两个性质;等腰梯形同一底上的两个角相等;两条对角线相等.
2、会运用梯形的有关概念和性质进行有关问题的论证和计算.
3、通过添加辅助线,把梯形的问题转化成平行四边形或三角形问题,使学生体会图形变换的方法和转化的思想.
过程与方法
经历探索梯形的有关性质、概念的过程,发展学生学习数学中的转换、化归思维方法,体会平移,轴对称的有关知识在梯形中应用。
情感态度与价值观
增强主动探索意识,发展合情推理思维,体会逻辑思维训练在实际问题中的价值。
重点
等腰梯形的性质及其应用.
难点
解决梯形问题的基本方法(将梯形转化为平行四边形和三角形及正确运用辅助线),及梯形有关知识的应用.
教学过程
底的长短来定义的,而并不是指位置来说的.)(1)一些基本概念(如图):底、腰、高.底:平行的一组对边叫做梯形的底。(较短的底叫做上底,较长的底叫做下底)腰:不平行的一组对边叫做梯形的腰。高:两底间的距离叫做梯形的高。直角梯形:一腰垂直于底的梯形叫做直角梯形。等腰梯形:两腰相等的梯形叫做等腰梯形。(2)等腰梯形:两腰相等的梯形叫做等腰梯形.(3)直角梯形:有一个角是直角的梯形叫做直角梯形.3.做—做——探索等腰梯形的性质(引入用轴对称解决问题的思想).在一张方格纸上作一个等腰梯形,连接两条对角线.【问题一】图中有哪些相等的线段?有哪些相等的角?这个图形是轴对称图形吗?学生画图并通过观察猜想;【问题二】这个等腰梯形的两条对角线的长度有什么关系?结论:①等腰梯形是轴对称图形,上下底的中点连线是对称轴.②等腰梯形同一底上的两个角相等.③等腰梯形的两条对角线相等.解决梯形问题常用的方法:(1)“平移腰”:把梯形分成一个平行四边形和一个三角形(图1);(2)“作高”:使两腰在两个直角三角形中(图2);(3)“平移对角线”:使两条对角线在同一个三角形中(图3);(4)“延腰”:构造具有公共角的两个等腰三角形(图4);(5)“等积变形”,连结梯形上底一端点和另一腰中点,并延长与下底延长线交于一点,构成三角形(图5).图1 图2 图3 图4 图5综上所述:解决梯形问题的基本思想
和方法就是通过添加适当的辅助线,把梯形问题转化为已经熟悉的平行四边形和三角形问题来解决.第三步;应用举例:例1(教材P118的例1)略.(延长两腰梯形辅助线添加方法三)例2(补充)如图,梯形ABCD中,AD∥BC,∠B=70°,∠C=40°,AD=6cm,BC=15cm.求CD的长.分析:设法把已知中所给的条件都移到一个三角形中,便可以解决问题.其方法是:平移一腰,过点A作AE∥DC交BC于E,因此四边形AECD是平行四边形,由已知又可以得到△ABE是等腰三角形(EA=EB),因此CD=EA=EB=BC—EC=BC—AD=9cm.解(略).例3 (补充)已知:如图,在梯形ABCD中,AD∥BC,∠D=90°,∠CAB=∠ABC,BE⊥AC于E.求证:BE=CD.分析:要证BE=CD,需添加适当的辅助线,构造全等三角形,其方法是:平移一腰,过点D作DF∥AB交BC于F,因此四边形ABFD是平行四边形,则DF=AB,由已知可导出
∠DFC=∠BAE,因此Rt△ABE≌Rt△FDC(AAS),故可得出BE=CD.证明(略)另证:如图,根据题意可构造等腰梯形ABFD,证明△ABE≌△FDC即可.例4:求证:等腰梯形的两条对角线相等已知:求证:例5:如图4.9-4,梯形ABCD 中,AD∥BC,∠B=70°,∠C=40°,AD=6cm,BC=15cm,求CD 的长。例6:已知等腰梯形的锐角等于60°它的两底分别为15cm和49cm,求它的腰长。已知:求证:例4:已知:如图4.9-5,梯形ABCD中,AD∥BC,E是AB的中点,DE⊥CE,
求证:AD+BC=DC。第四步:课堂练习1、填空(1)在梯形ABCD中,已知AD∥BC,∠B=50°,∠C=80°,AD=a,BC=b,,则DC= 。(2)直角梯形的高为6cm,有一个角是30°,则这个梯形的两腰分别是和。(3)等腰梯形 ABCD中,AB∥DC,
A C平分∠DAB,∠DAB=60°,若梯形周长为8cm,则AD= 。
2、如图4.9-6,等腰梯形ABCD中,AB=2CD,AC平分∠DAB,AB=,(1)求梯形的各角。(2)求梯形的面积。
3、(1)在梯形ABCD中,已知AD∥BC,∠B=50°,∠C=80°,AD=a,BC=b,,则DC= .(2)直角梯形的高为6cm,有一个角是30°,则这个梯形的两腰分别是和.(3)等腰梯形 ABCD中,
AB∥DC,A C平分∠DAB,∠DAB=60°,若梯形周长为8cm,则AD= .4.已知:如图,在等腰梯形ABCD中,AB∥CD,AB >CD,AD=BC,BD平分∠ABC,∠A=60°,梯形周长是20cm,求梯形的各边的长.(AD=DC=BC=4,AB=8)第五步:课后练习1.填空:已知直角梯形的两腰之比是1∶2,那么该梯形的最大角为,最小角为.2.已知等腰梯形的锐角等于60°它的两底分别为15cm和49cm,求它的腰长和面积.3.已知:如图,梯形ABCD中,CD//AB,,.求证:AD=AB—DC.4.已知,如图,梯形ABCD中,AD∥BC,E是AB的中点,DE⊥CE,求证:AD+BC=DC.(延长DE交CB延长线于点F,由全等可得结论)第六步:课堂小结1、梯形的定义及分类2、等腰梯形的性质:(1)具有一般梯形的性质:AD∥BC。(2)两腰相
等:AB=CD。(3)两底角相等:∠B=∠C,∠A=∠D。(4)是轴对称图形,对称轴是通过上、下底中点的直线。(5)两条对角线相等:AC=BD。两条对角线的交点在对称轴上。两腰延长线的交点在对称轴上。课后反思: