苏版初二上册角平分线的性质1导学案
角平分线的性质(1)导学案

角平分线的性质【学习目标】:1.要求学生掌握角平分线的性质定理,会用这个定理解决一些简单问题。
3.能够作已知角的角平分线,并会熟练地写出已知、求作和作法,可以说明为什么所作的直线是角平分线。
3.会用全等知识证明角平分线的性质定理【学习重难点】:用全等知识证明角平分线性质定理。
【自学指导】:一、阅读P56---P57并回答下列问题:1)作已知角的平分线的方法是什么?在作法的第二步中,去掉“大于12MN的长”这个条件行吗?2)作∠AOP的平分线,要求保留作图痕迹并能说出作法。
3)点到直线的距离是什么?(点到直线的垂线段的长叫点到直线的距离)4)角平分线的性质:。
5)利用图(2)证明这个性质定理。
6)结合图(2)用几何语言表示这个定理:∵OP平分∠,AP⊥,BP⊥,∴PA= .7)由6)可知角平分线定理的作用是什么?应用该定理必须具备什么样的前提条件?二、自学检测:1.如图,在△ABC中,∠C=90°,AD是∠CAB的角平分线,DE⊥AB于点E,BC=8,BD=5,求DE的长。
2.如图:在△ABC中,∠C=90°AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF;求证:CF=EB三、学会小结:1.定理的应用: 应用角平分线的性质定理所具备的前提条件是:有角的,有垂直 ;②若图中有角平分线,,可尝试添加辅助线的方法:向角的两边引 .2、该性质可以独立作为证明两条线段相等的依据.所以若遇到有关角平分线,又要证线段相等的问题,•我们可以直接利用性质解决问题.四、课堂作业△ABC中,AD是它的角平分线,且BD=CD,DE⊥AB,DF⊥AC,垂足分别为E,F。
求证:EB=FC。
角的平分线的性质(导学案)-八年级数学上册同步备课系列

12.3.1角的平分线的性质导学案一、学习目标:1.通过操作、验证等方式,探究并掌握角平分线的性质定理.2.能运用角的平分线性质解决简单的几何问题.重点:角的平分线的性质的证明及应用.难点:角的平分线的性质的探究.二、学习过程:课前自测 1.角平分线的概念___________________________________________________________________几何语言:____________________________________________2.通过折纸的方法做一个角的平分线(动手操作)合作探究探究1:下边是利用角平分仪平分一个角的演示过程.你能说明它的道理吗?其中AB =AD ,BC =D C.则:AE 为∠α的角平分线.你能用学过的知识说明为什么吗?尺规作图---作角的平分线已知:∠AO B.求作:∠AOB 的平分线.思考:请你说明OC 为什么是∠AOB 的平分线.探究2:在∠AOB 的平分线OC 上任取一点P ,过点P 画出OA ,OB 的垂线,分别记垂足为D,E ,测量PD ,PE 并作比较,你得到什么结论?________________在OC 上再取几个点试一试.通过以上测量,你发现了角的平分线的什么性质?【猜想】_____________________________________________________你能利用三角形全等证明这个性质吗?※角平分线的性质:文字语言:________________________________________几何语言:______________________________________________________归纳:一般情况下,我们要证明一个几何命题时,可以按照类似的步骤进行,即____________________________________________________________________ ____________________________________________________________________ _________________________________________________________________典例解析例1.如图,在△AB C中,AD是它的角平分线,且D是BC的中点,DE⊥AB,DF ⊥AC,垂足分别是E,F.求证:BE=CF.【针对练习】如图,D是∠ACG的平分线上的一点.DE⊥AC,DF⊥CG,垂足分别为E,F.求证:CE=CF.例 2.如图,△AB C中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,问:能否在AB上确定一点E,使△BDE之周长等于AB的长?【针对练习】如图,已知AD ∥BC,P是∠BAD与∠ABC 的平分线的交点,PE⊥AB 于E,且PE=3,求AD与BC 之间的距离.例3.如图,在△AB C 中,D 是AB 的中点,DE ⊥AB ,∠ACE +∠BCE =180°,EF ⊥AC 交AC 于F ,AC =8,BC =6,则AF =________.达标检测1.如图,∠A =90°,CD 平分∠ACB ,DE ⊥BC 于E ,且AB =3cm ,BD =2cm ,则DE =____cm.2.如图,△AB C 中,∠C =90°,AD 平分∠BAC ,AB =5,CD =2,则△ABD 的面积为_____.3.如图,△AB C 中,∠C =90°,AC =BC ,AD 平分∠CAB ,交BC 于点D ,DE ⊥AB 于点E ,且AB =6cm ,则△DEB 的周长为_____cm.4.如图,在直线MN 上求作一点P ,使点P 到射线OA 和OB 的距离相等.5.如图,AD 是△ABC 的角平分线,DE ⊥AB ,垂足为E ,S △ABC =7,DE =2,AB=4,则AC 的长是()A .6B .5C.4D .36.如图,AD 是△ABC 的角平分线,DF ⊥AB ,垂足为F ,且DE =DG ,则∠AED +∠AGD 和是()A.180°B .200°C .210°D .240°7.如图,OC 平分∠AOB ,OA =OB ,PD⊥AC于D,PE⊥BC于E.求证:PD=PE.。
角平分线的性质导学案

12.3 角的平分线的性质导学案学习目标:1、会用尺规作已知角的平分线,知道作法的合理性;2、探索并证明角的平分线的性质定理;3、能用角的平分线的性质解决简单问题。
学习重点:探索并证明角的平分线的性质定理。
学习难点:角平分线性质定理的应用。
学习过程:一、情境导入问题:在S区有一个集贸市场P,它建在公路与铁路所成角的平分线上,要从P点建两条路,一条到公路,一条到铁路。
问题1:怎样修建道路最短?问题2:往哪条路走更近呢?P二、自学指导让学生先阅读课本48-49页内容,思考下面的问题:1、平分角的仪器怎么使用?2、用尺规如何平分已知角?3、角平分线的性质是4、角平分线的性质怎么证明?5、证明几何命题的一般步骤是:(1);(2);(3)。
三、自主探究合作展示探究(一):角平分仪平分角的道理:1、为什么角平分仪能平分一个角?(小组讨论回答)。
探究(二)如何作尺规作出一个角的平分线呢?1、分析角平分仪原理,你能利用圆规和直尺作角的平分线吗?(小组讨论)2、师生共同用尺规作角的平分线。
已知:∠AOB.求作:∠AOB的平分线.作法:(1)以O为圆心,适当长为半径作弧,分别交OA、OB于M、N.(2)分别以M、N为圆心,大于1MN的长为半径作弧.两弧在2∠AOB内部交于点C.(3)作射线OC。
射线OC 即为所求.3、让学生回答为什么射线OC 是∠AOB 的平分线。
4、在上面作法的第二步中,去掉“大于12MN 的长”这个条件行吗?探究(三)、探究角平分线的性质:如图4,OA 是∠BAC 的平分线,点O 是射线AM 上的任意一点. 操作测量:取点O 的三个不同的位置,分别过点O 作OE ⊥AB ,OD ⊥AC,点D 、E 为垂足,测量OD 、OE 的长.将三次数据填入下表:根据测量结果,猜想线段OD 与OE 的大小关系,猜想角平分线的性质结论是: 。
让学生用学过的知识证明此结论:教师引导学生分析这个文字命题的条件和结论,并找出结论中的隐含条件,最后让学生画出图形,用符号语言写出已知和求证,图4ODOE 第一次 第二次第三次BOAM并独立完成证明过程。
角的平分线的判定(导学案)-八年级数学上册同步备课系列

12.3.2角的平分线的判定导学案一、学习目标:1.理解角平分线的判定定理.2.掌握角平分线判定定理内容的证明方法并应用其解题.3.学会判断一个点是否在一个角的平分线上.重点:角的平分线的判定定理的证明及应用.难点:角的平分线的判定.二、学习过程:课前自测角平分线的性质定理:文字语言:__________________________________________________.几何符号:________________________________________________________________________合作探究思考:我们知道,角平分线上的点到角的两边的距离相等.那么到角的两边的距离相等的点是否在角的平分线上呢?(先独立思考,然后在组内交流分享,通过观察动画演示,确定猜想)猜想:__________________________________________________.把猜想转化成具体数学问题,认真填写一下已知和求证:已知:__________________________________________________________.求证:________________________________________________.※角的平分线的判定:文字语言:________________________________________________.几何语言:____________________________________________________________________思考:如图,要在S区建一个集贸市场,使它到公路,铁路距离相等,离公路与铁路交叉处500米.这个集贸市场应建于何处(在图上标出它的位置,比例尺为1:20000)?【针对练习】如图,在直线MN 上求作一点P ,使点P 到射线OA 和OB 的距离相等.典例解析例1.如图,△ABC 的角平分线BM ,CN 相交于点P .求证:点P 到三边AB ,BC ,CA 的距离相等.例2.如图,在△AB C 中,点O 是△ABC 内一点,且点O 到△ABC 三边的距离相等.若∠A =40°,则∠BOC 的度数为()A .110°B .120°C .130°D .140°例3.如图,PA 、PC 分别是△ABC 外角∠MAC 与∠NCA 的平分线,它们交于点P ,PD ⊥BM 于D ,PF ⊥BN 于F .求证:BP 为∠MBN 的平分线.【针对练习】如图,△ABC 的∠ABC 的外角的平分线BD 与∠ACB 的外角的平分线CE 相交于点P .求证:点P 到三边AB ,BC ,CA 所在直线的距离相等.例4.如图,∠B =∠C =90°,M 是BC 的中点,DM 平分∠ADC ,求证:(1)AM 平分∠DAB ;(2)AD =AB +CD.达标检测1.如图,PD ⊥OA 于D ,PE ⊥OB 于E ,PD =6cm ,当PE =____cm 时,点P 在∠AOB 的平分线上.2.如图,已知P A ⊥ON 于A,PB ⊥OM 于B,且PA =PB,∠MON =50°,∠OPC =30°,则∠PCA=______.3.如图,直线l 1,l 2,l 3表示三条两两相互交叉的公路,现在拟建一个货物中转站,要求它到三条公路的距离都相等,则可供选择的地址有____处.4.如图所示,已知△ABC 的周长是10,OC 、OB 分别平分∠ABC 和∠ACB ,OD 上BC 于D ,且OD =1,则△ABC 的面积是_______.5.如图,某市有一块由三条马路围成的三角形绿地,现准备在绿地中建一小亭供人小憩,使小亭中心到三条马路的距离相等,试确定小亭的中心位置.6.如图,有一块三角形的闲地,其三边长分别为30m 、40m 、50m ,现要把它分成面积比为3:4:5的三部分,分别种植不同的花,请你设计一种方案,并简要说明理由.7.如图,BE=CF,DE⊥AB的延长线于点E,DF⊥AC于点F,且DB=D C.求证:AD是∠BAC的平分线.。
(八年级数学教案)角平分线的性质导学案

角平分线的性质导学案
八年级数学教案
●一、教学目标
(一)知识与技能
1.会作已知角的平分线;
2.了解角的平分线的性质,能利用三角形全等证明角的平分线的性质;
3.会利用角的平分线的性质进行证明与计算。
(二)过程与方法
在探究作角的平分线的方法及角的平分线的性质的过程中,进一步发展学生的推理证明意识和能力。
(三)情感、态度与价值观
在探究作角的平分线的方法及角的平分线的性质的过程中,培养学生探究问题的兴趣、合作交流的意识、动手操作的能力与探索精神,增强解决问题的信心,获得解决问题的成功体验.
●二、教学重点、难点
重点:角的平分线的性质的证明及应用;
难点:角的平分线的性质的探究。
三、教法学法
三步导学的教学模式;自主探索,合作交流的学习方式
四,教学过程:
(一)复习:
(1)点到直线的距离:P
A B C D
2.角平分线的概念: A
O C
3.根据角平分仪的制作原理怎样作一个角的平分线?(不用角平分仪或量角器)
A
(二)新授
1.利用尺规作图:作出一只角的角平分线
A
M D
O N C
2.探究:
(1)折一折:将∠AOB对折,再折出一个直角三角形(使第一条折痕为直角边),然后展开,观察两次折叠形成的三条折痕,你能得出什么结论?
(2)画一画
画一∠AOB的角平分线OC,点P在OC上任意一点,取点P的三个不同位置,过P点做垂线段PD.PE。
并测量PD.PE的长。
将三次数据记录下来,你会有什么发现?
A
C
O
B
(3)理论证明:
已知:如图,。
八年级数学上册《2.5 角平分线的性质》导学案

2.5 角平分线的性质
学习目标:
1.利用折纸的方式探讨角的轴对称性,进一步体验轴对称的特点,发展空间观念。
2.会用尺规作出已知角的平分线,能标准地写出已知、求作和作法。
学习重难点:
重点:1.利用尺规作图作出已知角的平分线。
2.能够证明角平分线的性质定理,并会运用。
难点:能灵活运用角平分线定理。
导与学的进程 一、明确目标、自主学习
1.什么是角的平分线?
2.探讨角平分线的画法
3.探求角平分线的性质
三、展现点拨、解难释疑
角是轴对称图形,角的平分线所在的直线是它的对称轴。
尺规作图作出角的平分线的作法:
角的平分线的性质:角的平分线上的点到角的两边的距离相等。
四、清点收成、畅谈心得
这节课你有什么收成,还有疑问吗?
A C B
五、达标检测、能力提升
填空题
1.若是AD平分∠BAC,点P在AD上,假设PE⊥AB,PF⊥AC,那么PE__________PF.
2.若是在∠BAC中,PD⊥AB,PE⊥AC,且PD=PE,连接AP,那么∠BAP__________∠CAP.。
12.3《角平分线的性质》(第1课时)教案

12.3 《角的平分线的性质》教学设计(第1课时)利川市忠路镇初级中学钟金荣教学目标知识与技能:1、掌握用尺规作已知角的平分线的方法;2、理解角的平分线的性质并能初步运用。
过程与方法:通过让学生经历观察演示,动手操作,合作交流,自主探究等过程,培养学生用数学知识解决问题的能力。
情感态度与价值观:培养学生探究问题的兴趣,增强解决问题的信心,获得解决问题的成功体验,激发学生应用数学的热情。
教学重点:掌握角平分线的尺规作图,理解角的平分线的性质并能初步运用。
教学难点:1、对角平分线性质定理中点到角两边的距离的正确理解;2、对于性质定理的运用。
教学过程:一、创设情景学生结合导学案,独立思考,小组交流完成。
二、探究体验探究一学生在导学案上完成,请一名学生板书到黑板上。
探究二:结合图形写出已知,求证,分析后写出证明过程.教师归纳,强调定理的条件和作用.三、合作交流判断正误,并说明理由:(1)如图1,P在射线OC上,PE⊥OA,PF⊥OB,则PE=PF.(2)如图2,P是∠AOB的平分线OC上的一点,E、F分别在OA、OB上,则PE=PF.(3)如图3,在∠AOB的平分线OC上任取一点P,若P到OA的距离为3cm,则P到OB的距离边为3cm.AO BPEF图2图3ABPEAO BPEF图1四、完成导学案练习1.如图,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2.求:(1)点D到AB的距离;(2)△ABD的面积.2五、课堂小结六、作业教材第51页第2、3题七、板书设计:12.3 角的平分线的性质1、角的平分线的作法.2、角的平分线的性质.。
数学八年级上册《角平分线的性质(1)》导学案

BD CA数学八年级上册《角平分线的性质(1)》导学案设计人: 审核人:【学习目标】1.会作一个角的平分线,能表述角的平分线的性质,能应用性质证明。
2.通过思考、动手实践及结合三角形全等的判定方法得出结论的合理性。
3.在自学与合作探究中体验成功的快乐,培养解决数学问题的科学态度。
【学习重点】作已知角的平分线的方法及角的平分线的性质。
【学习难点】角的平分线的性质的应用。
【学习方法】通过思考、动手实践及结合三角形全等的判定方法得出结论的合理性。
自学学法指导:认真阅读48—49页,完成思考中的问题。
1.学习角平分线的作法,完成下题。
如图,已知∠BAC ,用尺规作图的方法作出∠BAC 的角平分线AD ,不写作法,保留作图痕迹,并说明这种作法的依据。
2.认真学习角的平分线的性质的证明过程。
知识链接: 点到线的距离是:点到直线的垂线段的长度。
∵∴ 自学中我的困惑:研学1.将自学部分内容中的收获与困惑与同伴交流。
能力提升:如图,在中,,,平分,于,且,则的周长为( )A .4B .6C .8D .10中考链接:如图,AD 平分∠BAC ,DE ⊥AB 于点E ,DF ⊥ACABC ∆︒=∠90C BC AC =AD BAC ∠AB DE ⊥E cm AB 6=DEB ∆ A B C D AC E B F于点F ,且BD=CD .求证:BE=CF .2. 指出以上问题的易错点,提炼方法,归纳规律。
示学展示一:口述展示自学部分基础知识。
展示二:黑板展示 “能力提升”,“中考聚焦”部分。
展示三:找出学习中的易错点,归纳规律和方法检学必做题如图,在△ABC 中,∠C=90°,AD 是∠CAB 的角平分线,DE ⊥AB 于点E ,BC=8,BD=5,求DE 的长。
选做题如图:在△ABC 中,∠C=90° AD 是∠BAC 的平分线,DE ⊥AB 于E ,F 在AC 上,BD=DF ; 求证:CF=EB小结 1.通过本节课的学习,你会画角的平分线了吗?2.你对角的平分线还有了哪些新的认识? ACD E B FBC D。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、如何使用尺规作图作一个角的平分线?试一试作出一个角的平分线。
2、在作一个角的平分线的Secord步,能去掉“大于二分之一MN的长”这个条件吗?所作的两弧交点一定在∠AOB的内部吗?
4、“命题:角的平分线上的点到角的两边的距离相等。”根据命题的题设和结论,画出图形,并有符号语言表示出已知和求证,并与同伴交流,写出证明过程。
苏版初二上册角平分线的性质1导学案
12.3.1角平分线的性质(1)
学习目标:
1、掌握作已知角的平分线的方法。
2、掌握角平分线的性质;
学习重点:角平分线的性质的证明及应用;
学习难点:角平分线的性质的探究;
导学过程:
一、情境导入,激发兴趣:
如图,这是一个平分角的仪器,其中AB=AD,BC=DC,将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就是DAB的角平分线,你能用以前学过的说出其中的道理吗?
S△ABC=90cm2,则DE=_____cm。
四、归纳小结,拓展延伸:
1、谈谈你本节课的收获______________________________________。
2、如图,AB、AC表示两条相交的公路,现要在∠BAC的内部建一个物流中心,设计时要求该物流中心到两条公路的距离相等,且到公路交叉处A点的距离为1000米。(用圆规,直尺作图,不写作法,但要保留作图痕迹)
1 若要以1:50 000的比例尺画设计图,求物流中心到公路交叉处A点的图上距离;
2在图中画出物流中心的位置P;
五、作业布置
教后反思:
二次备课:
二次备课:
三、学情反馈,当堂检测:
1、如图1,在△ABC中,已知∠C=90°,∠1=∠2,CD=4,DE⊥AB,
则DE的长是( )
A、1 B、2 CБайду номын сангаас3 D、4
2、如图2,∠1=∠2,PC⊥OA,PD⊥OB,垂足分别是点C、D,则下列结论中错误的是( )
A、PC=PD B、OC=OD
C、∠CPO=∠DPO D、OC=PD
3、如图3,∠C=90°,AD是∠BAC的平分线,DE⊥AB,且DE=3cm,BD=4cm,则BC=______cm.
3、如图4,P是∠AOB的角平分线上的一点,PC⊥OA于点C,PD⊥OB于
点D,写出图中一对相等的线段(只需写一对即可)
4、如图,BD是∠ABC的平分线,DE⊥AB于E,AB=18cm,BC=12cm,