5分钟课堂过关训练

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.探索勾股定理(二)

下图甲是任意一个直角三角形ABC,它的两条直角边的边长分别为a、b,斜边长为c.如图乙、丙那样分别取四个与直角三角形ABC全等的三角形,放在边长为a+b 的正方形内.

①图乙和图丙中(1)(2)(3)是否为正方形?为什么?

②图中(1)(2)(3)的面积分别是多少?

③图中(1)(2)的面积之和是多少?

④图中(1)(2)的面积之和与正方形(3)的面积有什么关系?为什么?

由此你能得到关于直角三角形三边长的关系吗?

测验评价等级:A B C,我对测验结果(满意、一般、不满意)

参考答案

①图乙、图丙中(1)(2)(3)都是正方形.易得(1)是以a为边长的正方形,(2)是以b为边长的正方形,(3)的四条边长都是c,且每个角都是直角,所以(3)是以c为边长的正方形.

②图中(1)的面积为a2,(2)的面积为b2,(3)的面积为c2.

③图中(1)(2)面积之和为a2+b2.

④图中(1)(2)面积之和等于(3)的面积.

因为图乙、图丙都是以a+b为边长的正方形,它们面积相等,(1)(2)的面积之和与(3)的面积都等于(a+b)2减去四个Rt△ABC的面积.

由此可得:任意直角三角形两直角边的平方和等于斜边的平方,即勾股定理.

相关文档
最新文档