复变函数课后习题答案

合集下载

复变函数 第四版 (西安交通大学高等数学教研室 著) 课后习题答案 高等教育出版社

复变函数 第四版 (西安交通大学高等数学教研室 著) 课后习题答案 高等教育出版社

习题⼀一解答1.求下列列复数的实部与虚部、共轭复数、模与辐⻆角。

(1)i231+; (2)i 13i i 1−−; (3)()()2i 5i 24i 3−+; (4)i 4i i 218+−解 (1)()()()2i 31312i 32i 32i 32i 31−=−+−=+ 所以133=⎭⎬⎫⎩⎨⎧+i 231Re ,1322i 31Im −=⎭⎬⎫⎩⎨⎧+,()2i 31312i 31+=+,131********i 3122=⎟⎠⎞⎜⎝⎛−+⎟⎠⎞⎜⎝⎛=+, k π2i 231arg i 231Arg +⎟⎠⎞⎜⎝⎛+=⎟⎠⎞⎜⎝⎛+,2,1,0,232arctan ±±=+−=k k π(2)()()()()i,25233i 321i i)(1i 1i 13i i i i i 13i i 1−=+−−−=+−+−−−=−− 所以,23i 13i i 1Re =⎭⎬⎫⎩⎨⎧−− 25i 13i i 1Im −=⎭⎬⎫⎩⎨⎧−−25i 23i 13i i 1+=⎟⎠⎞⎜⎝⎛−−,2342523i 13i i 122=⎟⎠⎞⎜⎝⎛−+⎟⎠⎞⎜⎝⎛=−−, k π2i 1i 3i 1arg i 1i 3i 1Arg +⎟⎠⎞⎜⎝⎛−−=⎟⎠⎞⎜⎝⎛−− ,±,±,=,+−=210235arctan k k π. (3)()()()()()()()()()42i 7i 262i 2i 2i 5i 24i 32i 5i 24i 3−−=−−−+=−+ 13i 27226i 7−−=−−=所以()()272i 5i 24i 3Re −=⎭⎬⎫⎩⎨⎧−+,()()132i 5i 24i 3Im −=⎭⎫⎩⎨⎧−+,()()l3i 272i 5i 24i 3+−=⎥⎦⎤⎢⎣⎡−+()()22952i5i 24i 3=−+, ()()()()k ππk π2726arctan 22i 2i 52i 43arg i 2i 52i 43Arg +−=+⎥⎦⎤⎢⎣⎡−+=⎥⎦⎤⎢⎣⎡−+ () ,2,1,0,12726arctan±±=−+=k k π.(4)()()()()i i 141i i i 4i i 4i i 10410242218+−−−=+−=+−3i 1i 4i 1−=+−=所以{}{}3i 4i i Im 1,i 4i i Re 218218−=+−=+−3i 1i 4i i 218+=⎟⎠⎞⎜⎝⎛+−,10|i 4i i |218=+−()()()2k π3i 1arg 2k πi 4i i arg i 4i i Arg 218218+−=++−=+−=.2,1,0,k 2k πarctan3 ±±=+−2.如果等式()i 13i53y i 1x +=+−++成⽴立,试求实数x , y 为何值。

复变函数课后习题答案(全)

复变函数课后习题答案(全)

习题一答案1. 求下列复数的实部、虚部、模、幅角主值及共轭复数:(1)132i+ (2)(1)(2)i i i --(3)131i i i-- (4)8214i i i -+-解:(1)1323213iz i -==+, 因此:32Re , Im 1313z z ==-,1232, arg arctan , 3131313z z z i ==-=+(2)3(1)(2)1310i i iz i i i -+===---,因此,31Re , Im 1010z z =-=,1131, arg arctan , 3101010z z z i π==-=--(3)133335122i i iz i i i --=-=-+=-, 因此,35Re , Im 32z z ==-,34535, arg arctan , 232i z z z +==-=(4)82141413z i i i i i i =-+-=-+-=-+因此,Re 1, Im 3zz =-=,10, arg arctan3, 13z z z i π==-=--2. 将下列复数化为三角表达式和指数表达式: (1)i (2)13i -+(3)(sin cos )r i θθ+(4)(cos sin )r i θθ- (5)1cos sin (02)i θθθπ-+≤≤解:(1)2cossin22iii e πππ=+=(2)13i -+23222(cos sin )233i i e πππ=+=(3)(sin cos )r i θθ+()2[cos()sin()]22ir i reπθππθθ-=-+-=(4)(cos sin )r i θθ-[cos()sin()]i r i re θθθ-=-+-=(5)21cos sin 2sin2sin cos 222i i θθθθθ-+=+ 22sin [cossin]2sin 2222ii eπθθπθπθθ---=+=3. 求下列各式的值: (1)5(3)i - (2)100100(1)(1)i i ++-(3)(13)(cos sin )(1)(cos sin )i i i i θθθθ-+-- (4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+-(5)3i (6)1i +解:(1)5(3)i -5[2(cos()sin())]66i ππ=-+-5552(cos()sin())16(3)66i i ππ=-+-=-+(2)100100(1)(1)i i ++-50505051(2)(2)2(2)2i i =+-=-=-(3)(13)(cos sin )(1)(cos sin )i i i i θθθθ-+--2[cos()sin()](cos sin )332[cos()sin()][cos()sin()]44i i i i ππθθππθθ-+-+=-+--+-2[cos()sin()](cos2sin 2)1212i i ππθθ=-+-+(2)122[cos(2)sin(2)]21212ii eπθππθθ-=-+-=(4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+- cos10sin10cos19sin19cos(9)sin(9)i i i ϕϕϕϕϕϕ+==+-+- (5)3i 3cossin22i ππ=+11cos (2)sin (2)3232k i k ππππ=+++31, 02231, 122, 2i k i k i k ⎧+=⎪⎪⎪=-+=⎨⎪-=⎪⎪⎩(6)1i +2(cossin )44i ππ=+ 4112[cos (2)sin (2)]2424k i k ππππ=+++48482, 02, 1i i e k e k ππ⎧=⎪=⎨⎪-=⎩4. 设121, 3,2iz z i +==-试用三角形式表示12z z 与12z z解:12cossin, 2[cos()sin()]4466z i z i ππππ=+=-+-,所以 12z z 2[cos()sin()]2(cos sin )46461212i i ππππππ=-+-=+,12z z 1155[cos()sin()](cos sin )2464621212i i ππππππ=+++=+ 5. 解下列方程: (1)5()1z i += (2)440 (0)z a a +=>解:(1)51,z i += 由此2551k i z i ei π=-=-, (0,1,2,3,4)k =(2)4444(cos sin )za a i ππ=-=+11[cos (2)sin (2)]44a k i k ππππ=+++,当0,1,2,3k =时,对应的4个根分别为:(1), (1), (1), (1)2222a a a ai i i i +-+--- 6. 证明下列各题:(1)设,zx iy =+则2x y z x y+≤≤+证明:首先,显然有22z x y x y =+≤+;其次,因222,x y x y +≥固此有2222()(),x y x y +≥+ 从而222x y z x y +=+≥。

复变函数课后习题答案(全)之欧阳歌谷创编

复变函数课后习题答案(全)之欧阳歌谷创编

习题一答案1.欧阳歌谷(2021.02.01)2. 求下列复数的实部、虚部、模、幅角主值及共轭复数:(1)132i + (2)(1)(2)ii i --(3)131ii i -- (4)8214i i i -+-解:(1)1323213iz i -==+, 因此:32Re , Im 1313z z ==-,(2)3(1)(2)1310ii iz i i i -+===---, 因此,31Re , Im 1010z z =-=,(3)133335122i i iz i i i --=-=-+=-, 因此,35Re , Im 32z z ==-,(4)82141413z i i i i i i =-+-=-+-=-+因此,Re 1, Im 3z z =-=,3. 将下列复数化为三角表达式和指数表达式:(1)i (2)1-+ (3)(sin cos )r i θθ+(4)(cos sin )r i θθ- (5)1cos sin (02)i θθθπ-+≤≤解:(1)2cos sin 22i i i e πππ=+=(2)1-+23222(cos sin )233i i e πππ=+=(3)(sin cos )r i θθ+()2[cos()sin()]22ir i reπθππθθ-=-+-=(4)(cos sin )r i θθ-[cos()sin()]i r i re θθθ-=-+-=(5)21cos sin 2sin 2sin cos 222i i θθθθθ-+=+ 4. 求下列各式的值:(1)5)i - (2)100100(1)(1)i i ++-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+-- (4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+- (5(6解:(1)5)i -5[2(cos()sin())]66i ππ=-+- (2)100100(1)(1)i i ++-50505051(2)(2)2(2)2i i =+-=-=- (3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+-- (4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+- (5=(6)= 5.设12 ,z z i ==-试用三角形式表示12z z 与12z z 解:12cos sin , 2[cos()sin()]4466z i z i ππππ=+=-+-,所以 12z z 2[cos()sin()]2(cos sin )46461212i i ππππππ=-+-=+, 6. 解下列方程:(1)5()1z i += (2)440 (0)z a a +=>解:(1)z i+=由此25k iz i e iπ=-=-,(0,1,2,3,4)k=(2)z==11[cos(2)sin(2)]44a k i kππππ=+++,当0,1,2,3k=时,对应的4个根分别为:),1),1),)i i i i+-+---7.证明下列各题:(1)设,z x iy=+则z x y≤≤+证明:首先,显然有z x y=≤+;其次,因222,x y x y+≥固此有2222()(),x y x y+≥+从而z=≥(2)对任意复数12,,z z有2221212122Re()z z z z z z+=++证明:验证即可,首先左端221212()()x x y y=+++,而右端2222112211222Re[()()]x y x y x iy x iy=+++++-2222112212122()x y x y x x y y=+++++221212()()x x y y=+++,由此,左端=右端,即原式成立。

复变函数(第四版)课后习题答案

复变函数(第四版)课后习题答案

(3 + 4i )(2 − 5i ) = 5
2i
29 , 2
26 ⎡ (3 + 4 i )(2 − 5 i ) ⎤ ⎡ (3 + 4 i )(2 − 5 i ) ⎤ = arg ⎢ Arg ⎢ + 2kπ = 2 arctan − π + 2kπ ⎥ ⎥ 2i 2i 7 ⎣ ⎦ ⎣ ⎦ = arctan 26 + (2k − 1)π , 7 k = 0,±1,±2, " .
{
}
{
}
Arg i8 − 4i 21 + i = arg i8 − 4i 21 + i + 2kπ = arg(1 − 3i ) + 2kπ
(
)
(
)
= −arctan3 + 2kπ 2.如果等式 解:由于
k = 0,±1,±2, ".
x + 1 + i(y − 3) = 1 + i 成立,试求实数 x, y 为何值。 5 + 3i x + 1 + i(y − 3) [x + 1 + i(y − 3)](5 − 3i ) = 5 + 3i (5 + 3i )(5 − 3i ) =
2 2
= ( z1 + z2 )( z1 + z2 ) + ( z1 − z2 )( z1 − z2 ) = 2( z1 z1 + z2 z2 )几何意义平行四边形的对角线长度平方的和等于四个边的平方的和。 12.证明下列各题: 1)任何有理分式函数 R ( z ) =
2 2
1 ; 3 + 2i
1 3i (2) − ; i 1− i

复变函数课后习题答案(全)(2020年10月整理).pdf

复变函数课后习题答案(全)(2020年10月整理).pdf

10
3
10 10
(3) z = 1 − 3i = −i + 3 − 3i = 3 − 5i ,
i 1−i
2
2
因此, Re z = 3 , Im z = − 5 ,
3
2
z = 34 , arg z = −arctan 5 , z = 3 + 5i
2
3
2
(4) z = −i8 + 4i21 − i = −1+ 4i − i = −1+ 3i
+
i sin ) 12

z1 = 1 [cos( + ) + i sin( + )] = 1 (cos 5 + i sin 5 )
z2 2
46
4 6 2 12
12
5. 解下列方程:
(1) (z + i)5 = 1
(2) z4 + a4 = 0 (a 0)
解:(1) z + i = 5 1, 由此
(3) (1− 3i)(cos + i sin ) (1− i)(cos − i sin )
2[cos(− ) + i sin(− )](cos + i sin )
=
3
3
2[cos(− ) + i sin(− )][cos(− ) + i sin(− )]
4
4
= 2[cos(− ) + i sin(− )](cos 2 + i sin 2 )
3
z=
5
1
−i
=
2 k i
e5

i

(k = 0,1, 2,3, 4)

复变函数—课后答案习题二解答

复变函数—课后答案习题二解答
⎞ ⎛ ∂ ⎞ ⎛ ∂ 2 | f (z ) |⎟ ⎜ | f (z ) | ⎟ + ⎜ ⎜ ⎟ =| f ' (z ) | ⎝ ∂x ⎠ ⎝ ∂y ⎠
2 2

| f (z ) |= u 2 + v 2 ,于是
2
∂ | f (z ) |= ∂x
u
∂u ∂v ∂v ∂u u +v +v ∂ ∂ y ∂ y ∂x , ∂x | f (z ) |= 2 2 2 2 ∂y u +v u +v
在 z 平面上处处连续,且在整个复平面 u,v 才满足 C-R 条件,故 f ( z ) = sin xchy + i cos xshy 在 z 平面处处可导,在 z 平面处处不解析。 3.指出下列函数 f ( z ) 的解析性区域,并求出其导数。 1) ( z − 1) ;
5
(2) z + 2iz ;
3

(1)若 f (z ) 恒取实值,则 v = 0 ,又根据 f (z ) 在区域 D 内解析,知 C-R 条件成立,于是
∂u ∂v ∂u ∂v =− = = 0, =0 ∂x ∂y ∂y ∂x
故 u 在区域 D 内为一常数,记 u = C (实常数 ) ,则 f ( z ) = u + iv = C 为一常数。 (2)若 f (z ) = u + iv = u − iv 在区域 D 内解析,则
2 2 ∂u ∂v ⎛ ∂v ⎞ ∂u ⎤ ⎛ ∂v ⎞ ⎛ ∂u ⎞ + 2uv⎜ − ⎟ ⎥ + v 2 ⎜ ⎟ + v 2 ⎜ ⎟ + 2uv ∂x ∂x ⎝ ∂x ⎠ ∂x ⎥ ⎝ ∂x ⎠ ⎝ ∂x ⎠ ⎦
= =

复变函数课后习题题解

复变函数课后习题题解

P42T7 (3) Ref(z)=常数.证明:因为Ref(z)为常数,即u=C1, 0uu xy∂∂==∂∂因为f(z)解析,C-R 条件成立。

故uu xy∂∂==∂∂即u=C2从而f(z)为常数. 5. |f(z)|=常数.证明:因为|f(z)|=C ,对C 进行讨论.若C=0,则u=0,v=0,f(z)=0为常数. 若C ≠0,则f(z) ≠0,但2()()f z f z C⋅=,即u2+v2=C2 则两边对x,y 分别求偏导数,有220,220u v u v u v u v xxyy∂∂∂∂⋅+⋅=⋅+⋅=∂∂∂∂ 利用C-R 条件,由于f(z)在D 内解析,有u v u v xyyx∂∂∂∂==-∂∂∂∂所以00u v u v x x u v v u x x ∂∂⎧⋅+⋅=⎪⎪∂∂⎨∂∂⎪⋅-⋅=⎪∂∂⎩所以0,uv xx∂∂==∂∂即u=C1,v=C2,于是f(z)为常数.P72T22.由下列各已知调和函数,求解析函数()f z u i υ=+(1)22u x y xy=-+ (2)22,(1)0y u f x y==+解 (1)因为 2ux y xyυ∂∂=+=∂∂2uy x yxυ∂∂=-+=-∂∂所以22(,)(,)(2)(2)(2)00(0,0)(0,0)222u u x y x y y x dx dy C y x dx x y dy C xdx x y dy C yxxyxy Cυ∂∂=-++=-+++=-+++⎰⎰⎰⎰∂∂=-+++2222()i(2)22xyf z x y xy xy C =-++-+++令y=0,上式变为 22()i()2xf x x C =-+从而 22()i i 2zf z z C=-⋅+(2)2222()uxyx x y ∂=-∂+ 22222()ux yyx y ∂-=∂+用线积分法,取(x0,y0)为(1,0),有2(,)4222(1,0)122222()0()1110x y xu u xy ydx dy C dx x dy C y xxx y xx yC xx yx yυ∂∂=-++=-+⎰∂∂+=-+=-+++⎰⎰2222()i(1)y x f z C x yx y=+-+++由(1)0.f =,得C=0 ()11f i z z ⎛⎫∴=- ⎪⎝⎭P42T13. 计算下列各值 (1) e2+i=e2∙ei=e2∙(cos1+isin1)(2)22π22i 33333ππ1ee ee cos i sin e 3322iπ--⎛⎫⎡⎤⎛⎫⎛⎫=⋅=⋅-+-=⋅ ⎪⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦(3)()()2222222222i i222222R e eR e e eR e ecos i sin ecos x yx yxy x yx yx x yxx yy y x y x y y x y -+-++++=⋅⎛⎫⎡⎤⎛⎫⎛⎫= ⋅-+-⎪⎢⎥ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎣⎦⎝⎭⎛⎫=⋅ ⎪+⎝⎭(4)()()i 2i 2i i22i 2ee ee e ex y x y xyx-+-+---=⋅=⋅=.15. 计算下列各值. (1)()()3ln 23i i arg 23i ln i πarctan 2⎛⎫-+-+=- ⎪⎝⎭(2)((ππln 3ln i arg 3ln i ln i66⎛⎫==-= ⎪⎝⎭(3)ln(ei)=ln1+iarg(ei)=ln1+i=i (4)()()πln ie ln e i arg ie 1i2=+=+17. 计算下列各值. (1)()()()()()1iπ1i i 2πi 1iln 1i 1i ln 1i 4ππi 2π44π2π4π2π41i e e eππe i ln 2π44e eππecos lni sin ln 44ππecos lni sin ln 44k k k k k -⎛⎫-⋅+ ⎪-+-⋅+⎝⎭⎛-+ ⎝+++====+-++=⋅⎡⎤⎛⎛=⋅-+- ⎢⎥⎝⎝⎣⎦⎡⎤⎛⎛=⋅-+- ⎢⎥⎝⎝⎣⎦(2)(()())()()(()()(5ln 33ln 3i π2πi 3π233ecos 21i sin 21cos 21πi sin 21k k k k k k --+⋅++-=====++=⋅++(3)()()iiln 1i ln 1i ln 1i 02πi i 2πi 2π1e eeeek k k ----⋅+⋅+-⋅=====()()()1i1iln 1i ln ππ1i ln 1i 2πi 1i 2πi i 44ππππi 2π2πi i 2π2π4444π2π4π2π4eee eeeeππe cos i sin 44()224e k k k k k k k k +++⎛⎫⎛⎫⎛⎫+⋅+-++- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎛⎫---+- ⎪⎝⎭--======⋅⎛⎫⎛⎫=⋅+- ⎪ ⎪⎝⎭⎝⎭⎛⎫=⋅- ⎪⎝⎭习题一p12t7 ①解:()()()()35i 17i 35i 7i 117i 17i +-+=++-3816i 198i e50255i θ⋅--===其中8πarctan 19θ=-.②解:e i i θ⋅=其中π2θ=.π2ei i =③解:ππi i 1e e -==④解:()28π116ππ3θ-+==-.∴()2πi38π116πe--+=⋅⑤解:32π2πcos i sin 99⎛⎫+ ⎪⎝⎭解:∵32π2πcos i sin 199⎛⎫+= ⎪⎝⎭.∴322πi π.3i932π2πcos i sin 1e e 99⋅⎛⎫+=⋅= ⎪⎝⎭8.计算:(1)i 的三次根;(2)-1的三次根;(3)的平方根. ⑴i 的三次根. 解:()13ππ2π2πππ22cos sin cosi sin0,1,22233++⎛⎫+=+= ⎪⎝⎭k k i k∴1ππ1cos i sini 6622=+=z . 2551cosπi sin πi6622=+=-z3991cosπi sinπi 6622=+=--z⑵-1的三次根 解:()()132π+π2ππcos πi sin πcosi sin0,1,233k k k ++=+=∴1ππ1cosi sin3322=+=+z2cos πi sin π1=+=-z3551cosπi sinπ3322=+=--z⑶的平方根.πi4e 22⎫=⎪⎪⎝⎭)()1π12i44ππ2π2π44e 6cos i sin 0,122k k k ⎛⎫++ ⎪=⋅+= ⎪⎝⎭∴π11i 8441ππ6cos i sin 6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z911πi 8442996cos πi sin π6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z 习题二p42t66. 试判断下列函数的可导性与解析性. (1)22()i f z xy x y=+解:22(,),(,)u x y xy v x y x y==在全平面上可微.22,2,2,y u v v y xy xy xxyxy∂∂∂∂====∂∂∂∂所以要使得u v xy∂∂=∂∂, uv yx∂∂=-∂∂,只有当z=0时,从而f(z)在z=0处可导,在全平面上不解析. (2) 22()i f z x y=+.解:22(,),(,)u x y x v x y y==在全平面上可微.2,0,0,2u u v v x yxyxy ∂∂∂∂====∂∂∂∂只有当z=0时,即(0,0)处有uv xy ∂∂=∂∂,u v yy∂∂=-∂∂.所以f(z)在z=0处可导,在全平面上不解析. (3) 33()23i f z x y=+;解:33(,)2,(,)3u x y x v x y y==在全平面上可微.226,0,9,u u v v x y xyxy∂∂∂∂====∂∂∂∂=时,才满足C-R 方程.从而f(z)0±=处可导,在全平面不解析. (4)2()f z z z=⋅.解:设i z x y =+,则23232()(i )(i )i()f z x y x y x xy y x y =-⋅+=+++3232(,),(,)u x y x xy v x y y x y=+=+22223,2,2,3u u v v x y xy xy y xxyxy∂∂∂∂=+===+∂∂∂∂所以只有当z=0时才满足C-R 方程. 从而f(z)在z=0处可导,处处不解析.T88. 设f(z)=my3+nx2y+i(x3+lxy2)在z 平面上解析,求m,n,l 的值. 解:因为f(z)解析,从而满足C-R 条件.222,3u u nxy m y nx x y∂∂==+∂∂223,2v v x ly lxyx y∂∂=+=∂∂u v n lx y∂∂=⇒=∂∂3,3u v n l myx∂∂=-⇒=-=-∂∂所以3,3,1n l m =-=-=. 习题三 p7011. 计算积分21zCedzz +⎰ ,其中C 为 (1)1z i -= (2)1z i += (3)2z =解 (1)221()()zzziz iCCeeedz dz i ez z i z i z iππ===⋅=++-+⎰⎰(2) 221()()zzziz iCCeeedz dz i ez z i z i z iππ-=-==⋅=-++--⎰⎰(3)122222sin 1111zzziiCC C eeedz dz dz e ei z z z πππ-=+=-=+++⎰⎰⎰T12 T13 T14 自己求。

复变函数课后习题答案(全)

复变函数课后习题答案(全)

习题一答案之巴公井开创作1.求下列复数的实部、虚部、模、幅角主值及共轭复数:(1)132i+ (2)(1)(2)i i i -- (3)131i i i -- (4)8214i i i -+- 解:(1)1323213i z i -==+, 因此:32Re , Im 1313z z ==-, (2)3(1)(2)1310i i i z i i i -+===---, 因此,31Re , Im 1010z z =-=, (3)133335122i i i z i i i --=-=-+=-, 因此,35Re , Im 32z z ==-, (4)82141413z i i i i i i =-+-=-+-=-+因此,Re 1, Im 3z z =-=,2. 将下列复数化为三角表达式和指数表达式: (1)i (2)1-+ (3)(sin cos )r i θθ+(4)(cos sin )r i θθ- (5)1cos sin (02)i θθθπ-+≤≤解:(1)2cos sin 22ii i e πππ=+= (2)1-+23222(cos sin )233i i e πππ=+= (3)(sin cos )r i θθ+()2[cos()sin()]22i r i re πθππθθ-=-+-=(4)(cos sin )r i θθ-[cos()sin()]i r i re θθθ-=-+-=(5)21cos sin 2sin 2sin cos 222i i θθθθθ-+=+ 3. 求下列各式的值:(1)5)i - (2)100100(1)(1)i i ++-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+-- (4)23(cos5sin5)(cos3sin3)i i ϕϕϕϕ+- (5(6解:(1)5)i -5[2(cos()sin())]66i ππ=-+- (2)100100(1)(1)i i ++-50505051(2)(2)2(2)2i i =+-=-=- (3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+-- (4)23(cos5sin5)(cos3sin3)i i ϕϕϕϕ+- (5=(6=4.设12 ,z z i ==-试用三角形式暗示12z z 与12z z 解:12cos sin , 2[cos()sin()]4466z i z i ππππ=+=-+-,所以 12z z 2[cos()sin()]2(cos sin )46461212i i ππππππ=-+-=+, 5. 解下列方程:(1)5()1z i += (2)440 (0)z a a +=> 解:(1)z i += 由此25k i z i e i π=-=-, (0,1,2,3,4)k =(2)z ==11[cos (2)sin (2)]44a k i k ππππ=+++,当0,1,2,3k =时,对应的4个根分别为:(1), 1), 1), )i i i i +-+--- 6. 证明下列各题:(1)设,z x iy =+则z x y ≤≤+证明:首先,显然有z x y =≤+;其次,因 222,x y x y +≥ 固此有 2222()(),x y x y +≥+从而z =≥。

复变函数课后习题答案(全)

复变函数课后习题答案(全)

习题一谜底之勘阻及广创作2. 求下列复数的实部、虚部、模、幅角主值及共轭复数:(1)132i + (2)(1)(2)i i i -- (3)131i i i -- (4)8214i i i -+- 解:(1)1323213i z i -==+, 因此:32Re , Im 1313z z ==-, (2)3(1)(2)1310i i i z i i i -+===---, 因此,31Re , Im 1010z z =-=, (3)133335122i i i z i i i --=-=-+=-, 因此,35Re , Im 32z z ==-, (4)82141413z i i i i i i =-+-=-+-=-+因此,Re 1, Im 3z z =-=,3. 将下列复数化为三角表达式和指数表达式:(1)i (2)1-+ (3)(sin cos )r i θθ+(4)(cos sin )r i θθ- (5)1cos sin (02)i θθθπ-+≤≤解:(1)2cos sin 22ii i e πππ=+= (2)1-+23222(cos sin )233i i e πππ=+= (3)(sin cos )r i θθ+()2[cos()sin()]22i r i re πθππθθ-=-+-=(4)(cos sin )r i θθ-[cos()sin()]i r i re θθθ-=-+-=(5)21cos sin 2sin 2sin cos 222i i θθθθθ-+=+ 4. 求下列各式的值: (1)5)i - (2)100100(1)(1)i i ++-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ+-- (4)23(cos5sin5)(cos3sin3)i i ϕϕϕϕ+- (5(6解:(1)5)i -5[2(cos()sin())]66i ππ=-+- (2)100100(1)(1)i i ++-50505051(2)(2)2(2)2i i =+-=-=-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+-- (4)23(cos5sin5)(cos3sin3)i i ϕϕϕϕ+- (5=(6= 5.设12 ,z z i ==-试用三角形式暗示12z z 与12z z 解:12cos sin , 2[cos()sin()]4466z i z i ππππ=+=-+-,所以 12z z 2[cos()sin()]2(cos sin )46461212i i ππππππ=-+-=+, 6. 解下列方程:(1)5()1z i += (2)440 (0)z a a +=> 解:(1)z i += 由此25k i z i e i π=-=-, (0,1,2,3,4)k =(2)z ==11[cos (2)sin (2)]44a k i k ππππ=+++,那时0,1,2,3k =,对应的4), 1), 1), )i i i i +-+--- 7. 证明下列各题:(1)设,z x iy =+z x y ≤≤+证明:首先,显然有z x y =≤+;其次,因 222,x y x y +≥ 固此有 2222()(),x y x y +≥+从而z =≥. (2)对任意复数12,,z z 有2221212122Re()z z z z z z +=++证明:验证即可,首先左端221212()()x x y y =+++,而右端2222112211222Re[()()]x y x y x iy x iy =+++++-2222112212122()x y x y x x y y =+++++221212()()x x y y =+++, 由此,左端=右端,即原式成立.(3)若a bi +是实系数代数方程101100n n n a z a z a z a --++++=的一个根,那么a bi -也是它的一个根.证明:方程两端取共轭,注意到系数皆为实数,而且根据复数的乘法运算规则,()n n z z =,由此获得:10110()()0n n n a z a z a z a --++++=由此说明:若z 为实系数代数方程的一个根,则z 也是.结论得证.(4)若1,a =则,b a ∀≠皆有1a b a ab-=- 证明:根据已知条件,有1aa =,因此:11()a b a b a b a ab aa ab a a b a---====---,证毕. (5)若1, 1a b <<,则有11a b ab -<- 证明:222()()a b a b a b a b ab ab -=--=+--,2221(1)(1)1ab ab ab a b ab ab -=--=+--,因为1, 1a b <<,所以, 2222221(1)(1)0a b a b a b +--=--< ,因而221a b ab -<-,即11a b ab-<-,结论得证. 7.设1,z ≤试写出使n z a +到达最年夜的z 的表达式,其中n 为正整数,a 为复数. 解:首先,由复数的三角不等式有1n n z a z a a +≤+≤+, 在上面两个不等式都取等号时n z a +到达最年夜,为此,需要取n z 与a 同向且1n z =,即n z 应为a 的单元化向量,由此,n a z a=, 8.试用123,,z z z 来表述使这三个点共线的条件.解:要使三点共线,那么用向量暗示时,21z z -与31z z -应平行,因而二者应同向或反向,即幅角应相差0或π的整数倍,再由复数的除法运算规则知2131z z Arg z z --应为0或π的整数倍,至此获得:123,,z z z 三个点共线的条件是2131z z z z --为实数. 9.写出过1212, ()z z z z ≠两点的直线的复参数方程.解:过两点的直线的实参数方程为:121121()()x x t x x y y t y y =+-⎧⎨=+-⎩, 因而,复参数方程为:其中t 为实参数.10.下列参数方程暗示什么曲线?(其中t 为实参数)(1)(1)z i t =+ (2)cos sin z a t ib t =+ (3)i z t t=+ 解:只需化为实参数方程即可.(1),x t y t ==,因而暗示直线y x =(2)cos ,sin x a t y b t ==,因而暗示椭圆22221x y a b+= (3)1,x t y t==,因而暗示双曲线1xy = 11.证明复平面上的圆周方程可暗示为 0zz az az c +++=,其中a 为复常数,c 为实常数证明:圆周的实方程可暗示为:220x y Ax By c ++++=, 代入, 22z z z z x y i+-==,并注意到222x y z zz +==,由此 022z z z z zz A B c i+-+++=, 整理,得 022A Bi A Bi zz z z c -++++= 记2A Bi a +=,则2A Bi a -=,由此获得 0zz az az c +++=,结论得证.12.证明:幅角主值函数arg z 在原点及负实轴上不连续. 证明:首先,arg z 在原点无界说,因而不连续.对00x <,由arg z 的界说不难看出,当z 由实轴上方趋于0x 时,arg z π→,而当z 由实轴下方趋于0x 时,arg z π→-,由此说明0lim arg z x z →不存在,因而arg z 在0x 点不连续,即在负实轴上不连续,结论得证.13.函数1w z=把z 平面上的曲线1x =和224x y +=分别映成w 平面中的什么曲线?解:对1x =,其方程可暗示为1z yi =+,代入映射函数中,得211111iy w u iv z iy y-=+===++, 因而映成的像曲线的方程为 221, 11y u v y y-==++,消去参数y ,得2221,1u v u y +==+即22211()(),22u v -+=暗示一个圆周. 对224x y +=,其方程可暗示为2cos 2sin z x iy i θθ=+=+代入映射函数中,得因而映成的像曲线的方程为 11cos , sin 22u v θθ==-,消去参数θ,得2214u v +=,暗示一半径为12的圆周. 14.指出下列各题中点z 的轨迹或所暗示的点集,并做图: 解:(1)0 (0)z z r r -=>,说明动点到0z 的距离为一常数,因而暗示圆心为0z ,半径为r 的圆周.(2)0,z z r -≥是由到0z 的距离年夜于或即是r 的点构成的集合,即圆心为0z 半径为r 的圆周及圆周外部的点集.(3)138,z z -+-=说明动点到两个固定点1和3的距离之和为一常数,因而暗示一个椭圆.代入,z x iy ==化为实方程得(4),z i z i +=-说明动点到i 和i -的距离相等,因而是i 和i -连线的垂直平分线,即x 轴.(5)arg()4z i π-=,幅角为一常数,因而暗示以i 为极点的与x 轴正向夹角为4π的射线. 15.做出下列不等式所确定的区域的图形,并指出是有界还是无界,单连通还是多连通.(1)23z <<,以原点为心,内、外圆半径分别为2、3的圆环区域,有界,多连通(2)arg (02)z αβαβπ<<<<<,极点在原点,两条边的倾角分别为,αβ的角形区域,无界,单连通(3)312z z ->-,显然2z ≠,而且原不等式等价于32z z ->-,说明z 到3的距离比到2的距离年夜,因此原不等式暗示2与3 连线的垂直平分线即x =2.5左边部份除失落x =2后的点构成的集合,是一无界,多连通区域.(4)221z z --+>,显然该区域的鸿沟为双曲线221z z --+=,化为实方程为 2244115x y -=,再注意到z 到2与z 到-2的距离之差年夜于1,因而不等式暗示的应为上述双曲线左边一支的左侧部份,是一无界单连通区域.(5)141z z -<+,代入z x iy =+,化为实不等式,得 所以暗示圆心为17(,0)15-半径为815的圆周外部,是一无界多连通区域.习题二谜底1.指出下列函数的解析区域和奇点,并求出可导点的导数.(1)5(1)z - (2)32z iz + (3)211z + (4)13z z ++ 解:根据函数的可导性法则(可导函数的和、差、积、商仍为可导函数,商时分母不为0),根据和、差、积、商的导数公式及复合函数导数公式,再注意到区域上可导一定解析,由此获得:(1)5(1)z -处处解析,54[(1)]5(1)z z '-=-(2)32z iz +处处解析,32(2)32z iz z i '+=+(3)211z +的奇点为210z +=,即z i =±, (4)13z z ++的奇点为3z =-, 2.判别下列函数在何处可导,何处解析,并求出可导点的导数.(1)22()f z xy x yi =+ (2)22()f z x y i =+(3)3223()3(3)f z x xy i x y y =-+- (4)1()f z z= 解:根据柯西—黎曼定理:(1)22, u xy v x y ==,四个一阶偏导数皆连续,因而,u v 处处可微,再由柯西—黎曼方程, x y y x u v u v ==-解得:0x y ==,因此,函数在0z =点可导, 0(0)0x x z f u iv ='=+=, 函数处处不解析.(2)22, u x v y ==,四个一阶偏导数皆连续,因而,u v 处处可微,再由柯西—黎曼方程, x y y x u v u v ==-解得:x y =,因此,函数在直线y x =上可导,()2x x y x f x ix u iv x ='+=+=,因可导点集为直线,构不成区域,因而函数处处不解析.(3)32233, 3u x xy v x y y =-=-,四个一阶偏导数皆连续,因而 ,u v 处处可微,而且 ,u v 处处满足柯西—黎曼方程 , x y y x u v u v ==-因此,函数处处可导,处处解析,且导数为(4)2211()x iy f z x iy x yz +===-+,2222, x y u v x y x y ==++, 2222222222, ()()x y y x x y u v x y x y --==++, 22222222, ()()y x xy xy u v x y x y --==++, 因函数的界说域为0z ≠,故此,,u v 处处不满足柯西—黎曼方程,因而函数处处不成导,处处不解析.3.当,,l m n 取何值时3232()()f z my nx y i x lxy =+++在复平面上处处解析?解:3232, u my nx y v x lxy =+=+22222, 2, 3, 3x y y x u nxy v lxy u my nx v x ly ===+=+, 由柯西—黎曼方程得:由(1)得 n l =,由(2)得3, 3n m l =-=-,因而,最终有4.证明:若()f z 解析,则有 222(())(())()f z f z f z x y∂∂'+=∂∂ 证明:由柯西—黎曼方程知,左端22=+222222()()x x x x uu vv uu vv uu vv uv vu u v ++++-=+=+ 2()f z '==右端,证毕.5.证明:若()f z u iv =+在区域D 内解析,且满足下列条件之一,则()f z 在D 内一定为常数.(1)()f z 在D 内解析 , (2)u 在D 内为常数,(3)()f z 在D 内为常数, (4)2v u =(5)231u v += 证明:关键证明,u v 的一阶偏导数皆为0!(1)()f z u iv =-,因其解析,故此由柯西—黎曼方程得 , x y y x u v u v =-= ------------------------(1) 而由()f z 的解析性,又有, x y y x u v u v ==- ------------------------(2)由(1)、(2)知,0x y x y u u v v ===≡,因此12, ,u c v c ≡≡即 12()f z c ic ≡+为常数(2)设1u c ≡,那么由柯西—黎曼方程得0, 0x y y x v u v u =-≡=≡,说明v 与,x y 无关,因而 2v c ≡,从而12()f z c ic ≡+为常数.(3)由已知,2220()f z u v c =+≡为常数,等式两端分别对,x y 求偏导数,得220220x x y y uu vv uu vv +=+=----------------------------(1) 因()f z 解析,所以又有 , x y y x u v u v ==--------------------------(2)求解方程组(1)、(2),得 0x y x y u u v v ===≡,说明 ,u v 皆与,x y 无关,因而为常数,从而()f z 也为常数.(4)同理,2v u =两端分别对,x y 求偏导数,得再联立柯西—黎曼方程, x y y x u v u v ==-,仍有(5)同前面一样,231u v +=两端分别对,x y 求偏导数,得考虑到柯西—黎曼方程, x y y x u v u v ==-,仍有0x y x y u u v v ===≡,证毕.6.计算下列各值(若是对数还需求出主值)(1)2i e π- (2)()Ln i - (3)(34)Ln i -+(4)sin i (5)(1)i i + (6)2327解:(1)2cos()sin()22i e i i πππ-=-+-=- (2)1()ln arg()2(2)2Ln i i i k i k i ππ-=-+-+=-+, k 为任意整数,主值为:1()2ln i i π-=- (3)(34)ln 34arg(34)2Ln i i i k i π-+=-++-++4ln5(arctan 2)3k i ππ=+-+, k 为任意整数 主值为:4ln(34)ln5(arctan )3i i π-+=+- (4)..1sin 22i i i i e e e e i i i ----== (5)(2)2(1)44(1)i i k i k i iLn i i e e e ππππ++--++===24(cosln sin k e i ππ--=+, k 为任意整数(6)22224427(272)27333333279Ln ln k i ln k i k i e e e e e πππ+====,当k 分别取0,1,2时获得3个值:9, 4399(1)2i e π=-+, 8399(1)2i e π=-+ 7.求2z e 和2z Arge解:2222z x y xyi e e -+=,因此根据指数函数的界说,有2z e 22x y e -=, 222z Arge xy k π=+,(k 为任意整数)8.设i zre θ=,求Re[(1)]Ln z - 解:(1)ln 1[arg(1)2]Ln z z i z k i π-=-+-+,因此9.解下列方程: (1)1z e =+ (2)ln 2z i π=(3)sin cos 0z z += (4)shz i = 解:(1)方程两端取对数得:1(1)ln 2(2)3z Ln k i π=+=++(k 为任意整数)(2)根据对数与指数的关系,应有(3)由三角函数公式(同实三角函数一样),方程可变形为因此,4z k ππ+= 即 4z k ππ=-, k 为任意整数 (4)由双曲函数的界说得 2z ze e shz i --==,解得 2()210z z e ie --=,即z e i =,所以(2)2z Lni k i ππ==+ ,k 为任意整数 10.证明罗比塔法则:若()f z 及()g z 在0z 点解析,且000()()0, ()0f z g z g z '==≠,则000()()lim ()()z z f z f z g z g z →'=',并由此求极限 00sin 1lim ; lim z z z z e z z→→- 证明:由商的极限运算法则及导数界说知000000000000()()()()lim ()lim lim ()()()()()lim z z z z z z z z f z f z f z f z z z z z f z g z g z g z g z g z z z z z →→→→----==----00()()f z g z '=', 由此,00sin cos lim lim 11z z z z z →→== 11.用对数计算公式直接验证:(1)22Lnz Lnz ≠ (2)12Lnz = 解:记i z re θ=,则(1)左端22()2ln (22)i Ln r e r k i θθπ==++,右端2[ln (2)]2ln (24)r m i r m i θπθπ=++=++,其中的,k m 为任意整数.显然,左端所包括的元素比右真个要多(如左端在1k =时的值为2ln (22)r i θπ++,而右端却取不到这一值),因此两端不相等. (2)左端221]ln (2)22m i Ln re r m k i θπθππ+==+++ 右端11[ln (2)]ln ()222r n i r n i θθππ=++=++ 其中,k n 为任意整数,而 0,1m =不难看出,对左端任意的k ,右端n 取2k 或21k +时与其对应;反之,对右端任意的n ,当2n l =为偶数时,左端可取,0k l m ==于其对应,而当21n l =+为奇数时,左端可取2,1k l m ==于其对应.综上所述,左右两个集合中的元素相互对应,即二者相等.12.证明sin sin , cos cos z z z z ==证明:首先有 (cos sin )(cos sin )z x x x iy z e e y i y e y i y e e -=+=-== ,因此sin 2i z i ze e z i--==,第一式子证毕. 同理可证第二式子也成立.13.证明Im Im sin z z z e ≤≤ (即sin y y z e ≤≤)证明:首先,sin 222iz iziz iz y y y e e e e e e z e i ---+-+=≤=≤, 右端不等式获得证明.其次,由复数的三角不等式又有 sin 2222iz izy yy y iz iz e e e e e e e e z i --------=≥==,根据高等数学中的单调性方法可以证明0x ≥时2x xe e x --≥,因此接着上面的证明,有sin 2y y e e z y --≥≥,左端不等式获得证明.14.设z R ≤,证明sin , cos z chR z chR ≤≤证明:由复数的三角不等式,有sin 2222iz iz y y iz iz y y e e e e e e e e z ch y i ----+-++=≤===, 由已知,y z R ≤≤,再主要到0x ≥时chx 单调增加,因此有sin z ch y chR ≤≤,同理,cos 2222iz iz y yiz iz y y e e e e e e e e z ch y chR ----++++=≤===≤ 证毕.15.已知平面流场的复势()f z 为(1)2()z i + (2)2z (3)211z + 试求流动的速度及流线和等势线方程.解:只需注意,若记()(,)(,)f z x y i x y ϕψ=+,则流场的流速为()v f z '=,流线为1(,)x y c ψ≡,等势线为2(,)x y c ϕ≡,因此,有(1)2222()[(1)](1)2(1)z i x y i x y x y i +=++=-+++流速为()2()2()v f z z i z i '==+=-,流线为1(1)x y c +≡,等势线为 222(1)x y c -+≡(2)333223()3(3)z x iy x xy x y y i =+=-+- 流速为22()33()v f z z z '===,流线为2313x y y c -≡,等势线为 3223x xy c -≡(3)22221111()112z x iy x y xyi==+++-++ 流速为222222()(1)(1)z z v f z z z --'===++, 流线为 122222(1)4xy c x y x y≡-++, 等势线为 222222221(1)4x y c x y x y-+≡-++ 习题三谜底1.计算积分2()cx y ix dz -+⎰,其中c 为从原点到1i +的直线段 解:积分曲线的方程为, x t y t ==,即z x iy t ti =+=+,:01t →,代入原积分表达式中,得2.计算积分z ce dz ⎰,其中c 为(1)从0到1再到1i +的折线 (2)从0到1i +的直线解:(1)从0到1的线段1c 方程为:, :01z x iy x x =+=→, 从1到1i +的线段2c 方程为:1, :01z x iy iy y =+=+→,代入积分表达式中,得11(sin1cos1)(cos1sin1)11i e ei i i e i e +=-+-+=+-=-;(2)从0到1i +的直线段的方程为z x iy t ti =+=+,:01t →, 代入积分表达式中,得1100()(1)(cos sin )z t ti tc e dz e t ti dt i e t i t dt +'=+=++⎰⎰⎰, 对上述积分应用分步积分法,得3.积分2()cx iy dz +⎰,其中c 为(1)沿y x =从0到1i + (2)沿2y x =从0到1i + 解:(1)积分曲线的方程为z x iy t ti =+=+,:01t →, 代入原积分表达式中,得(2)积分曲线的方程为 2z x iy x x i =+=+, :01t →, 代入积分表达式中,得4.计算积分cz dz ⎰,其中c 为(1)从-1到+1的直线段 (2)从-1到+1的圆心在原点的上半圆周解:(1)c 的方程为z x =,代入,得(2)c 的方程为cos sin , :0z x iy i θθθπ=+=+→,代入,得5.估计积分212cdz z +⎰的模,其中c 为+1到-1的圆心在原点的上半圆周.解:在c 上,z =1,因而由积分估计式得222111222c c c cdz ds ds ds z z z ≤≤=++-⎰⎰⎰⎰c =的弧长π= 6.用积分估计式证明:若()f z 在整个复平面上有界,则正整数1n >时其中R c 为圆心在原点半径为R 的正向圆周. 证明:记()f z M ≤,则由积分估计式得122n n M M R R Rππ-==, 因1n >,因此上式两端令R →+∞取极限,由夹比定理,得()lim 0Rn R c f z dz z →+∞=⎰, 证毕. 7.通过分析被积函数的奇点分布情况说明下列积分为0的原因,其中积分曲线c 皆为1z =.(1)2(2)c dz z +⎰ (2)224cdz z z ++⎰ (3)22cdz z +⎰(4)cos c dz z ⎰ (5)z cze dz ⎰ 解:各积分的被积函数的奇点为:(1)2z =-,(2)2(1)30z ++=即1z =-±,(3)z = (4), 2z k k ππ=+为任意整数,(5)被积函数处处解析,无奇点不难看出,上述奇点的模皆年夜于1,即皆在积分曲线之外,从而在积分曲线内被积函数解析,因此根据柯西基本定理,以上积分值都为0.8.计算下列积分:(1)240i z e dz π⎰ (2)2sin i i zdz ππ-⎰ (3)10sin z zdz ⎰解:以上积分皆与路径无关,因此用求原函数的方法:(1)42202400111()(1)222i i i z z e dz e e e i πππ==-=-⎰ (2)21cos2sin 2sin []224i i i ii i z z z zdz dz ππππππ----==-⎰⎰ (3)11110000sin cos cos cos z zdz zd z z z zdz =-=-+⎰⎰⎰9.计算 22c dz z a-⎰,其中c 为不经过a ±的任一简单正向闭曲线.解:被积函数的奇点为a ±,根据其与c 的位置分四种情况讨论:(1)a ±皆在c 外,则在c 内被积函数解析,因而由柯西基本定理(2)a 在c 内,a -在c 外,则1z a+在c 内解析,因而由柯西积分 公式:22112z a c cdz z a dz i i z a z a a z a ππ=+===-+-⎰⎰(3)同理,当a -在c 内,a 在c 外时,(4)a ±皆在c 内此时,在c 内围绕,a a -分别做两条相互外离的小闭合曲线12,c c ,则由复合闭路原理得: 注:此题若分解221111()2a z a z a z a=--+-,则更简单! 10. 计算下列各积分解:(1)11()(2)2z dz i z z =-+⎰,由柯西积分公式 (2)23221izz i e dz z -=+⎰, 在积分曲线内被积函数只有一个奇点i ,故此同上题一样:(3)2232(1)(4)z dz z z =++⎰ 在积分曲线内被积函数有两个奇点i ±,围绕,i i -分别做两条相互外离的小闭合曲线12,c c ,则由复合闭路原理得:(4)4221z z dz z -=-⎰,在积分曲线内被积函数只有一个奇点1,故此(5)221sin 41z zdz z π=-⎰, 在积分曲线内被积函数有两个奇点1±,围绕1,1-分别做两条相互外离的小闭合曲线12,c c ,则由复合闭路原理得:(6)22, (1)nn z z dz n z =-⎰为正整数,由高阶导数公式 11. 计算积分312(1)zc e dz i z z π-⎰,其中c 为 (1)12z = (2)112z -= (3)2z = 解:(1)由柯西积分公式(2)同理,由高阶导数公式(3)由复合闭路原理30(1)z z e z ==-11()2!z z e z =''+12e =-, 其中,12,c c 为2z =内分别围绕0,1且相互外离的小闭合曲线. 12. 积分112z dz z =+⎰的值是什么?并由此证明012cos 054cos d πθθθ+=+⎰ 解:首先,由柯西基本定理,1102z dz z ==+⎰,因为被积函数的奇点在积分曲线外.其次,令(cos sin )z r i θθ=+,代入上述积分中,得 考察上述积分的被积函数的虚部,便获得2012cos 054cos d πθθθ+==+⎰,再由cos θ的周期性,得 即012cos 054cos d πθθθ+=+⎰,证毕. 13. 设(),()f z g z 都在简单闭曲线c 上及c 内解析,且在c 上 ()()f z g z =,证明在c 内也有()()f z g z =. 证明:由柯西积分公式,对c 内任意点0z ,00001()1()(), ()22c c f z g z f z dz g z dz i z z i z z ππ==--⎰⎰, 由已知,在积分曲线c 上,()()f z g z =,故此有 再由0z 的任意性知,在c 内恒有()()f z g z =,证毕. 14. 设()f z 在单连通区域D 内解析,且()11f z -<,证明 (1)在D 内()0f z ≠;(2)对D 内任一简单闭曲线c ,皆有()0()c f z dz f z '=⎰证明:(1)显然,因为若在某点处()0,f z =则由已知 011-<,矛盾! (也可直接证明:()1()11f z f z -<-<,因此1()11f z -<-<,即0()2f z <<,说明()0f z ≠)(3)既然()0f z ≠,再注意到()f z 解析,()f z '也解析,因此由函数的解析性法则知()()f z f z '也在区域D 内解析,这样,根据柯西基本定理,对D 内任一简单闭曲线c ,皆有()0()cf z dz f z '=⎰,证毕. 15.求双曲线22y x c -= (0c ≠为常数)的正交(即垂直)曲线族.解:22u y x =-为调和函数,因此只需求出其共轭调和函数(,)v x y ,则(,)v x y c =即是所要求的曲线族.为此,由柯西—黎曼方程 2x y v u y =-=-,因此(2)2()v y dx xy g y =-=-+⎰,再由 2y x v u x ==-知,()0g y '≡,即0()g y c =为常数,因此02v xy c =-+,从而所求的正交曲线族为xy c ≡(注:实际上,本题的谜底也可观察出,因极易想到222()2f z z y x xyi =-=--解析)16.设sin px v e y =,求p 的值使得v 为调和函数.解:由调和函数的界说2sin (sin )0px px xx yy v v p e y e y +=+-=,因此要使v 为某个区域内的调和函数,即在某区域内上述等式成立,必需210p -=,即1p =±.17.已知22255u v x y xy x y +=-+--,试确定解析函数 解:首先,等式两端分别对,x y 求偏导数,得225x x u v x y +=+-----------------------------------(1)225y y u v y x +=-+- -------------------------------(2) 再联立上柯西—黎曼方程x y u v =------------------------------------------------------(3)y x u v =-----------------------------------------------------(4)从上述方程组中解出,x y u u ,得这样,对x u 积分,得25(),u x x c y =-+再代入y u 中,得 至此获得:2205,u x x y c =--+由二者之和又可解出 025v xy y c =--,因此200()5f z u iv z z c c i =+=-+-,其中0c 为任意实常数. 注:此题还有一种方法:由定理知 由此也可很方便的求出()f z .18.由下列各已知调和函数求解析函数()f z u iv =+ 解:(1)22, ()1u x xy y f i i =+-=-+, 由柯西—黎曼方程,2y x v u x y ==+,对y 积分,得212()2v xy y c x =++,再由x y v u =-得2()2y c x x y '+=-+,因此201(), ()2c x x c x x c '=-=-+,所以22011222v xy y x c =+-+,因()1f i =-,说明0,1x y ==时1v =,由此求出012c =,至此获得:2222111()(2)222f z u iv x xy y y x xy i =+=+-+-++,整理后可得:211()(1)22f z i z i =-+(2)22yv x y=+, (2)0f = 此类问题,除上题采纳的方法外,也可这样:222222222222()1()()()x y xy z i x y x y z zz -=-==++,所以 1()f z c z=-+,其中c 为复常数.代入(2)0f =得,12c =,故此(3)arctan , (0)yv x x=>同上题一样,()x x y x f z u iv v iv '=+=+22221x y z i zx y x y zz -=+==++, 因此0()ln f z z c =+,其中的ln z 为对数主值,0c 为任意实常数. (4)(cos sin )x u e x y y y =-,(0)0f =(sin sin cos )x x y v u e x y y y y =-=++,对x 积分,得再由y x v u =得()0c x '=,所以0()c x c =为常数,由(0)0f =知,0x y ==时0v =,由此确定出00c =,至此获得:()f z u iv =+=(cos sin )x e x y y y -(sin cos )x ie x y y y ++, 整理后可得 ()z f z ze =19.设在1z ≤上()f z 解析,且()1f z ≤,证明 (0)1f '≤ 证明:由高阶导数公式及积分估计式,得1112122z ds πππ=≤==⎰,证毕. 20.若()f z 在闭圆盘0z z R -≤上解析,且()f z M ≤,试证明柯西不等式 ()0!()n n n f z M R≤,并由此证明刘维尔定理:在整个复平面上有界且处处解析的函数一定为常数. 证明:由高阶导数公式及积分估计式,得11111!!!!()2222n n n n z z n n M n M n M f z ds ds R R R R R ππππ+++===≤==⎰⎰, 柯西不等式证毕;下证刘维尔定理:因为函数有界,无妨设()f z M ≤,那么由柯西不等式,对任意0z 都有0()Mf z R'≤,又因()f z 处处解析,因此R 可任意年夜,这样,令R →+∞,得0()0f z '≤,从而0()0f z '=,即 0()0f z '=,再由0z 的任意性知()0f z '≡,因而()f z 为常数,证毕.习题四谜底1. 考察下列数列是否收敛,如果收敛,求出其极限. (1)1n n z i n=+解:因为lim n n i →∞不存在,所以lim n n z →∞不存在,由定理4.1知,数列{}n z 不收敛.(2)(1)2n n iz -=+解:1sin )22i i θθ+=+,其中1arctan 2θ=,则()sin )cos sin nnn z i n i n θθθθ-⎤=+=-⎥⎣⎦.因为lim 0nn →∞=,cos sin 1n i n θθ-=,所以()lim cos sin 0nn n i n θθ→∞-= 由界说4.1知,数列{}n z 收敛,极限为0.(3)21n i n z e nπ-=解:因为21n i eπ-=,1lim 0n n →∞=,所以21lim 0n i n enπ-→∞= 由界说4.1知,数列{}n z 收敛,极限为0. (4)()n n zz z=解:设(cos sin )z r i θθ=+,则()cos 2sin 2n n z z n i n zθθ==+,因为lim cos 2n n θ→∞,lim sin 2n n θ→∞都不存在,所以lim n n z →∞不存在,由定理4.1知,数列{}n z 不收敛.2. 下列级数是否收敛?是否绝对收敛?(1)1!nn i n ∞=∑解:1!!n i n n =,由正项级数的比值判别法知该级数收敛,故级数1!nn i n ∞=∑收敛,且为绝对收敛. (2)2ln nn i n∞=∑解:222cos sin 22ln ln ln n n n n n n i i n n nππ∞∞∞====+∑∑∑,因为2cos11112ln ln 2ln 4ln 6ln 8n n n π∞==-+-++∑是交错级数,根据交错级数的莱布尼兹审敛法知该级数收敛,同样可知,2sin111121ln ln 3ln 5ln 7ln 9n n n π∞==-+-++∑也收敛,故级数2ln nn i n ∞=∑是收敛的. 又22111,ln ln ln 1n n n i n n n n ∞∞===>-∑∑,因为211n n ∞=-∑发散,故级数21ln n n∞=∑发散,从而级数2ln nn i n ∞=∑条件收敛.(3)0cos 2n n in∞=∑解:1110000cos 2222n n n nn n n n n n n n in e e e e --∞∞∞∞+++====+==+∑∑∑∑,因级数102nn n e ∞+=∑发散,故cos 2nn in∞=∑发散. (4)()35!nn i n ∞=+∑解:()35!nn n i n ∞∞==+=∑由正项正项级数比值判别法知该级数收敛,故级数()035!nn i n ∞=+∑收敛,且为绝对收敛.3. 试确定下列幂级数的收敛半径.(1)()01n n n i z ∞=+∑解:1lim 1n n n c i c +→∞=+=故此幂级数的收敛半径R =. (2)0!n n n n z n ∞=∑解:11(1)!11lim lim lim 1(1)!(1)n n n n n n n n c n n c n n en++→∞→∞→∞+=⋅==++,故此幂级数的收敛半径R e =.(3)1in n n e z π∞=∑解:11lim lim 1in n n n innc e c e ππ++→∞→∞==,故此幂级数的收敛半径1R =.(4)221212n nn n z ∞-=-∑解:令2z Z =,则22111212122n n n n n n n n z Z ∞∞--==--=∑∑112112lim lim 2122n n n n nn n c n c ++→∞→∞+==-,故幂级数11212n n n n Z ∞-=-∑的收敛域为2Z <,即22z <,从而幂级数221212n n n n z ∞-=-∑的收敛域为z <收敛半径为R .4. 设级数0n n α∞=∑收敛,而0nn α∞=∑发散,证明0n n n z α∞=∑的收敛半径为1.证明:在点1z =处,0nn n n n z αα∞∞===∑∑,因为0n n α∞=∑收敛,所以0n n n z α∞=∑收敛,故由阿贝尔定理知,1z <时,0n n n z α∞=∑收敛,且为绝对收敛,即nnn z α∞=∑收敛.1z >时,0nn n n n z αα∞∞==>∑∑,因为0n n α∞=∑发散,根据正项级数的比力准则可知,0nn n z α∞=∑发散,从而0n n n z α∞=∑的收敛半径为1,由定理4.6,0n n n z α∞=∑的收敛半径也为1.5. 如果级数0n n n c z ∞=∑在它的收敛圆的圆周上一点0z 处绝对收敛,证明它在收敛圆所围的闭区域上绝对收敛. 证明:0z z <时,由阿贝尔定理,0n n n c z ∞=∑绝对收敛.0z z =时,00nnn n n n c z c z ∞∞===∑∑,由已知条件知,00n n n c z ∞=∑收敛,即nnn cz ∞=∑收敛,亦即0n n n c z ∞=∑绝对收敛.6. 将下列函数展开为z 的幂级数,并指出其收敛区域.(1)221(1)z +解:由于函数221(1)z +的奇点为z i =±,因此它在1z <内处处解析,可以在此圆内展开成z 的幂级数.根据例4.2的结果,可以获得24211(1),11n n z z z z z=-+-+-+<+.将上式两边逐项求导,即得所要求的展开式221(1)z +='24122211123(1),112n n z z nz z z z +-⋅-=-+++-+<+()(). (2)1(0,0)()()a b z a z b ≠≠--解:①a b =时,由于函数1(0,0)()()a b z a z b ≠≠--的奇点为z a =,因此它在z a <内处处解析,可以在此圆内展开成z 的幂级数.='1(1)nn z z a a a⋅++++=111()n n n z a a a -⋅+++=1211,n n n z z a a a-++++<. ②a b ≠时,由于函数1(0,0)()()a b z a z b ≠≠--的奇点为12,z a z b ==,因此它在min{,}z a b <内处处解析,可以在此圆内展开成z 的幂级数.=2121111()nnn n z z z z a b a aa b bb++-----++++-=22111111111[()()],min{,}nn n z z z a b a b b a b a b a ++-+-++-+<-.(3)2cos z解:由于函数2cos z 在复平面内处处解析,所以它在整个复平面内可以展开成z 的幂级数.4822cos 1(1),2!4!(2)!nnz z z z z n =-+-+-+<+∞.(4)shz解:由于函数shz 在复平面内处处解析,所以它在整个复平面内可以展开成z 的幂级数.321321()()()()sin ((1)),3!(21)!3!(21)!n n niz iz z z shz i iz i iz z z n n ++=-=--++-+=++++<+∞++(5)2sin z解:由于函数2sin z 在复平面内处处解析,所以它在整个复平面内可以展开成z 的幂级数.=221(2)(2)(1),22!2(2)!nn z z z n +++-+<+∞⨯⨯.(6)sin z e z 解:由于函数sin z e z 在复平面内处处解析,所以它在整个复平面内可以展开成z 的幂级数.(1)(1)sin 22iz iz i z i zzze e e e e z e i i-+---=⋅==22221(1)(1)(1)(1)(1(1)1(1))22!!2!!n n n n i z i z i z i z i z i z i n n ++--++++++-------=2122(1)(1)(2)22!!n n n i i i iz z z i n ⋅+--++++=32,3z z z z +++<+∞. 7. 求下列函数展开在指定点0z 处的泰勒展式,并写出展式成立的区域.(1)0,2(1)(2)zz z z =++解: 21(1)(2)21z z z z z =-++++,022111(2)222422414nnn z z z z ∞=-==⋅=-+-++∑, 011111(2)212333313nnn z z z z ∞=-==⋅=-+-++∑. 由于函数(1)(2)zz z ++的奇点为121,2z z =-=-,所以这两个展开式在23z -<内处处成立.所以有:210001(2)1(2)11()(2),23(1)(2)243323n n nn n n nn n n z z z z z z z ∞∞∞+===--=-=---<++∑∑∑.(2)021,1z z = 解:由于2111(1)(1)(1)(1),1111n n z z z z z z ==--+-++--+-<-+ 所以'11211()12(1)(1)(1),11n n z n z z z z --=-=--++--+-<.(3)01,143z i z=+- 解:1111134343(1)33133(1)131(1)13z z i i i z i i z i i===⋅---------------=100133(1)(1)13(13)(13)n n n n n n n n z i z i i i i ∞∞+==⋅--=-----∑∑. 展开式成立的区域:3(1)113z i i--<-,即13z i --< (4)0tan ,4z z π=解:'2tan sec z z =,''2tan 2sec tan z z z =,'''22tan 2sec (2tan 1)z z z =+,……,'24tan sec 24z z ππ===,''244tan 2sec tan 2z z zz zππ====,'''22448tan 2sec (2tan 1)3z z zz z ππ===+=……,故有 因为tan z 的奇点为,2z k k Z ππ=+∈,所以这个等式在44z ππ-<的范围内处处成立.8. 将下列函数在指定的圆域内展开成洛朗级数.(1)21,12(1)(2)z z z <<+-解:2221112()(1)(2)5211z z z z z z =--+--++, 222222002221212(1)(1)111n nn n n n z z z z z z∞∞+====-=-++∑∑, 故有2121220001112((1)(1))(1)(2)52n nn n n n n n n z z z z z ∞∞∞+++====-+-+-+-∑∑∑(2)21,01,1(1)z z z z z +<<<<+∞- 解:222112(1)(1)z z z z z z +=+--①在01z <<内 ②在1z <<+∞内 (3)1,011,12(1)(2)z z z z <-<<-<+∞--解:①在011z <-<内, ②在12z <-<+∞内20111111111(1)(1)1(1)(2)22122(2)(2)(2)12nnn n n n z z z z z z z z z z ∞∞+===⋅=⋅=-=-----+-----+-∑∑(4)1sin ,011z z<-<+∞-解:在01z <-<+∞内(5)cos,011zz z <-<+∞- 解:111cos cos(1)cos1cos sin1sin 1111z z z z z =+=----- 在01z <-<+∞内故有9. 将221()(1)f z z =+在z i =的去心邻域内展开成洛朗级数.解:因为函数221()(1)f z z =+的奇点为z i =±,所以它以点z i =为心的去心邻域是圆环域02z i <-<.在02z i <-<内又11001111()()(1)(1)()222(2)(2)12n n n n n n n n z i z i z i z i i i i i i i∞∞++==---=-⋅=--=---++∑∑ 故有222222001111()(1)()(1)()(1)()(2)(2)n n n n n n n n n n f z z i z i z z i i i ∞∞-++==++==⋅--=--+-∑∑ 10.函数()ln f z z =能否在圆环域0(0)z R R <<<<+∞内展开为洛朗级数?为什么?答:不能.函数()ln f z z =的奇点为,0,z z R ≤∈,所以对,0R R ∀<<+∞,0z R <<内都有()f z 的奇点,即()f z 以0z =为环心的处处解析的圆环域不存在,所以函数()ln f z z =不能在圆环域0(0)z R R <<<<+∞内展开为洛朗级数.习题五谜底1. 求下列各函数的孤立奇点,说明其类型,如果是极点,指出它的级. (1)221(1)z z z -+ 解:函数的孤立奇点是0,z z i ==±, 因222222221111111(1)(1)()()()()z z z z z z z z z i z z i z i z z i ----=⋅=⋅=⋅++-++-由性质5.2知,0z =是函数的1级极点,z i =±均是函数的2级极点. (2)3sin zz解:函数的孤立奇点是0z =,因32133sin 1((1))3!(21)!n nz z z z z z n +=-++-+,由极点界说知,0z =是函数的2级极点.(3)ln(1)z z+ 解:函数的孤立奇点是0z =,因0ln(1)lim1z z z→+=,由性质 5.1知,0z =是函数可去奇点. (4)21(1)z z e -解:函数的孤立奇点是2z k i π=,①0k =,即0z =时,因4223(1)2!!n zz z z e z n +-=++++ 所以0z =是2(1)z z e -的3级零点,由性质5.5知,它是21(1)z z e -的3级极点②2z k i π=,0k ≠时,令2()(1)z g z z e =-,'2()2(1)z z g z z e z e =-+,因(2)0g k i π=,'2(2)(2)0g k i k i ππ=≠,由界说5.2知,2(0)z k i k π=≠是()g z 的1级零点,由性质5.5知,它是21(1)z z e -的1级极点(5)2(1)(1)zzz e π++ 解:函数的孤立奇点是(21),z k i k Z =+∈,令2()(1)(1)z g z z e π=++,'2()2(1)(1)z z g z z e e z πππ=+++,''22()2(1)4(1)z z z g z e ze e z πππππ=++++ ①0z i =±时, 0()0g z =,'0()0g z =,''0()0g z ≠,由界说5.2知,0z i =±是()g z 的2级零点,由性质5.5知,它是21(1)(1)zz e π++的2级极点,故0z i =±是2(1)(1)zzz e π++的2级极点.②1(21),1,2,z k i k =+=±时,1()0g z =,'1()0g z ≠,由界说 5.2知,1(21),1,2,z k i k =+=±是()g z 的1级零点,由性质5.5知,它是21(1)(1)zz e π++的1级极点,故是2(1)(1)zzz e π++的1级极点. (6)21sin z解:函数的孤立奇点是0z =,1,2,z z k ==±= 令2()sin g z z =,'2()2cos g z z z =,①0z =时,因64222()sin (1)3!(21)!n nz z g z z z n +==-++-++,所以0z =是()g z 的2级零点,从而它是21sin z的2级极点. ②1,2,z z k ==±=时,()0g z =,'()0g z ≠,由界说 5.2知,1,2,z z k ==±=是()g z 的1级零点,由性质5.5知,它是21sin z 的1级极点. 2. 指出下列各函数的所有零点,并说明其级数.(1)sin z z解:函数的零点是,z k k Z π=∈,记()sin f z z z =,'()sin cos f z z z z =+①0z =时,因4222sin (1)3!(21)!n nz z z z z n +=-++-++,故0z =是sin z z 的2级零点.②,0z k k π=≠时,()0z k f z π==,'()0z k f z π=≠,由界说5.2知, ,0z k k π=≠是sin z z 的1级零点. (2)22z z e解:函数的零点是0z =,因242222(1)2!!n z z z z e z z n =+++++,所以由性质5.4知,0z =是22z z e 的2级零点.(3)2sin (1)z z e z -解:函数的零点是00z =,1z k π=,22z k i π=,0k ≠,记2()sin (1)z f z z e z =-,'22()cos (1)sin [2(1)]z z z f z z e z z e z z e =-++-①0z =时,0z =是sin z 的1级零点,,1z e -的1级零点,2z 的2级零点,所以0z =是2sin (1)z z e z -的4级零点.②1z k π=,0k ≠时,1()0f z =,'1()0f z ≠,由界说5.2知,1z k π=,0k ≠是()f z 的1级零点.③22z k i π=,0k ≠时,1()0f z =,'1()0f z ≠,由界说 5.2知,22z k i π=,0k ≠是()f z 的1级零点.3. 0z =是函数2(sin 2)z shz z -+-的几级极点?答:记()sin 2f z z shz z =+-,则'()cos 2f z z chz =+-,''()sin f z z shz =-+,'''()cos f z z chz =-+,(4)()sin f z z shz =+,(5)()cos f z z chz =+,将0z =代入,得:''''''(4)(0)(0)(0)(0)(0)0f f f f f =====,(5)()0f z ≠,由界说5.2知, 0z =是函数()sin 2f z z shz z =+-的5级零点,故是2(sin 2)z shz z -+-的10级极点.4. 证明:如果0z 是()f z 的(1)m m >级零点,那么0z 是'()f z 的1m -级零点.证明:因为0z 是()f z 的m 级零点,所以'''10000()()()()0m f z f z f z f z -=====,0()0m f z ≠,即''''2000()(())(())0m f z f z f z -====,'10(())0m f z -≠,由界说5.2知,0z 是'()f z 的1m -级零点.5. 求下列函数在有限孤立奇点处的留数. (1)212z z z+- 解:函数的有限孤立奇点是0,2z z ==,且0,2z z ==均是其1级极点.由定理5.2知,0011Re [(),0]lim ()lim22z z z s f z zf z z →→+===-+,0013Re [(),2]lim(2)()lim 2z z z s f z z f z z →→+=-==.(2)4231(1)z z ++解:函数的有限孤立奇点是z i =±,且z i =±是函数的3级极点,由定理5.2,423''''35111112123Re [(),]lim[()()]lim()lim 2!2()2()8z i z i z i z z s f z i z i f z i z i z i →→→+-=-===-++, 423''''35111112123Re [(),]lim[()()]lim()lim 2!2()2()8z i z i z i z z s f z i z i f z i z i z i →-→-→-++-=+===--.(3)241ze z-解:函数的有限孤立奇点是0z =,因22234443211(2)(2)2222(2)2!!2!3!!z n n n e z z z z z z n z z z n --=-----=-----所以由界说5.5知,2414Re [,0]3z e s z -=-.(4)21sin z z解:函数的有限孤立奇点是0z =, 因2232121111(1)1(1)sin ()3!(21)!3!(21)!nnn n z z z z z z n z zn z +---=-+++=-+++++所以由界说5.5知,211Re [sin ,0]6s z z=-. (5)1cos1z- 解:函数的有限孤立奇点是1z =,因。

复变函数课后习题答案(全)(2020年7月整理).pdf

复变函数课后习题答案(全)(2020年7月整理).pdf

为复数。
解:首先,由复数的三角不等式有 zn + a zn + a 1+ a ,
在上面两个不等式都取等号时 zn + a 达到最大,为此,需要取 z n
与 a 同向且 zn = 1,即 z n 应为 a 的单位化向量,由此, zn = a , a
z=n a a
8.试用 z1, z2 , z3 来表述使这三个点共线的条件。
解:要使三点共线,那么用向量表示时, z2 − z1 与 z3 − z1应平行,因而二
者应同向或反向,即幅角应相差 0 或 的整数倍,再由复数的除法运算规
则知 Arg z2 − z1 应为 0 或 的整数倍,至此得到: z3 − z1
z1,
z2 ,
z3
三个点共线的条件是
z2 z3
− −
z1 z1
为实数。
(1) z = (1+ i)t
(2) z = acost + ibsint
解:只需化为实参数方程即可。
(3) z = t + i t
(1) x = t, y = t ,因而表示直线 y = x
(2) x = a cos t, y
=
b
sin
t
,因而表示椭圆
x a
2 2
+
y2 b2
=1
(3) x = t, y = 1 ,因而表示双曲线 xy = 1 t
结论得证。
13.函数 w = 1 把 z 平面上的曲线 x = 1和 x2 + y2 = 4 分别映成 w 平面中 z
的什么曲线?
解:对于 x = 1,其方程可表示为 z = 1 + yi ,代入映射函数中,得

复变函数习题总汇与参考答案

复变函数习题总汇与参考答案

复变函数习题总汇与参考答案第1章 复数与复变函数一、单项选择题1、若Z 1=(a, b ),Z 2=(c, d),则Z 1·Z 2=(C )A (ac+bd, a )B (ac-bd, b)C (ac-bd, ac+bd )D (ac+bd, bc-ad)2、若R>0,则N (∞,R )={ z :(D )}A |z|<RB 0<|z|<RC R<|z|<+∞D |z|>R3、若z=x+iy, 则y=(D) A B C D4、若A= ,则 |A|=(C ) A 3 B 0 C 1 D 2二、填空题1、若z=x+iy, w=z 2=u+iv , 则v=( 2xy )2、复平面上满足Rez=4的点集为( {z=x+iy|x=4} )3、( 设E 为点集,若它是开集,且是连通的,则E )称为区域。

4、设z 0=x 0+iy 0, z n =x n +iy n (n=1,2,……),则{z n }以z o 为极限的充2zz +2z z -i z z 2+iz z 2-)1)(4()1)(4(i i i i +--++∞→n lim +∞→n lim分必要条件是 x n =x 0,且 y n =y 0。

三、计算题1、求复数-1-i 的实部、虚部、模与主辐角。

解:Re(-1-i)=-1 Im(-1-i)=-1|-1-i|=2、写出复数-i 的三角式。

解:3、写出复数 的代数式。

解:4、求根式 的值。

解: ππ45|11|arctan ),1(12)1()1(=--+=--∴--=-+-i ary i 在第三象限 ππ23sin 23cos i i +=-i i i i i i i i i i i ii i i 212312121)1()1)(1()1(11--=--+-=⋅-++-+=-+-i i i i -+-11327-)27arg(3273π=-=四、证明题1、证明若,则a 2+b 2=1。

复变函数与积分变换(修订版-复旦大学)第六章课后的习题答案-(1)

复变函数与积分变换(修订版-复旦大学)第六章课后的习题答案-(1)

习题六1. 求映射1w z=下,下列曲线的像. (1) 22x y ax += (0a ≠,为实数) 解:222211i=+i i x y w u v z x y x y x y ===-+++ 221x x u x y ax a===+, 所以1w z =将22x y ax +=映成直线1u a=. (2) .y kx =(k 为实数) 解: 22221i x y w z x y x y ==-++ 故1w z=将y kx =映成直线v ku =-. 2. 下列区域在指定的映射下映成什么?(1)Im()0,(1i)z w z >=+;解: (1i)(i )()i(+)w x y x y x y =+⋅+=-+所以Im()Re()w w >.故(1i)w z =+⋅将Im()0,z >映成Im()Re()w w >.(2) Re(z )>0. 0<Im(z )<1, i w z=. 解:设z =x +i y , x >0, 0<y <1.Re(w )>0. Im(w )>0. 若w =u +i v , 则因为0<y <1,则22221101,()22u u v u v <<-+>+ 故i w z=将Re(z )>0, 0<Im(z )<1.映为 Re(w )>0,Im(w )>0, 1212w > (以(12,0)为圆心、12为半径的圆) 3. 求w =z 2在z =i 处的伸缩率和旋转角,问w =z 2将经过点z =i 且平行于实轴正向的曲线的切线方向映成w 平面上哪一个方向?并作图.解:因为w '=2z ,所以w '(i)=2i , |w '|=2, 旋转角arg w '=π2. 于是, 经过点i 且平行实轴正向的向量映成w 平面上过点-1,且方向垂直向上的向量.如图所示.→4. 一个解析函数,所构成的映射在什么条件下具有伸缩率和旋转角的不变性?映射w =z 2在z 平面上每一点都具有这个性质吗?答:一个解析函数所构成的映射在导数不为零的条件下具有伸缩率和旋转不变性映射w =z 2在z =0处导数为零,所以在z =0处不具备这个性质.5. 求将区域0<x <1变为本身的整体线性质变换w z αβ=⋅+的一般形式.6. 试求所有使点1±不动的分式线性变换. 解:设所求分式线性变换为az bw cz d +=+(ad -bc ≠0)由11-→-.得 因为(1)a z c dw cz d ++-=+, 即(1)(1)1a z c z w cz d ++++=+,由11→代入上式,得22a ca d c d +=⇒=+. 因此11(1)(1)dcd cd c w z z cz d z +++=+=+⋅++ 令dq c =,得其中a 为复数.反之也成立,故所求分式线性映射为1111w z a w z ++=⋅--, a 为复数.7. 若分式线性映射,az bw cz d +=+将圆周|z |=1映射成直线则其余数应满足什么条件? 解:若az bw cz d +=+将圆周|z |=1映成直线,则dz c =-映成w =∞. 而dz c =-落在单位圆周|z |=1,所以1dc -=,|c |=|d |.故系数应满足ad -bc ≠0,且|c |=|d |.8. 试确定映射,11z w z -=+作用下,下列集合的像.(1) Re()0z =; (2) |z |=2; (3) Im(z )>0.解:(1) Re(z )=0是虚轴,即z =i y 代入得. 写成参数方程为2211y u y -+=+, 221y v y =+, y -∞<<+∞.消去y 得,像曲线方程为单位圆,即u 2+v 2=1.(2) |z |=2.是一圆围,令i 2e ,02πz θθ=≤≤.代入得i i 2e 12e 1w θθ-=+化为参数方程.消去θ得,像曲线方程为一阿波罗斯圆.即(3) 当Im(z )>0时,即11Im()011w w z w w ++=-⇒<--, 令w =u +i v 得221(1)i 2Im()Im()01(1)i (1)w u v v w u v u v +++-==<--+-+. 即v >0,故Im(z )>0的像为Im(w )>0.9. 求出一个将右半平面Re(z )>0映射成单位圆|w |<1的分式线性变换.解:设映射将右半平面z 0映射成w =0,则z 0关于轴对称点0z 的像为w =∞, 所以所求分式线性变换形式为00z z w k z z -=⋅-其中k 为常数. 又因为00z z w k z z -=⋅-,而虚轴上的点z 对应|w |=1,不妨设z =0,则 故000e (Re()0)i z z w z z z θ-=⋅>-.10. 映射e 1i z w zϕαα-=⋅-⋅将||1z <映射成||1w <,实数ϕ的几何意义显什么? 解:因为 从而2i i 2221||1()e e (1||)1||w ϕϕαααα-'=⋅=⋅-- 所以i 2arg ()arge arg (1||)w ϕααϕ'=-⋅-=故ϕ表示i e 1z w zθαα-=⋅-在单位圆内α处的旋转角arg ()w α'. 11. 求将上半平面Im(z )>0,映射成|w |<1单位圆的分式线性变换w =f (z ),并满足条件(1) f (i)=0, arg (i)f '=0; (2) f (1)=1, f. 解:将上半平面Im(z )>0, 映为单位圆|w |<1的一般分式线性映射为w =k z z αα-⋅-(Im(α)>0). (1) 由f (i)=0得α=i ,又由arg (i)0f '=,即i 22i ()e (i)f z z θ'=⋅+, πi()21(i)e 02f θ-'==,得π2θ=,所以 i i iz w z -=⋅+. (2) 由f (1)=1,得k =11αα--;由f,得kα联立解得w =12. 求将|z |<1映射成|w |<1的分式线性变换w =f (z),并满足条件:(1) f (12)=0, f (-1)=1.(2) f (12)=0, 12πarg ()2f '=, (3) f (a )=a , arg ()f a ϕ'=.解:将单位圆|z |<1映成单位圆|w |<1的分式线性映射,为 i e 1z w zθαα-=-⋅ , |α|<1. (1) 由f (12)=0,知12α=.又由f (-1)=1,知 1i i i 2121e e (1)1e 1π1θθθθ--⋅=-=⇒=-⇒=+. 故12221112z z z w z --=-⋅=--. (2) 由f (12)=0,知12α=,又i 254e (2)z w z θ-'=⋅- i 11224π()e arg ()32f f θθ''=⇒==, 于是 π21i 2221e ()i 12z z z w z --==⋅--. (3) 先求=()z ξϕ,使z =a 0ξ→=,arg ()a ϕθ'=,且|z |<1映成|ξ|<1.则可知 i =()=e 1z a z a zθξϕ-⋅-⋅ 再求w =g (ξ),使ξ=0→w =a , arg (0)0g '=,且|ξ|<1映成|w |<1.先求其反函数=()w ξψ,它使|w|<1映为|ξ|<1,w =a 映为ξ=0,且arg ()arg(1/(0))0w g ψ''==,则 =()=1w a w a wξψ--⋅. 因此,所求w 由等式给出.i =e 11w a z a a w a zθ--⋅-⋅-⋅. 13. 求将顶点在0,1,i 的三角形式的内部映射为顶点依次为0,2,1+i 的三角形的内部的分式线性映射. 解:直接用交比不变性公式即可求得02w w --∶1i 01i 2+-+-=02z z --∶i 0i 1-- 2w w -.1i 21i +-+=1z z -.i 1i-4z (i 1)(1i)w z -=--+. 14. 求出将圆环域2<|z |<5映射为圆环域4<|w |<10且使f (5)=-4的分式线性映射.解:因为z=5,-5,-2,2映为w=-4,4,10,-10,由交比不变性,有2525-+∶2525---+=104104-+--∶104104+- 故w =f (z )应为55z z -+∶2525---+=44w w +-∶104105+- 即 44w w +-=55z z --+20w z⇒=-. 讨论求得映射是否合乎要求,由于w =f (z )将|z |=2映为|w |=10,且将z =5映为w =-4.所以|z |>2映为|w |<10.又w =f (z )将|z |=5映为|w |=4,将z =2映为w =-10,所以将|z |<5映为|w |>4,由此确认,此函数合乎要求.15.映射2w z =将z 平面上的曲线221124x y ⎛⎫-+= ⎪⎝⎭映射到w 平面上的什么曲线? 解:略.16. 映射w =e z 将下列区域映为什么图形.(1) 直线网Re(z )=C 1,Im(z )=C 2;(2) 带形区域Im(),02πz αβαβ<<≤<≤;(3) 半带形区域 Re()0,0Im(),02πz z αα><<≤≤.解:(1) 令z =x +i y , Re(z )=C 1,z =C 1+i y 1i =e e C y w ⇒⋅, Im(z )=C 2,则z =x +i C 22i =e e C x w ⇒⋅故=e z w 将直线Re(z )映成圆周1e C ρ=;直线Im(z )=C 2映为射线2C ϕ=.(2) 令z =x +i y ,y αβ<<,则i i =e e e e ,z x y x y w y αβ+==⋅<<故=e z w 将带形区域Im()z αβ<<映为arg()w αβ<<的张角为βα-的角形区域.(3) 令z =x +i y ,x >0,0<y < α, 02πα≤≤.则故=e zw 将半带形区域Re(z )>0,0<Im(z )<α, 02πα≤≤映为 |w |>1, 0arg w α<<(02πα≤≤).17. 求将单位圆的外部|z |>1保形映射为全平面除去线段-1<Re(w )<1,Im(w )=0的映射. 解:先用映射11w z=将|z |>1映为|w 1|<1,再用分式线性映射. 1211i 1w w w +=-⋅-将|w 1|<1映为上半平面Im(w 2)>0, 然后用幂函数232w w =映为有割痕为正实轴的全平面,最后用分式线性映射3311w w w -=+将区域映为有割痕[-1,1]的全平面. 故221121132222132111111i 1111111()11211i 1111z z z z w w w w w z w w z w w ⎛⎫⎛⎫++--⋅- ⎪ ⎪----⎝⎭⎝⎭=====+++⎛⎫⎛⎫++-⋅++ ⎪ ⎪--⎝⎭⎝⎭. 18. 求出将割去负实轴Re()0z -∞<≤,Im(z )=0的带形区域ππI m ()22z -<<映射为半带形区域πIm()πw -<<,Re(w )>0的映射.解:用1e z w =将区域映为有割痕(0,1)的右半平面Re(w 1)>0;再用1211ln 1w w w +=-将半平面映为有割痕(-∞,-1]的单位圆外域;又用3w =将区域映为去上半单位圆内部的上半平面;再用43ln w w =将区域映为半带形0<Im(w 4)<π,Re(w 4)>0;最后用42i πw w =-映为所求区域,故e 1ln e 1z z w +=-. 19. 求将Im(z )<1去掉单位圆|z |<1保形映射为上半平面Im(w )>0的映射.解:略.20. 映射cos w z =将半带形区域0<Re(z )<π,Im(z )>0保形映射为∞平面上的什么区域.解:因为 1cos ()2iz iz w z e e -==+ 可以分解为 w 1=i z ,12e ww =,32211()2w w w =+ 由于cos w z =在所给区域单叶解析,所以(1) w 1=i z 将半带域旋转π2,映为0<Im(w 1)<π,Re(w 1)<0. (2) 12e w w =将区域映为单位圆的上半圆内部|w 2|<1,Im(w 2)>0.(3) 2211()2w w w =+将区域映为下半平面Im(w )<0.。

复变函数课后部分习题解答

复变函数课后部分习题解答

(1)(3-i)5解:3-i=2[cos( -30°)+isin(-30°)] =2[cos30°- isin30°](3-i)5=25[cos(30°⨯5)-isin(30°⨯5)]=25(-3/2-i/2) =-163-16i(2)(1+i )6解:令z=1+i 则x=Re (z )=1,y=Im (z )=1 r=z =22y x +=2tan θ=x y =1Θx>0,y>0∴θ属于第一象限角∴θ=4π ∴1+i=2(cos4π+isin 4π) ∴(1+i )6=(2)6(cos 46π+isin 46π) =8(0-i )=-8i1.2求下式的值 (3)61-因为-1=(cos π+sin π)所以61-=[cos(ππk 2+/6)+sin(ππk 2+/6)] (k=0,1,2,3,4,5,6).习题一1.2(4)求(1-i)31的值。

解:(1-i)31 =[2(cos-4∏+isin-4∏)]31=62[cos(12)18(-k ∏)+isin(12)18(-k∏)](k=0,1,2)1.3求方程3z +8=0的所有根。

解:所求方程的根就是w=38-因为-8=8(cos π+isin π) 所以38-= ρ [cos(π+2k π)/3+isin(π+2k π)/3] k=0,1,2其中ρ=3r=38=2即w=2[cosπ/3+isinπ/3]=1—3i1w=2[cos(π+2π)/3+isin(π+2π)/3]=-22w=2[cos(π+4π)/3+isin(π+4π)/3]= 1—3i3习题二1.5 描出下列不等式所确定的区域或者闭区域,并指明它是有界还是无界的,单连通还是多连通的。

(1) Im(z)>0解:设z=x+iy因为Im(z)>0,即,y>0而)∈x-∞(∞,所以,不等式所确定的区域D为:不包括实轴的上半平面。

复变函数与积分变换(马柏林)课后的习题答案

复变函数与积分变换(马柏林)课后的习题答案

习题一1. 用复数的代数形式a +ib 表示下列复数π/43513;;(2)(43);711i i e i i i i i-++++++.①解i 4πππe cos isin 44-⎛⎫⎛⎫⎛⎫=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ②解: ()()()()35i 17i 35i 1613i7i 11+7i 17i 2525+-+==-++-③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解: ()31i 1335=i i i 1i 222-+-+=-+2.求下列各复数的实部和虚部(z =x +iy )(z a a z a -∈+); 333;;;.n z i ① :∵设z =x +iy则()()()()()()()22i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y-++-⎡⎤⎡⎤+--+-⎣⎦⎣⎦===+++++++ ∴()22222Re z a x a y z a x a y ---⎛⎫= ⎪+⎝⎭++,()222Im z a xy z a x a y-⎛⎫= ⎪+⎝⎭++. ②解: 设z =x +iy ∵()()()()()()()()323222222223223i i i 2i i 22i33iz x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++⎡⎤=--+-+⎣⎦=-+- ∴()332Re 3z x xy =-,()323Im 3z x y y =-.③解:∵(()(){}33232111313188-+⎡⎤⎡⎤==--⋅-⋅+⋅-⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ④解:∵()()(()2332313131i 8⎡⎤--⋅-⋅+⋅-⎢⎥⎣⎦=⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭.⑤解: ∵()()1,2i 211i,kn kn k k n k ⎧-=⎪=∈⎨=+-⋅⎪⎩. ∴当2n k =时,()()Re i 1k n =-,()Im i 0n =;当21n k =+时,()Re i 0n =,()()Im i 1kn =-.3.求下列复数的模和共轭复数12;3;(2)(32);.2ii i i +-+-++①解:2i -+==2i 2i -+=--②解:33-=33-=-③解:()()2i 32i 2i 32i ++=++=()()()()()()2i 32i 2i 32i 2i 32i 47i ++=+⋅+=-⋅-=-④解:1i 1i 22++==()1i 11i222i ++-⎛⎫== ⎪⎝⎭4、证明:当且仅当z z =时,z 才是实数.证明:若z z =,设i z x y =+,()()1332π+π2ππ1cos πisin πcosisin 0,1,233k k k +-=+=+=∴1ππ13cos isin i 3322=+=+z2cos πisin π1=+=-z35513cos πisin πi 3322=+=--z⑶33i +的平方根.解: πi 42233i=6i 6e 22⎛⎫+⋅+=⋅ ⎪ ⎪⎝⎭∴()()1π12i 44ππ2π2π4433i 6e6cos isin 0,122k k k ⎛⎫++ ⎪+=⋅=⋅+= ⎪⎝⎭∴π11i 8441ππ6cos isin 6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z911πi 8442996cos πisin π6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z .9.设2πe,2inz n =≥. 证明:110n z z -+++=证明:∵2πi e nz ⋅= ∴1n z =,即10n z -=.∴()()1110n z z z --+++=又∵n ≥2. ∴z ≠1从而211+0n z z z -+++=11.设Γ是圆周{:},0,e .i z r r a c r z c α=>=+-令:Im 0z a L z b β⎧-⎫⎛⎫==⎨⎬⎪⎝⎭⎩⎭, 其中e i b β=.求出L β在a 切于圆周Γ的关于β的充分必要条件.解:如图所示.因为L β={z : Im z a b -⎛⎫⎪⎝⎭=0}表示通过点a 且方向与b 同向的直线,要使得直线在a 处与圆相切,则CA ⊥L β.过C 作直线平行L β,则有∠BCD =β,∠ACB =90° 故α-β=90°所以L β在α处切于圆周T 的关于β的充要条件是α-β=90°.12.指出下列各式中点z 所确定的平面图形,并作出草图.(1)arg π;(2);1(3)1|2;(4)Re Im ;(5)Im 1 2.z z z z i z z z z ==-<+<>><且解:(1)、argz =π.表示负实轴.(2)、|z -1|=|z |.表示直线z =12.(3)、1<|z +i|<2 解:表示以-i 为圆心,以1和2为半径的周圆所组成的圆环域。

复变函数习题答案

复变函数习题答案

复变函数习题答案复变函数习题答案复变函数是数学中的一个重要分支,它研究的是定义在复数域上的函数。

复变函数理论在物理学、工程学以及金融学等领域有着广泛的应用。

为了更好地理解和应用复变函数,我们需要进行大量的习题练习。

在本文中,我将为大家提供一些复变函数习题的答案,希望能够帮助大家更好地掌握这一领域的知识。

1. 求函数f(z) = z^2 - 1的解析性条件。

解答:根据复变函数的定义,函数f(z)在复平面上解析的条件是其对z的偏导数存在且连续。

对于函数f(z) = z^2 - 1,我们可以计算其对z的偏导数:∂f/∂x = 2x∂f/∂y = 0由于∂f/∂x存在且连续,而∂f/∂y为0,所以函数f(z) = z^2 - 1在复平面上解析。

2. 求函数f(z) = e^z的导数。

解答:根据复变函数的导数定义,对于函数f(z) = e^z,我们需要计算其对z的偏导数:∂f/∂x = e^x * cos(y)∂f/∂y = e^x * sin(y)因此,函数f(z) = e^z的导数为:df/dz = ∂f/∂x + i * ∂f/∂y = e^x * cos(y) + i * e^x * sin(y)3. 求函数f(z) = z^3 - 3z的奇点。

解答:奇点是指函数在某一点上不解析的点。

对于函数f(z) = z^3 - 3z,我们需要找到其奇点。

奇点的定义是函数在该点处不解析,即其导数不存在或者无穷大。

首先,我们计算函数f(z)的导数:df/dz = 3z^2 - 3然后,我们令导数等于零,解得z = ±1。

所以,函数f(z) = z^3 - 3z的奇点为z = ±1。

4. 求函数f(z) = sin(z)/z的留数。

解答:留数是指函数在奇点处的特殊值。

对于函数f(z) = sin(z)/z,我们需要计算其在奇点z = 0处的留数。

根据留数的计算公式,我们可以将函数f(z)在z = 0处展开为泰勒级数:f(z) = sin(z)/z = (z - z^3/3! + z^5/5! - ...) / z可以看出,分子中的z可以约去,所以:f(z) = 1 - z^2/3! + z^4/5! - ...因此,在z = 0处的留数为1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

复变函数课后习题答案 页脚内容 习题一答案

1. 求下列复数的实部、虚部、模、幅角主值及共轭复数: (1)132i(2)(1)(2)iii

(3)131iii(4)8214iii 解:(1)1323213izi, 因此:32Re, Im1313zz, (2)3(1)(2)1310iiiziii, 因此,31Re, Im1010zz, (3)133335122iiiziii, 因此,35Re, Im32zz, (4)82141413ziiiiii 因此,Re1, Im3zz, 2. 将下列复数化为三角表达式与指数表达式:

(1)i(2)13i(3)(sincos)ri (4)(cossin)ri(5)1cossin (02)i

解:(1)2cossin22iiie

(2)13i23222(cossin)233iie (3)(sincos)ri()2[cos()sin()]22irire (4)(cossin)ri[cos()sin()]irire (5)21cossin2sin2sincos222ii 3. 求下列各式的值: 复变函数课后习题答案 页脚内容 (1)5(3)i(2)100100(1)(1)ii

(3)(13)(cossin)(1)(cossin)iiii(4)23(cos5sin5)(cos3sin3)ii (5)3i(6)1i 解:(1)5(3)i5[2(cos()sin())]66i (2)100100(1)(1)ii50505051(2)(2)2(2)2ii (3)(13)(cossin)(1)(cossin)iiii

(4)23(cos5sin5)(cos3sin3)ii (5)3i3cossin22i (6)1i2(cossin)44i 4. 设121, 3,2izzi试用三角形式表示12zz与12zz 解:12cossin, 2[cos()sin()]4466zizi,所以 12zz2[cos()sin()]2(cossin)46461212ii

,

5. 解下列方程: (1)5()1zi(2)440 (0)zaa 解:(1)51,zi由此 2551kiziei

,(0,1,2,3,4)k

(2)4444(cossin)zaai 11[cos(2)sin(2)]44akik,当0,1,2,3k时,对应的4个根分别复变函数课后习题答案 页脚内容 为:(1), (1), (1), (1)2222aaaaiiii

6. 证明下列各题:(1)设,zxiy则2xyzxy 证明:首先,显然有22zxyxy; 其次,因222,xyxy固此有2222()(),xyxy

从而222xyzxy。 (2)对任意复数12,,zz有2221212122Re()zzzzzz 证明:验证即可,首先左端221212()()xxyy, 而右端2222112211222Re[()()]xyxyxiyxiy 2222112212122()xyxyxxyy221212()()xxyy

,

由此,左端=右端,即原式成立。 (3)若abi就是实系数代数方程101100nnnazazazaL 的一个根,那么abi也就是它的一个根。 证明:方程两端取共轭,注意到系数皆为实数,并且根据复数的乘法运算规则,()nnzz,由此得到:10110()()0nnnazazazaL 由此说明:若z为实系数代数方程的一个根,则z也就是。结论得证。 (4)若1,a则,ba皆有1abaab 证明:根据已知条件,有1aa,因此: 11()abababaabaaabaaba

,证毕。

(5)若1, 1ab,则有11abab 证明:222()()abababababab, 复变函数课后习题答案 页脚内容 222

1(1)(1)1abababababab,

因为1, 1ab,所以, 2222221(1)(1)0ababab,

因而221abab,即11abab,结论得证。 7.设1,z试写出使nza达到最大的z的表达式,其中n为正整数,a为复数。 解:首先,由复数的三角不等式有1nnzazaa, 在上面两个不等式都取等号时nza达到最大,为此,需要取nz与a同向且1nz,即nz应为a的单位化向量,由此,naza, 8.试用123,,zzz来表述使这三个点共线的条件。 解:要使三点共线,那么用向量表示时,21zz与31zz应平行,因而二者应同向或反向,即幅角

应相差0或的整数倍,再由复数的除法运算规则知2131zzArgzz应为0或的整数倍,至此得到: 123,,zzz三个点共线的条件就是2131zzzz为实数。

9.写出过1212, ()zzzz两点的直线的复参数方程。 解:过两点的直线的实参数方程为:

121121

()()xxtxxyytyy



,

因而,复参数方程为: 其中t为实参数。 10.下列参数方程表示什么曲线?(其中t为实参数)

(1)(1)zit(2)cossinzatibt(3)iztt 解:只需化为实参数方程即可。 (1),xtyt,因而表示直线yx 复变函数课后习题答案 页脚内容 (2)cos,sinxatybt,因而表示椭圆22221xyab

(3)1,xtyt,因而表示双曲线1xy 11.证明复平面上的圆周方程可表示为0zzazazc, 其中a为复常数,c为实常数 证明:圆周的实方程可表示为:220xyAxByc,

代入, 22zzzzxyi,并注意到222xyzzz,由此 022zzzzzzABci,

整理,得022ABiABizzzzc 记2ABia,则2ABia,由此得到 0zzazazc,结论得证。

12.证明:幅角主值函数argz在原点及负实轴上不连续。 证明:首先,argz在原点无定义,因而不连续。 对于00x,由argz的定义不难瞧出,当z由实轴上方趋于0x时,argz,而当z由实轴下方趋于0x时,argz,由此说明0limargzxz不存在,因而argz在0x点不连续,即在负实

轴上不连续,结论得证。 13.函数1wz把z平面上的曲线1x与224xy分别映成w平面中的什么曲线? 解:对于1x,其方程可表示为1zyi,代入映射函数中,得

211111iywuivziyy

,

因而映成的像曲线的方程为221, 11yuvyy,消去参数y,得 222

1,1uvuy

即22211()(),22uv表示一个圆周。 复变函数课后习题答案 页脚内容 对于224xy,其方程可表示为2cos2sinzxiyi

代入映射函数中,得

因而映成的像曲线的方程为11cos, sin22uv,消去参数,得2214uv,表示一

半径为12的圆周。 14.指出下列各题中点z的轨迹或所表示的点集,并做图: 解:(1)0 (0)zzrr,说明动点到0z的距离为一常数,因而表示圆心为0z,半径为r的圆周。 (2)0,zzr就是由到0z的距离大于或等于r的点构成的集合,即圆心为0z半径为r的圆周及圆周外部的点集。 (3)138,zz说明动点到两个固定点1与3的距离之与为一常数,因而表示一个椭圆。代入,zxiy化为实方程得 (4),zizi说明动点到i与i的距离相等,因而就是i与i连线的垂直平分线,即x轴。

(5)arg()4zi,幅角为一常数,因而表示以i为顶点的与x轴正向夹角为4的射线。 15.做出下列不等式所确定的区域的图形,并指出就是有界还就是无界,单连通还就是多连通。 (1)23z,以原点为心,内、外圆半径分别为2、3的圆环区域,有界,多连通 (2)arg (02)z,顶点在原点,两条边的倾角分别为,的角形区域,无界,单连通

(3)312zz,显然2z,并且原不等式等价于32zz,说明z到3的距离比到2的距离大,因此原不等式表示2与3连线的垂直平分线即x2、5左边部分除掉x2后的点构成的集合,就是一无界,多连通区域。 (4)221zz,

显然该区域的边界为双曲线221zz,化为实方程为2244115xy,再注意到z到2与z到2的距离之差大于1,因而不等式表示的应为上述双曲线左边一支的左侧部分,就是一无界单连通区域。

相关文档
最新文档