【新工艺】沸石转轮吸附浓缩+催化燃烧
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
VOCs的种类繁多、成分复杂、性质各异,在很多情况下采用一种净化技术往往难以达到治理要求,且不经济。利用不同单元治理技术的优势,采用组合治理工艺,不仅可满足排放要求,而且可降低净化设备的运行费用。因此,在有机废气治理中,采用两种或多种净化技术的组合工艺得到了迅速发展。沸石转轮浓缩技术就是针对低浓度VOCs的治理而发展起来的一种新技术,与催化燃烧或高温焚烧进行组合,形成了沸石转轮吸附浓缩+焚烧技术。
技术研究现状
蜂窝转轮吸附+催化燃烧处理技术是20世纪70年代由日本发明的一种有机废气处理系统,吸附装置是用分子筛、活性碳纤维或含碳材料制备的瓦楞型纸板组装起来的蜂窝转轮,吸附与脱附气流的流向相反,两个过程同时进行。这种系统在20世纪80年代初被我国引进和仿制,但由于吸附元件(蜂窝转轮)以及系统关键部位连接技术都不过关,吸附与脱附的窜风问题未得到根本解决,设备性能不稳定,因此国内应用较少,一直未能得到推广。
20世纪80年代末研制设计了固定床吸附+催化燃烧处理系统。该系统是将吸附材料装填在固定床中,再将吸附床与催化燃烧装置组合成净化处理系统。该工艺系统的原理与上述蜂窝转轮吸附+催化燃烧技术基本相同,但由于单件吸附床的吸附与脱附再生过程分开进行,在操作上克服了蜂窝转轮净化系统吸、脱附易串气的缺点。经不断改进,系统配置更加合理,净化效率高,运行节能效果显著,在技术上达到国际先进水平。该工艺系统非常适合处理大气体量、低浓度的VOCs废气,其单套系统的废气处理量可以从几千m3/h到十几万m3/h。该技术是我国真正自主创新的VOCs废气治理工艺,自1989年首次在国内推广,到目前已有数百套该类系统与装置在使用。已经成为国内工业VOCs废气治理的主流产品之一,并预计在未来仍将有很大的应用前景。
利用催化燃烧法进行工业有机废气治理,已普遍应用于汽车喷涂、磁带制造和飞机零部件喷涂等。催化燃烧技术将挥发出来的大量有机溶剂充分燃烧。催化剂采用多孔陶瓷载体催化剂,催化前的预热温度视VOCs种类而不同:聚氨酯380℃~480℃,聚酯亚胺480℃~580℃;有机物浓度约1600mg/m3,净化效率平均为99%。
转轮浓缩+催化燃烧新工艺
1技术概况
针对现行各种方法在处理低浓度、大风量的VOCs污染物时存在的设备投资大、运行成本高、去除效率低等问题,国内企业研发了一种用于处理低VOCs浓度、大风量工业废气的高效率、安全的处理工艺。该方法的基本构思是:采用吸附分离法对低浓度、大风量工业废气中的VOCs进行分离浓缩,对浓缩后的高浓度、小风量的污染空气采用燃烧法进行分解净化,通称吸附分离浓缩+燃烧分解净化法。具有蜂窝状结构的吸附转轮被安装在分隔成吸附、再生、冷却三个区的壳体中,在调速马达的驱动下以每小时3~8转的速度缓慢回转。
吸附、再生、冷却三个区分别与处理空气、冷却空气、再生空气风道相连接。而且,为了防止各个区之间窜风及吸附转轮的圆周与壳体之间的空气泄漏,各个区的分隔板与吸附转轮之间、吸附转轮的圆周与壳体之间均装有耐高温、耐溶剂的氟橡胶密封材料。含有VOCs的污染空气由鼓风机送到吸附转轮的吸附区,污染空气在通过转轮蜂窝状通道时,所含VOCs成分被吸附剂所吸附,空气得到净化。随着吸附转轮的回转,接近吸附饱和状态的吸附转轮进入到再生区,在与高温再生空气接触的过程中,VOCs被脱附下来进入到再生空气中,吸附转轮得到
再生。再生后的吸附转轮经过冷却区冷却降温后,返回到吸附区,完成吸附/脱附/冷却的循环过程。由于该过程再生空气的风量一般仅为处理风量的1/10,再生过程出口空气中VOCs浓度被浓缩为处理空气中浓度的10倍,因此,该过程又被称为VOCs浓缩除去过程。
1号风机带动含VOCs废气经过转轮a区域,a区域为吸附区,根据不同的目标物可在转轮中填充不同的吸附材料。吸附了VOCs的a区域随转轮转动来到b 区域进行脱附。流经传热1的高温气流将吸附于转轮上的VOCs脱附下来,并经过传热2达到起燃温度,随后进入催化燃烧室进行催化氧化反应。由于转轮脱附之后又要进行吸附,所以在脱附区域旁边设冷却区域c,以空气进行冷却,冷却之后的温空气经传热1变成脱附用热空气。催化燃烧反应之后的热气流将部分热量传递给传热2、传热1后排至空气。为了防止催化燃烧室温度过高,设置第三方冷却线路用于催化燃烧室的紧急降温。整个系统由2个监控系统组成,PC1负责监控催化燃烧室、传热器的温度(其内部设电辅热装置以平衡温度波动),PC2负责风机控制,根据实际情况调节进气流量。PC2属于PC1的子级系统,当PC1监测到温度波动超过允许范围时立刻将信息传递给PC2,PC2将收到的信息转成指令传递给各风机。
2新工艺的特点
(1)吸附区旁路内循环的建立。当废气经过吸附区吸附后不达标,进入旁路内循环,再次进行吸附处理。此旁路内循环的基本思路为消灭现有污染再吸纳新的污染。
(2)冷却风旁路建立。在工况十分复杂的情况下,VOCs浓度有可能陡然升高,此时将部分冷却风引入到吸附区以降低脱附风量,同时在传热2后补充新风,以维系进入催化反应器的风量在预设范围以内。此旁路的基本思想是以新风对高浓度VOCs进行稀释,因而从效果上看,此法也会延长治理时间。
(3)与传统工艺相比,该整个系统采用引风机设计,便于对旁路的调控。去掉给催化燃烧装置用的降温鼓风机,此机治标不治本,改为在转轮部分控制VOCs浓度。
(4)催化燃烧室去掉电辅热系统,改由传热2对空气加热到VOCs起燃温度,并利用反应放热使催化燃烧室温度稳定在500℃~600℃范围内。
(5)转轮转速易调,则在2的情况下可以适当提高转轮转速,减少单位面积转轮单位时间内吸附VOCs的量,从而保障系统的安全。
转轮吸附的影响因素
当吸附材料确定后,影响转轮装置吸附性能的主要因素是转轮运行转轮吸附浓缩-催化燃烧工艺流程图参数和进气参数。Yosuke等认为,一定范围内进气负荷的变化可通过转速、浓缩比、再生风温度等转轮运行参数调节,以维持预定的性能;Lin等将蜂窝转轮应用于TFT-LCD产业废气处理,当处理高排放浓度时,将入流速度降至1.5m/s,浓缩比降至8,转速增至6.5r/h,再生风温度升至220℃,系统去除效率可达90%以上;Hisashi等指出最佳转速由再生风热容量与吸附剂热容量平衡决定。
1浓缩比
转轮通过吸附-脱附以获得低流量的浓缩气体,因此浓缩比是转轮性能的一个重要指标,定义为进气流量与再生风流量的比值F,低浓缩比虽然可以保证高去除效率,但增加再生风量的同时也增加了脱附能耗,而且浓缩气体的浓度亦随着脱附风量的增加而降低。当浓缩比从14减少至6时,甲苯的出口浓度仅从