有理数乘方概念

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有理数乘方

22、73也可以看做是乘方运算的结果,这时它们表示数,分别读作“2的2次幂”、“7的3次幂”,

其中2与7叫做底数(base),2与3叫做指数(exponent)。

这种求n个相同因数a的积运算叫做乘方(power),乘方的结果叫做幂(power),a叫做底数(base number),n叫指数(exponent)。任何数的0次方都是1,例:3º=1(注:0º无意义)

有理数乘方同底数幂法则

同底数幂相乘除,原来的底数作底数,指数的和或差作指数。

推导:

设a^m*a^n中,m=2,n=4,那么

a^2*a^4

=(a*a)*(a*a*a*a)

=a*a*a*a*a*a

=a^6

=a^(2+4)

所以代入:a^m*a^n=a^(m+n)

用字母表示为:

a^m·a^n=a^(m+n) 或a^m÷a^n=a^(m-n) (m、n均为自然数)

1)15^2×15^3; 2)3^2×3^4×3^8; 3)5×5^2×5^3×5^4×…×5^90

1)15^2×15^3=15^(2+3)=15^5

2)3^2×3^4×3^8=3^(2+4+8)=3^14

3)5×5^2×5^3×5^4×…×5^90=5^(1+2+3+…+90)=5^4095[1]

有理数乘方正整数指数幂法则

a^k=a*a*....*a(k个a),其中k∈N*(即k为正整数)

有理数乘方指数为0幂法则

a^0=1 ,其中a≠0 ,k∈N*

推导:

a^0

=a^(1-1)

=(a^1)/(a^1)

=a/a

=1

有理数乘方负整数指数幂法则

a^(-k)=1/(a^k) ,其中a≠0,k∈N*

推导:

a^(-k)

=a^(0-k)

=(a^0)/(a^k)

=1/(a^k)[2]

有理数乘方正分数指数幂法则

a^(m/n)=

,其中n≠0 , m/n>0,m,n∈N*(即m,n为正整数)

有理数乘方负分数指数幂法则

a^[-(m/n)]=

,其中,a^m≠0(

≠0,a≠0),m/n>0,n≠0,m,n∈N*

推导:

a^[-(m/n)]

=a^(0-m/n)

=(a^0)/[a^(m/n)]

=1/[a^(m/n)]

=1/

=

分数指数幂时,当n=2k,k∈N*,且a^m<0时,则该数在实数范围内无意义特别地,0的非正数指数幂没有意义

有理数乘方平方差

两数和乘两数差等于它们的平方差。

用字母表示为:

(a+b)(a-b)=a^2-b^2

推导:

(a+b)(a-b)

=(a+b)a-(a+b)b

=(a^2+ab)-(b^2+ab)

=a^2-b^2[3]

有理数乘方幂的乘方法则

幂的乘方,底数不变,指数相乘。

用字母表示为:

(a^m)^n=a^(m×n)

幂的乘方

特别指出:a^m^n=a^(m^n)

有理数乘方积的乘方

积的乘方,先把积中的每一个因数分别乘方,再把所得的幂相乘。

用字母表示为:

(a×b)^n=a^n×b^n

这个积的乘方法则也适用于三个以上乘数积的乘方。如:

(a×b×c)^n=a^n×b^n×c^n

有理数乘方同指数幂乘法

同指数幂相乘,指数不变,底数相乘。

用字母表示为:

(a^n)*(b^n)=(ab)^n

有理数乘方完全平方

两数和(或差)的平方,等于它们的平方的和加上(或者减去)它们的积的2倍。

用字母表示为:

(a+b)^2=a^2+2ab+b^2或(a-b)^2=a^2-2ab+b^2

我们一般把前者叫作完全平方公式,把后者叫作完全平方差公式。

有理数乘方立方和

a^3+b^3=(a+b)(a^2-ab+b^2)

有理数乘方立方差

a^3-b^3=(a-b)(a^2+ab+b^2)[4]

有理数乘方多项式平方

(a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ac

有理数乘方二项式

艾萨克·牛顿发现了二项式。二项式是乘方里的复杂运算。右图为二项式计算法则。一般来说,二项式也可以这样表示:

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

…… …… ……

这就是著名的杨辉三角。

有理数乘方速算

有些较特殊的数的平方,掌握规律后,可以使计算速度加快,现介绍如下。

由n个1组成的数的平方

我们观察下面的例子。

1^2=1

11^2=121

111^2=12321

1111^2=1234321

11111^2=123454321

111111^2=12345654321

……

由以上例子可以看出这样一个规律;求由n个1组成的数的平方,先由1写到n,再由n写到1,即:

11...1(n个1)^2=1234...(n-1)n(n-1) (4321)

注意:其中n只占一个数位,满10应向前进位,当然,这样的速算不宜位数过多。

由n个3组成的数的平方

我们仍观察具体实例:

3^2=9

33^2=1089

333^2=110889

3333^2=11108889

33333^2=1111088889

由此可知:

33…3(n个3)^2 = 11…11【(n-1)个1】0 88…88【(n-1)个8】9

相关文档
最新文档