直线平面简单几何体.欧拉公式

直线平面简单几何体.欧拉公式
直线平面简单几何体.欧拉公式

9.85欧拉公式

教学目标:1、了解简单多面体的概念,掌握多面体的欧拉公式。

2、会用欧拉公式解题,了解欧拉公式的证明方法。

3、通过学生的主动参与,培养他们观察发现规律并证明所得猜想的能力

教学重点:简单多面体的欧拉公式

教学难点:简单多面体概念,欧拉公式的应用

教学过程

一.复习引入

⑴什么是多面体?多面体的面?多面体的棱?多面体的顶点?

问题1:课本P52有5个多面体,试分别写出它们的顶点数V,面数F和棱数E ⑶观察上述数据,写出你发现的规律

二.新课讲解

1、欧拉公式

问题2:从上看出有V+E-F=2,再看课本P57表格上方的几个多面体,分别写出它们的顶点数V,面数F和棱数E ,并回答它们是否满足上面的规律。

问题3:若上面的多面体的表面都是用橡皮簿膜制作的,并且可以向它们的内部充气那么那些多面体能够连续变形,最后其表面可变为一个球面?那些变为环面?那些变为对接的球面?

简单多面体:在连续的变形中,表面可变为一个球面的多面体,叫做简单多面体思考:前面的多面体中那些是简单多面体?棱锥,棱柱,正多面体,凸多面体是不是简单多面体?

将问题1、2、3联系起来,能得出什么猜想?用式子表示你的猜想?

V+F﹣E=2 此公式叫做欧拉公式

二、欧拉公式的证明

⑴将多面体转化为由多边形组成的平面图形

⑵变形中的不变量

⑶计算多边形的内角和

①设多面体的F个面分别是n1,n2…,n F边形,各个面的内角总和是多少?

②n1+n2 +…+n F 和多面体的棱数E有什么关系?

③设图中的最大的多边形为m边形,则它的内角和是多少?它的内部包含的其他多边形的顶点数是多少?所有其他多边形内角总和是多少?

④图中所有多边形的内角总和是多少?它是否等于(V- 2)×360°?

从上有(E- F)×360°=(V- 2)×360°

所以V+F -E=2

三、欧拉公式的应用

例1.(1)一个凸多面体的各个面都为五边形,则E与F的关系为V与F的关系为

(2)一个凸多面体的各个顶点都有三条棱相交,则E与V的关系为

(3)一个凸多面体的各个面都为五边形,各个顶点都有三条棱相交,求E、F、V

例2.(1)C60 是由60个原子组成的分子,它结构为简单多面体形状。这个多面体有60 个顶点,从每个顶点都引出3条棱,各面的形状为五边形或六边形两种,试计算C60分子中形状为五边形和六边形的面各有多少种?

(2)有没有棱数为7的简单多面体?

四、练习:求证:如果间单多面体的所有面都是有奇数条边的多边形,那么面数为偶数。

五、作业:同步练习09085

高考数学复习 第76课时第九章 直线、平面、简单几何体空间向量及其运算名师精品教案 新人教A版

高考数学复习 第76课时第九章 直线、平面、简单几何体 空间向量及其运算名师精品教案 新人教A 版 课题:空间向量及其运算 一.复习目标:理解空间向量的概念、掌握空间向量的有关运算及其性质. 二.主要知识: 1.,a b 向量共线的充要条件: ; 2.三点共线: ; 3.三向量共面: ; 4.四点共面: ; 5.两向量夹角的范围 ; 三.课前预习: 1.如图:在平行六面体1111D C B A ABCD -中,M 为11C A 与11D B 的交点。若AB a =, AD b =,1AA c =,则下列向量中与BM 是( ) ()A 1122a b c -++ ()B 1122 a b c ++ ()C 1122 a b c - -+ ()D c b a +-21 21 2.有以下命题: ①如果向量,a b 与任何向量不能构成空间向量的一组基底,那么,a b 的关系是不共线; ②,,,O A B C 为空间四点,且向量,,OA OB OC 不构成空间的一个基底,那么点,,,O A B C 一定共面; ③已知向量,,a b c 是空间的一个基底,则向量,,a b a b c +-,也是空间的一个基底。 其中正确的命题是 ( ) ()A ①② ()B ①③ ()C ②③ ()D ①②③ 3.下列命题正确的是 ( ) ()A 若a 与b 共线,b 与c 共线,则a 与c 共线;()B 向量,,a b c 共面就是它们所在的直线 共面; ()C 零向量没有确定的方向; ()D 若//a b ,则存在唯一的实数λ使得a b λ=; C1

4.已知A 、B 、C 三点不共线,O 是平面ABC 外的任一点,下列条件中能确定点M 与点A 、B 、C 一定共面的是 ( ) ()A OC OB OA OM ++= ()B OC OB OA OM --=2 ()C 3121++= ()D 3 1 3131++= 四.例题分析: 例1.已知在正三棱锥ABC P -中,N M ,分别为BC PA ,中点,G 为MN 中点,求证: BC PG ⊥ 例2.已知H G F E ,,,分别是空间四边形ABCD 的边DA CD BC AB ,,,的中点, (1) 用向量法证明H G F E ,,,四点共面; (2)用向量法证明:BD ∥平面EFGH ; (3)设M 是EG 和FH 的交点,求证:对空间任一点O ,有 1 ()4OM OA OB OC OD =+++ 例3.在平行六面体1111D C B A ABCD -中,底面ABCD 是边长为a 的正方形,侧棱1AA 长为b ,且 1111120AA B AA D ∠=∠=?,求(1)1AC 的长;(2)直线1BD 与AC 所成角的 余弦值。 1B 1A 1C 1D O M G F A B C D E H G N A B C P M

多面体欧拉公式的发现(一)

●教学时间 第九课时 ●课题 §9.9.1 研究性课题:多面体欧拉公式的发现(一) ●教学目标 (一)教学知识点 1.简单多面体的V、E、F关系的发现. 2.欧拉公式的猜想. 3.欧拉公式的证明. (二)能力训练要求 1.使学生能通过观察具体简单多面体的V、E、F从中寻找规律. 2.使学生能通过进一步观察验证所得的规律. 3.使学生能从拓扑的角度认识简单多面体的本质. 4.使学生能通过归纳得出关于欧拉公式的猜想. 5.使学生了解欧拉公式的一种证明思路. (三)德育渗透目标 1.通过介绍数学家的业绩,培养学生学习数学大师的献身科学、勇于探索的科学研究精神、激发学生对科学的热爱和对理想的追求. 2.培养学生寻求规律、发现规律、认识规律,并利用规律解决问题的能力. ●教学重点 欧拉公式的发现. ●教学难点 使学生从中体会和学习数学大师研究数学的方法. ●教学方法 指导学生自学法 首先通过问题1利用具体实物,从观察入手,培养学生对简单多面体V、E、F关系的感性认识从中寻找规律,问题2让学生作进一步观察、验证得出规律,问题3让学生在认识简单多面体的基础上,通过归纳,得出关于欧拉公式的猜想,再通过问题4让学生了解欧拉公式的证明思路,即从理论上探索对发现规律的证明. 以上4个问题逐步深入地展开,旨在不仅使学生在知识上有新的收获,同时应体会和学习研究数学的思想和方法. ●教具准备 投影片三张 第一张:课本P56的问题1及表1(记作§9.9.1 A) 第二张:课本P57的问题2及表2(记作§9.9.1 B) 第三张:课本P57的问题3及P58的问题4(记作§9.9.1 C) ●教学过程 Ⅰ.课题导入 瑞士著名的数学家,是数学史上的最多产的数学家,他毕生从事数学研究,他的论著几乎涉及18世纪所有的数学分支.比如,在初等数学中,欧拉首先将符号正规化,如f(x)表示函数,e表示自然对数的底,a、b、c表示△ABC的三边等;数学中的欧拉公式、欧拉方 程、欧拉常数、欧拉方法、欧拉猜想等.其中欧拉公式的一个特殊公式e iπ+1=0,将数学上的5个常数0、1、i、e、π联在一起;再如就是多面体的欧拉定理V-E+F=2,V、E、F分别

2019-2020学年高一数学 直线、平面、简单几何体教案23 苏教版.doc

2019-2020学年高一数学直线、平面、简单几何体教案23 苏教版 一、素质教育目标 (一)知识教学点 1.二面角的有关概念. 2.二面角的平面角的定义及作法. (二)能力训练点 1.利用类比的方法理解和掌握二面角的有关概念;掌握二面角的平面角的定义. 2.用转化的思维方法将二面角问题转化为其平面角问题,进一步培养学生的空间想象能力和分析、解决问题的能力. 3.通过练习,归纳总结作二面角的平面角的三种方法. (三)德育渗透点 让学生认识到研究二面角的问题是人类生产实践的需要,进一步培养学生实践第一的观点. 二、教学重点、难点、疑点及解决方法 1.教学重点:二面角、二面角的平面角的概念. 2.教学难点:如何选取恰当的位置作出二面角的平面角来解题. 3.教学疑点:二面角的平面角必须满足下列两个条件:一是平面角的顶点必在棱上;二是平面角的两边分别在二面角的两个面内. 三、课时安排 1课时. 四、教与学过程设计 (一)二面角 师:我们知道,两个平面的位置关系有两种:一种是平行,另一种是相交.两个相交平面的相对位置是由这两个平面所成的“角”来确定的.在生产实践中,有许多问题也涉及到两个平面所成的角.如:修筑水坝时,为了使水坝坚固耐久,必须使水坝面和水平面成适当的角度;发射人造地球卫生时,也要根据需要,使卫星的轨道平面和地球的赤道平面成一定

的角度(图看课本P.39中图1—43),等等.这些事实都说明了研究两个平面所成的“角”是十分必要的,我们就把这样的“角”叫二面角,那么如何定义二面角呢?阅读课本P.39—40,回答下列问题. 师:我们先来回忆:什么是角?如何表示? 生:从平面内一点出发的两条射线(半直线)所组成的图形叫做角(如图1—117),表示为∠AOB. 师:根据角的定义,我们可以类似地定义二面角.先给出半平面的定义. 生:一个平面内的一条直线,把这个平面分成两部分,其中的每一部分都叫做半平面. 从一条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫做二面角的棱,这两个半平面叫做二面角的面(如图1—119). 师:那么如何表示二面角呢? 生:棱为AB,面为α、β的二面角记作二面角α—AB—β,如果棱用a表示,则记作二面角α—a—β. 师:二面角的画法通常有哪几种? 生:第一种是卧式法,也称为平卧式(如图1-120).

高二数学欧拉公式-word文档

高二数学欧拉公式 教学目标: 1、了解简单多面体的概念,掌握多面体的欧拉公式。 2、会用欧拉公式解题,了解欧拉公式的证明方法。 3、通过学生的主动参与,培养他们观察发现规律并证明所得猜想的能力 教学重点:简单多面体的欧拉公式 教学难点:简单多面体概念,欧拉公式的应用 教学过程 复习引入 ⑴什么是多面体?多面体的面?多面体的棱?多面体的顶点? 问题1:课本P52有5个多面体,试分别写出它们的顶点数V,面数F和棱数E ⑶观察上述数据,写出你发现的规律 二.新课讲解 欧拉公式 问题2:从上看出有V+E-F=2,再看课本P57表格上方的几个多面体,分别写出它们的顶点数V,面数F和棱数E,并回答它们是否满足上面的规律。 问题3:若上面的多面体的表面都是用橡皮簿膜制作的,并且可以向它们的内部充气那么那些多面体能够连续变形,最后其表面可变为一个球面?那些变为环面?那些变为对接的

球面? 简单多面体:在连续的变形中,表面可变为一个球面的多面体,叫做简单多面体 思考:前面的多面体中那些是简单多面体?棱锥,棱柱,正多面体,凸多面体是不是简单多面体? 将问题1、2、3联系起来,能得出什么猜想?用式子表示你的猜想? V+F﹣E=2此公式叫做欧拉公式 二、欧拉公式的证明 ⑴将多面体转化为由多边形组成的平面图形 ⑵变形中的不变量 ⑶计算多边形的内角和 ①设多面体的F个面分别是n1,n2,nF边形,各个面的内角总和是多少? ②n1+n2++nF和多面体的棱数E有什么关系? ③设图中的最大的多边形为m边形,则它的内角和是多少?它的内部包含的其他多边形的顶点数是多少?所有其他多边形内角总和是多少? ④图中所有多边形的内角总和是多少?它是否等于 (V-2)360? 从上有(E-F)360=(V-2)360 所以V+F-E=2

欧拉公式的应用

欧拉公式的应用 绪论 本文首先介绍了一下欧拉公式以及推广的欧拉公式,对欧拉公式的特点作了简要的探讨.欧拉公式形式众多,在数学领域内的应用范围很广,本文对欧拉公式在三角函数中的应用作了详细的研究,欧拉公式在求三角级数中的应用中、在证明三角恒等式时、解三角方程的问题时、探求一些复杂的三角关系时,可以避免复杂的三角变换,利用较直观的代数运算使得问题得到解决.另一方面,利用欧拉公式大降幂,能够把高次幂的正余弦函数表示为一次幂函数的代数和,克服了高次幂函数在运算上的不方便. 关键词:欧拉公式三角函数降幂级数三角级数

目录 绪论......................................错误!未定义书签。目录......................................错误!未定义书签。 一、绪论 (1) 二、欧拉公式的证明、特点、作用 (1) 三、欧拉公式在三角函数中的应用 (4) (一) 倍角和半角的三角变换 (4) (二) 积化和差与差化积的三角变换 (4) (三) 求三角表达式的值 (5) (四) 证明三角恒等式 (6) (五) 解三角方程 (7) (六) 利用公式求三角级数的和 (7) (七) 探求一些复杂的三角关系式 (8) (八) 解决一些方程根的问题 (9) (九) 欧拉公式大降幂 (10) 结束语 (15)

一、绪论 欧拉公式形式众多,有多面体欧拉公式、欧拉求和公式、cos sin i e i θθθ=+、欧拉积分等多种形式、立体几何、工程方面等方面.由于欧拉公式有多种形式,在数学领域中的应用范围很广,本文只介绍欧拉公式的一种形式“cos sin i e i θθθ=+”以及这种形式在数学中的应用. 二 、欧拉公式的证明、特点、作用 1748年,欧拉在其著作中陈述出公式cos sin i e i θθθ=+,欧拉公式在数学的许多定理的证明和计算中,有着广泛的应用.它将定义和形式完全不同的指数函数和三角函数联系起来,为我们研究这两种函数的有关运算及其性质架起了一座桥梁.同时我们知道三角函数的恒等变换是中学数学中的一个重要内容,也是一个难点,但由于三角恒等变换所用公式众多,这便给解决三角变换问题带来了诸多不便.下面将通过欧拉公式,将三角函数化为复指数函数,从而将三角变换化为指数函数的代数运算,从而使得问题简单化,并给出了欧拉公式在其它几个方面的应用,在高等数学中的部分应用. 欧拉公式cos sin i e i θθθ =+它的证明有各种不同的证明方法,好多《复变 函数》教科书上,是以复幂级数为工具,定义复变指数函数和复变三角函数来进行证明的.下面我们介绍一种新的证明方法:极限法. 证明 令()1n f z i n θ?? =+ ??? (),R n N θ∈∈. 首先证明 ()lim cos sin n f z i θθ→∞ =+. 因为 arg 1n i narctg n n θθ?? ?? += ? ????? , 所以 2 2 211cos sin n n i i narctg i narctg n n n n θθθθ????????? ?+=++ ? ? ? ???????? ?????. 从而2 2 2lim 1lim 1cos sin n n n n i narctg i narctg n n n n θθθθ→∞→∞????????? ?+=++ ? ? ? ???????? ?????.

多面体欧拉公式的发现(二)共9页

●教学时间 第十课时 ●课题 §9.9.2 研究性课题:多面体欧拉公式的发现(二) ●教学目标 (一)教学知识点 1.欧拉公式的证明. 2.欧拉公式的应用. (二)能力训练要求 1.使学生能理解多面体欧拉公式的证明过程并能叙述其证明思路. 2.使学生掌握多面体欧拉公式并灵活地将其应用于解题中. (三)德育渗透目标 继续培养学生寻求规律、发现规律、认识规律、并利用规律解决问题的能力. ●教学重点 欧拉公式的应用. ●教学难点 欧拉公式的证明思路. ●教学方法 学导式 本节课继续上节课对欧拉公式的研究活动,遵循寻求规律——发现规律——认识规律——应用规律的学习过程,对上节课已猜想出的欧拉公式

进一步深入研究,探索它的证明思路,让学生了解这种证明思想,进而达到熟练掌握欧拉公式的目标,以便于学生得心应手地将欧拉公式应用到各种问题的解决中. ●教具准备 投影片三张 问题5(1)(2)(记作§9.9.2 A) 第一张:课本P 59 第二张:本课时教案例1(记作§9.9.2 B) 第三张:本课时教案例2(记作§9.9.2 C) ●教学过程 Ⅰ.课题导入 [师]上节课我们已经猜想出了欧拉公式并且同学们也已自学了它的证明过程,这节课我们继续对它的证明方法及其重要应用进行学习和探讨. Ⅱ.讲授新课 的欧拉公式的证明进行了自学,那么,[师]上节课我们已对课本P 58 谁能说一下课本中的证明思路和关键是什么? [生]将立体图形转化为平面图形. [师]好,前面,我们经常使用把不在同一平面中的几何图形的问题转化为同一平面中图形的问题,所以此处如果能把求一个简单多面体的V、F、E三者之间的关系问题,转化为平面中的问题就会前进一大步了. 那么课本中是怎样实现转化的呢? [生]把多面体想成是用橡皮膜做成的,即课本P 图9—85的多面体, 58

欧拉公式的证明和应用

数学文化课程报告 欧拉公式的证明与应用 一.序言------------------------------------------------------------------------2 二.欧拉公式的证明--------------------------------------3 极限法 --------------------------------------3 指数函数定义法-------------------------------4 分离变量积分法-------------------------------4 复数幂级数展开法-----------------------------4 变上限积分法---------------------------------5 类比求导法-----------------------------------7 三.欧拉公式的应用 求高阶导数-----------------------------------7 积分计算------------------------------------8 高阶线性齐次微分方程的通解------------------9 求函数级数展开式----------------------------9 三角级数求和函数----------------------------10 傅里叶级数的复数形式-------------------------10 四.结语------------------------------------------------11 参考文献-----------------------------------------------11 一.序言

欧拉公式推导

欧拉公式推导: 图4.3所示的两端铰支杆件,受轴向压力N 作用而处于中性平衡微弯状态,杆件弯曲后截面中产生了弯矩M 和剪力V ,在轴线任意点上由弯矩产生的横向变形为1y ,由剪力产生的横向变形为2y ,总变形21y y y +=。 y 图4.3 两端铰支的轴心压杆临界状态 设杆件发生弯曲屈曲时截面的临界应力小于材料比例极限p f ,即p f ≤σ(对理想材料取y p f f =)。由材料力学可得: EI M dz y d -=2 12 由剪力V 产生的轴线转角为: dz dM GA V GA dz dy ?=?==ββγ2 式中 A 、I ——杆件截面面积、惯性矩; E 、G ——材料的弹性模量、剪切模量; β—— 与截面形状有关的系数。 因为 222 22dz M d GA dz y d ?=β 所以 2222122222d y d y d y M d M dz dz dz EI GA dz β=+=-+? 由 y N M ?=得: 2222dz y d GA N y EI N dz y d ?+?-=β

01=?+??? ??-''y EI N GA N y β 令 ??? ??-=GA N EI N k β12 得常系数线性二阶齐次方程 20y k y ''+= 其通解为:sin cos y A kz B kz =+ 由边界条件:;0,0==y z 0=B ,kz A y sin =。再由0,==y l z 得: 0sin =kl A 上式成立的条件是0=A 或0sin =kl ,其中0=A 表示杆件不出现任何变形,与杆件微弯的假设不符。由0sin =kl ,得πn kl =(=n 1,2,3…),取最小值=n 1,得π=kl ,即 2 221N k N l EI GA πβ==??- ??? 由此式解出N ,即为中性平衡的临界力cr N 12222222211Ι11γππβππ?+?=?+?=l ΕΙl ΕGA l ΕΙl ΕΙ N cr (4.6) 临界状态时杆件截面的平均应力称为临界应力cr σ 12 22211γλπλπσ?+?==ΕΑΕA N cr cr (4.7) 式中 1γ——单位剪力时杆件的轴线转角,)/(1GA βγ=; l ——两端铰支杆得长度; λ——杆件的长细比,i l /=λ; i ——杆件截面对应于屈曲轴的回转半径,A I i /=。 如果忽略杆件剪切变形的影响(此影响很小)则式(4.6)、(4.7)变为: 22cr E πσλ = (4.8)

欧拉公式的应用

滨州学院 毕业设计(论文) 题目欧拉公式的应用 系(院)数学与信息科学系 专业数学与应用数学 班级 2004级本科四班 学生姓名杨明证 学号 2004040635 指导教师徐化忠 职称讲师 2008年04月18日

欧拉公式的应用 摘要 本文首先介绍了一下欧拉公式以及推广的欧拉公式,对欧拉公式的特点作了简要的探讨.欧拉公式形式众多,在数学领域内的应用范围很广,本文对欧拉公式在三角函数中的应用作了详细的研究,欧拉公式在求三角级数中的应用中、在证明三角恒等式时、解三角方程的问题时、探求一些复杂的三角关系时,可以避免复杂的三角变换,利用较直观的代数运算使得问题得到解决.另一方面,利用欧拉公式大降幂,能够把高次幂的正余弦函数表示为一次幂函数的代数和,克服了高次幂函数在运算上的不方便. 关键词:欧拉公式三角函数降幂级数三角级数

Euler's Formula for the Application Abstract This text first introduced the Euler's formula and the generalized Euler's formula, and then briefly discussed the characteristics of the Euler's formula. The form of the Euler's formula is numerous ,and the application of the Euler's formula is extensive, this text researches the Euler's formula in the Triangle Function in detail, the Euler's formula in the application of the trigonometric series、the demonstration of the trigonometric identity, the solution of the problems of the trigonometry、the search of the complicated triangle ,the complex triangular transformation can be avoided , the problems can be resolved with more visualized algebraic operation . On the other hand, the use of the decreasing powers of the Euler's formula can express the sine function and the cosine function of higher-power as the algebraic addition of the function of the first power, To overcome the inconvenience of the high-power function in computation. Key words: Euler's formula trigonometric function series of decreasing powers triangular numbers

欧拉公式的证明(整理)Word版

欧拉公式的证明 著名的欧拉公式e^(iθ)=cosθ+isinθ是人们公认的优美公式。原因是指数函数和三角函数在实数域中几乎没有什么联系,而在复数域中却发现了他们可以相互转化,并被一个非常简单的关系式联系在一起。特别是当θ=π时,欧拉公式便写成了e^(iπ)+1=0,就这个等式将数中最富有特色的五个数0,1,i , e , π ,绝妙地联系在一起 方法一:用幂级数展开形式证明,但这只是形式证明(严格的说,在实函数域带着i只是形式上的) 再抄一遍:设z = x+iy 这样 e^z = e^(x+iy)=e^x*e^(iy),就是e^z/e^x = e^(iy) 用牛顿幂级数展开式 e^x = 1+x+x^2/2!+x^3/3!+.....+x^n/n!+...... 把 e^(iy) 展开,就得到 e^z/e^x = e^(iy) =1+iy-y^2/2!-iy^3/3!+y^4/4!+iy^5/5!-y^6/6!-..... =(1-y^2/2!+y^4/4!-y^6/6!+.....) +i(y-y^3/3!+y^5/5!-....) 由于 cosy = 1-y^2/2!+y^4/4!-y^6/6!+....., siny = y-y^3/3!+y^5/5!-.... 所以 e^(x+iy)=e^x*e^(iy)=e^x*(cosy+isiny) 即 e^(iy) = (cosy+isiny) 方法二:见复变函数第2章,在整个负数域内重新定义了sinz cosz而后根据关系推导出了欧拉公式。着个才是根基。由来缘于此。 方法一是不严格的。 再请看这2个积分 ∫sqrt(x^2-1)dx=x*sqrt(x^2-1)/2-ln(2*sqrt(x^2-1)+2x)/2 ∫sqrt(1-x^2)dx=arcsin(x)/2+x*sqrt(1-x^2)/2; 上式左边相当于下式左边乘以i 于是上式右边相当于下式右边乘以i 然后化简就得到欧拉公式 这个证明方法不太严密 但很有启发性 历史上先是有人用上述方法得到了对数函数和反三角函数的关系 然后被欧拉看到了,才得到了欧拉公式 设a t θ ?R,ρ?R+,a^(it)?z有: a^(it)=ρ(cosθ+isinθ) 1 因共轭解适合方程,用-i替换i有: a^(-it)=ρ(cosθ-isinθ) 2

人教版高中数学全套教案直线、平面、简单几何体

立体几何序言课教案设计 一、充分认识序言课的重要性,是上好立体几何序言课的前提。 立体几何序言课以课本中的“引言”为主要教学内容,让学生对立体几何这门功课有一个粗略的整体性了解,在学习具体内容之前有一个积极的思想准备。通过序言课的教学,学生明白了立体几何研究的内容及学习立体几何的目的,就能为以后的学习打下一个良好的基础。 然而有的老师对序言课却不够重视,把已经十分抽象概括的“引言”进一步抽象概括,开课后草草几句便开始了“平面”的教学。教师急急匆匆,学生稀里糊涂,极易给后继学习带来消极影响。 由此可见,教师在充分认识序言课重要性的前提下,认真组织教学,努力完成序言课的教学任务,对提高立体几何课的教学效益是至关重要的。 二、排除心理障碍,激发学习兴趣,是立体几何序言课的主要任务。 部分学生认为立体几何比平面几何难学,存在畏惧心理;多数学生对能不能学好这门功课信心不足,对怎样学习这门功课心中无数。这种消极心理状态必然会给学习造成消极影响。因此在序言课教学中,应把排除上述心理障碍,激发学生学习立体几何的兴趣作为首先任务。 1.尽量引用实例。 “引言”中指出,“建造厂房、制造机器、修筑堤坝等,都需要进一步研究空间图形的问题。”为了使学生真正认识到立体几何是一门应用广泛的基础学科,我们在序言课上展示学校教学楼的建筑图纸,学生争相观看,兴趣盎然,并能辨认出:“这就是我们的教学楼!”教者由此指出:“没有立体几何知识,这张图纸是画不出来的。”“同学们能从图纸上看出是我们的教学楼,这说明大家已具有一定的空间想象能力,这正是学习立体几何的基础。有这样好的基础,何愁学不好它?”听到这些鼓励,学生常露出自信的微笑。 2.巧用教具、模型。 要求学生自制简单几何体的模型这样在序言课上就可以让学生观看前届学生自制的各种模型。那些自制的模型,有纸质的,有木质的,有用铅丝做的,也有用粘土做的,看颜色,五彩缤纷,望形状,新颖别致。学生看了这些精美的并留有制作者姓名的模型后,赞叹不已,大有“跃跃欲试”之势。 借助模型还可以帮助学生克服学习平面图形时产生的思维定势的消极影响。

直线、平面、简单几何体

直线、平面、简单几何体 【模拟试题】 第I卷(选择题共60分) 一. 选择题(本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的) 1. (青岛统测)已知直线与平面满足,,,那么必有() A. 且 B. 且 C. 且 D. 且 2. (知识原创题)若A、B、C、D四点满足AB⊥CD、AC⊥BD、AD⊥BC,则这四点的位置关系是() A. 一定共面 B. 一定不共面 C. 不一定共面 D. 不存在 3. (郑州二次质量预测)正四棱锥P—ABCD的所有棱长都相等,E为PC的中点,那么异面直线BE与PA所成角的余弦值等于() A. B. C. D. 4. (知识交汇题)已知相交直线都在平面内,并且都不在平面内,若 中至少有一条与相交;与相交,则p是q的() A. 充分不必要条件 B. 必要不充分条件 C. 充要条 件 D. 不充分也不必要条件 5. (热点创新题)若正三棱锥的侧面都是直角三角形,那么侧面与底面所成的角的余弦值是() A. B. C. D. 6. (北京西城抽测)球O的截面把垂直于截面的直径分成1:3两部分,若截面圆半径为,则球O的体积为()

A. B. C. D. 7. (济南统测)如图,正方体ABCD—中,E、F分别是AB、的中点,则异面直线与EF所成角的余弦值为() A. B. C. D. 8. (南京模拟)四棱锥P—ABCD,AD⊥面PAB,BC⊥面PAB,底面ABCD 为梯形,AD=4,BC=8,AB=6,,满足上述条件的四棱锥的顶点P的轨迹是() A. 圆 B. 不完整的圆 C. 抛物线 D. 抛物线的一部分 9. (知识创新题)把一副三角板ABC与ABD摆成如下图所示的直二面角D —AB—C,则异面直线DC与AB所成的角为() A. B. C. D. 10. (易错警醒题)已知正四棱锥的侧棱与底面成角,则此四棱锥的两个相邻侧面所成的二面角的余弦值是()

简单多面体的欧拉公式优秀教学设计

简单多面体的欧拉公式 新课程倡导教师对学生最重要的价值引导就是“会做数学”比“会说数学”更重要,课堂始终以“做数学”为主旋律,教师不断地创设有意义的问题情境或教学活动,激励学生在解决问题中学习。与传统数学相比,现代数学的巨大变化还表现在,通过观察作出猜想、建立模型、然后进行修改调整,成为现代数学家以及应用数学家、工程技术人员的基本思维。 “研究性课题:多面体欧拉定理的发现”是一个探究式、自主学习的课题,在这节课中,我利用网络资源,不断地创设一系列问题情境,引导学生独立自主地发现问题——解决问题——应用知识,提高了学习的效率。在教学中,我设计了以下几个环节,愿与大家探讨。 一、创设情境提出问题 歌尼斯堡问题是学生在课前搜集相关资料的时候找到的一个相关问题,由于它是平面的问题,比较简单易懂。在课堂上学生积极地向其他同学介绍这个有意思的问题。不仅扩充了课程资源,也渗透了与图形大小、长短无关的一类几何问题,为接下去的学习活动提供了良好的教学情境。 二、问题驱动自主探究 接下来,以网页课件为媒体,开展以下活动: 活动一:问题驱动引出定理 通过一系列问题,引领学生体验从二维到三维的类比推广,把问题引向未研究过的的领域,并通过学生自己的实践(数正多面体的棱数、面数、顶点数)总结出、有价值的规律。学生相互交流思考问题。师生交流后教师给出密码,提供比较完整的问题解答,实现了师生互动与交流。 活动二:实例验证加深理解 学生在知道了欧拉定理后,以正四面体为例,通过课件的提示帮助,体会“平面法”验证欧拉定理的思想。 教师布置任务:以同样的思想方法,以正六面体为例,验证欧拉定理。汇总各小组的研究方案,选代表在黑板上演示,并宜从一些不成立的步骤着手,引导学生找出问题所在,在逐步矫正中,加深学生对“平面法”的理解。 随后由教师提供密码,给出比较完善的方案。 活动三:知识应用解决问题 用欧拉定理解决所提出的问题:正多面体为什么只有五种?由学生自己阅读,教师加以点拨即可。 随后以一些实际应用的例题体会欧拉定理在各学科中的应用。 三、总结提炼拓展延伸 四、反思总结 活动课中让学生探讨一些具有挑战性的问题,引导学生通过观察,进行猜想,进一步验证猜想。通过一系列的思维活动,让学生主动地获取知识,理解数学的思想方法、思维方式;引导学生体会发现规律的过程,体现了课堂教学的实验性、探索性,实现了

多面体的欧拉公式

多面体的欧拉公式 在数学历史上有很多公式都是欧拉(Leonhard Euler)发现的,它们都叫做欧拉公式,分散在各个数学分支之中。 欧拉13岁进入瑞士巴塞尔大学读书,15岁获得学士学位,16岁又获得巴塞尔大学哲学硕士学位,轰动了当时的科学界。但是,他的父亲却希望他去学神学。直到小欧拉19岁时获得了巴黎科学院的奖学金之后,父亲才不再反对他读数学。欧拉是一位创作性超群的数学家,后来从瑞士转赴俄国和德国工作,因此三个国家都声称他是本国的科学家。 有许多关于欧拉的传说。比如,欧拉心算微积分就像呼吸一样简单。有一次他的两个学生把一个复杂的收敛级数的17项加起来,算到第50位数字,两人相差一个单位,欧拉为了确定究竟谁对,用心算进行全部运算,最后把错误找了出来。欧拉创作文章的速度极快,通常上一本书还没有印刷完,新的手稿就写好了,导致他的写作顺序与出版顺序常常相反,让读者们很郁闷。而且,收集这些数量庞大的手稿也是一件困难的事情。瑞士自然科学会计划出一部欧拉全集,这本全集编了将近100年,终于在上个世纪90年代基本完成,没想到圣彼得堡突然又发掘出一批他的手稿,使得这本全集至今仍未完成。欧拉28岁时一只眼睛失明了,后来另一只眼睛也看不见了,据说是因为操劳过度,也有一说是因为观察太阳所致。尽管如此,他仍然靠心算完成了大量论文。 下面来看看欧拉公式中最著名和优美的一个。 拓扑学的欧拉公式描述了多面体顶点(Vertex),边(Edge)和面(Face)之间的关系: V - E + F = X 其中,V是多面体的顶点个数,E是多面体的棱的条数,F是多面体的面数, X是多面体的欧拉示性数(Euler characteristic)。 X是拓扑不变量,就是无论再怎么经过拓扑变形也不会改变的量,是拓扑学研究的范围。X 的值依赖于几何物体的形态和曲面的取向。 可定向性——大部分我们在物理世界中遇到的曲面是可定向的。例如平面,球面与环面是可定向的。但是莫比乌斯带(M?bius strip)不可定向,它在三维空间中看起来都只有一“侧”。假设一只蚂蚁在莫比乌斯带上爬行,它可以在不穿过边界的情况下爬到曲面的另一侧。 亏格(Genus)——可定向曲面的亏格是一个整数。如果沿一个几何曲面的任意一条简单闭合曲线切开,都能把曲面切断,那么这个曲线的亏格就是0。如果存在一条简单闭合曲线在切开后,曲面没有分成两个部分,那么亏格就是1。进一步的在亏格为1的曲面上切开一条曲线后,还能再找到一条这样的曲线,那么亏格为2。依次类推。

欧拉公式的证明方法和应用

欧拉公式的证明方法和 应用 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

欧拉公式 θθθ sin cos i e i +=的证明方法和应用 摘要:在复数域内用几种不同的方法证明欧拉公式θθθ sin cos i e i +=,举例说明欧拉公式在数学中的几类应用,通过总结多种方法看问题的思想来解决问题,通过几种不同种类的问题的解决方案让读者更加明白欧拉公式在学习中的多方面思想和数学中的重要性。 关键词:欧拉公式、微分中值定理、证明、应用、三角函数 1.欧拉公式意义简说 在我们所学过的指数函数和三角函数在实数域中几乎没有什么联系,在复数域中却可以相互转换,被θθθ sin cos i e i +=这简单的关系联系在一起,这个一直盘踞在许多研究家心里的欧拉公式,有着很多很多的疑问,特别是当πθ=时,有1-=e i π ,即01=+e i π ,这个等式将数学中的最富有特色的五个数0、1、i 、e 、π联系在一起,0,1是实数中特殊的数字,i 是一个很重要的虚数单位,e 是无理数它取自瑞士数学家欧拉(Euler,1707-1783)的英文开头[5],π是圆周率在公园前就被定义为“周长与直径的比”。它们在数学中各自都有发展的方面。因此e i π +1=0公式充分揭示了数学的统一性、简洁性和奇异性。了解这些内容对于学习高等数学,对于我们在研究较深的数学问题上有很大帮助。 2.欧拉公式的证明简述 在这里,我把几种证明欧拉公式的方法总结在一起,对学者学习欧拉公式提供多方面的题材,并作出知识的一种综合理解。 幂级数展开式的证明法 引用三角函数和指数函数“幂级数展开式”证明欧拉公式θθθ sin cos i e i +=, 复指数定义法 用复指数定义)sin (cos y i y e e e x iy x z +==+,证明欧拉公θθθ sin cos i e i += 类比法求导法 通过实函数的性质来对复函数进行求导运算(附件①),通过构造x i x x f e ix sin cos )(+= , 0)(='x f 用lagrange 微分中值定理推论[3],从而证明1)(=x f ,使得x i x e ix sin cos += 分离变量积分法

欧拉公式的证明

欧拉公式的证明 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

欧拉公式的证明 着名的欧拉公式e^(iθ)=cosθ+isinθ是人们公认的优美公式。原因是指数函数和三角函数在实数域中几乎没有什么联系,而在复数域中却发现了他们可以相互转化,并被一个非常简单的关系式联系在一起。特别是当θ=π时,欧拉公式便写成了e^(iπ)+1=0,就这个等式将数中最富有特色的五个数0,1,i , e , π ,绝妙地联系在一起 方法一:用幂级数展开形式证明,但这只是形式证明(严格的说,在实函数域带着i只是形式上的) 再抄一遍:??? 设z = x+iy 这样 e^z = e^(x+iy)=e^x*e^(iy),就是 e^z/e^x = e^(iy) 用牛顿幂级数展开式 e^x = 1+x+x^2/2!+x^3/3!+.....+x^n/n!+...... 把 e^(iy) 展开,就得到 e^z/e^x = e^(iy) =1+iy-y^2/2!-iy^3/3!+y^4/4!+iy^5/5!-y^6/6!-..... =(1-y^2/2!+y^4/4!-y^6/6!+.....) +i(y-y^3/3!+y^5/5!-....) 由于 cosy = 1-y^2/2!+y^4/4!-y^6/6!+.....,

siny = y-y^3/3!+y^5/5!-.... 所以 e^(x+iy)=e^x*e^(iy)=e^x*(cosy+isiny) 即 e^(iy) = (cosy+isiny) 方法二:见复变函数第2章,在整个负数域内重新定义了sinz cosz而后根据关系推导出了欧拉公式。着个才是根基。由来缘于此。 方法一是不严格的。 再请看这2个积分 ∫sqrt(x^2-1)dx=x*sqrt(x^2-1)/2-ln(2*sqrt(x^2-1)+2x)/2 ∫sqrt(1-x^2)dx=arcsin(x)/2+x*sqrt(1-x^2)/2; 上式左边相当于下式左边乘以i 于是上式右边相当于下式右边乘以i 然后化简就得到欧拉公式 这个证明方法不太严密 但很有启发性 历史上先是有人用上述方法得到了对数函数和反三角函数的关系 然后被欧拉看到了,才得到了欧拉公式 设a t θ ?R,ρ?R+,a^(it)?z有:

9直线平面简单几何体.

9.直线、平面、简单几何体 一、选择题:(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目 要求的) 1、已知a (0, 1,1),b (1,2, 1),则a 与b 的夹角等于 A . 90° B . 30° C . 60° D . 150° 2、设 M 、 0、A 、B 、C 是空间的点,则使 M 、A 、 B 、 C 一定共面的等式是 A . OM OA O B O C 0 B . OM 20A OB OC C . OM !OA 1 一 1 - — OB OC D . MA MB MC 0 2 3 4 3、 下列命题不正确的是 A. 过平面外一点有且只有一条直线与该平面垂直; B. 如果平面的一条斜线在平面内的射影与某直线垂直,则这条斜线必与这条直线垂直; C. 两异面直线的公垂线有且只有一条; D .如果两个平行平面同时与第三个平面相交,则它们的交线平行。 4、 若m 、n 表示直线, 表示平面,则下列命题中,正确的个数为 —m 〃 n —m —m —m 〃 ① n ② m 〃 n ③ m n ④ n m n n 〃 m n A . 1个 B . 2个 C . 3个 D . 4个 5、四棱锥成为正棱锥的一个充分但不必要条件是 A .各侧面是正三角形 B .底面是正方形 C .各侧面三角形的顶角为 45度 D .顶点到底面的射影在底面对角线的交点上 2 6、若点A ( 4 , 4—口,1+2 丫)关于y 轴的对称点是B (-4入,9, 7 ―丫),则入,口,Y 的值依次 C . — 3, — 5, 8 D . 2, 5, 8 7、已知一个简单多面体的各个顶点处都有三条棱,则顶点数 10、已知球面的三个大圆所在平面两两垂直,则以三个大圆的交点为顶点的八面体的体积与球体积之比是 角线之间的距离的最值为 V 与面数F 满足的关系式是 A . 2F+V=4 B . 2F — V=4 8、侧棱长为2的正三棱锥,若其底面周长为 C . 2F+V=2 ( D ) 2F — V=2 9, 则该正三棱锥的体积是 B . 33 9、正方体 ABCD —A 1B 1C 1D 1中,E 、F 分别是棱 AB , BB 1的中点, A 1E 与C 1F 所成的角是B,则 A . 0 =600 B . 0 =450 C . cos D . sin A . 2 : n 11、设 A , B , C , A .钝角三角形 B . 1 : 2 n D 是空间不共面的四点, B .直角三角形 C . 1 : n 且满足 AB AC 0 , C .锐角三角形 D . 4: 3n AC AD 0, AB AD D .不确定 0,则厶BCD 是 12、将 B =600,边长为1的菱形ABCD 沿对角线AC 折成二面角 若 [60 ° ,120 ° ], 则折后两条对

复数欧拉公式的证明和应用

复数欧拉公式 θθθ sin cos i e i +=的证明和应用 摘要:在复数域内用几种不同的方法证明欧拉公式θθθ sin cos i e i +=,举例说明欧拉公式在数学中的几类应用,通过总结多种方法看问题的思想来解决问题,通过几种不同种类的问题的解决方案让读者更加明白欧拉公式在学习中的多方面思想和数学中的重要性。 关键词:欧拉公式、微分中值定理、证明、应用、三角函数 1.欧拉公式意义简说 在我们所学过的指数函数和三角函数在实数域中几乎没有什么联系,在复数域中却可以相互转换,被θθθ sin cos i e i +=这简单的关系联系在一起,这个一直盘踞在许多研究家心里的欧拉公式,有着很多很多的疑问,特别是当πθ=时,有1-=e i π ,即01=+e i π ,这个等式将数学中的最富有特色的五个数0、1、i 、e 、π联系在一起,0,1是实数中特殊的数字,i 是一个很重要的虚数单位,e 是无理数它取自瑞士数学家欧拉(Euler,1707-1783)的英文开头[5], π是圆周率在公园前就被定义为“周长与直径的比” 。它们在数学中各自都有发展的方面。因此e i π +1=0公式充分揭示了数学的统一性、简洁性和奇异性。了解这些内容对于学习高等数学,对于我们在研究较深的数学问题上有很大帮助。 2.欧拉公式的证明简述 在这里,我把几种证明欧拉公式的方法总结在一起,对学者学习欧拉公式提供多方面的题材,并作出知识的一种综合理解。 2.1幂级数展开式的证明法 引用三角函数和指数函数“幂级数展开式”证明欧拉公式θθθ sin cos i e i +=, 2.2复指数定义法 用复指数定义)sin (cos y i y e e e x iy x z +==+,证明欧拉公θθθ sin cos i e i += 2.3类比法求导法 通过实函数的性质来对复函数进行求导运算(附件①),通过构造x i x x f e ix sin cos )(+= , 0)(='x f 用lagrange 微分中值定理推论[3],从而证明1)(=x f ,使得x i x e ix sin cos += 2.4分离变量积分法 假设x i x z sin cos +=,求导得 iz dx dz =,通过分离变量得,idx z dz =,然后两边取积分得

相关文档
最新文档