自由基聚合测试题答案

自由基聚合测试题答案
自由基聚合测试题答案

测验一(2009-11-5,50分钟)

一填空题(30分,每一答案分)

1、PET的中文名称是涤纶/聚对苯二甲酸乙二醇酯,结构式是-[CO-C6H4-COOCH2CH2O]-,括号内的部分称重复单元、链节;由单体合成PET的聚合过程中随单体转化率增加聚合物分子量逐渐增加。

2、氯乙烯的链式聚合反应机理是自由基聚合,控制其产物分子量的手段是调节聚合反应温度;要降低自由基聚合合成PSt的分子量,可以采用提高引发剂浓度、降低单体浓度、提高反应温度、加入分子量调节剂等手段;

3、推导自由基聚合动力学方程时稳态假定的含义是自由基浓度处于稳定状态,自由基的生成速率等于自由基的消失速率;除稳态假定外,另外两个假定是等活性假定、聚合度很大假定;若某一单体的聚合动力学研究结果得Rp∝[I],说明链终止机理为单击终止和双基终止并存;

4、出现自动加速现象时体系中的自由基浓度增加,聚合物的分子量增加/升高。

5、动力学链长ν的定义是每个活性中心从引发到活性消失期间所消耗的单体分子数;当无链转移且偶合终止时,ν和Xn的关系为Xn=2ν。

6、а-甲基苯乙烯、苯乙烯、四氟乙烯三种单体聚合热从大到小的顺序为四氟乙烯>苯乙烯>а-甲基苯乙烯.

二、下列单体能否进行聚合并指出聚合反应机理(17分,每一答案分)

CH2=C(CH3)COOR 能自由基聚合、阴离子聚合

CH3CH=CHCOOCH3不能聚合

CH2=CHOR 能阳离子聚合

CH2=CHOOCCH3能自由基聚合

CH2=CCH3CH=CH2自由基、阴离子、阳离子聚合(配位聚合)

HOOC(CH2)6-OH 能缩合聚合或逐步聚合

CH2=C(CN)2能阴离子聚合

CH2=CHCH3 能配位聚合

三、简答题(18分)

1、自由基聚合引发剂活性的判据有哪几个引发剂的引发效率常低于,主要的原因有哪些(12分)

答:引发剂分解速率常数(kd)、引发剂分解活化能(Ed)、半衰期(t1/2)、残留分率([I]/[I]0); 诱导分解、笼蔽效应。

2、简述自由基本体聚合中自动加速现象产生的原因。(6分)

均相体系:随转化率增加,体系粘度增加,妨碍了大分子链自由基的扩散运动,降低了两个链自由基相遇的几率,导致链终止反应速率常数随粘度的不断增加而逐步下降;另一方面,体系粘度的增加对小分子单体扩散的影响并不大,链增长反应速率常数基本不变。粘度增加总的结果是使(k P/k t1/2)值加大,由于聚合反应速率与(k P/k t1/2)值成正比,因而出现了自动加速现象。由于这种自动加速主要是因体系粘度增加引起的,因此又称凝胶效应。

非均相体系:反应形成的聚合物一开始就从体系中沉析出来,链自由基被埋在长链形成的无规线团内部,阻碍了双基终止。这种沉淀效应对双基终止的抑制效果远大于凝胶效应。

四、计算题(29分)

MMA 在60℃以BPO 为引发剂在苯中进行溶液聚合,已知t 1/2=48hr, 甲基丙烯酸甲酯在60℃下的kp 2/kt=1×10-2L/ ,C M =×10-4,f=,60℃下MMA 的链自由基85%是岐化终止,15%是偶合终止。如果起始投料量总为100ml 溶液,其中含20g 甲基丙烯酸甲酯和,试求: 聚合

(1)写出聚合的链引发、链终止基元反应式(8分)。 (2)反应初始瞬间生成的聚合物的数均聚合度(17分)。

(3)如果聚合前体系中不小心引入少量氧气,分析对聚合会有什么影响如果引入少量N,N-二甲基苯胺,对聚合又会有怎样的影响(10分)

(1)

C O O O C

O 2

C O

O

C O O

+C O O

CH 2链引发:

C

CH 3COOCH

3

H 2C C COOCH

3

CH

C O

O

CH 2

链终止:

C

CH 32

C O O

CH 2

CH 3COOCH

3

CH 3

COOCH

3

O

O

C O O

CH 2

CH 2COOCH

3

+

C O

O

CH 2

CH COOCH 3CH 3

(3)1

(/2)Rt

M Rp Xn

C D C =++(5分)或其他两种形式的公式

M p p t C M k R k D C

Xn +?+=22]

[2)2(1

(4分)

ν=869(2分)

s L mol M I k fk k R t d p p ??=???

? ??=-/10302.2][][521

2

1

1/21/2

2()[]1

[]

fkdkt I Rt Rp

kp M ν

=

=

31(0.15/20.85)1.1510M Xn C -=+??+ 31 1.25510797Xn

Xn -=?→→=(5分)

(4)

聚合反应温度为60度,少量氧气引入体系,此时氧气是自由基聚合的阻聚剂,可使聚合体系出现诱导期,诱导期后,聚合开始进行;(5分)

如果引入少量N,N-二甲基苯胺,此时N,N-二甲基苯胺与BPO 间构成氧化还原引发体系,引发反应活化能大为降低,自由基产生速率快,聚合速率会加快;60度下聚合速率也可能过快,自动加速现象可能出现早;也可能由于前期引发剂分解过快,导致聚合后期出现死端聚合现象(只要说明第一点即可)(5分)。

活性可控自由基聚合

活性/可控自由基聚合 在20世纪50、60年代,自由基聚合达到了它的鼎盛时期。但由于存在链转移和链终止反应,传统自由基聚合不能较好地控制分子量及大分子结构[1]。1956年美国科学家Szwarc等提出了活性聚合的概念[2],活性聚合具有无终止、无转移、引发速率远远大于链增长速率等特点,与传统自由基聚合相比能更好地实现对分子结构的控制,是实现分子设计、合成具有特定结构和性能聚合物的重要手段。但离子型活性聚合反应条件比较苛刻、适用单体较少,且只能在非水介质中进行,导致工业化成本居高不下,较难广泛实现工业化。鉴于活性聚合和自由基聚合各自的优缺点,高分子合成化学家们联想到将二者结合,即可控活性自由基聚合(CRP)或活性可控自由基聚合。CRP可以合成具有新型拓扑结构的聚合物、不同成分的聚合物以及在高分子或各种化合物的不同部分链接官能团,适用单体较多,产物的应用较广,工业化成本较低。目前实现“活性”/可控自由基聚合可分以下几种途径: (1) 稳定“活性”自由基聚合(SFRP);(2) 原子转移自由基聚合(ATRP);(3)可逆加成-断裂链转移聚合(RAFT)。 一、稳定“活性”自由基聚合(SFRP) SFRP属于非催化性体系,是利用稳定自由基来控制自由基聚合。其机理是按照下面的可逆反应进行:外加的稳定自由基X·可与活性自由基P·迅速进行失活反应,生成“休眠种”P-X,P-X能可逆分解,又形成X·及活性种自由基P·而链增长。有研究表明,使用烷氧胺作引发剂效果好[3]。

反应体系中的自由基活性种P·可抑制在较低的浓度,这样就可以减少自由基活性种之间的不可逆终止作用,从而聚合反应得到控制。稳定自由基X·,主要有TEMPO(2,2,6,6-四甲基-1-哌啶氮氧自由基)和CoⅡ·,TEMPO属于稳定的有机自由基;CoⅡ·属于稳定的有机金属自由基。氮氧稳定自由基这类体系聚合的一大特点是聚合工艺较简单,可合成一些具有特殊结构的大分子,如树枝-线状杂化结构、聚苯乙烯嵌段共聚物等[4,5],其缺点是氮氧自由基的价格较贵,合成困难,只适用于苯乙烯及其衍生物,并且聚合慢,温度需在110℃~140℃之间,在聚合过程中增长链自由基和氮氧自由基可发生歧化终止的副反应而影响控制程度。不过,Moad、Thang等[6]认为,这些缺点是可以避免的,他们采用新的一类氮氧自由基2,2,5,5-(tetraalkylimida zolidin-4-one-1-oxyl)或其衍生物替代TEMPO组成的聚合体系,得到了分子量可控和窄分子量分布的均聚物、无规共聚物和嵌段共聚物,同时这类聚合反应具有比TEMPO聚合体系更好的活性聚合特征,并且具有较易合成、无挥发性和副反应较少等优点。另外一种方法是利用电子效应作用于氮氧自由基[7]。用CoⅡ·类稳定自由基体系聚合得到的聚合物分子量不高,分子量分布较宽[8]。可以相信,通过使用新型氮氧自由基,此体系完全可以扩展到(甲基)丙烯酸和其它单体。 二、原子转移自由基聚合(ATRP) [9] 自由基是一种十分活泼的活性种,在自由基聚合中极易发生链转移和链终止,所以要抑制副反应,聚合体系中必须具有低而恒定的自由基浓度;但又要维持可观的反应速度(自由基浓度不能太低);为解决这一矛盾,高分子化学家们受活性正离子聚合体系的启发,将可逆链转移和链终止的概念引入自由基聚合,通过在活性种和休眠种之间建立一个快速交换反应,成功的实现了矛盾的对立统一。

第四章自由基共聚合作业

第四章自由基共聚合作业 P146T 思考题4.考虑r1=r2=1;r1=r2=0;r1>0,r2=0;r1r2=1等情况,说明11f f F =()的函数 关系和图像特征。 解答:由21112122111222 r f +f f r f +2f f +r f F = 当r1=r2=1时,11f F =,如图;当r1=r2=0时,11= 2F ,如图 当r1>0,r2=0时,1121112r f +f r f +2f F =,如图;当r1r2=1时,11122d[]d[]r d[]d[] M M M M =,如图

P147T1.氯乙烯-醋酸乙烯酯、甲基丙烯酸甲酯-苯乙烯两对单体聚合,若两体系中醋酸乙烯酯和苯乙烯的浓度均为15%(质量分数),根据文献报道的竞聚率,试求共聚物起始组成。 解答:由氯乙烯-醋酸乙烯酯的竞聚率为:r1=1.68,r2=0.23; =15%=85%ωω(醋酸乙烯酯),(氯乙烯);10.85 62.5f ==0.8860.851-0.85+62.586 () 21f =1-f =0.114 21112122111222 r f +f f =0.932r f +2f f +r f F ?=;10.93262.5==0.9090.93262.5+0.06886W ??? 甲基丙烯酸甲酯-苯乙烯的竞聚率:r1=0.46,r2=0.52; 10.85 100f ==0.8550.851-0.85+100104 ();21f =1-f =0.145;21112122111222r f +f f =0.773r f +2f f +r f F ?= 10.7731000.7640.7731000.23104 W ?==?+? P147T1.甲基丙烯酸甲酯(1M )浓度=5-1mol L ?,5-乙基-乙烯基吡啶浓度=1-1 mol L ?,竞聚率:r1=0.40,r2=0.69; a.计算共聚物起始组成(以摩尔分数计), b.求共聚物组成和单体组成相同两单体摩尔配比。 解答:甲基丙烯酸甲酯浓度为5-1mol L ?,5-乙基-乙烯基吡啶浓度为11mol L -?; 01 5f =6,021f =6;21112122111222r f +f f =0.725r f +2f f +r f F ?= 即起始共聚物,甲基丙烯酸甲酯的摩尔分数为72.5% 由r1<1,r2<1,21112 1-r f ==0.342-r -r F ?= 两单体摩尔比= 12f 0.3417==f 0.6633

第四章_自由基共聚

第四章自由基共聚 一、名称解释 1. 均聚合:由一种单体进行的聚合反应。 2. 共聚合:由两种或两种以上单体共同参加的连锁聚合反应。形成的聚合物中含有两种或多种单体单 元。 3. 均聚物:由均聚合所形成的聚合物。 4. 共聚物:由共聚合形成的聚合物。 5. 无规共聚物:聚合物中组成聚合物的结构单元呈无规排列。 6. 交替共聚物:聚合物中两种或多种结构单元严格相间。 7. 嵌段共聚物:聚合物由较长的一种结构单元链段和其它结构单元链段构成,每链段由几百到几千个结 构单元组成。 8. 接枝共聚物:聚合物主链只由某一种结构单元组成,而支链则由其它单元组成。 9. 共聚合组成方程:表示共聚物组成与单体混合物(原料)组成间的定量关系。 10. 理想共聚:该聚合竞聚率r i *匕=1,共聚物某瞬间加上的单体中1组分所占分率F i = r i f i/(r i f i+f2),并且其组成曲线关于另一对角线成对称(非恒比对角线)。 11. 理想恒比共聚:该聚合的竞聚率r i=r2=i,这种聚合不论配比和转化率如何,共聚物组成 和单体组成完全相同,F i = f i,并且随着聚合的进行,F i、f i,的值保持恒定不变。 12. 交替共聚:该聚合竞聚率r i=r2= 0或者r i^O,「2 ~0 ,这种聚合两种自由基都不能与同种 单体加成,只能与异种单体共聚,因此不论单体组成如何,结果都是F i=0.5,形成交替 共聚物。 13. 非理想共聚:竞聚率r i*「2工1的聚合都是非理想聚合,非理想聚还可再往下细分。 14. 有恒比点非理想共聚:竞聚率r ii且r2>i,两种自由基都有利于加上同种单体,形成嵌段 共聚物”,但两种单体的链段都不长,很难用这种方法制得商品上的真正嵌段共聚物。 16. 竞聚率:是均聚和共聚链增长速率常数之比,r i=k ii/k i2,「2=k22/k2i,竞聚率用于表征两 单体的相对活性。 17. 前末端效应:前末端是指自由基活性端的倒数第二个结构单元,带有位阻或极性较大的基团的烯类单 体,进行自由基共聚时,前末端单元对末端自由基将产生一定的作用,这即前末端效应。 18. 单体活性:单体的活性我们一般通过单体的相对活性来衡量,一般用某一自由基同另一单体反应的增长 速率常数与该自由基同其本身单体反应的增长速率常数的比值(即竞聚率的倒数)来衡量。 19. 自由基活性:一般表示自由基之间的相对活性,可用不同自由基与同一单体反应的增长速率常数来衡 量。 20. 极性效应:极性相反的单体(带负电性与带正电性)之间易进行共聚,并有交替倾向,这个效应称为

活性可控自由基聚合

活性/可控自由基聚合 在20世纪50、60年代,自由基聚合达到了它的鼎盛时期。但由于存在链转移和链终止反应,传统自由基聚合不能较好地控制分子量及大分子结构[1]。1956年美国科学家Szwarc等提出了活性聚合的概念[2],活性聚合具有无终止、无转移、引发速率远远大于链增长速率等特点,与传统自由基聚合相比能更好地实现对分子结构的控制,是实现分子设计、合成具有特定结构和性能聚合物的重要手段。但离子型活性聚合反应条件比较苛刻、适用单体较少,且只能在非水介质中进行,导致工业化成本居高不下,较难广泛实现工业化。鉴于活性聚合和自由基聚合各自的优缺点,高分子合成化学家们联想到将二者结合,即可控活性自由基聚合(CRP)或活性可控自由基聚合。CRP可以合成具有新型拓扑结构的聚合物、不同成分的聚合物以及在高分子或各种化合物的不同部分链接官能团,适用单体较多,产物的应用较广,工业化成本较低。目前实现“活性”/可控自由基聚合可分以下几种途径:(1)稳定“活性”自由基聚合(SFRP);(2)原子转移自由基聚合(ATRP);(3)可逆加成-断裂链转移聚合(RAFT)。 一、稳定“活性”自由基聚合(SFRP) SFRP属于非催化性体系,是利用稳定自由基来控制自由基聚合。其机理是按照下面的可逆反应进行:外加的稳定自由基X·可与活性自由基P·迅速进行失活反应,生成“休眠种”P-X,P-X能可逆分解,又形成X·及活性种自由基P·而链增长。有研究表明,使用烷氧胺作引发剂效果好[3]。 反应体系中的自由基活性种P·可抑制在较低的浓度,这样就可以减少自由基活性种之间的不可逆终止作用,从而聚合反应得到控制。稳定自由基X·,主要有TEMPO(2,2,6,6-四甲基-1-哌啶氮氧自由基)和CoⅡ·,TEMPO属于稳定的有机自由基;CoⅡ·属于稳定的有机金属自由基。氮氧稳定自由基这类体系聚合的一大特点是聚合工艺较简单,可合成一些具有特殊结构的大分子,如树枝-线状杂化结构、聚苯乙烯嵌段共聚物等[4,5],其缺点是氮氧自由基的价格较贵,合成困难,只适用于苯乙烯及其衍生物,并且聚合慢,温度需在110℃~140℃之

第三章__自由基聚合

第三章自由基聚合 思考题3.2 下列烯类单体适用于何种机理聚合?自由基聚合、阳离子聚合还是阴离子聚合?并说明原因。 (1)CH2——CHCl (2)CH2=CCl2(3)CH2=CHCN (4)CH2=C(CN)2 (5)CH2=CHCH3(6)CH2=C(CH3)2(7)CH2=CHC6H5 (8)CF2=CF2(9)CH2=C(CN)COOR (10)CH2=C(CH3)-CH=CH2 答可以通过列表说明各单体的聚合机理,如下表:

思考题3.3 下列单体能否进行自由基聚合,并说明原因。 (1)CH2=C(C6H5)2(2)CH3CH=CHCOOCH3(3)CH2=C(CH3)C2H5 (4)ClCH=CHCl (5)CH2=CHOCOCH3(6)CH2=C(CH3)COOCH3 (7)CH3CH=CHCH3(8)CF2=CFCl 答(1) CH2=C(C6H5)2不能进行自由基聚合,因为l,1-双取代的取代基空间位阻大,只形成二聚体。

(2) CH3CH=CHCOOCH3不能进行自由基聚合,因为1,2-双取代,单体结构对称,空间阻碍大。 (3) CH2=C(CH3)C2H5不能进行自由基聚合,两个取代基均为供电基团,只能进行阳离子聚合。 (4)ClCH=CHCl不能进行自由基聚合,因为1,2-双取代,单体结构对称,空间阻碍大。 (5)CH2=CHOCOCH3能进行自由基聚合,因为-COCH3为吸电子基团,利于自由基聚合。 (6) CH2=C(CH3)COOCH3能进行自由基聚合,因为l,1-双取代,极化程度大,甲基体积小,为供电子基团,而-COOCH3为吸电子基团,共轭效应使自由基稳定。 (7) CH3CH=CHCH3不能进行自由基聚合,因为1,2-双取代,单体结构对称空间阻碍大。 (8) CF2=CFCl能进行自由基聚合,F原子体积小,Cl有弱吸电子作用。 思考题3.7为什么说传统自由基聚合的机理特征是慢引发、快增长、速终止?在聚合过程中,聚合物的聚合度、转化率,聚合产物中的物种变化趋向如何? 答自由基聚合机理由链引发、链增长、链终止等基元反应组成,链引发是形成单体自由基(活性种)的反应,引发剂引发

第四章自由基共聚合1.基本概念

第四章自由基共聚合 1. 基本概念: 均聚合(Homo-polymerization):由一种单体进行的聚合反应。 共聚合(Co-polymerization):由两种或两种以上单体共同参加的连锁聚合反应。形成的聚合物中含有两种或多种单体单元。 均聚物(Homo-polymer):由均聚合所形成的聚合物。 共聚物(Copolymer):由共聚合形成的聚合物。 无规共聚物(Random Copolymer):聚合物中组成聚合物的结构单元呈无规排列。 交替共聚物(Alternating Copolymer):聚合物中两种或多种结构单元严格相间。 嵌段共聚物(Block Copolymer):聚合物由较长的一种结构单元链段和其它结构单元链段构成,每链段由几百到几千个结构单元组成。 接枝共聚物(Graft Copolymer):聚合物主链只由某一种结构单元组成,而支链则由其它单元组成。 共聚合组成方程(Equation of Copolymer Composition):表示共聚物组成与单体混合物(原料)组成间的定量关系。 理想共聚(Ideal Co-polymerization):该聚合竞聚率r1*r2=1,共聚物某瞬间加上的单体中1组分所占分率F1=r1f1/(r1f1+f2),并且其组成曲线关于另一对角线成对称(非恒比对角线)。 理想恒比共聚( Ideal Azeotropic Co-polymerization):该聚合的竞聚率r1=r2=1,这种聚合不论配比和转化率如何,共聚物组成和单体组成完全相同,F1=f1,并且随着聚合的进行,F1、f1,的值保持恒定不变。 交替共聚(Alternating Co-polymerization):该聚合竞聚率r1=r2=0或者r1→0,r2→0,这种聚合两种自由基都不能与同种单体加成,只能与异种单体共聚,因此不论单体组成如何,结果都是F1=0.5,形成交替共聚物。 非理想共聚(Non-ideal Co-polymerization):竞聚率r1*r2≠1的聚合都是非理想聚合,非理想聚还可再往下细分。 有恒比点非理想共聚(Non-ideal Azeotropic Co-polymerization):竞聚率r1<1 且r2<1的非理想聚合,该共聚物组成曲线与恒比对角线有一交点,在这一点上共聚物的组成与单体组成相同,且随着聚合的进行二者的单体和聚合物的组成都都保持恒定不变。 嵌段共聚(Block Co-polymerization):该聚合竞聚率r1>1且r2>1,两种自由基都有利于

活性自由基聚合

活性自由基聚合 摘要:阐述了活性自由基聚合的产生背景和基本概念,介绍了活性自由基聚合的分类,描述了原子转移自由基聚合的研究进展。 关键词:活性自由基聚合 1.活性自由基聚合的基本思想 活性自由基聚合的核心思想是抑制增长自由基浓度,减少双基终止的发生。由高分子化学知识可知,链终止速率与链增长速率之比可用下式表示:[1] 通常kt/kp为104~105,假定体系中单体浓度为1mol/L,则: 当然,自由基活性种浓度不可能无限制地降低,一般来说,[P*]在10- 8mol/L左右,聚合反应的速率仍很可观。在这样的自由基浓度下,R t/R p≈10-4~10-3,Rt相对于R p就可忽略不计,所谓的活性自由基聚合的“活性”就在这里。自由基浓度的下降必然降低聚合反应速度,但由于链增长反应活化能高于链终止反应活化能,因此提高聚合反应温度不仅能提高聚合速率(因为能提高k p),而且能有效降低k t/k p比值,从而抑制链终止反应的进行。

这里需要解决两个问题:一是如何从聚合反应开始直到反应结束始终控制如此低的反应活性种浓度;二是在如此低的反应活性种浓度下,如何避免聚合物的聚合度过大(DP n=[M0]/[P*]=1/10-8=108)。 解决这两个问题的方法是在聚合体系中加入数量可人为控制的反应物X,此反应物X不能引发单体聚合,但可与自由基P*迅速作用而发生钝化反应,生成一种不会引发单体聚合的“休眠种”P-X。而此休眠种在聚合反应条件下又可均裂成增长自由基P*及X,如下式表示:[2] 这样体系中存在的自由基活性种的浓度将取决于3个参数:反应物X的浓度、钝化速率常数k d和活化速率常数k a,其中反应物X的浓度是人为可控的,所谓的可控活性自由基聚合的“可控”就在这里。另外研究表明,如果钝化反应和活化反应的转化速率足够快(不小于链增长速率),则在活性种浓度很低的情况下,聚合物的分子量将不由P*而由P-X的浓度决定。

自由基聚合机理以四种常见共聚物

自由基聚合机理 烯类单体的加聚反应多属连锁聚合,连锁聚合反应由链引发、链增长、链终止等基元反应组成,各步的反应速率和活化能相差很大。连锁聚合链引发形成活性中心(或称活性种),活性中心不断与单体加成而使链增长(单体之间并不反应),活性中心的破坏就是链终止。自由基、阳离子、阴离子都可能成为活性中心引发聚合,故连锁聚合又可分为自由基聚合、阳离子聚合、阴离子聚合和配位聚合等,其中自由基聚合产物约占聚合物总产量的60%。 热力学上能够聚合的单体对聚合机理的选择是有差异的,如氯乙烯只能自由基聚合、异丁烯只能阳离子聚合、MMA可以进行自由基聚合和阴离子聚合、苯乙烯则可按各种连锁机理聚合。 自由基聚合产物约占聚合物总产量60%以上,其重要性可想而知。高压聚乙烯、聚氯乙烯、聚苯乙烯、聚四氟乙烯、聚醋酸乙烯酯、聚丙烯酸酯类、聚丙烯腈、丁苯橡胶、丁腈橡胶、氯丁橡胶、ABS树脂等聚合物都通过自由基聚合来生产。本节将对自由基链式聚合反应作较详细的讨论。 自由基聚合的基元反应 烯类单体的自由基聚合反应一般由链引发、链增长、链终止等基元反应组成。此外,还可能伴有链转移反应。现将各基元反应及其主要特征分述如下。 1 链引发 链引发反应是形成单体自由基活性种的反应。用引发剂引发时,将由下列两步组成:(1)引发剂I分解,形成初级自由基R?; (2)初级自由基与单体加成,形成单体自由基。 单体自由基形成以后,继续与其他单体加聚,而使链增长。 比较上述两步反应,引发剂分解是吸热反应,活化能高,约105~150kJ/mo1,反应速率小,分解速率常数约10-4~10-6s-1。初级自由基与单体结合成单体自由基这一步是放热反应,活化能低,约20~34kJ/mo1,反应速率大,与后继的链增长反应相似。但链引发必须包括这一步,因为一些副反应可以使初级自由基不参与单体自由基的形成,也就无法继续链增长。 有些单体可以用热、光、辐射等能源来直接引发聚合。这方面的研究工作不少,苯乙烯热聚合已工业化;紫外光固化涂料也已大规模使用。 2 链增长 在链引发阶段形成的单体自由基,仍具有活性,能打开第二个烯类分子的π键,形成新的自由基。新自由基活性并不衰减,继续和其他单体分子结合成单元更多的链自由基。这个过程称做链增长反应,实际上是加成反应。 为了书写方便,上述链自由基可以简写成,其中锯齿形代表由许多单元组成的碳链骨架,基团所带的独电子系处在碳原子上。 链增长反应有两个特征:一是放热反应,烯类单体聚合热约55~95kJ/mol;二是增长活化能低,约20~34KJ/mol,增长速率极高,在0.01~几秒钟内,就可以便聚合度达到数千,甚至上万。这样高的速率是难以控制的,单体自由基一经形成以后,立刻与其他单体分子加成,增长成活性链,而后终止成大分子。因此,聚合体系内往往由单体和聚合物两部分组成,不存在聚合度递增的一系列中间产物。 对于链增长反应,除了应注意速率问题以外,还须研究对大分子微观结构的影响。在链增长反应中,结构单元间的结合可能存在“头-尾”和“头-头”或“尾-尾”两种形式。经实验证明,主要以头-尾形式连接。这一结果可由电子效应和空间位阻效应得到解释。对一些取代基共轭效应和空间位阻都较小的单体聚合时头-头结构会稍高,如醋酸乙烯酯、偏二氟

第四章 自由基共聚合 重点、难点指导

第四章 自由基共聚合 重点、难点指导 一、重要概念 无规共聚物、交替共聚物、嵌段共聚物、接枝共聚物、共聚合、竞聚率、恒比点、序列结构、序列长度、单体活性、自由基活性、Q-e 概念 二、重要公式 二元共聚物瞬时组成方程 恒比点 2 121121r r r f F ???= = 三、难点 共聚合行为的判断、二元共聚物组成控制、单体活性与自由基活性的比较 1. 共聚物组成曲线 对两种单体的竞聚率和组成组合作图,得到共聚物组成曲线(F1一f1曲线),不仅能清楚显示出两种单体瞬间组成所对应的共聚物的瞬时组成、同时也清楚显示出共聚物组成随转化率变化的趋势。而竞聚率又是指均反应链增长速率常数与共聚反应增长速率常数之比值。 当r 1=0时,表明k 11=0,表示该单体不能进行均聚反应而只能进行共聚反应。 当r 1<1时,表明k 1l <k 12:,表示该单体进行共聚反应的倾向大于进行均聚反应的倾向 当r 1=0时,表明k 11=k 12,表示该单体进行均聚反应和共聚反应的倾向完全相等。 当r 1>l 时,表明k 11>k 12,表示该单体进行均聚反应的倾向大于共聚反应的倾向。 竞聚率数值越大,表明这种单体均聚的能力比共聚能力大得越多。如果以改善聚合物性能为目的,希望两种单体尽可能地参加共聚.则两种单体的竞聚率起码不应远大于1,最好小于1,接近于或等于零。 2、共聚物组成控制 (1) 共聚物的组成控制 共聚是改善聚合性能的一种主要方法.共聚物的性能与共聚物组成及其分布关系密切 共聚物组成的控制规律如下: ①对于下面三种情况,即恒比共聚(r1=r2=1)、完全交替共聚(r1=r2=0)以及在恒比点进行的有恒比点的共聚(F1=f1=[(1一r1)/(2一r1一r2)])等。由于共聚物组成与单体组成完全相同,其组成不随转化率升高而变化,所以均不存在组成控制的向题。 ②对接近交替共聚的情况(r1=0,r2≈0),如果其目的是控制共聚物的组成尽可能接近][M ][M r ][M ][M r ][M ][M ] d[M ] d[M 1222112121 ++?= 22221211212111 f r f 2f f r f f f r F +++=

自由基本体聚合过程

3.1 自由基本体聚合过程 3.1.1 自由基本体聚合概述 1、定义:单体在有少量引发剂(甚至不加引发剂而是在光、热、辐射能)的作用下聚合为 高聚物的过程。 2、本体聚合的分类 依据生成的聚合物是否溶于单体分为均相与非均相本体聚合。均相本体聚合指生成的聚合物溶于单体(如苯乙烯、甲基丙烯酸甲酯)。非均相本体聚合指生成的聚合物不溶解在单体中,沉淀出来成为新的一相(如氯乙烯)。 根据单体的相态还可分为气相、液相和固相本体聚合。 3、工业上采用自由基本体聚合生产的聚合物品种 高压法聚乙烯、聚苯乙烯、聚甲基丙烯酸甲酯,及一部分聚氯乙烯。 3.1.2 自由基本体聚合的特点 1、优点:组分简单;工艺过程较简单(转化率高时,可免去分离工序,得到粒状树脂);设备利用率高;产品纯度高。 2、缺点:体系粘度大,聚合热不易排出;自动加速现象严重,工艺难控,易爆聚。 3.1.3 自由基本体聚合工艺过程及其特点 1、预聚合:聚合初期,转化率不高;体系粘度不大,反应釜内设置搅拌,聚合热易排出;反应温度相对较高,总聚合时间缩短,提高生产效率;体积部分收缩、聚合热部分排除,利于后期聚合。 2、聚合:聚合中期,转化率较高;反应温度低、时间长,有效利用反应热,使反应平稳进行。 聚合反应是放热反应,本体聚合使无其他介质存在,所以聚合设备内单位质量的反应物料与有反应介质存在的其他聚合方法比较,相对说放出的热量大,并且单体和聚合物的比热小,传热系数低,所以正赛聚合反应热的散发困难。因此物料温度容易升高,甚至失去控制,造成事故。工业上为了解决此难题,在设计反应器的形状、大小时,考虑传热面积等。此外还采用分段聚合即进行聚合达到适当转化率,或于单体中添加聚合物以降低单体含量。从而降低单位质量物料放出的热量。由于本体聚合过程中反应温度难以控制恒定,所以产品的分子量分布宽。 单体在未聚合前是液态,少数为气态,易流动、粘度低。聚合反应发生以后,多数情况下生成的聚合物可溶于单体,则形成粘稠溶液,聚合程度越深入,即转化率越高,物料越粘稠。一聚苯乙烯-苯乙烯物料体系为例,粘度与聚合物含量的关系见图3-2. 因而反应产生黏胶效应。单体反应不易进行完全,残存的单体应进行后处理除去。 3.1.2.2 聚合反应器 自由基本体聚合反应器大致分为以下类型。 1.形状一定的模型 适用于本体浇铸聚合,如甲基丙烯酸甲酯经浇铸聚合以生产有机玻璃板、管、棒材等。 模型的形状与尺寸根据制品要求而定,但要考虑这种反应装置无搅拌器,其聚合条件应根据聚合热传导条件而定。如以水作为散热介质即模型放在水箱中进行聚合,散热条件较好,聚合时间可缩短,但反应末期须进行加热以使反应近于完全时,加热最高温度为100℃。如在烘箱中进行聚合则散热条件较差,聚合时间较在水箱中更长,但末期加热可超过100℃,单体反应较为完全。 浇铸用模型反应器厚度一般不超过2.5cm,因为过厚时,反应热不易散发,内部单体可能过热而沸腾,因而造成塑料浇铸制品内产生气泡而影响产品质量,由于单体转变为聚合物后体积收缩。因此作为模型的反应器如版型反应器,两层模板之间应具有适当弹性,避免聚

可控自由基聚合技术在合成高分子材料中的应用探究

可控自由基聚合技术在合成高分子材料中的应用探究1500 一、摘要:本文主要是说明了可控自由基聚合技术在合成高分子材料中的应用,然后具体的分析了线型聚合物的合成、接枝聚合物的合成、接枝聚合物的合成、无机/聚合物复合材料的制备,并对其未来的价值进行重要的论述。 关键词:可控自由基聚合;合成;材料 二、线型聚合物的合成 线型聚合物的合成主要包括两个方面嵌段共聚物和梯度共聚物。所谓的嵌段共聚物就是序列规整的聚合物中研究最多应用也最广泛的一类聚合物物质。通过可控自由基聚合可以得到AB型、ABC型、ABA型等多嵌段型的嵌段共聚物。然而对实现ATRP的方法可有两种方式,一方面是先把第一种单体的均聚物制备完成,然后直接把第二种单体加入就可;另一方法是先得到含有卤原子的大分子引发剂,然后再把第二种单体聚合引发,从而得到了二嵌段共聚物。梯度共聚物就是作为一类结构精密的新型共聚物,它具有嵌段和无规共聚物的多种优点 ,是作为一种特别有效的高分子共混增容剂。通常是采用不含有链终止反应的聚合技术是制备梯度共聚物的前提条件,且这种技术是作为梯度共聚物最佳技术方法。然而,因为各共聚单体的竞聚率存在着很大的差别,所以在梯度共聚物的制备上一般是依据所用单体的不同和制备要求而选择不同的加料方法,通常的加料方法主要有批量法和半批量法。 三、接枝聚合物的合成 关于接枝聚合物的合成主要是可控自由基聚合技术,通常大部分所采用ATRP技术合成梳状聚合物主要有两种方法途径:大分子单体技术和大分子引发技术。通过一些侧链比较均一的梳状聚合物利用大分子单体技术制得。哈丽丹·买买提等在纤维素氯化锂/N,N-二甲基乙酰胺(DMAc)均相溶液中,利用氯乙酰氯与纤维素发生均相酰化反应生成纤维素氯乙酸酯,再通过溶解DMAc中用氯化亚铁催化剂引发甲基丙烯酸丁酯,制备出纤维素/甲基丙烯酸丁酯接枝共聚物。 郑兴良等合成了两亲性接枝共聚物PtBA-g-PPEGMEMA,在对抗肿瘤药物方面的阿霉素进行了负载,最终通过试验表明该体系是有缓释特征的。林先凯等是通过以N,N-二甲基甲酰胺作溶剂材质、氯化亚铜/三( N,N-二甲基氨基乙基) 胺为催化配位体系,利用ATRP在商用PVDF 粉末上直接接枝,制备出PVDF-g-PNIPAAm 共聚膜。张洪文等是通过表面引发ATRP在 酯薄膜表面接枝了由γ-甲基丙烯酰氧基丙基三甲氧基硅烷和甲基丙烯酸甲酯形成的共聚物,最终得到提高基质材料的疏水性能。 四、支化聚合物的合成 3. 1星形聚合物 通过ATRP 技术制备星形聚合物的方法主要有先臂后核”和“先核后臂”两种方法。“先臂后核”法就是优先使用ATRP 制备出带有活性末端基的均聚物,这种均聚物然后再与多官能团化合物进行相互的反应得出多臂星形聚合物。然而“先核后臂”法就是利用多官能团的引发剂作用进行单体的ATRP。陈建芳等就是通过原子转移自由基偶联法得到了星形杂臂苯乙烯-甲基丙烯酸甲酯共聚物( PS-PMMA)和多臂星形聚苯乙烯 ( S-PS)。 4. 2聚合物刷 聚合物刷其实是一种比较特殊的高分子结构,其突出特征就是在特定基质的表面或界面上具

自由基聚合题库

? 1. 目前,悬浮聚合发主要用于生产( )。
A. PVC、PVDC C. PE
正确答案:A.
B. PS D. PP
? 2. 下列单体中可进行自由基、阴离子、阳离子聚合反应的是( )。
A. 氯乙烯 B. 苯乙烯 C. 乙烯 D. 醋酸乙烯 正确答案:B.
? 3. 聚乙烯醇的单体是( )。
A. 乙烯醇 B. 乙醇
C. 乙醛
D. 醋酸乙烯酯
正确答案:D.
? 4. 典型乳液聚合中,主要引发地点是在 ( )。
A. 单体液滴 B. 胶束 C. 水相 D. 单体液滴和胶束 正确答案:B.
? 5. 过硫酸钾引发剂属于( )。
A. 氧化还原引发剂 B. 水溶性引发剂 C. 油溶性引发剂 D. 阴离子引发剂 正确答案:B.
? 6. 在自由基聚合中,若初级自由基与单体的引发速度较慢,则最终聚合速率与单体浓 度呈( )级关系。
A. 1 C. 2
正确答案:B.
B. 1.5 D. 不能确定
? 7. 苯醌是常用的分子型阻聚剂,一般用单体的( )就能达到阻聚效果。
A. 1.0%一 0.5% C. 2.0%一 5.0% 正确答案:D.
B. 1.0%一 2.0% D. 0.1%一 0.001%
? 8. ( )的自由基是引发聚合反应常见的自由基。

A. 高活性 B. 低活性 C. 中等活性 D. 无活性 正确答案:C.
? 9. 某工厂用 PVC 为原料制搪塑制品时,从经济效果和环境考虑,他们决定用( )聚合 方法。
A. 本体聚合法生产的 PVC C. 乳液聚合法生产的 PVC
正确答案:C.
B. 悬浮聚合法生产的 PVC D. 溶液聚合法生产的 PVC
? 10. 自由基链转移反应中,不可能包括活性链向( )的转移。
A. 高分子 B. 单体 C. 引发剂 D. 溶剂
? 1. 对于自由基聚合,在其他条件保持不变的前提下升高聚合温度,得到的聚合物的分 子量将( )。
A. 减小 B. 增大 C. 不变 D. 不一定 正确答案:B.
? 2. 在乙酸乙烯酯的自由基聚合反应中加入少量苯乙烯,会发生( )
A. 聚合反应加速 C. 相对分子量降低 正确答案:B.
B. 聚合反应停止 D. 相对分子量增加
? 3. 传统自由基聚合的机理特征是( )。
A. 慢引发,快增长,速终止 C. 快引发,快增长,难终止
正确答案:A.
B. 快引发,慢增长,不中止 D. 慢引发,慢增长,速终止
? 4. 合成丁基橡胶的主要单体是( )。
A. 异丁烯+丁二烯 C. 异丁烯
正确答案:B.
B. 异丁烯+异戊二烯 D. 丁二烯
? 5. 合成橡胶通常采用乳液聚合反应,主要是因为乳液聚合( )。
A. 产品较纯净
B. 易获得高分子量聚合物
C. 不易发生凝胶效应 D. 聚合反应容易控制

“活性”可控自由基聚合

“活性”/可控自由基聚合 熊鹏鹏2010214110 摘要: 自由基聚合是生产高分子量聚合物的重要方法, “活性”/ 可控自由基聚合综合了自由基聚合和离子聚合的优点, 使自由基聚合具有可控性。本文对目前可以实现“活性”/ 可控自由基聚合的途径和各自机理进行介绍, 指出应该重视对“活性”/可控自由基聚合的研究。关键词: “活性”/可控自由基聚合; 稳定自由基; 可逆加成-裂解链转移; 原子转移; 引发转移终止剂;退化转移。 自由基聚合是工业上和实验室中生产高分子量聚合物的重要方法, 该法具有可聚合的单体种类多、反应条件宽松、以水为介质、容易实现工业化生产等优点, 但也存在着缺陷, 如自由基聚合的本质( 慢引发, 快速链增长, 易发生链终止和链转移等) 决定了聚合反应的失控行为,其结果常常导致聚合产物呈现宽分布, 分子量和结构不可控, 有时甚至会发生支化、交联等,从而严重影响聚合物的性能, 此外, 传统的自由基聚合也不能用于合成指定结构的规整聚合物。 鉴于离子聚合和配位聚合可以很好地控制聚合物结构, 而能不能控制自由基聚合体系则成为当前的研究热点, 但近年来从离子聚合和可控有机自由基反应的研究进展来看, 答案是肯定的。 就聚合反应而言, 要合成具有确定结构的聚合物, 则要求所有的链应同时引发, 增长相似, 这就需要快速引发, 在聚合结束前增长链应保持活性, 链转移和链终止的效应可以忽略, 而自由基聚合的本质( 慢引发, 快终止) 与之正好相反。所以实现可控自由基聚合要基于

以下三个原则: 1) 自由基体系中的增长反应应对自由基敏感, 终止反应对自由基浓度的敏感度次之。这样, 在自由基浓度很低时, 链增长反应与终止反应的速率比才足够高, 才能合成出分子量很大的聚合物。 2) 增长链的浓度必须比初始游离自由基的浓度高得多, 在整个反应过程中所有的链均需保持活性, 且游离自由基与高浓度休眠链处于动态平衡之中, 这种持续自由基效应对任何控制自由基反应来说都是最重要的。 3) 引发迅速, 增长链( 休眠链和活性链总和) 浓度保持稳定, 使用与大分子休眠链结构相类似的引发剂。目前已经发现有五种途经可以实现“活性”/ 可控自由基聚合, 下面分别论述其机理和研究现状。 1稳定“活性”自由基聚合( SFRP) SFRP属于非催化性体系, 是利用稳定自由基来控制自由基聚合。其机理是按照下面的 可逆反应进行: 外加的稳定自由基X·可与活性自由基P·迅速进行失活反应, 生成“休眠 种”P-X, P- X能可逆分解, 又形成X·及活X 性种自由基P·而链增长。有研究表明, 使用烷 氧胺作引发剂效果好。 反应体系中的自由基活性种P·可抑制在较低的浓度, 这样就可以减

自由基共聚合练习题

自由基共聚合练习题 一、填空题: 1、根据共聚物大分子链中单体单元的排列顺序,共聚物分为_______、______、 ______和______。 2、共聚中控制聚合物平均组成的方法_____、_____。 3、竞聚率的物理意义是____,对于r1=r2=1的情况,称为__,r1=r2=0,称_____,而r1<1和r2<1时,共聚组成 曲线存在恒比点,恒比点原料组成公式为__。 4、从竞聚率看,理想共聚的典型特征为_____。 5、M1-M2两单体共聚, r1=0.75,r2= 0.20。其共聚曲线与对角线的交点称为_____。若f10=0.80,随共聚进行到某一时刻,共聚物组成为F1,单体组成为f1,则f1_____f10,F1____F10(大于或小于)。 6、单体的相对活性习惯上用_____判定,自由基的相对活性习惯上用_____判定。在 Q—e值判断共聚行为时,Q代表_____,e代表_____。 二、选择题: 1.下列单体中,与丁二烯(e=1.05)共聚时,交替倾向最大的是() A.PS(e=-1.08) B.马来酸酐(e=2.25) C.醋酸乙烯(e=-0.22) D.丙烯腈(e=1.2) 2.一对单体工具和的竞聚率r1和r2的值将随() A.局和时间而变化 B.局和温度而变化 C.单体配比不同而变化 D.单体的总浓度而变化 3.已知一对单体在进行共聚合反应时获得了恒比共聚物,其条件必定是() A、r1=1.5,r2=1.5 B、r1=0.1,r2=1.0 C、r1=0.5,r2=0.5 D、r1=1.5,r2=0.7 4.在自由基聚合中,竞聚率为()时,可得到交替共聚物。 A 5.下列共聚中,理想共聚是(),理想恒比共聚是(),交替共聚是() A.r1r=1 B.r1=r2=1 C.r1=r2 D.r1=r2=0 6.当r1>1 r2<1时,若提高聚合反应温度,反应将趋向于() A 交替共聚 B 理想共聚 C嵌段共聚 D恒比共聚 7.当两种单体的Q.e值越接近则越() A.越难共聚 B。趋于理想共聚 C.趋于交替共聚 D.趋于恒比共聚 8.两种单体的Q和e值越接近,就( ) A.难以共聚 B.倾向于交替共聚 C.倾向于理想共聚 D.倾向于嵌段共聚 9.有机玻璃板材是采用( ) A、本体聚合 B、溶液聚合 C、悬浮聚合 D、乳液聚合 三、概念题: 1、共聚物 2、自由基共聚合反应 3、竞聚率 4、理想恒比共聚 5、Q,e概念

可控活性自由基聚合的研究进展

第22卷第2期高分子材料科学与工程Vo l.22,N o.2 2006年3月POLYM ER M AT ERIALS SCIENCE AND EN GINEERING M ar.2006可控活性自由基聚合的研究进展X 郑 璇,张立武 (重庆大学化学化工学院,重庆400044) 摘要:可控活性自由基聚合(CRP)是一种合成具有设计微观结构和窄分子量分布聚合物的方法,原子转移自由基聚合(AT RP)较其它CRP方法具有分子设计能力较强等优点,是应用最广泛的CR P。文中简要介绍了CRP的分类,同时以A T RP为例从单体、引发剂、催化体系等方面讨论了CR P聚合体系的发展。 关键词:可控活性自由基聚合;分类;聚合体系;进展 中图分类号:T Q316.32+2 文献标识码:A 文章编号:1000-7555(2006)02-0016-04 在20世纪50、60年代,自由基聚合达到了它的鼎盛时期。但由于存在链转移和链终止反应,传统自由基聚合不能较好地控制分子量及大分子结构[1]。1956年美国科学家Szwarc等提出了活性聚合的概念[2],活性聚合具有无终止、无转移、引发速率远远大于链增长速率等特点,与传统自由基聚合相比能更好地实现对分子结构的控制,是实现分子设计、合成具有特定结构和性能聚合物的重要手段。但离子型活性聚合反应条件比较苛刻、适用单体较少,且只能在非水介质中进行,导致工业化成本居高不下,较难广泛实现工业化。鉴于活性聚合和自由基聚合各自的优缺点,高分子合成化学家们联想到将二者结合,即可控活性自由基聚合(CRP)或活性可控自由基聚合[1]。CRP可以合成具有新型拓扑结构的聚合物、不同成分的聚合物以及在高分子或各种化合物的不同部分链接官能团,适用单体较多,产物的应用较广,工业化成本较低。 1 C RP的分类 CRP的基本思想是[2]:向体系中加入一个与增长自由基之间存在着偶合-解离可逆反应的稳定自由基,以抑制增长自由基浓度,减少双基终止的发生。目前,各种CRP体系已经发展起来,可分为基于可逆终止和可逆转移机理两类。其中可逆终止机理包括稳定自由基聚合(SFRP)和原子转移自由基聚合(ATRP);可逆转移机理包括可逆加成-断裂链转移(RAFT)活性自由基聚合和退化转移自由基聚合[3]。1.1 稳定自由基聚合[4,5] SFRP属于非催化性体系,是利用稳定自由基来控制自由基聚合。稳定自由基X?,主要有T EM PO(2,2,6,6-四甲基-1-哌啶氮氧自由基)和Co(Ⅱ)?。前者属于稳定的有机自由基,主要可进行苯乙烯及其衍生物的聚合,聚合工艺较简单,可合成一些具有特殊结构的大分子,但氮氧自由基价格较贵,合成困难、聚合速率慢,温度需在110℃~140℃之间。后者属于稳定的有机金属自由基,主要进行丙烯酸酯活性聚合,但得到的聚合物分子量不高,且分子量分布较宽。研究者认为,通过使用新型氮氧自由基,此体系可以扩展到(甲基)丙烯酸和其它单体。其它有机金属化合物或过渡金属盐与自由基可逆络合的活性自由基聚合反应也有报道,如Al、Cr、Rh。 1.2 原子转移自由基聚合[2,5] X收稿日期:2005-01-18;修订日期:2005-05-16  联系人简介:郑 璇(1978-),女,硕士,E-mail:zhengxu an16@https://www.360docs.net/doc/f95274140.html,

第四章 自由基共聚合

第四章自由基共聚合 思考题4.2试用共聚动力学和概率两种方法来推导二元共聚物组成微分方程,推导时有哪些基本假定? 答(1)采用共聚动力学方法,作如下假设:①等活性假设;②无前末端效应;③无解聚反应;④共聚物组成仅由增长反应决定,与引发、终止无关;⑤稳态假设,体系中自由基浓度不变。 思考题4.3说明竞聚率r1、r2的定义,指明理想共聚、交替共聚、恒比共聚时竞聚率数值的特征。 答r1=k11、k12即链自由基M·与单体M1的反应能力和它与单体M2的反应能力之比,或两单体M l、M2与链自由基M·反应时的相对活性。 计算题 4.1氯乙烯-醋酸乙烯酯、甲基丙烯酸甲酯-苯乙烯两对单体共聚,若两体系中醋酸乙烯酯和苯乙烯的浓度均为15%(质量分数),根据文献报道的竞聚率,试求共聚物起始组成。解(1)从文献报道看:氯乙烯-醋酸乙烯酯的竞聚率为:r1=1.68,r2=0.23。 由于共聚物中醋酸乙烯酯的质量分数为15%,氯乙烯的质量分数为85%,则相应的摩尔分数为:f1=0.886 f2=0.114 相应的共聚物组成为:F1=0.932 W1=0.909 因此起始时单元(氯乙烯)在共聚物中所占的质量分数为90.9%,所占的摩尔分数为93.2%。 (2)甲基丙烯酸甲酯-苯乙烯的竞聚率为r1=0.46,r2=0.52 共聚物中苯乙烯的质量分数为15%,则甲基丙烯酸甲酯的质量分数为85%,于是:f1=0.855 f2=0.145 F1=0.3 W1=0.764 则甲基丙烯酸甲酯在聚合物中所占的质量分数为76.4%,摩尔分数为77.3%。 计算题4.2 甲基丙烯酸甲酯(M1)浓度=5 mo1·L-1,5-乙基-2-乙烯基吡啶浓度:l mo1·L-1,竞聚率:r1=0.40,r2=0.69。 (1)计算共聚物起始组成(以摩尔分数计); (2)求共聚物组成与单体组成相同时两单体摩尔比。 解甲基丙烯酸甲酯(M1)浓度为5 mo1·L-1,5-乙基-2-乙烯基吡啶浓度l mo1·L-1,所以:f10=5/6 f20 =1/6 F10=0.725 即起始共聚物中,甲基丙烯酸甲酯的摩尔分数为72.5%。 因为,r1<1r2<1,此共聚体系为有恒比共聚点的非理想共聚,在恒比共聚点上配料时,所得的共聚物组成与单体组成相同,有:F1= f1= 0.34 所以,两单体摩尔比为:[M1]0/[M2]0=17/33

相关文档
最新文档