对一个五人学习小组考虑生日问题(1)求五个人的生日都在星期日的概率(2)求五个人的生日都不在星期日

合集下载

概率论与数理统计答案(汇总版)

概率论与数理统计答案(汇总版)

概率论与数理统计答案(汇总版)篇一:概率论与数理统计教程答案(徐建豪版)习题1、写出下列随机试验的样本空间.(1)生产产品直到有4件正品为正,记录生产产品的总件数.(2)在单位园中任取一点记录其坐标.(3)同时掷三颗骰子,记录出现的点数之和.解:(1)??{4,5,6,7,8?}(2)??{()x2?y2?1}(3)??{3,4,5,6,7,8,9,10,?,18}2、同时掷两颗骰子,x、y分别表示第一、二两颗骰子出现的点数,设事件A表示“两颗骰子出现点数之和为奇数”,B表示“点数之差为零”,C表示“点数之积不超过20”,用样本的集合表示事件B?A,BC,B?C.解:B?A?{(),(),(),(),(),()}BC?{(),(),(),()}B?C?{(),(),(),(),(),(),(),(),(),()}3、设某人向靶子射击3次,用Ai表示“第i次射击击中靶子”(i?1,2,3),试用语言描述下列事件.(1)A1?A2 (2)(A1?A2)A3 (3)A1A2?A2A2解:(1)第1,2次都没有中靶(2)第三次中靶且第1,2中至少有一次中靶(3)第二次中靶4.设某人向一把子射击三次,用Ai表示“第i次射击击中靶子”(i=1,2,3),使用符号及其运算的形式表示以下事件:(1)“至少有一次击中靶子”可表示为;(2)“恰有一次击中靶子”可表示为;(3)“至少有两次击中靶子”可表示为;(4)“三次全部击中靶子”可表示为;(5)“三次均未击中靶子”可表示为;(6)“只在最后一次击中靶子”可表示为 . 解:(1)A1?A2?A3;(2) A123?1A23?12A3;(3)A1A2?A1A3?A2A3; (4) A1A2A3; (5) 123(6) 12A35.证明下列各题(1)A?B?A (2)A?B?(A?B)?(AB)?(B?A)证明:(1)右边=A(??B)?A?AB=A且??B??A?B=左边(2)右边=(AB)?(AB)?(BA)=A或??B??A?B习题1.设A、B、C三事件,P(A)?P(B)?P(C)?14P(AC)?P(BC)?18,P(AB)?0,求A、B、C至少有一个发生的概率.解:?P(AB)?0?P(ABC)?0P(A?B?C).?P(A)?P(B)?P(C)?P(AB)?P(BC)?P(AC)?P(ABC) =3?11 4?2?8?122.已知p()? ,P(B)? , P(B)?,求(1)P(AB)(2)P(A?B),(3)P(A?B), (4)P(AB).解:(1)?A?B,?AB?A?P(AB)?P(A)?(2)?A?B,?A?B?B?P(A?B)?P(B)?3.设P(A)=(A?B)= 互斥,求P(B).解:?A,B互斥,P(A?B)?P(A)?P(B), ,故P(B)?P(A?B)?P(A)4.设A、B是两事件且P(A)=,P(B)?(1)在什么条件下P(AB)取到最大值,最大值是多少?(2)在什么条件下P(AB)取到最小值,最小值是多少?解:由加法公式P(AB)?P(A)?P(B)?P(A?B)=?P(A?B)(1)由于当A?B时A?B?B,P(A?B)达到最小,即P(A?B)?P(B)?,则此时P(AB)取到最大值,最大值为(2)当P(A?B)达到最大,即P(A?B)?P(?)?1,则此时P(AB)取到最小值,最小值为5.设P(A)?P(B)?P(C)?1115,P(AB)?P(BC)?P(AC)?,P(??)?, 4816求P(A?B?C). 解:P(ABC)?1?P(ABC)?1?P(??)?1?151?, 1616P(A?B?C).?P(A)?P(B)?P(C)?P(AB)?P(BC)?P(AC)?P(ABC) =3?1117?3 481616习题1.从一副扑克牌(52张)中任取3张(不重复)求取出的3张牌中至少有2张花色相同的概率.解:设事件A={3张中至少有2张花色相同} 则A={3张中花色各不相同}3111C4C13C13C13P(A)?1?P(A)?1?? 3C52只铆钉随机地取来用在10个部件上,其中有3个铆钉强度太弱,每个部件用3只铆钉,若将3只强度太弱的铆钉都装在一个部件上,则这个部件强度就太弱,问发生一个部件强度太弱的概率.3解法一随机试验是从50只铆钉随机地取3个,共有C50种取法,而发生“某3C31一个部件强度太弱”这一事件只有C这一种取法,其概率为3?,而10C501960033个部件发生“强度太弱”这一事件是等可能的,故所求的概率为p??pi?i?110101 ?1960019603解法二样本空间的样本点的总数为C50,而发生“一个部件强度太弱”这13一事件必须将3只强度太弱的铆钉同时取来,并都装在一个部件上,共有C10C3种情况,故发生“一个部件强度太弱”的概率为13C10C31 p??31960C503.从1至9的9个整数中有放回地随机取3次,每次取一个数,求取出的3个数之积能被10整除的概率.解法一设A表示“取出的3个数之积能被10整除”,, A1表示“取出的3个数中含有数字5”, A2表示“取出的3个数中含有数字偶数”P(A)?P(A1A2)?1?P(A1A2)?1?P(A1?A2)?1?P(A1)?P(A2)?P(A1A2)?8??5??4??11???9??9??9?解法二设Ak为“第k次取得数字,Bk为“第k次取得偶数”,5”k?1,2,3。

概率论与数理统计习题集答案

概率论与数理统计习题集答案

概率论与数理统计习题集答案【篇一:《概率论与数理统计》第三版__课后习题答案._】出下列随机试验的样本空间:(1) 某篮球运动员投篮时, 连续5 次都命中, 观察其投篮次数;解:连续5 次都命中,至少要投5次以上,故?1??5,6,7,??;(2) 掷一颗匀称的骰子两次, 观察前后两次出现的点数之和;解:?2??2,3,4,?11,12?;(3) 观察某医院一天内前来就诊的人数;解:医院一天内前来就诊的人数理论上可以从0到无穷,所以?3??0,1,2,?(4) 从编号为1,2,3,4,5 的5 件产品中任意取出两件, 观察取出哪两件产品; 解:属于不放回抽样,故两件产品不会相同,编号必是一大一小,故: ?4??i,j??i?j?5?;(5) 检查两件产品是否合格;解:用0 表示合格, 1 表示不合格,则?5???0,0?,?0,1?,?1,0?,?1,1??;(6) 观察某地一天内的最高气温和最低气温(假设最低气温不低于t1, 最高气温不高于t2); 解:用x表示最低气温, y 表示最高气温;考虑到这是一个二维的样本空间,故: ?6??x,y?1?x?y?t2?; ???;(7) 在单位圆内任取两点, 观察这两点的距离;解:?7?x0?x?2?;(8) 在长为l的线段上任取一点, 该点将线段分成两段, 观察两线段的长度.解:?8??x,y?x?0,y?0,x?y?l?;1.2(1) a 与b 都发生, 但c 不发生; ab;(2) a 发生, 且b 与c 至少有一个发生;a(b?c);(3) a,b,c 中至少有一个发生; a?b?c;??(4) a,b,c 中恰有一个发生;a?b?;(5) a,b,c 中至少有两个发生; ab?ac?bc;(6) a,b,c 中至多有一个发生;??;(7) a;b;c 中至多有两个发生;abc(8) a,b,c 中恰有两个发生.bc?ac?ab ;注意:此类题目答案一般不唯一,有不同的表示方式。

概率论与数理统计问题详解谢永钦版

概率论与数理统计问题详解谢永钦版

概率论与数理统计习题及答案习题一1.见教材习题参考答案.2.设A,B,C为三个事件,试用A,B,C(1)A发生,B,C都不发生;(2)A与B发生,C(3)A,B,C都发生;(4)A,B,C(5)A,B,C都不发生;(6)A,B,C(7)A,B,C至多有2个发生;(8)A,B,C至少有2个发生.【解】(1)A BC(2)AB C(3)ABC(4)A∪B∪C=AB C∪A B C∪A BC∪A BC∪A B C∪AB C∪ABC=ABC(5) ABC=A B C(6) ABC(7) A BC∪A B C∪AB C∪AB C∪A BC∪A B C∪ABC=ABC=A∪B∪C(8) AB∪BC∪CA=AB C∪A B C∪A BC∪ABC3..4.设A,B为随机事件,且P(A)=0.7,P(A-B)=0.3,求P(AB).【解】P(AB)=1-P(AB)=1-[P(A)-P(A-B)]=1-[0.7-0.3]=0.65.设A,B是两事件,且P(A)=0.6,P(B)=0.7,(1)在什么条件下P(AB(2)在什么条件下P(AB【解】(1)当AB=A时,P(AB)取到最大值为0.6.(2)当A∪B=Ω时,P(AB)取到最小值为0.3.6.设A,B,C为三事件,且P(A)=P(B)=1/4,P(C)=1/3且P(AB)=P(BC)=0,P(AC)=1/12,求A,B,C至少有一事件发生的概率.【解】P(A∪B∪C)=P(A)+P(B)+P(C)-P(AB)-P(BC)-P(AC)+P(ABC)=14+14+13-112=347.52张扑克牌中任意取出13张,问有5张黑桃,3张红心,3张方块,2张梅花的概率是多少?【解】 p =5332131313131352C C C C /C 8.(1) 求五个人的生日都在星期日的概率; (2) 求五个人的生日都不在星期日的概率; (3) 求五个人的生日不都在星期日的概率. 【解】(1) 设A 1={五个人的生日都在星期日},基本事件总数为75,有利事件仅1个,故 P (A 1)=517=(17)5(亦可用独立性求解,下同) (2) 设A 2={五个人生日都不在星期日},有利事件数为65,故P (A 2)=5567=(67)5(3) 设A 3={五个人的生日不都在星期日}P (A 3)=1-P (A 1)=1-(17)59..见教材习题参考答案.10.一批产品共N 件,其中M 件正品.从中随机地取出n 件(n <N ).试求其中恰有m 件(m ≤M )正品(记为A )的概率. (1) n 件是同时取出的; (2)n (3) n 件是有放回逐件取出的.【解】(1) P (A )=C C /C m n m nM N M N --(2) 由于是无放回逐件取出,可用排列法计算.样本点总数有P nN 种,n 次抽取中有m次为正品的组合数为C mn 种.对于固定的一种正品与次品的抽取次序,从M 件正品中取m 件的排列数有P mM 种,从N -M 件次品中取n -m 件的排列数为P n mN M --种,故P (A )=C P PP m m n mn M N M n N --由于无放回逐渐抽取也可以看成一次取出,故上述概率也可写成P (A )=C C C m n mM N Mn N--可以看出,用第二种方法简便得多.(3) 由于是有放回的抽取,每次都有N 种取法,故所有可能的取法总数为N n 种,n次抽取中有m 次为正品的组合数为C mn 种,对于固定的一种正、次品的抽取次序,m 次取得正品,都有M 种取法,共有M m 种取法,n -m 次取得次品,每次都有N -M 种取法,共有(N -M )n -m 种取法,故()C ()/m m n mn n P A M N M N -=- 此题也可用贝努里概型,共做了n 重贝努里试验,每次取得正品的概率为MN,则取得m 件正品的概率为()C 1m n mm n M M P A N N -⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭11..见教材习题参考答案.12. 50只铆钉随机地取来用在10个部件上,每个部件用3只铆钉.其中有3个铆钉强度太弱.若将3只强度太弱的铆钉都装在一个部件上,则这个部件强度就太弱.求发生一个部件强度太弱的概率是多少? 【解】设A ={发生一个部件强度太弱}133103501()C C /C 1960P A ==13.7个球,其中4个是白球,3个是黑球,从中一次抽取3个,计算至少有两个是白球的概率. 【解】 设A i ={恰有i 个白球}(i =2,3),显然A 2与A 3互斥.213434233377C C C 184(),()C 35C 35P A P A ====故 232322()()()35P A A P A P A =+=14.0.8和0.7,在两批种子中各随机取一粒,求:(1) 两粒都发芽的概率; (2) 至少有一粒发芽的概率; (3) 恰有一粒发芽的概率.【解】设A i ={第i 批种子中的一粒发芽},(i =1,2)(1) 1212()()()0.70.80.56P A A P A P A ==⨯= (2) 12()0.70.80.70.80.94P A A =+-⨯=(3) 2112()0.80.30.20.70.38P A A A A =⨯+⨯=15.3次正面才停止.(1) 问正好在第6次停止的概率;(2) 问正好在第6次停止的情况下,第5次也是出现正面的概率.【解】(1) 223151115()()22232p C ==(2) 1342111C ()()22245/325p == 16.0.7及0.6,每人各投了3次,求二人进球数相等的概率.【解】 设A i ={甲进i 球},i =0,1,2,3,B i ={乙进i 球},i =0,1,2,3,则33312123330()(0.3)(0.4)C 0.7(0.3)C 0.6(0.4)i i i P A B ==+⨯⨯+22223333C (0.7)0.3C (0.6)0.4+(0.7)(0.6)⨯=0.32076175双不同的鞋子中任取4只,求这4只鞋子中至少有两只鞋子配成一双的概率.【解】 4111152222410C C C C C 131C 21p =-= 18.0.3,下雨的概率为0.5,既下雪又下雨的概率为0.1,求:(1) 在下雨条件下下雪的概率;(2) 这天下雨或下雪的概率. 【解】 设A ={下雨},B ={下雪}.(1) ()0.1()0.2()0.5P AB p B A P A === (2) ()()()()0.30.50.10.7p A B P A P B P AB =+-=+-=19.3个小孩,且其中一个为女孩,求至少有一个男孩的概率(小孩为男为女是等可能的).【解】 设A ={其中一个为女孩},B ={至少有一个男孩},样本点总数为23=8,故()6/86()()7/87P AB P B A P A ===或在缩减样本空间中求,此时样本点总数为7.6()7P B A =20.5%的男人和0.25%的女人是色盲,现随机地挑选一人,此人恰为色盲,问此人是男人的概率(假设男人和女人各占人数的一半).【解】 设A ={此人是男人},B ={此人是色盲},则由贝叶斯公式()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.50.05200.50.050.50.002521⨯==⨯+⨯ 21.9∶00~10∶00在公园会面,求一人要等另一人半小时以上的概率.题21图题22图【解】设两人到达时刻为x,y,则0≤x,y≤60.事件“一人要等另一人半小时以上”等价于|x-y|>30.如图阴影部分所示.22301604P==22.0,1)中随机地取两个数,求:(1)两个数之和小于65的概率;(2)两个数之积小于14的概率.【解】设两数为x,y,则0<x,y<1.(1)x+y<65.11441725510.68125p=-==(2) xy=<14.1111244111d d ln242xp x y⎛⎫=-=+⎪⎝⎭⎰⎰23.P(A)=0.3,P(B)=0.4,P(A B)=0.5,求P(B|A∪B)【解】()()()()()()()()P AB P A P ABP B A BP A B P A P B P AB-==+-0.70.510.70.60.54-==+-24.15个乒乓球,其中有9个新球,在第一次比赛中任意取出3个球,比赛后放回原盒中;第二次比赛同样任意取出3个球,求第二次取出的3个球均为新球的概率.【解】 设A i ={第一次取出的3个球中有i 个新球},i =0,1,2,3.B ={第二次取出的3球均为新球}由全概率公式,有3()()()i i i P B P B A P A ==∑33123213336996896796333333331515151515151515C C C C C C C C C C C C C C C C C C =∙+∙+∙+∙0.089=25. 按以往概率论考试结果分析,努力学习的学生有90%的可能考试及格,不努力学习的学生有90%的可能考试不及格.据调查,学生中有80%的人是努力学习的,试问: (1)考试及格的学生有多大可能是不努力学习的人? (2)考试不及格的学生有多大可能是努力学习的人? 【解】设A ={被调查学生是努力学习的},则A ={被调查学生是不努力学习的}.由题意知P(A )=0.8,P (A )=0.2,又设B ={被调查学生考试及格}.由题意知P (B |A )=0.9,P (B |A )=0.9,故由贝叶斯公式知(1)()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.20.110.027020.80.90.20.137⨯===⨯+⨯即考试及格的学生中不努力学习的学生仅占2.702% (2) ()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.80.140.30770.80.10.20.913⨯===⨯+⨯即考试不及格的学生中努力学习的学生占30.77%.26. 将两信息分别编码为A 和B 传递出来,接收站收到时,A 被误收作B 的概率为0.02,而B 被误收作A 的概率为0.01.信息A 与B 传递的频繁程度为2∶1.若接收站收到的信息是A ,试问原发信息是A 的概率是多少?【解】 设A ={原发信息是A },则={原发信息是B }C ={收到信息是A },则={收到信息是B } 由贝叶斯公式,得()()()()()()()P A P C A P A C P A P C A P A P C A =+2/30.980.994922/30.981/30.01⨯==⨯+⨯27.取出一球,若发现这球为白球,试求箱【解】设A i ={箱中原有i 个白球}(i =0,1,2),由题设条件知P (A i )=13,i =0,1,2.又设B ={抽出一球为白球}.由贝叶斯公式知11112()()()()()()()i i i P B A P A P A B P A B P B P B A P A ===∑ 2/31/311/31/32/31/311/33⨯==⨯+⨯+⨯28.96%是合格品,检查产品时,一个合格品被误认为是次品的概率为0.02,一个次品被误认为是合格品的概率为0.05,求在被检查后认为是合格品产品确是合格品的概率.【解】 设A ={产品确为合格品},B ={产品被认为是合格品}由贝叶斯公式得()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.960.980.9980.960.980.040.05⨯==⨯+⨯29..统计资料表明,上述三种人在一年内发生事故的概率依次为0.05,0.15和0.30;如果“谨慎的”被保险人占20%,“一般的”占50%,“冒失的”占30%,现知某被保险人在一年内出了事故,则他是“谨慎的”的概率是多少?【解】 设A ={该客户是“谨慎的”},B ={该客户是“一般的”},C ={该客户是“冒失的”},D ={该客户在一年内出了事故} 则由贝叶斯公式得()()(|)(|)()()(|)()(|)()(|)P AD P A P D A P A D P D P A P D A P B P D B P C P D C ==++0.20.050.0570.20.050.50.150.30.3⨯==⨯+⨯+⨯30.0.02,0.03,0.05,0.03,假定各道工序是相互独立的,求加工出来的零件的次品率. 【解】设A i ={第i 道工序出次品}(i =1,2,3,4).412341()1()i i P A P A A A A ==-12341()()()()P A P A P A P A =-10.980.970.950.970.124=-⨯⨯⨯= 31.0.2,问至少必须进行多少次独立射击才能使至少击中一次的概率不小于0.9?【解】设必须进行n 次独立射击.1(0.8)0.9n -≥即为 (0.8)0.1n≤ 故 n ≥11 至少必须进行11次独立射击. 32.P (A |B )=P (A |B ),则A ,B 相互独立.【证】 (|)(|)P A B P A B =即()()()()P AB P AB P B P B =亦即 ()()()()P AB P B P AB P B =()[1()][()()]()P AB P B P A P AB P B -=-因此 ()()()P AB P A P B = 故A 与B 相互独立. 33.15,13,14,求将此密码破译出的概率.【解】 设A i ={第i 人能破译}(i =1,2,3),则31231231()1()1()()()i i P A P A A A P A P A P A ==-=-42310.6534=-⨯⨯= 34.0.4,0.5,0.7,若只有一人击中,则飞机被击落的概率为0.2;若有两人击中,则飞机被击落的概率为0.6;若三人都击中,则飞机一定被击落,求:飞机被击落的概率. 【解】设A ={飞机被击落},B i ={恰有i 人击中飞机},i =0,1,2,3由全概率公式,得3()(|)()i i i P A P A B P B ==∑=(0.4×0.5×0.3+0.6×0.5×0.3+0.6×0.5×0.7)0.2+(0.4×0.5×0.3+0.4×0.5×0.7+0.6×0.5×0.7)0.6+0.4×0.5×0.7 =0.45835.25%,为试验一种新药是否有效,把它给10个病人服用,且规定若10个病人中至少有四人治好则认为这种药有效,反之则认为无效,求: (1) 虽然新药有效,且把治愈率提高到35%,但通过试验被否定的概率.(2) 新药完全无效,但通过试验被认为有效的概率. 【解】(1) 310110C(0.35)(0.65)0.5138k k k k p -===∑(2) 10102104C(0.25)(0.75)0.2241kk k k p -===∑36.6位乘客,并等可能地停于十层楼的每一层.试求下列事件的概率:(1) A =“某指定的一层有两位乘客离开”;(2) B =“没有两位及两位以上的乘客在同一层离开”; (3) C =“恰有两位乘客在同一层离开”; (4) D =“至少有两位乘客在同一层离开”.【解】 由于每位乘客均可在10层楼中的任一层离开,故所有可能结果为106种.(1) 2466C 9()10P A =,也可由6重贝努里模型:224619()C ()()1010P A =(2) 6个人在十层中任意六层离开,故6106P ()10P B =(3) 由于没有规定在哪一层离开,故可在十层中的任一层离开,有110C 种可能结果,再从六人中选二人在该层离开,有26C 种离开方式.其余4人中不能再有两人同时离开的情况,因此可包含以下三种离开方式:①4人中有3个人在同一层离开,另一人在其余8层中任一层离开,共有131948C C C 种可能结果;②4人同时离开,有19C 种可能结果;③4个人都不在同一层离开,有49P 种可能结果,故1213114610694899()C C (C C C C P )/10P C =++(4) D=B .故6106P ()1()110P D P B =-=-37. n 个朋友随机地围绕圆桌而坐,求下列事件的概率: (1) 甲、乙两人坐在一起,且乙坐在甲的左边的概率; (2) 甲、乙、丙三人坐在一起的概率;(3) 如果n 个人并排坐在长桌的一边,求上述事件的概率. 【解】 (1) 111p n =-(2) 23!(3)!,3(1)!n p n n -=>-(3) 12(1)!13!(2)!;,3!!n n p p n n n n --''===≥ 38.[0,a ]【解】 设这三段长分别为x ,y ,a -x -y .则基本事件集为由0<x <a ,0<y <a ,0<a -x -y <a 所构成的图形,有利事件集为由()()x y a x y x a x y y y a x y x+>--⎡⎢+-->⎢⎢+-->⎣ 构成的图形,即02022a x a y ax y a ⎡<<⎢⎢⎢<<⎢⎢⎢<+<⎢⎣如图阴影部分所示,故所求概率为14p =. 39. 某人有n 把钥匙,其中只有一把能开他的门.他逐个将它们去试开(抽样是无放回的).证明试开k 次(k =1,2,…,n )才能把门打开的概率与k 无关.【证】 11P 1,1,2,,P k n k n p k n n--=== 40.把一个表面涂有颜色的立方体等分为一千个小立方体,在这些小立方体中,随机地取出一个,试求它有i 面涂有颜色的概率P (A i )(i =0,1,2,3). 【解】 设A i ={小立方体有i 面涂有颜色},i =0,1,2,3.在1千个小立方体中,只有位于原立方体的角上的小立方体是三面有色的,这样的小立方体共有8个.只有位于原立方体的棱上(除去八个角外)的小立方体是两面涂色的,这样的小立方体共有12×8=96个.同理,原立方体的六个面上(除去棱)的小立方体是一面涂色的,共有8×8×6=384个.其余1000-(8+96+384)=512个内部的小立方体是无色的,故所求概率为01512384()0.512,()0.38410001000P A P A ====, 24968()0.096,()0.00810001000P A P A ====.41.对任意的随机事件A ,B ,CP (AB )+P (AC )-P (BC )≤P (A). 【证】 ()[()]()P A P A BC P AB AC ≥=()()()P AB P AC P ABC =+-()()()P AB P AC P BC ≥+- 42.3个球随机地放入4个杯子中去,求杯中球的最大个数分别为1,2,3的概率.【解】 设i A ={杯中球的最大个数为i },i =1,2,3.将3个球随机放入4个杯子中,全部可能放法有43种,杯中球的最大个数为1时,每个杯中最多放一球,故3413C 3!3()48P A ==而杯中球的最大个数为3,即三个球全放入一个杯中,故1433C 1()416P A ==因此 213319()1()()181616P A P A P A =--=--= 或 12143323C C C 9()416P A == 43.2n 次,求出现正面次数多于反面次数的概率.【解】掷2n 次硬币,可能出现:A ={正面次数多于反面次数},B ={正面次数少于反面次数},C ={正面次数等于反面次数},A ,B ,C 两两互斥.可用对称性来解决.由于硬币是均匀的,故P (A )=P (B ).所以1()()2P C P A -=由2n 重贝努里试验中正面出现n 次的概率为211()()()22n n nn P C C =故 2211()[1C ]22nn n P A =-44.n 次均匀硬币,求出现正面次数多于反面次数的概率.【解】设A ={出现正面次数多于反面次数},B ={出现反面次数多于正面次数},由对称性知P (A )=P (B )(1) 当n 为奇数时,正、反面次数不会相等.由P (A )+P (B )=1得P (A )=P (B )=0.5(2) 当n 为偶数时,由上题知211()[1C ()]22nn n P A =-45.n +1次,乙掷n 次,求甲掷出正面次数多于乙掷出正面次数的概率.【解】 令甲正=甲掷出的正面次数,甲反=甲掷出的反面次数.乙正=乙掷出的正面次数,乙反=乙掷出的反面次数. 显然有>正正(甲乙)=(甲正≤乙正)=(n +1-甲反≤n -乙反)=(甲反≥1+乙反)=(甲反>乙反)由对称性知P (甲正>乙正)=P (甲反>乙反) 因此P (甲正>乙正)=1246.Sure -thing ):若P (A |C )≥P (B |C ),P (A |C )≥P (B |C ),则P (A )≥P (B ).【证】由P (A |C )≥P (B |C ),得()(),()()P AC P BC P C P C ≥即有 ()()P AC P BC ≥ 同理由 (|)(|),P A C P B C ≥ 得 ()(),P AC P BC ≥故 ()()()()()()P A P AC P AC P BC P BC P B =+≥+= 47.一列火车共有n 节车厢,有k (k ≥n )个旅客上火车并随意地选择车厢.求每一节车厢内至少有一个旅客的概率.【解】 设A i ={第i 节车厢是空的},(i =1,…,n ),则121(1)1()(1)2()(1)1()(1)n k ki k ki j ki i i n P A n nP A A n n P A A A n--==-=--=-其中i 1,i 2,…,i n -1是1,2,…,n 中的任n -1个. 显然n 节车厢全空的概率是零,于是2112111122111111123111()(1)C (1)2()C (1)1()C (1)0()(1)n n nk ki ni ki j n i j nn kn i i i n i i i nn nn i ni S P A n n n S P A A n n S P A A A nS P A S S S S --=≤<≤--≤<<≤+===-=-==--==-==-+-+-∑∑∑121121C (1)C (1)(1)C (1)k kn n kn n n n nnn--=---++--故所求概率为121121()1C (1)C (1)nk i i n ni P A n n=-=--+--+111(1)C (1)n n kn n n+----48.设随机试验中,某一事件A 出现的概率为ε>0.试证明:不论ε>0如何小,只要不断地独立地重复做此试验,则A 迟早会出现的概率为1. 【证】在前n 次试验中,A 至少出现一次的概率为1(1)1()n n ε--→→∞49.袋中装有m 只正品硬币,n 只次品硬币(次品硬币的两面均印有国徽).在袋中任取一只,将它投掷r 次,已知每次都得到国徽.试问这只硬币是正品的概率是多少? 【解】设A ={投掷硬币r 次都得到国徽}B ={这只硬币为正品} 由题知 (),()m nP B P B m n m n==++ 1(|),(|)12r P A B P A B ==则由贝叶斯公式知()()(|)(|)()()(|)()(|)P AB P B P A B P B A P A P B P A B P B P A B ==+ 121212r rr m m m n m n m nm n m n+==++++ 50.巴拿赫(Banach )火柴盒问题:某数学家有甲、乙两盒火柴,每盒有N 根火柴,每次用火柴时他在两盒中任取一盒并从中任取一根.试求他首次发现一盒空时另一盒恰有r 根的概率是多少?第一次用完一盒火柴时(不是发现空)而另一盒恰有r 根的概率又【解】以B 1、B 2记火柴取自不同两盒的事件,则有121()()2P B P B ==.(1)发现一盒已空,另一盒恰剩r 根,说明已取了2n -r 次,设n 次取自B 1盒(已空),n -r 次取自B 2盒,第2n -r +1次拿起B 1,发现已空。

概率论与数理统计复旦大学出版社第一章课后参考答案

概率论与数理统计复旦大学出版社第一章课后参考答案

精心整理第一章1.见教材习题参考答案.2.设A ,B ,C 为三个事件,试用A ,B ,C(1)A 发生,B ,C 都不发生; (2)A ,B ,C 都发生; (3)A ,B ,C (4)A ,B ,C 都不发生; (5)A ,B ,C(6)A ,【解】(1(B C (4)ABC B C (5)ABC ∪ABC ∪ABC ABC =AB BC AC3..4.设A ,?B )=0.3,求P (.【解】P 5.设A ,(A )=0.6,P (B )=0.7,(1AB (2AB【解】(1)()0.6AB P A ==,()P AB 取到最大值为(2)当()()()0.3P A P B P A B =+-= 6.设A ,B ,P (C )=1/3P (AC )至少有一事件发生的概率. )=0, 由加法公式可得=14+14+13?112=347.52张扑克牌中任意取出13张,问有5张黑桃,3张红心,3张方块,2张梅花的概率是多少? 【解】设A 表示“取出的13张牌中有5张黑桃,3张红心,3张方块,2张梅花”,则样本空间Ω中样本点总数为1352n C =,A 中所含样本点533213131313k C C C C =,所求概率为8.(1)求五个人的生日都在星期日的概率;(2)求五个人的生日都不在星期日的概率; (3)求五个人的生日不都在星期日的概率. 【解】(1)设A 1={五个人的生日都在星期日},基本事件总数为75,有利事件仅1个,故P (A 1)=517=(17)5(亦可用独立性求解,下同) (2)设A 2={五个人生日都不在星期日},有利事件数为65,故P (A 2)=5567=(67)5(3)设A 3={五个人的生日不都在星期日}P (A 3)=1?P (A 1)=1?(17)59..见教材习题参考答案.10.一批产品共N 件,其中M 件正品.从中随机地取出n 件(n <N ).试求其中恰有m 件(m ≤M )正品(记为A )的概率. (1)n (2)n(3)n .【解】(1样本空间Ω,所求概率为;(P (2)次为正品m 件的排(3n 次抽取中此题也可用贝努里概型,共做了n 重贝努里试验,每次取得正品的概率为MN,则取得m 件正品的概率为 11..见教材习题参考答案.12.50只铆钉随机地取来用在10个部件上,其中有3个铆钉强度太弱.每个部件用3只铆钉.若将3只强度太弱的铆钉都装在一个部件上,则这个部件强度就太弱.求发生一个部件强度太弱的概率是多少?【解】设A ={发生一个部件强度太弱},样本空间Ω中样本点总数为350C ,A 中所含样本点13103k C C =,因此,所求概率为133103501()C C /C 1960P A ==13.7个球,其中4个是白球,3个是黑球,从中一次抽取3个,计算至少有两个是白球的概率. 【解】设A i ={恰有i 个白球}(i =2,3),显然A 2与A 3互不相容.样本空间Ω中样本点总数为37n=C ,2A 中所含样本点数为2143C C ,3A 中所含样本点数为34C ,故所求概率为232322()()()35P A A P A P A =+=14.0.8和0.7,在两批种子中各随机取一粒,求:(1)两粒都发芽的概率; (2)至少有一粒发芽的概率; (3)恰有一粒发芽的概率.【解】设2)0.7A =212)A A A =15.(1)问正好在第6次停止的概率;(2)问正好在第6次停止的情况下,第【解】(151次正面,(1)(P 16.0.7【解】设175双不同的鞋子中任取4只,求这4只鞋子中至少有两只鞋子配成一双的概率. 【解】设A 表示“4只鞋子中至少有两只鞋子配成一双”,从5双不同的鞋子中任取4只,取法总数为410C ,A 表示“4只鞋子中没有配对的鞋子”,A 中所含基本事件数为4111152222C C C C C ,所求概率为 18.0.3,下雨的概率为0.5,既下雪又下雨的概率为0.1,求: (1)在下雨条件下下雪的概率;(2)这天下雨或下雪的概率. 【解】设A ={下雨},B ={下雪}.(1)()0.1()0.2()0.5P AB P B A P A ===(2)()()()()0.30.50.10.7P A B P A P B P AB =+-=+-= 19.3个小孩,且其中一个为女孩,求至少有一个男孩的概率(小孩为男为女是等可能的).【解】设A ={其中一个为女孩},B ={至少有一个男孩},样本点总数为23=8,故或在缩减样本空间中求,此时样本点总数为7.20.5%的男人和0.25%的女人是色盲,现随机地挑选一人,此人恰为色盲,问此人是男人的概率(假设男人和女人各占人数的一半). 【解】设A ={此人是男人},B ={此人是色盲},则A ={此人是女人},显然A ,A 是样本空间的一个划分,且1()()P A P A ==,由贝叶斯公式得21.【解】 部分所示22.(1(2【解】区域”.(1)(2)设B 23.P 【解】()()()()()P B A B P A B P A P B P AB ==+- 24.15个乒乓球,其中有9个新球,在第一次比赛中任意取出3个球,比赛后放回原盒中;第二次比赛同样任意取出3个球,求第二次取出的3个球均为新球的概率. 【解】设A i ={第一次取出的3个球中有i 个新球},i =0,1,2,3.B ={第二次取出的3球均为新 球}。

概率试题和答案

概率试题和答案

1.:对一个五人学习小组考虑生日问题: (1) 求五个人的生日都在星期日的概率; (2) 求五个人的生日都不在星期日的概率; (3) 求五个人的生日不都在星期日的概率. 【解】(1) 设A 1={五个人的生日都在星期日},基本事件总数为75,有利事件仅1个,故 P (A 1)=517=(17)5(亦可用独立性求解,下同) (2) 设A 2={五个人生日都不在星期日},有利事件数为65,故P (A 2)=5567=(67)5(3) 设A 3={五个人的生日不都在星期日} P (A 3)=1-P (A 1)=1-(17)52.:50只铆钉随机地取来用在10个部件上,其中有3个铆钉强度太弱.每个部件用3只铆钉.若将3只强度太弱的铆钉都装在一个部件上,则这个部件强度就太弱.求发生一个部件强度太弱的概率是多少?【解】设A ={发生一个部件强度太弱}133103501()C C /C 1960P A ==3:.有甲、乙两批种子,发芽率分别为0.8和0.7,在两批种子中各随机取一粒,求:(1) 两粒都发芽的概率; (2) 至少有一粒发芽的概率; (3) 恰有一粒发芽的概率.【解】设A i ={第i 批种子中的一粒发芽},(i =1,2)(1) 1212()()()0.70.80.56P A A P A P A ==⨯= (2) 12()0.70.80.70.80.94P A A =+-⨯=(3) 2112()0.80.30.20.70.38P A A A A =⨯+⨯=4.:已知5%的男人和0.25%的女人是色盲,现随机地挑选一人,此人恰为色盲,问此人是男人的概率(假设男人和女人各占人数的一半).【解】 设A ={此人是男人},B ={此人是色盲},则由贝叶斯公式()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.50.05200.50.050.50.002521⨯==⨯+⨯5.:某工厂生产的产品中96%是合格品,检查产品时,一个合格品被误认为是次品的概率为0.02,一个次品被误认为是合格品的概率为0.05,求在被检查后认为是合格品产品确是合格品的概率.【解】 设A ={产品确为合格品},B ={产品被认为是合格品}由贝叶斯公式得()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.960.980.9980.960.980.040.05⨯==⨯+⨯6:将3个球随机地放入4个杯子中去,求杯中球的最大个数分别为1,2,3的概率. 【解】 设i A ={杯中球的最大个数为i },i =1,2,3.将3个球随机放入4个杯子中,全部可能放法有43种,杯中球的最大个数为1时,每个杯中最多放一球,故3413C 3!3()48P A ==而杯中球的最大个数为3,即三个球全放入一个杯中,故1433C 1()416P A ==因此 213319()1()()181616P A P A P A =--=--= 或 12143323C C C 9()416P A ==7:设在15只同类型零件中有2只为次品,在其中取3次,每次任取1只,作不放回抽样,以X 表示取出的次品个数,求: (1) X 的分布律;(2) X 的分布函数并作图; (3)133{},{1},{1},{12}222P X P X P X P X ≤<≤≤≤<<.【解】313315122133151133150,1,2.C 22(0).C 35C C 12(1).C 35C 1(2).C 35X P X P X P X ==========(2) 当x <0时,F (x )=P (X ≤x )=0当0≤x <1时,F (x )=P (X ≤x )=P (X =0)=2235当1≤x <2时,F (x )=P (X ≤x )=P (X =0)+P (X =1)=3435当x ≥2时,F (x )=P (X ≤x )=1 故X 的分布函数0,022,0135()34,12351,2x x F x x x <⎧⎪⎪≤<⎪=⎨⎪≤<⎪⎪≥⎩(3)1122()(),2235333434(1)()(1)02235353312(1)(1)(1)2235341(12)(2)(1)(2)10.3535P X F P X F F P X P X P X P X F F P X ≤==<≤=-=-=≤≤==+<≤=<<=--==--=8:设某机场每天有200架飞机在此降落,任一飞机在某一时刻降落的概率设为0.02,且设各飞机降落是相互独立的.试问该机场需配备多少条跑道,才能保证某一时刻飞机需立即降落而没有空闲跑道的概率小于0.01(每条跑道只能允许一架飞机降落)?【解】设X 为某一时刻需立即降落的飞机数,则X ~b (200,0.02),设机场需配备N 条跑道,则有()0.01P X N ><即 2002002001C (0.02)(0.98)0.01k k kk N -=+<∑利用泊松近似2000.02 4.np λ==⨯=41e 4()0.01!kk N P X N k -∞=+≥<∑ 查表得N ≥9.故机场至少应配备9条跑道.9:设顾客在某银行的窗口等待服务的时间X (以分钟计)服从指数分布1()5E .某顾客在窗口等待服务,若超过10分钟他就离开.他一个月要到银行5次,以Y 表示一个月内他未等到服务而离开窗口的次数,试写出Y 的分布律,并求P {Y ≥1}. 【解】依题意知1~()5X E ,即其密度函数为51e ,0()50,xx f x -⎧>⎪=⎨⎪≤⎩x 0 该顾客未等到服务而离开的概率为25101(10)e d e 5x P X x -∞->==⎰2~(5,e )Y b -,即其分布律为225525()C (e )(1e ),0,1,2,3,4,5(1)1(0)1(1e )0.5167kk k P Y k k P Y P Y ----==-=≥=-==--=10:将一硬币抛掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与出现反面次数之差的绝对值.试写出X 和Y 的联合分布律. 111222⨯⨯111222⨯⨯11:设随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<<<--.,0,42,20),6(其他y x y x k(1) 确定常数k ;(2) 求P {X <1,Y <3}; (3) 求P {X <1.5}; (4) 求P {X +Y ≤4}. 【解】(1) 由性质有242(,)d d (6)d d 81,f x y x y k x y y x k +∞+∞-∞-∞=--==⎰⎰⎰⎰故 18R =(2) 13{1,3}(,)d d P X Y f x y y x -∞-∞<<=⎰⎰130213(6)d d 88k x y y x =--=⎰⎰ (3) 11.5{ 1.5}(,)d d a (,)d d x D P X f x y x y f x y x y <<=⎰⎰⎰⎰如图1.542127d (6)d .832x x y y =--=⎰⎰(4) 24{4}(,)d d (,)d d X Y D P X Y f x y x y f x y x y +≤+≤=⎰⎰⎰⎰如图b240212d (6)d .83xx x y y -=--=⎰⎰12:袋中有五个号码1,2,3,4,5,从中任取三个,记这三个号码中最小的号码为X ,最大的号码为Y .(1) 求X 与Y 的联合概率分布; (2) X 与Y 是否相互独立? 【解】(1) X 与Y 的联合分布律如下表3 4 5{}i P X x =13511C 10= 3522C 10= 3533C 10= 610YX2 03511C 10= 3522C 10= 310 3 02511C 10= 110{}i P Y y =110 310 610(2) 因6161{1}{3}{1,3},101010010P X P Y P X Y ===⨯=≠=== 故X 与Y 不独立13:设平面区域D 由曲线y =1/x 及直线y =0,x =1,x=e 2所围成,二维随机变量(X ,Y )在区域D 上服从均匀分布,求(X ,Y )关于X 的边缘概率密度在x =2处的值为多少?题21图【解】区域D 的面积为 22e e 0111d ln 2.S x x x===⎰(X ,Y )的联合密度函数为211,1e ,0,(,)20,.x y f x y x ⎧≤≤<≤⎪=⎨⎪⎩其他(X ,Y )关于X 的边缘密度函数为1/2011d ,1e ,()220,.x X y x f x x⎧=≤≤⎪=⎨⎪⎩⎰其他 所以1(2).4X f =14:设随机变量X 和Y 相互独立,下表列出了二维随机变量(X ,Y )联合分布律及关于X 和y 1 y 2 y 3P {X =x i }=p ix 1 x 21/81/8P {Y =y j }=p j1/61YX【解】因21{}{,}j j iji P Y y P P X x Y y ======∑,故11121{}{,}{,},P Y y P X x Y y P X x Y y ====+== 从而11111{,}.6824P X x Y y ===-= 而X 与Y 独立,故{}{}{,}i j i i P X x P Y y P X x Y y =====,从而11111{}{,}.624P X x P X x Y y =⨯==== 即:1111{}/.2464P X x ===又1111213{}{,}{,}{,},P X x P X x Y y P X x Y y P X x Y y ====+==+==即1,3111{},4248P X x Y y =++== 从而131{,}.12P X x Y y ===同理21{},2P Y y == 223{,}8P X x Y y ===又31{}1jj P Y y ===∑,故3111{}1623P Y y ==--=. 同理23{}.4P X x == 从而23313111{,}{}{,}.3124P X x Y y P Y y P X x Y y ====-===-=故15:已知100个产品中有10个次品,求任意取出的5个产品中的次品数的数学期望、方差.【解】设任取出的5个产品中的次品数为X ,则X 的分布律为 X 0 12345P5905100C 0.583C = 1410905100C C 0.340C = 2310905100C C 0.070C = 3210905100C C 0.007C = 4110905100C C 0C = 5105100C 0C =故 ()0.58300.34010.07020.00730405E X =⨯+⨯+⨯+⨯+⨯+⨯ 0.501,= 52()[()]iii D X x E X P ==-∑222(00.501)0.583(10.501)0.340(50.501)00.432.=-⨯+-⨯++-⨯=16:设X ,Y 是相互独立的随机变量,其概率密度分别为f X (x )=⎩⎨⎧≤≤;,0,10,2其他x x f Y (y )=(5)e ,5,0,.y y --⎧>⎨⎩其他求E (XY ).【解】方法一:先求X 与Y 的均值 12()2d ,3E X x x x ==⎰ 5(5)5()ed 5e d e d 51 6.z y y zz E Y y yz z z +∞+∞+∞=-----=+=+=⎰⎰⎰令由X 与Y 的独立性,得2()()()6 4.3E XY E X E Y ==⨯=方法二:利用随机变量函数的均值公式.因X 与Y 独立,故联合密度为(5)2e ,01,5,(,)()()0,,y X Y x x y f x y f x f y --⎧≤≤>==⎨⎩其他于是11(5)2(5)552()2e d d 2d e d 6 4.3y y E XY xy x x y x xy y +∞+∞----===⨯=⎰⎰⎰⎰17:袋中有12个零件,其中9个合格品,3个废品.安装机器时,从袋中一个一个地取出(取出后不放回),设在取出合格品之前已取出的废品数为随机变量X ,求E (X )和D (X ). 【解】设随机变量X 表示在取得合格品以前已取出的废品数,则X 的可能取值为0,1,2,3.为求其分布律,下面求取这些可能值的概率,易知 9{0}0.750,12P X === 39{1}0.204,1211P X ==⨯=329{2}0.041,121110P X ==⨯⨯= 3219{3}0.005.1211109P X ==⨯⨯⨯=由此可得()00.75010.20420.04130.0050.301.E X =⨯+⨯+⨯+⨯=22222222()075010.20420.04130.0050.413()()[()]0.413(0.301)0.322.E X D X E X E X =⨯+⨯+⨯+⨯==-=-=25:设随机变量X 的概率密度为f (x )=x-e 21,( -∞<x <+∞) (1) 求E (X )及D (X );(2) 求Cov(X ,|X |),并问X 与|X |是否不相关? (3) 问X 与|X |是否相互独立,为什么?【解】(1)||1()e d 0.2x E X xx +∞--∞==⎰ 2||201()(0)e d 0e d 2.2x x D X x x x x +∞+∞---∞=-==⎰⎰(2) Cov(,|)(||)()(||)(||)X X E X X E X E X E X X =-= ||1||e d 0,2x x x x +∞--∞==⎰所以X 与|X |互不相关.(3) 为判断|X |与X 的独立性,需依定义构造适当事件后再作出判断,为此,对定义域-∞<x <+∞中的子区间(0,+∞)上给出任意点x 0,则有0000{}{||}{}.x X x X x X x -<<=<⊂<所以000{||}{} 1.P X x P X x <<<<< 故由00000{,||}{||}{||}{}P X x X x P X x P X x P X x <<=<><<得出X 与|X |不相互独立.58.设总体X 的密度函数为f (x ,θ),X 1,X 2,…,X n 为其样本,求θ的极大似然估计.(1) f (x ,θ)=,0,0,0.e x x x θθ-⎧≥⎨<⎩(2) f (x ,θ)=1,01,0,.x x θθ-⎧<<⎨⎩其他【解】(1) 似然函数111(,)ee eniii n nx x nn ii i L f x θθθθθθ=---==∑===∏∏1ln ln ni i g L n x θθ===-∑由1d d ln 0d d ni i g L n x θθθ===-=∑知 1ˆnii nxθ==∑所以θ的极大似然估计量为1ˆXθ=. (2) 似然函数11,01nni i i L x x θθ-==<<∏,i =1,2,…,n.1ln ln (1)ln ni i L n x θθ==+-∏由1d ln ln 0d ni i L nx θθ==+=∏知 11ˆln ln nniii i n nxx θ===-=-∑∏所以θ的极大似然估计量为 1ˆln nii nxθ==-∑54. 某车间有同型号机床200部,每部机床开动的概率为0.7,假定各机床开动与否互不影响,开动时每部机床消耗电能15个单位.问至少供应多少单位电能才可以95%的概率保证不致因供电不足而影响生产.【解】要确定最低的供应的电能量,应先确定此车间同时开动的机床数目最大值m ,而m要满足200部机床中同时开动的机床数目不超过m 的概率为95%,于是我们只要供应15m 单位电能就可满足要求.令X 表同时开动机床数目,则X ~B (200,0.7),()140,()42,E X D X ==0.95{0}().P X m P X m =≤≤=≤=Φ查表知1401.64,42m -= ,m =151. 所以供电能151×15=2265(单位).55. 对于一个学生而言,来参加家长会的家长人数是一个随机变量,设一个学生无家长、1名家长、2名家长来参加会议的概率分别为0.05,0.8,0.15.若学校共有400名学生,设各学生参加会议的家长数相与独立,且服从同一分布. (1) 求参加会议的家长数X 超过450的概率?(2) 求有1名家长来参加会议的学生数不多于340的概率. 【解】(1) 以X i (i =1,2,…,400)记第i 个学生来参加会议的家长数.则X i 的分布律为 X i 0 1 2 P0.05 0.80.15易知E (X i =1.1),D (X i )=0.19,i =1,2,…,400. 而400iiX X=∑,由中心极限定理得400400 1.1400 1.1~(0,1).4000.19419iiXX N -⨯-⨯=⨯⨯∑近似地于是450400 1.1{450}1{450}1419P X P X -⨯⎛⎫>=-≤≈-Φ ⎪⨯⎝⎭1(1.147)0.1357.=-Φ=(2) 以Y 记有一名家长来参加会议的学生数.则Y ~B (400,0.8)由拉普拉斯中心极限定理得{340(2.5)0.9938.4000.80.2P Y ≤≈Φ=Φ=⨯⨯56. 在一定保险公司里有10000人参加保险,每人每年付12元保险费,在一年内一个人死亡的概率为0.006,死亡者其家属可向保险公司领得1000元赔偿费.求: (1) 保险公司没有利润的概率为多大;(2) 保险公司一年的利润不少于60000元的概率为多大?【解】设X 为在一年中参加保险者的死亡人数,则X ~B (10000,0.006).(1) 公司没有利润当且仅当“1000X =10000×12”即“X =120”. 于是所求概率为{120}100000.0060.994100000.0060.994P X =≈⨯⨯⨯⨯21(60/59.64)230.181116011e 59.6459.64259.640.0517e 0ϕπ--⎛⎫== ⎪⎝⎭=⨯≈(2) 因为“公司利润≥60000”当且仅当“0≤X ≤60”于是所求概率为{060}100000.0060.994100000.0060.994P X ≤≤≈Φ-Φ⨯⨯⨯⨯(0)0.5.59.64⎛=Φ-Φ≈ ⎝57.设某厂生产的灯泡的使用寿命X ~N (1000,σ2)(单位:小时),随机抽取一容量为9的样本,并测得样本均值及样本方差.但是由于工作上的失误,事后失去了此试验的结果,只记得样本方差为S 2=1002,试求P (X >1062). 【解】μ=1000,n =9,S 2=10021000~(8)100/3/X X t t S n-==10621000(1062)()( 1.86)0.05100/3P X P t P t ->=>=>=59.某车间生产的螺钉,其直径X ~N (μ,σ2),由过去的经验知道σ2=0.06,今随机抽取6枚,测得其长度(单位mm )如下:14.7 15.0 14.8 14.9 15.1 15.2 试求μ的置信概率为0.95的置信区间. 【解】n =6,σ2=0.06,α=1-0.95=0.05,0.25214.95, 1.96,a x u u ===,μ的置信度为0.95的置信区间为/2(14.950.1 1.96)(14.754,15.146)x u n α⎛±=±⨯= ⎝60.设某种砖头的抗压强度X ~N (μ,σ2),今随机抽取20块砖头,测得数据如下(kg ·cm -2):64 69 49 92 55 97 41 84 88 99 84 66 100 98 72 74 87 84 48 81 (1) 求μ的置信概率为0.95的置信区间. (2) 求σ2的置信概率为0.95的置信区间. 【解】76.6,18.14,10.950.05,20,x s n α===-==/20.025222/20.0250.975(1)(19) 2.093,(1)(19)32.852,(19)8.907t n t n ααχχχ-==-===(1) μ的置信度为0.95的置信区间/2(1)76.6 2.093(68.11,85.089)a x n ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭(2)2σ的置信度为0.95的置信区间222222/21/2(1)(1)1919,18.14,18.14(190.33,702.01)(1)(1)32.8528.907n s n s n n ααχχ-⎛⎫--⎛⎫=⨯⨯= ⎪⎪--⎝⎭⎝⎭61:灯泡厂用4种不同的材料制成灯丝,检验灯线材料这一因素对灯泡寿命的影响.若灯泡寿命服从正态分布,不同材料的灯丝制成的灯泡寿命的方差相同,试根据表中试验结果记录,14,26;====∑ri i r n n2442..11===-∑∑T iji j T S x n =69895900-69700188.46=195711.54, 242 (1)1==-∑A i i iT S T n n =69744549.2-69700188.46=44360.7, =-E T A S S S =151350.8,0.05/(1)44360.7/3 2.15/()151350.8/22(3,22) 3.05.-===-=>A E S r F S n r F F ,故灯丝材料对灯泡寿命无显著影响.62:为了解3种不同配比的饲料对仔猪生长影响的差异,对3种不同品种的猪各选3头进行试验,分别测得其3个月间体重增加量如下表所示,取显著性水平α=0.05,试分析不同饲料与不同品种对猪的生长有无显著影响?假定其体重增长量服从正态分布,且各种配比的方差相等.【解】由已知r =s =3,经计算x =52, 1.x =50.66, 2.x =533.x =52.34, .1x =52, .2x =57, .3x =47,2112.12.1()162;()8.73,()150,3.27.r sT ij i j rA i i rB j j E T A B S x x S s x x S r x x S S S S =====-==-==-==--=∑∑∑∑由于0.050.05(2,4) 6.94,(2,4).A B F F F F =>< 因而接受假设01H ,拒绝假设02H .即不同饲料对猪体重增长无显著影响,猪的品种对猪体重增长有显著影响.(2) 取α=0.05,检验儿子的身高y 与父亲身高x 之间的线性相关关系是否显著. (3) 若父亲身高70英寸,求其儿子的身高的置信度为95%的预测区间. 【解】经计算得,9999922111112291603,604.6,40569,40584.9,40651.68140569(603)168,9140584.9603604.676.7,9140651.68(604.6)35.9956.9ˆˆˆ(1)0.4565,/9/ii ii i i i i i i i xx xy yy xyi i i xx xy x x y y S S S S b a x b x S ============-==-⨯⨯==-====-⨯∑∑∑∑∑∑91936.5891,i ==∑故回归方程:ˆ36.58910.4565.yx =+20.05(2) 35.0172,35.995635.01720.9784,250.5439(1,7) 5.59./2xyxxS Q Q Q Q S Q F F Q n ===-=-===>=-回剩总回回剩故拒绝H 0,即两变量的线性相关关系是显著的.00.025/2ˆ(3)36.58910.45657068.5474,ˆ0.05,(7) 2.3646,0.3739,1.0792, (2) 2.36460.3739 1.079yt t n αασσ=+⨯========-=⨯⨯给定故20.9540.=从而其儿子的身高的置信度为95%的预测区间为(68.5474±0.9540)=(67.5934,69.5014).64:随机抽取了10个家庭,调查了他们的家庭月收入x (单位:百元)和月支出y (单位:求:(1) 在直角坐标系下作x 与y 的散点图,判断y 与x 是否存在线性关系.(2) 求y 与x 的一元线性回归方程.(3) 对所得的回归方程作显著性检验.(α=0.025)【解】(1) 散点图如右,从图看出,y 与x 之间具有线性相关关系.(2) 经计算可得10101010102211111191,170,3731,3310,2948,82.9,63,58.170191ˆˆ0.7600,0.76 2.4849,1010ii ii i i i i i i i xx xy yy xy xx xy x x y y S S S S b a S ================-⨯=∑∑∑∑∑故从而回归方程:ˆ 2.48490.76.yx =+题3图20.05(3) 47.8770,5847.87710.1230,37.8360(1,8)7.57./2xyxxS Q Q Q Q S Q F F Q n ===-=-===>=-回剩总回回剩故拒绝H 0,即两变量的线性相关关系是显著的.。

《概率论与数理统计期末试题》(最终版本+最新考研题目)

《概率论与数理统计期末试题》(最终版本+最新考研题目)

班级 姓名 班内序号习题一 样本空间、随机事件、概率一、填空题.1.设,,A B C 为三事件,用,,A B C 的运算关系表示下列各事件.(1)A 发生,B 与C 不发生:(2)A 与B 都发生,而C 不发生:(3),,A B C 中至少有一个发生:(4),,A B C 都不发生:(5),,A B C 中不多于一个发生:(6),,A B C 中不多于两个发生:(7),,A B C 中至少有两个发生:2.设,A B 为两随机事件且3()7P AB =,4()()7P A P B ==,则()P A B ⋃=3.设A B ⊃,(),()P A p P B q ==,则()P A B -=4.判断下列命题的正误.(1)()A B AB B ⋃=⋃ ( ) (2)AB A B =⋃ ( )(3)若,,AB C A BC φφ=⊂=且则( ) (4)若B A A B A ⊂⋃=,则( )二、计算题.1.写出下列随机试验的样本空间Ω和下列事件所包含的样本点.(1)掷一颗骰子,出现奇数点.(2)掷两颗骰子,A =“出现点数之和为奇数,且恰好其中有一个1点”2.设,A B 为两事件且()0.6,()0.7P A P B ==,问(1)在什么条件下()P AB 取到最大值,最大值是多少?(2)在什么条件下()P AB 取到最小值,最小值是多少?3.设,,A B C 为三事件,且1()()(),()()04P A P B P C P AB P BC =====, 1()8P AC =,求,,A B C 至少有一个发生的概率.4.设,A B 为两事件,且()0.7,()0.3P A P A B =-=,求()P AB .班级姓名班内序号习题二古典概型一、填空题.1.已知6只产品中有两只次品,在其中任取两只,则两只都是正品的概率是2.设一同学书桌上放着9本书,其中有3本英语书,现随机取两本,取到的全是英语书的概率为3 .在11张卡片上分别写上probability这11个字母,从中任意连续抽取7张进行排列,则排列结果为ability的概率为二、计算题.1.对一个5人学习小组考虑生日问题:(1)求5个人的生日都在星期日的概率;(2)求5个人的生日都不在星期日的概率;(3)求5个人的生日不都在星期日的概率.2.从52张扑克牌中任意取出13张,问有5张黑桃,3张红心,3张方块,2张梅花的概率是多少?3.在房间里有10个人,分别佩戴从1号到10号的纪念章,任选3人记录其纪念章的号码.(1)求最小号码为5的概率. (2) 求最大号码为5的概率.4.随机地向半圆0)y a <<为正常数内掷一点,点落在半圆内任何区域的概率与区域的面积成正比,则原点和该点的连线与x 轴的夹角小于4π的概率是多少?班级 姓名 班内序号习题三 条件概率、全概率公式一、计算题.1.设()0.3,()0.4,()0.5P A P B P AB ===,求()P B A B ⋃.2.已知在10只产品中有2只次品,在其中取两次,每次任取一只,作不放回抽样,求下列事件的概率:(1)两只都是正品;(2)两只都是次品;(3)一只是正品,一只是次品;(4)第二次取出的是次品.3.某人忘记了电话号码的最后一个数字,因而他随意地拨号,问他拨号不超过3次而接通所需电话的概率.若已知最后一个数字是奇数,那么此概率是多少?4.已知男子有5%是色盲患者,女子有0.25%是色盲患者.今从男女人数相等的人群中随机地挑选一人,恰好是色盲患者,问此人是男性的概率是多少?5.有两箱同种类的零件.第一箱装50只,其中10只一等品;第二箱装30只,其中18只一等品.今从两箱中任挑出一箱,然后从该箱中取零件两次,每次任取1只,作不放回抽样.求(1)第一次取到的零件是一等品的概率.(2)第一次取到的零件是一等品的条件下,第二次取到的也是一等品的概率.班级 姓名 班内序号习题四 独立性一、填空题.1.假设,A B 是两个相互独立的事件,()0.7,()0.3P A B P A ⋃==,则()P B =2.某人向同一目标重复射击,每次命中率为(01)p p <<,则此人第4次射击恰好是第二次命中的概率为二、计算题.1.三人独立地去破译一份密码,已知各人能译出的概率分别为111,,534,问三人中至少有一个能将密码译出的概率是多少?2.袋中装有m 只正品硬币,n 只次品硬币(次品硬币的两面均有国徽),在袋中任取一只,将它投掷r 次,已知每次都得到国徽,问这只硬币是正品的概率是多少?3.甲、乙、丙3人独立地向飞机射击,设击中的概率分别是0.4,0.5,0.7,若只有一人击中,则飞机被击落的概率为0.2;若有两人击中,则飞机被击落的概率为0.6;若三人都击中,则飞机一定被击落,求飞机被击落的概率.4.证明:若()()P A B P A B =,则,A B 相互独立.(提示:()()()P AB P A P AB =-)班级姓名班内序号习题五离散型随机变量及其分布律1.一袋中装有5只球,编号为1,2,3,4,5,在袋中同时取3只,以X 表示3只求中的最大号码,写出随机变量X的分布律.2.进行重复独立试验,设每次试验成功的概率为p,失败的概率为=-<<.1(01)q p p(1)将试验进行到出现一次成功为止,以X表示所需的试验次数,求X的分布律.(此时称X服从以p为参数的几何分布)(2)将试验进行到出现r次成功为止,以Y表示所需的试验次数,求Y的分布律.(此时称Y服从以,r p为参数的巴斯卡分布)3.设离散型随机变量X 的分布律为:{},(1,2,3,)kP X k b k λ===L 且0b >,求λ的值.4.设随机变量X 服从泊松分布,且满足{1}{2}P X P X ===,求{4}P X =.5.甲、乙两人投篮,投中的概率分别为0.6,0.7,今各投3次,求(1)两人投中次数相等的概率; (2)甲比乙投中次数多的概率.班级姓名班内序号习题六分布函数与连续型随机变量(一)1.将一枚硬币连抛2次,以X表示正面朝上的次数,写出X的分布律和分布函数,并画出分布函数的图形.2.以X表示某商店从早晨开始营业起到直到第一个顾客到达的等待时间(以分钟计),X的分布函数是0.41,0(),0,0xXe xF xx-⎧->=⎨≤⎩求下述概率:(1){3}P至多分钟;(2){}P至少4分钟;(3){3}P分钟至4分钟之间;(4){3}} P至多分钟或至少4分钟;(5){ 2.5}P恰好分钟3.设连续型随机变量X 的分布函数为:,0(),(0)0,0x A Be x F x x λλ-⎧+≥=>⎨<⎩(1)求常数,A B ;(2)求{2},{3}P X P X ≤>;(3)求密度函数()f x4.已知随机变量X 的密度函数为:(),()xf x Ae x -=-∞<<+∞求:(1)常数A 的值;(2){01}P x <<(3)()F x班级 姓名 班内序号习题七 连续型随机变量(二)一、填空题.1.设随机变量X 服从指数分布,其密度函数为:,0()0,0x e x f x x -⎧>=⎨≤⎩,含有变量a 的二次方程220a a X ++=有实根的概率为 2.记z α为标准正态随机变量的上α分位点,则0.01z = , 0.003z = ,0.997z = . 二、计算题.1.某种型号的器件的寿命X (以小时计)具有以下的概率密度:21000,1000()0,x f x x ⎧>⎪=⎨⎪⎩其它现有一大批此种器件(设各器件损坏是否相互独立),任取5只,问其中至少有一只寿命大于1500小时的概率是多少?2.设2~(3,2)X N ,求 (1){25}P X <≤,{2}P X >(2)确定c 使得{}{}P X c P X c >=≤(3)设d 满足{}0.9P X d >≥,问d 至多为多少?3.设随机变量X Y 与均服从正态分布,且2~(,4)X N μ,2~(,5)Y N μ,试比较以下12p p 和的大小.12{4},{5}p P X p P Y μμ=≤-=≥+4.设随机变量2~(,)X N μσ,试问:随着σ的增大,概率{}P X μσ-<是如何变化的?班级 姓名 班内序号习题八 随机变量函数的分布1.设随机变量X 的分布律为:求2Y X =的分布律.2.设随机变量X 服从(0,1)上均匀分布. (1)求XY e =的概率密度.(2)求2ln Y X =-的概率密度.3.设~(0,1)X N ,求Y X =的概率密度.4.设随机变量X 的概率密度为22,0()0,xx f x ππ⎧<<⎪=⎨⎪⎩其它,求sin Y X =的概率密度.5.设随机变量X 服从参数为12的指数分布,证明:21X Y e -=-在区间 (0,1)上的均匀分布.班级 姓名 班内序号习题九 二维随机变量和边缘分布一、填空题.1.设二维随机变量(,)X Y 的联合分布函数为2(,)(arctan )(arctan ),(,)22x F x y A B y x y R π=++∈则常数A = B =2.设二维随机变量(,)X Y 的联合分布函数为(,)F x y ,则{,}P a X b Y d <≤≤=二、计算题.1.箱子中装有12只开关,其中2只次品,取两次,每次任取一只,考虑两种试验:(1)放回抽样(2)不放回抽样,我们定义随机变量,X Y 如下:0,1,X ⎧=⎨⎩若第一次取的是正品若第一次取的是次品 0,1,Y ⎧=⎨⎩若第二次取的是正品若第二次取的是次品试分别就(1)(2)两种情况,写出,X Y 的联合分布律.2.设随机变量(,)X Y 的概率密度为 (6),02,24(,)0,k x y x y f x y --<<<<⎧=⎨⎩其它(1)确定常数k ; (2)求{1,3}P X Y <<;(3)求{ 1.5}P X <; (4)求{4}P X Y +≤.3.设随机变量(,)X Y 的概率密度为 ,0(,)0,y e x yf x y -⎧<<=⎨⎩其它(1)求随机变量X 的密度()X f x ; (2)求{1}P X Y +≤.班级 姓名 班内序号习题十 条件分布、相互独立的随机变量1. 设二维随机变量(,)X Y 的联合分布律如下:(1)求X Y 和的边缘分布;(2)求在0.4Y =的条件下X 的分布律;(3){50.4}P X Y ≥=;(4)判断X Y 和是否相互独立.2. 设二维随机变量(,)X Y 的概率密度为:1,,01(,)0,y x x f x y ⎧<<<=⎨⎩其它(1)求条件概率密度(),()Y X X Y f y x f x y ;(2)判断X Y 和是否相互独立.3. 设二维随机变量(,)X Y 的概率密度为:2221,1(,)40,x y x y f x y ⎧≤≤⎪=⎨⎪⎩其它(1)求边缘概率密度;(2)判断X Y和是否相互独立.4.在(0,1)上随机取两个数,求这两个数之差的绝对值小于12的概率.5.设X Y和是两个相互独立的随机变量,X在(0,1)上服从均匀分布,Y的概率密度为:21,0 ()20,0yYe yf yy-⎧>⎪=⎨⎪≤⎩(1)求X Y和的联合概率密度;(2)设含有a 的二次方程为220a Xa Y ++=,试求a 有实根的概率.6*.设随机变量X Y 和相互独立,下表列出随机变量(,)X Y 联合分布律及关于X Y 和的边缘分布律中的部分数值,试将其余数值填入表中空白处.班级 姓名 班内序号习题十一 随机变量函数的分布一、填空题.1、 设随机变量X Y 与相互独立,且均服从区间(0,3)上的均匀分布, 则{max(,)1}P X Y ≤=2、 设X Y 与为两个随机变量,且3{0,0},7P X Y ≥≥=4{0}{0},7P X P Y ≥=≥=则{max(,)0}P X Y ≥=二、计算题1.设X Y 与为两个独立的随机变量,其概率密度分别为:1,01()0,X x f x ≤≤⎧=⎨⎩其它, ,0()0,y Y e y f y -⎧>=⎨⎩其它求随机变量Z X Y =+的概率密度.2.设X Y 与为两个独立的随机变量,其概率密度分别为:,0()0,0x X e x f x x λλ-⎧>=⎨≤⎩,,0(),(,0)0,0y Y e y f y y μμμλ-⎧>=>⎨≤⎩为常数引入随机变量 1,0,X YZ X Y ≤⎧=⎨>⎩,(1)求条件概率密度()X Y f x y ;(2)求Z 的分布律和分布函数.3.设某种型号的电子元件的寿命(于小时计)近似地服从2(160,20)N 分布,随机地取4只,求其中没有一只寿命小于180的概率.4.设X Y 与相互独立,1{},(1,0,1)3P X i i ===-,Y 的概率密度为 1,01()0,Y y f y ≤≤⎛=⎝其它,记Z X Y =+, (1)求1{0}2P Z X ≤=;(2)用全概率公式计算{ 1.4}P Z ≤5.设随机变量,X Y 相互独立,且服从同一分布.试证明: 22{min(,)}[{}][{}]P a X Y b P X a P X b <≤=>->班级 姓名 班内序号习题十二 数学期望一、填空题.1.X 服从参数为1的指数分布,则2(23)XE X e-+=2.~(1)X π,则{2()}P X E X ==二、计算题.1.某产品的次品率为0.1,检验员每天检验4次.每次随机地取10件产品进行检验,如发现其中的次品数多于1,就去调整设备.以X 表示一天中调整设备的次数,试求()E X .(设各产品是否为次品是相互独立的)2.设随机变量X Y 与的联合概率分布如下:求()E X ,()E Y ,()E XY .3.设(,)X Y 的概率密度为: 212,01(,)0,y y x f x y ⎧≤≤≤=⎨⎩其它求()E X ,()E Y ,()E XY ,22()E X Y +.4.将n 只球(1~n 号)随机地放进n 只盒子(1~n 号)中去,一只盒子装一只球.若一只球装入与球同号的盒子中,称为一个配对,记X 为总的配对数,求()E X .班级 姓名 班内序号习题十三 方差一、填空题.1.设~(,)X b n p ,则()E X = ,()D X = 2.设~()X πλ,则()E X = ,()D X = 3.设~(,)X U a b ,则()E X = ,()D X =4.设X 服从参数为θ的指数分布,则()E X = ,()D X = 5.设2~(,)X N μσ,则()E X = ,()D X = 6.已知随机变量~(3,1),~(2,1)X N Y N -,且,X Y 相互独立,27Z X Y =-+,则~Z二、计算题.1.设随机变量1234,,,X X X X 相互独立,且有(),()5,i i E X i D X i ==-(1,2,3,4)i =.设12341232Y X X X X =-+-,求(),()E Y D Y .2.卡车装运水泥,设每袋水泥的重量X (以公斤计)服从2(50,2.5)N ,问最多装多少袋水泥使总重量超过2000的概率不大于0.05.3.设随机变量,X Y 相互独立,且~(6,16),~(1,9)X N Y N ,求 (1){}P X Y >,(2){7}P X Y +>4.设X 为随机变量,C 为常数,证明2(){()}D X E X C ≤-.班级 姓名 班内序号习题十四 协方差与相关系数一、填空题.1.设()1,()1,()1,()2,(,)1E X D X E Y D Y Cov X Y =-====, 则(34)E X Y += ,(34)D X Y -= 2.设()2,()3,(,)1D X D Y Cov X Y ===-, 则(321,43)Cov X Y X Y -++-=3.设~(0,1),~(1,4)X N Y N ,1xy ρ=,则{21}P Y X =+=4.设221212(,)~(,,,,)X Y N μμσσρ,则X Y 和相互独立的充要条件是ρ=二、计算题.1.设随机变量(,)X Y 具有概率密度:1(),02,02(,)80,x y x y f x y ⎧+≤≤≤≤⎪=⎨⎪⎩其它求()E X ,()E Y ,(,),,().XY Cov X Y D X Y ρ+2.设二维随机变量(,)X Y 的概率密度为:221,1(,)0,x y f x y π⎧+≤⎪=⎨⎪⎩其它,试验证X Y 和是不相关的,但X Y 和不是相互独立的.3.设(,)X Y 服从二维正态分布,且有22(),()X Y D X D Y σσ==,证明当222/X Y a σσ=时随机变量W X aY X aY =-=+与V 相互独立.班级 姓名 班内序号习题十五 大数定律与中心极限定理一、填空题.1.设随机变量X 具有2(),()E X D X μσ==,则有切比雪夫不等式,有{3}P X μσ-≥≤2.设12,,,,n X X X L L 相互独立同分布,且()n E X =0,则1lim {}ni n i P X n →∞=<=∑二、计算题.1.计算器在进行加法时,将每个加数舍入最靠近它的整数.设所有舍入误差是独立的且在(-0.5,0.5)上服从均匀分布.(1)若将1500个数相加,问误差总和的绝对值超过15的概率是多少?(2)最多可有几个数相加使得误差总和的绝对值小于10的概率不小于0.90?2.设有1000个人独立行动,每个人能够按时进入掩蔽体的概率为0.9,以95%概率估计,在一次行动中,至少有多少人能够进入?3.在一家保险公司里有10000人参加保险,每人每年付12元保险费,在一年内一个人死亡的概率为0.006,死亡者其家属可向保险公司领得1000元赔偿费,求:(1)保险公司没有利润的概率为多大?(2)保险公司一年的利润不少于60000元的概率为多大?4.一复杂的系统由n个相互独立起作用的部件所组成,每个部件的可靠性为0.90,且必须至少有80%的部件工作才能使整个系统正常工作,问n至少为多大才能使系统的可靠性不低于0.95?班级 姓名 班内序号习题十六 样本及抽样分布(一)一、填空题.1.设12,,,n X X X L 为来自总体2(0,)N σ的样本,且随机变量221()~(1)ni i Y C X χ==∑,则常数C =2.设1234(,,,)X X X X 取自正态总体2~(0,2)X N 的样本,且22123411(2)(34)20100Y X X X X =-+-,则,~Y 分布. 二、计算题.1.在总体2(52,3)N 中随机抽一容量为36的样本,求样本均值X 落在50.8到53.8之间的概率.2.求总体(20,3)N 的容量分别为10,15的两独立样本均值差的绝对值大于0.3的概率.3.设1210,,,X X X L 为2(0,0.3)N 的一个样本,求1021{ 1.44}ii P X=>∑.4.设总体2~()X n χ,1210,,,X X X L 是来自X 的样本,求2(),(),()E X D X E S .班级 姓名 班内序号习题十七 样本及抽样分布(二)二、填空题.1.设总体2~(,)X N μσ,12,,,n X X X L 为来自X 的样本,则22221()(1)~ni i X X n S σσ=--=∑分布,221()~ni i X μσ=-∑分布.2.记()t n α为t 分布的上α分位点,则0.995(29)t = 3.已知~(),X t n 则2~X 分布. 二、解答题.1.设总体~(1,)X B p ,12,,,n X X X L 是来自X 的样本. (1)求12(,,,)n X X X L 的分布律;(2)求1nii X=∑的分布律;(3)求2(),(),()E X D X E S .2.设在总体2(,)N μσ中抽取一容量为16的样本,这里2,μσ均为未知.(1)求222{ 2.041},S P S σ≤其中为样本方差;(2)求2()D S3.设总体2~(,)X N μσ,1234,,,X X X X 为来自X 的样本,Y =~(2).Y t班级 姓名 班内序号习题十八 点估计1. 设12,,,n X X X L 为总体X 的一个样本,X 的密度函数为:1,01(),(0)0,x f x θ≤≤=>⎝其它,求θ的矩估计和最大似然估计.2.设某种元件的使用寿命X 的概率密度为 2()2,(;)0,x e x f x θθθ--⎧>=⎨⎩其它其中0θ>为未知参数,又设12,,,n x x x L 是X 的一组样本观测值,求参数θ的最大似然估计值.3.设12,,,n X X X L 是来自总体X 的一个样本,且~()X πλ.求{0}P X =的最大似然估计.4.设总体X 具有分布律(如下表)其中(01)θθ<<为未知参数.已知取得了样本值1231,2,1x x x ===.试求θ的矩估计值和最大似然估计值.班级 姓名 班内序号习题十九 估计量的评价标准一、填空题.1.设12,,,n X X X L 是来自总体(,)B n p 的样本,若2X kS +为2np 的无偏估计,则k =2.设12,,,n X X X L 是来自总体2(,)N μσ的样本,若21()n i i aX μ=-∑和21()n i i b X X =-∑都是2σ的无偏估计,则a = ,b = 二、解答题.1.设12,,,n X X X L 是来自总体X 的一个样本,设2(),()E X D X μσ==(1)确定常数c 使1211()n i i i cX X -+=-∑为2σ的无偏估计;(2)确定常数c 使22()X cS -为2μ的无偏估计.2.设1234,,,X X X X 是来自均值为θ的指数分布总体的样本.其中θ未知.设有估计量: 1123411()()63T X X X X =+++, 212341(234)5T X X X X =+++, 312341()4T X X X X =+++ (1)指出中哪几个是θ的无偏估计量;(2)在上述θ的无偏估计量中指出哪一个较为有效.3.设ˆθ是参数θ的无偏估计,且有ˆ()0D θ>,试证^22ˆ()θθ=不是2θ的无偏估计.班级 姓名 班内序号习题二十 正态总体均值与方差的区间估计1.设总体~(,8)X N μ,1236(,,,)X X X L 为其简单随机样本,[1,1]X X -+是μ的一个置信区间,求该置信区间的置信水平.2.设某种油漆的9个样品,其干燥时间(单位:小时)分别为: 6.0 5.7 5.8 6.5 7.0 6.3 5.6 6.1 5.3设干燥时间总体服从正态分布2(,)N μσ,求μ的置信水平为0.95的置信区间.(1)若由以往的经验知σ=0.6(小时);(2)若σ为未知.3.随机地取某种炮弹9发做实验,得炮口速度的样本标准差11(/)S m s =,设炮口速度服从正态分布,求这种炮弹的炮口速度的标准差σ的置信水平为0.95的置信区间.4.研究两种固体燃料火箭推进器的燃烧率,设两者都服从正态分布,并且已知燃烧率的标准差均近似地为0.05/cm s ,取样本容量为1220n n ==,得燃烧率的样本均值分别为1218/,24/x cm s x cm s ==,求两燃烧率总体均值差12μμ-的置信水平为0.99的置信区间.5.设2~(,)X N μσ,2σ已知,问需抽取容量n 多大的样本,才能使μ的置信水平为1α-,且置信区间的长度不大于L ?班级 姓名 班内序号习题二十一 单侧置信区间1.为研究某种汽车轮胎的磨损特性,随机地选择16只轮胎,每只轮胎行使到磨损为止,所行使的路程为1216,,,X X X L ,假设这些数据来自正态总体2(,)N μσ,其中2,μσ未知,计算得出41117,1347X S ==,试求:(1)求μ的置信水平为0.95的单侧置信下限;(2)求方差2σ的置信水平为0.95的单侧置信上限.2.设两位化验员,A B 独立地对某种聚合物含氯量用相同的方法各作10次测定,其测定值的样本方差依次为220.5419,0.6065A B S S ==.设22,A B σσ分别为,A B 所测定的测定值总体的方差,设总体均为正态的,(1)求方差比22/A B σσ的置信水平为0.95的置信区间;(2)求方差比22/A B σσ的置信水平为0.95的单侧置信上限.班级 姓名 班内序号习题二十二 假设检验一、填空题.1.在假设检验中,0H 表示原假设,1H 为备择假设,则犯第一类错误指的是 不真,接受 ;犯第二类错误指的是 不真,接受 .2.设12(,,,)n X X X L 为来自正态总体2(,)N μσ的样本,2σ已知,现要检验假设00:H μμ=,则应选取的统计量是 ;当0H 成立时,该统计量服从 分布.3.在显著性检验中,若要使犯两类错误的概率同时变小,则只有增加 .二、计算题.1.已知某炼钢厂铁水含碳量服从正态分布2(4.55,0.108)N ,现在测定了9种铁水,其平均含碳量4.84.若估计方差没有变化,可否认为现在生产的铁水平均含碳量仍为4.55(0.05α=)?2.设某次考试的考生成绩服从正态分布,从中随机地抽取36位考生的成绩,算得平均成绩为66.5分,样本标准差为15分,问在显著性水平0.05下,是否可以认为这次考试全体考生的平均成绩仍为70分?(给出检验过程)3.要求一种元件平均使用寿命不得低于1000小时。

概率论(复旦三版)习题一答案

概率论(复旦三版)习题一答案

概率论与数理统计(复旦第三版)习题一 答案1. 略.见教材习题参考答案.2.设A ,B ,C 为三个事件,试用A ,B ,C 的运算关系式表示下列事件:(1) A 发生,B ,C 都不发生;(2) A ,B ,C 都发生;(3) A ,B ,C 至少有一个发生;(4) A ,B ,C 都不发生;(5) A ,B ,C 不都发生;(6) A ,B ,C 至多有1个不发生;【解】(1) ABC (2) ABC(3)A B C (4) ABC =A B C (5) ABC (6) ABC ∪ABC ∪ABC ∪ABC =AB BC AC3. 略.见教材习题参考答案4.设A ,B 为随机事件,且P (A )=0.7,P (A -B )=0.3,求P (AB ).【解】 P (AB )=1-P (AB )=1-[P (A )-P (A -B )]=1-[0.7-0.3]=0.65.设A ,B 是两事件,且P (A )=0.6,P (B )=0.7,求:(1) 在什么条件下P (AB )取到最大值?(2) 在什么条件下P (AB )取到最小值?【解】(1) 当AB =A 时,()()0.6P AB P A ==,()P AB 取到最大值为0.6.(2) 当A ∪B =Ω时,()()()()0.3P AB P A P B P A B =+-= ,()P AB 取到最小值为0.3.6.设A ,B ,C 为三事件,且P (A )=P (B )=1/4,P (C )=1/3且P (AB )=P (BC )=0,P (AC )=1/12,求A ,B ,C 至少有一事件发生的概率.【解】 因为P (AB )=P (BC )=0,所以P (ABC )=0,由加法公式可得()()()()()()()()P A B C P A P B P C P AB P AC P BC P ABC =++---+ =14+14+13-112=347. 从52张扑克牌中任意取出13张,问有5张黑桃,3张红心,3张方块,2张梅花的概率是多少?【解】 设A 表示“取出的13张牌中有5张黑桃,3张红心,3张方块,2张梅花”,则样本空间Ω中样本点总数为 1352n C =, A 中所含样本点 533213131313k C C C C =,所求概率为 5332131313131352()=C C C C /C P A8. 对一个五人学习小组考虑生日问题:(1) 求五个人的生日都在星期日的概率; (2) 求五个人的生日都不在星期日的概率;(3) 求五个人的生日不都在星期日的概率.【解】(1) 设A 1={五个人的生日都在星期日},基本事件总数为75,有利事件仅1个,故 P (A 1)=517=(17)5 (亦可用独立性求解,下同) (2) 设A 2={五个人生日都不在星期日},有利事件数为65,故P (A 2)=5567=(67)5 (3) 设A 3={五个人的生日不都在星期日}P (A 3)=1-P (A 1)=1-(17)5 9. 略.见教材习题参考答案.10.一批产品共N 件,其中M 件正品.从中随机地取出n 件(n <N ).试求其中恰有m 件(m ≤M )正品(记为A )的概率.如果:(1) n 件是同时取出的;(2) n 件是无放回逐件取出的;(3) n 件是有放回逐件取出的.【解】(1)n 件是同时取出, 样本空间Ω中样本点总数为C nN ,A 中所含样本点 m n m M N M k C C --=,所求概率为 ;()=C C /C mn m n M N M N P A --(2) 由于是无放回逐件取出,可用排列法计算.样本点总数有n N A 种,n 次抽取中有m次为正品的组合数为C mn 种.对于固定的一种正品与次品的抽取次序,从M 件正品中取m 件的排列数有m M A 种,从N -M 件次品中取n -m 件的排列数为n m N M A --种,故C ()m m n m n MN M n NA A P A A --= 由于无放回逐渐抽取也可以看成一次取出,故上述概率也可写成C C ()C mn m M N M nNP A --= 可以看出,用第二种方法简便得多.(3) 由于是有放回的抽取,每次都有N 种取法,故所有可能的取法总数为n N 种,n次抽取中有m 次为正品的组合数为C mn 种,对于固定的一种正、次品的抽取次序,m 次取得正品,都有M 种取法,共有mM 种取法,n -m 次取得次品,每次都有N -M 种取法,共有()n m N M --种取法,故()C ()/m m n m n n P A M N M N -=- 此题也可用贝努里概型,共做了n 重贝努里试验,每次取得正品的概率为M N,则取得m 件正品的概率为 ()C 1m n m mn M M P A N N -⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭11. 略.见教材习题参考答案.12. 50只铆钉随机地取来用在10个部件上,其中有3个铆钉强度太弱.每个部件用3只铆钉.若将3只强度太弱的铆钉都装在一个部件上,则这个部件强度就太弱.求发生一个部件强度太弱的概率是多少?【解】设A ={发生一个部件强度太弱},样本空间Ω中样本点总数为350C ,A 中所含样本点 13103k C C =,因此,所求概率为 133103501()C C /C 1960P A == 13. 一个袋内装有大小相同的7个球,其中4个是白球,3个是黑球,从中一次抽取3个,计算至少有两个是白球的概率.【解】 设A i ={恰有i 个白球}(i =2,3),显然A 2与A 3互不相容. 样本空间Ω中样本点总数为37n=C , 2A 中所含样本点数为 2143C C ,3A中所含样本点数为 34C ,213434233377C C C 184(),()C 35C 35P A P A ==== 故 所求概率为 232322()()()35P A A P A P A =+=14. 有甲、乙两批种子,发芽率分别为0.8和0.7,在两批种子中各随机取一粒,求:(1) 两粒都发芽的概率;(2) 至少有一粒发芽的概率;(3) 恰有一粒发芽的概率.【解】设A i ={第i 批种子中的一粒发芽},(i =1,2)注意到12,A A 相互独立,所求概率为(1) 1212()()()0.70.80.56P A A P A P A ==⨯=(2) 12()0.70.80.70.80.94P A A =+-⨯= (3) 2112()0.80.30.20.70.38P A A A A =⨯+⨯=15. 掷一枚均匀硬币直到出现3次正面才停止.(1) 问正好在第6次停止的概率;(2) 问正好在第6次停止的情况下,第5次也是出现正面的概率.【解】(1) 设A 表示“正好在第6次停止”,B 表示“第5次出现正面”,事件A 发生意味着“前5次中恰好出现两次正面,且第六次出现正面”,事件AB 发生意味着“前4次中恰好出现1次正面,且第五、六次出现正面”,由伯努利概型公式可知,所求概率为(1)22351115()()()22232P A C == (2) 1341111C ()()()22222()()5/325P AB P B A P A === 16. 甲、乙两个篮球运动员,投篮命中率分别为0.7及0.6,每人各投了3次,求二人进球数相等的概率.【解】 设A i ={甲进i 球},i =0,1,2,3,B i ={乙进i 球},i =0,1,2,3,三次投篮可以看做是3重伯努利试验,由伯努利概型公式可知,所求概率为3331212330()(0.3)(0.4)C 0.7(0.3)C 0.6(0.4)i i i P A B ==+⨯⨯+ 22223333C (0.7)0.3C (0.6)0.4+(0.7)(0.6)⨯=0.3207617. 从5双不同的鞋子中任取4只,求这4只鞋子中至少有两只鞋子配成一双的概率.【解】 设A 表示“4只鞋子中至少有两只鞋子配成一双”,从5双不同的鞋子中任取4只,取法总数为410C ,A 表示“4只鞋子中没有配对的鞋子”,A 中所含基本事件数为4111152222C C C C C , 所求概率为4111152222410C C C C C 13()1()1C 21P A P A =-=-= 18. 某地某天下雪的概率为0.3,下雨的概率为0.5,既下雪又下雨的概率为0.1,求:(1) 在下雨条件下下雪的概率;(2) 这天下雨或下雪的概率.【解】 设A ={下雨},B ={下雪}.(1) ()0.1()0.2()0.5P AB P B A P A === (2) ()()()()0.30.50.10.7P A B P A P B P AB =+-=+-=19. 已知一个家庭有3个小孩,且其中一个为女孩,求至少有一个男孩的概率(小孩为男为女是等可能的).【解】 设A ={其中一个为女孩},B ={至少有一个男孩},样本点总数为23=8,故()6/86()()7/87P AB P B A P A === 或在缩减样本空间中求,此时样本点总数为7. 6()7P B A =20. 已知5%的男人和0.25%的女人是色盲,现随机地挑选一人,此人恰为色盲,问此人是男人的概率(假设男人和女人各占人数的一半).【解】 设A ={此人是男人}, B ={此人是色盲},则A ={此人是女人},显然A ,A 是样本空间的一个划分,且1()()2P A P A ==,由贝叶斯公式得 ()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.50.05200.50.050.50.002521⨯==⨯+⨯ 21. 两人约定上午9∶00~10∶00在公园会面,求一人要等另一人半小时以上的概率.题21图 题22图【解】设两人到达时刻分别,x y 为,则060,060x y ≤≤≤≤,可知样本空间是“边长为60 的正方形区域”,设A 表示 “一人要等另一人半小时以上”,等价于30x y ->,如图阴影 部分所示.由几何概型的概率公式可得22301()604P A == 22. 从(0,1)中随机地取两个数,求:(1) 两个数之和小于65的概率; (2) 两个数之积小于14的概率. 【解】设两数分别,x y 为,则01,01x y <<<<,可知样本空间是“边长为1的正方形区域”. (1)设A 表示 “两个数之和小于65”,等价于56x y +<,如图阴影部分所示. 由几何概型的概率公式可得14417255()10.68125P A =-== (2) 设B 表示 “两个数之积小于14”,等价于14xy <,如图阴影部分所示. 由几何概型的概率公式可得11114411()1d d ln 242x P B x y ⎛⎫=-=+ ⎪⎝⎭⎰⎰ 23. 设P (A )=0.3,P (B )=0.4,P (A B )=0.5,求P (B |A ∪B )【解】 ()()()()()()()()P AB P A P AB P B A B P A B P A P B P AB -==+- 0.70.510.70.60.54-==+- 24. 在一个盒中装有15个乒乓球,其中有9个新球,在第一次比赛中任意取出3个球,比赛后放回原盒中;第二次比赛同样任意取出3个球,求第二次取出的3个球均为新球的概率.【解】 设A i ={第一次取出的3个球中有i 个新球},i =0,1,2,3.B ={第二次取出的3球均为新 球}。

《概率论与数理统计的》(韩旭里)课后习地的题目答案详解

《概率论与数理统计的》(韩旭里)课后习地的题目答案详解

概率论与数理统计习题及答案习题一1.略.见教材习题参考答案.2.设A,B,C为三个事件,试用A,B,C的运算关系式表示下列事件:(1)A发生,B,C都不发生;(2)A与B发生,C不发生;(3)A,B,C都发生;(4)A,B,C至少有一个发生;(5)A,B,C都不发生;(6)A,B,C不都发生;(7)A,B,C至多有2个发生;(8)A,B,C至少有2个发生.【解】(1)A BC(2)AB C(3)ABC(4)A∪B∪C=AB C∪A B C∪A BC∪A BC∪A B C∪AB C∪ABC =ABC(5) ABC=A B C (6) ABC精彩文案(7) A BC∪A B C∪AB C∪AB C∪A BC∪A B C∪ABC=ABC=A∪B∪C(8) AB∪BC∪CA=AB C∪A B C∪A BC∪ABC3.略.见教材习题参考答案4.设A,B为随机事件,且P(A)=0.7,P(A B)=0.3,求P(AB).【解】P(AB)=1P(AB)=1[P(A)P(A B)]=1[0.70.3]=0.65.设A,B是两事件,且P(A)=0.6,P(B)=0.7,求:(1)在什么条件下P(AB)取到最大值?(2)在什么条件下P(AB)取到最小值?【解】(1)当AB=A时,P(AB)取到最大值为0.6.(2)当A∪B=Ω时,P(AB)取到最小值为0.3.6.设A,B,C为三事件,且P(A)=P(B)=1/4,P(C)=1/3且P(AB)=P(BC)=0,P(AC)=1/12,求A,B,C至少有一事件发生的概率.【解】P(A∪B∪C)=P(A)+P(B)+P(C)P(AB)P(BC)P(AC)+P(ABC)=14+14+13112=347.从52张扑克牌中任意取出13张,问有5张黑桃,3张红心,3张方块,2张梅花的概率是多少?【解】p=5332131313131352C C C C/C8.对一个五人学习小组考虑生日问题:(1)求五个人的生日都在星期日的概率;(2)求五个人的生日都不在星期日的概率;精彩文案精彩文案(3) 求五个人的生日不都在星期日的概率.【解】(1) 设A 1={五个人的生日都在星期日},基本事件总数为75,有利事件仅1个,故 P (A 1)=517=(17)5(亦可用独立性求解,下同) (2) 设A 2={五个人生日都不在星期日},有利事件数为65,故P (A 2)=5567=(67)5(3) 设A 3={五个人的生日不都在星期日}P (A 3)=1P (A 1)=1(17)59.略.见教材习题参考答案.10.一批产品共N 件,其中M 件正品.从中随机地取出n 件(n <N ).试求其中恰有m 件(m ≤M )正品(记为A )的概率.如果: (1) n 件是同时取出的;(2) n 件是无放回逐件取出的; (3) n 件是有放回逐件取出的.【解】(1) P (A )=C C /C m n m nM N M N --(2) 由于是无放回逐件取出,可用排列法计算.样本点总数有P n N 种,n 次抽取中有m 次为正品的组合数为C mn 种.对于固定的一种正品与次品的抽取次序,从M 件正品中取m 件的排列数有P mM 种,从NM 件次品中取nm 件的排列数为P n mN M --种,故P (A )=C P P P m m n mn M N MnN-- 由于无放回逐渐抽取也可以看成一次取出,故上述概率也可写成精彩文案P (A )=C C C m n mM N MnN-- 可以看出,用第二种方法简便得多.(3) 由于是有放回的抽取,每次都有N 种取法,故所有可能的取法总数为N n种,n 次抽取中有m 次为正品的组合数为C mn 种,对于固定的一种正、次品的抽取次序,m 次取得正品,都有M 种取法,共有M m种取法,nm 次取得次品,每次都有N M 种取法,共有(N M )nm种取法,故()C ()/m m n mn n P A M N M N -=- 此题也可用贝努里概型,共做了n 重贝努里试验,每次取得正品的概率为MN,则取得m 件正品的概率为 ()C 1mn mmnM M P A N N -⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭11.略.见教材习题参考答案.12. 50只铆钉随机地取来用在10个部件上,其中有3个铆钉强度太弱.每个部件用3只铆钉.若将3只强度太弱的铆钉都装在一个部件上,则这个部件强度就太弱.求发生一个部件强度太弱的概率是多少? 【解】设A ={发生一个部件强度太弱}133103501()C C /C 1960P A ==13.一个袋内装有大小相同的7个球,其中4个是白球,3个是黑球,从中一次抽取3个,计算至少有两个是白球的概率. 【解】 设A i ={恰有i 个白球}(i =2,3),显然A 2与A 3互斥.213434233377C C C 184(),()C 35C 35P A P A ====精彩文案故 232322()()()35P A A P A P A =+=14.有甲、乙两批种子,发芽率分别为0.8和0.7,在两批种子中各随机取一粒,求:(1) 两粒都发芽的概率; (2) 至少有一粒发芽的概率; (3) 恰有一粒发芽的概率.【解】设A i ={第i 批种子中的一粒发芽},(i =1,2)(1) 1212()()()0.70.80.56P A A P A P A ==⨯= (2) 12()0.70.80.70.80.94P A A =+-⨯=(3) 2112()0.80.30.20.70.38P A A A A =⨯+⨯=15.掷一枚均匀硬币直到出现3次正面才停止.(1) 问正好在第6次停止的概率;(2) 问正好在第6次停止的情况下,第5次也是出现正面的概率.【解】(1) 223151115()()22232p C ==(2) 1342111C ()()22245/325p == 16.甲、乙两个篮球运动员,投篮命中率分别为0.7及0.6,每人各投了3次,求二人进球数相等的概率.【解】 设A i ={甲进i 球},i =0,1,2,3,B i ={乙进i 球},i =0,1,2,3,则3331212333()(0.3)(0.4)C 0.7(0.3)C 0.6(0.4)i i i P A B ==+⨯⨯+ 22223333C (0.7)0.3C (0.6)0.4+(0.7)(0.6)⨯=0.32076精彩文案17.从5双不同的鞋子中任取4只,求这4只鞋子中至少有两只鞋子配成一双的概率.【解】 4111152222410C C C C C 131C 21p =-= 18.某地某天下雪的概率为0.3,下雨的概率为0.5,既下雪又下雨的概率为0.1,求:(1) 在下雨条件下下雪的概率;(2) 这天下雨或下雪的概率. 【解】 设A ={下雨},B ={下雪}.(1) ()0.1()0.2()0.5P AB p B A P A === (2) ()()()()0.30.50.10.7p A B P A P B P AB =+-=+-=19.已知一个家庭有3个小孩,且其中一个为女孩,求至少有一个男孩的概率(小孩为男为女是等可能的).【解】 设A ={其中一个为女孩},B ={至少有一个男孩},样本点总数为23=8,故()6/86()()7/87P AB P B A P A ===或在缩减样本空间中求,此时样本点总数为7.6()7P B A =20.已知5%的男人和0.25%的女人是色盲,现随机地挑选一人,此人恰为色盲,问此人是男人的概率(假设男人和女人各占人数的一半). 【解】 设A ={此人是男人},B ={此人是色盲},则由贝叶斯公式()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+精彩文案0.50.05200.50.050.50.002521⨯==⨯+⨯ 21.两人约定上午9∶00~10∶00在公园会面,求一人要等另一人半小时以上的概率.题21图 题22图【解】设两人到达时刻为x,y ,则0≤x ,y ≤60.事件“一人要等另一人半小时以上”等价于|x y |>30.如图阴影部分所示.22301604P ==22.从(0,1)中随机地取两个数,求:精彩文案(1) 两个数之和小于65的概率; (2) 两个数之积小于14的概率.【解】 设两数为x ,y ,则0<x ,y <1.(1) x +y <65. 11441725510.68125p =-==(2) xy =<14.1111244111d d ln 242x p x y ⎛⎫=-=+⎪⎝⎭⎰⎰ 23.设P (A )=0.3,P (B )=0.4,P (A B )=0.5,求P (B |A ∪B ) 【解】 ()()()()()()()()P AB P A P AB P B AB P A B P A P B P AB -==+- 0.70.510.70.60.54-==+-24.在一个盒中装有15个乒乓球,其中有9个新球,在第一次比赛中任意取出3个球,比赛后放回原盒中;第二次比赛同样任意取出3个球,求第二次取出的3个球均为新球的概率.【解】 设A i ={第一次取出的3个球中有i 个新球},i =0,1,2,3.B ={第二次取出的3球均为新球}由全概率公式,有精彩文案3()()()i i i P B P B A P A ==∑33123213336996896796333333331515151515151515C C C C C C C C C C C C C C C C C C =•+•+•+•0.089=25. 按以往概率论考试结果分析,努力学习的学生有90%的可能考试及格,不努力学习的学生有90%的可能考试不及格.据调查,学生中有80%的人是努力学习的,试问:(1)考试及格的学生有多大可能是不努力学习的人? (2)考试不及格的学生有多大可能是努力学习的人? 【解】设A ={被调查学生是努力学习的},则A ={被调查学生是不努力学习的}.由题意知P (A )=0.8,P (A )=0.2,又设B ={被调查学生考试及格}.由题意知P (B |A )=0.9,P (B |A )=0.9,故由贝叶斯公式知(1)()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.20.110.027020.80.90.20.137⨯===⨯+⨯即考试及格的学生中不努力学习的学生仅占2.702%(2) ()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.80.140.30770.80.10.20.913⨯===⨯+⨯即考试不及格的学生中努力学习的学生占30.77%.精彩文案26. 将两信息分别编码为A 和B 传递出来,接收站收到时,A 被误收作B 的概率为0.02,而B 被误收作A 的概率为0.01.信息A 与B 传递的频繁程度为2∶1.若接收站收到的信息是A ,试问原发信息是A 的概率是多少? 【解】 设A ={原发信息是A },则={原发信息是B }C ={收到信息是A },则={收到信息是B } 由贝叶斯公式,得()()()()()()()P A P C A P A C P A P C A P A P C A =+2/30.980.994922/30.981/30.01⨯==⨯+⨯27.在已有两个球的箱子中再放一白球,然后任意取出一球,若发现这球为白球,试求箱子中原有一白球的概率(箱中原有什么球是等可能的颜色只有黑、白两种) 【解】设A i ={箱中原有i 个白球}(i =0,1,2),由题设条件知P (A i )=13,i =0,1,2.又设B ={抽出一球为白球}.由贝叶斯公式知 11112()()()()()()()i i i P B A P A P A B P A B P B P B A P A ===∑ 2/31/311/31/32/31/311/33⨯==⨯+⨯+⨯28.某工厂生产的产品中96%是合格品,检查产品时,一个合格品被误认为是次品的概率为0.02,一个次品被误认为是合格品的概率为0.05,求在被检查后认为是合格品产品确是合格品的概率.【解】 设A ={产品确为合格品},B ={产品被认为是合格品}由贝叶斯公式得精彩文案()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.960.980.9980.960.980.040.05⨯==⨯+⨯29.某保险公司把被保险人分为三类:“谨慎的”,“一般的”,“冒失的”.统计资料表明,上述三种人在一年内发生事故的概率依次为0.05,0.15和0.30;如果“谨慎的”被保险人占20%,“一般的”占50%,“冒失的”占30%,现知某被保险人在一年内出了事故,则他是“谨慎的”的概率是多少? 【解】 设A ={该客户是“谨慎的”},B ={该客户是“一般的”},C ={该客户是“冒失的”},D ={该客户在一年内出了事故} 则由贝叶斯公式得()()(|)(|)()()(|)()(|)()(|)P AD P A P D A P A D P D P A P D A P B P D B P C P D C ==++0.20.050.0570.20.050.50.150.30.3⨯==⨯+⨯+⨯30.加工某一零件需要经过四道工序,设第一、二、三、四道工序的次品率分别为0.02,0.03,0.05,0.03,假定各道工序是相互独立的,求加工出来的零件的次品率.【解】设A i ={第i 道工序出次品}(i =1,2,3,4).412341()1()i i P A P A A A A ==-12341()()()()P A P A P A P A =-10.980.970.950.970.124=-⨯⨯⨯=31.设每次射击的命中率为0.2,问至少必须进行多少次独立射击才能使至少击中一次的概率不小于0.9? 【解】设必须进行n 次独立射击.1(0.8)0.9n -≥精彩文案即为 (0.8)0.1n≤ 故 n ≥11 至少必须进行11次独立射击.32.证明:若P (A |B )=P (A |B ),则A ,B 相互独立.【证】 (|)(|)P A B P A B =即()()()()P AB P AB P B P B =亦即 ()()()()P AB P B P AB P B =()[1()][()()]()P AB P B P A P AB P B -=-因此 ()()()P AB P A P B = 故A 与B 相互独立.33.三人独立地破译一个密码,他们能破译的概率分别为15,13,14,求将此密码破译出的概率. 【解】 设A i ={第i 人能破译}(i =1,2,3),则31231231()1()1()()()i i P A P A A A P A P A P A ==-=-42310.6534=-⨯⨯= 34.甲、乙、丙三人独立地向同一飞机射击,设击中的概率分别是0.4,0.5,0.7,若只有一人击中,则飞机被击落的概率为0.2;若有两人击中,则飞机被击落的概率为0.6;若三人都击中,则飞机一定被击落,求:飞机被击落的概率. 【解】设A ={飞机被击落},B i ={恰有i 人击中飞机},i =0,1,2,3精彩文案由全概率公式,得3()(|)()i i i P A P A B P B ==∑=(0.4×0.5×0.3+0.6×0.5×0.3+0.6×0.5×0.7)0.2+(0.4×0.5×0.3+0.4×0.5×0.7+0.6×0.5×0.7)0.6+0.4×0.5×0.7 =0.45835.已知某种疾病患者的痊愈率为25%,为试验一种新药是否有效,把它给10个病人服用,且规定若10个病人中至少有四人治好则认为这种药有效,反之则认为无效,求:(1) 虽然新药有效,且把治愈率提高到35%,但通过试验被否定的概率. (2) 新药完全无效,但通过试验被认为有效的概率. 【解】(1) 3101100C(0.35)(0.65)0.5138kk k k p -===∑(2) 10102104C(0.25)(0.75)0.2241k k k k p -===∑36.一架升降机开始时有6位乘客,并等可能地停于十层楼的每一层.试求下列事件的概率:(1) A =“某指定的一层有两位乘客离开”;(2) B =“没有两位及两位以上的乘客在同一层离开”; (3) C =“恰有两位乘客在同一层离开”; (4) D =“至少有两位乘客在同一层离开”.【解】 由于每位乘客均可在10层楼中的任一层离开,故所有可能结果为106种.(1) 2466C 9()10P A =,也可由6重贝努里模型:精彩文案224619()C ()()1010P A =(2) 6个人在十层中任意六层离开,故6106P ()10P B =(3) 由于没有规定在哪一层离开,故可在十层中的任一层离开,有110C 种可能结果,再从六人中选二人在该层离开,有26C 种离开方式.其余4人中不能再有两人同时离开的情况,因此可包含以下三种离开方式:①4人中有3个人在同一层离开,另一人在其余8层中任一层离开,共有131948C C C 种可能结果;②4人同时离开,有19C 种可能结果;③4个人都不在同一层离开,有49P 种可能结果,故1213114610694899()C C (C C C C P )/10P C =++(4) D=B .故6106P ()1()110P D P B =-=-37. n 个朋友随机地围绕圆桌而坐,求下列事件的概率: (1) 甲、乙两人坐在一起,且乙坐在甲的左边的概率; (2) 甲、乙、丙三人坐在一起的概率;(3) 如果n 个人并排坐在长桌的一边,求上述事件的概率. 【解】 (1) 111p n =-精彩文案(2) 23!(3)!,3(1)!n p n n -=>-(3) 12(1)!13!(2)!;,3!!n n p p n n n n --''===≥ 38.将线段[0,a ]任意折成三折,试求这三折线段能构成三角形的概率【解】 设这三段长分别为x ,y ,a x y .则基本事件集为由0<x <a ,0<y <a ,0<a x y <a 所构成的图形,有利事件集为由()()x y a x y x a x y y y a x y x+>--⎡⎢+-->⎢⎢+-->⎣ 构成的图形,即02022a x a y ax y a ⎡<<⎢⎢⎢<<⎢⎢⎢<+<⎢⎣ 如图阴影部分所示,故所求概率为14p =. 39. 某人有n 把钥匙,其中只有一把能开他的门.他逐个将它们去试开(抽样是无放回的).证明试开k 次(k =1,2,…,n )才能把门打开的概率与k 无关.【证】 11P 1,1,2,,P k n k n p k n n--===精彩文案40.把一个表面涂有颜色的立方体等分为一千个小立方体,在这些小立方体中,随机地取出一个,试求它有i 面涂有颜色的概率P (A i )(i =0,1,2,3). 【解】 设A i ={小立方体有i 面涂有颜色},i =0,1,2,3.在1千个小立方体中,只有位于原立方体的角上的小立方体是三面有色的,这样的小立方体共有8个.只有位于原立方体的棱上(除去八个角外)的小立方体是两面涂色的,这样的小立方体共有12×8=96个.同理,原立方体的六个面上(除去棱)的小立方体是一面涂色的,共有8×8×6=384个.其余1000(8+96+384)=512个内部的小立方体是无色的,故所求概率为01512384()0.512,()0.38410001000P A P A ====, 24968()0.096,()0.00810001000P A P A ====.41.对任意的随机事件A ,B ,C ,试证P (AB )+P (AC )P (BC )≤P (A ).【证】 ()[()]()P A P A BC P AB AC ≥=()()()P AB P AC P ABC =+- ()()()P AB P AC P BC ≥+-42.将3个球随机地放入4个杯子中去,求杯中球的最大个数分别为1,2,3的概率. 【解】 设i A ={杯中球的最大个数为i },i =1,2,3.将3个球随机放入4个杯子中,全部可能放法有43种,杯中球的最大个数为1时,每个杯中最多放一球,故3413C 3!3()48P A ==而杯中球的最大个数为3,即三个球全放入一个杯中,故精彩文案1433C 1()416P A ==因此 213319()1()()181616P A P A P A =--=--= 或 12143323C C C 9()416P A == 43.将一枚均匀硬币掷2n 次,求出现正面次数多于反面次数的概率.【解】掷2n 次硬币,可能出现:A ={正面次数多于反面次数},B ={正面次数少于反面次数},C ={正面次数等于反面次数},A ,B ,C 两两互斥.可用对称性来解决.由于硬币是均匀的,故P (A )=P (B ).所以1()()2P C P A -=由2n 重贝努里试验中正面出现n 次的概率为211()()()22n n nn P C C =故 2211()[1C ]22n n n P A =- 44.掷n 次均匀硬币,求出现正面次数多于反面次数的概率.【解】设A ={出现正面次数多于反面次数},B ={出现反面次数多于正面次数},由对称性知P (A )=P (B )(1) 当n 为奇数时,正、反面次数不会相等.由P (A )+P (B )=1得P (A )=P (B )=0.5 (2) 当n 为偶数时,由上题知211()[1C ()]22nn n P A =-45.设甲掷均匀硬币n +1次,乙掷n 次,求甲掷出正面次数多于乙掷出正面次数的概率.精彩文案【解】 令甲正=甲掷出的正面次数,甲反=甲掷出的反面次数.乙正=乙掷出的正面次数,乙反=乙掷出的反面次数. 显然有>正正(甲乙)=(甲正≤乙正)=(n +1甲反≤n乙反)=(甲反≥1+乙反)=(甲反>乙反)由对称性知P (甲正>乙正)=P (甲反>乙反) 因此P (甲正>乙正)=1246.证明“确定的原则”(Sure thing ):若P (A |C )≥P (B |C ),P (A |C )≥P (B |C ),则P (A )≥P (B ).【证】由P (A |C )≥P (B |C ),得()(),()()P AC P BC P C P C ≥即有 ()()P AC P BC ≥ 同理由 (|)(|),P A C P B C ≥ 得 ()(),P AC P BC ≥故 ()()()()()()P A P AC P AC P BC P BC P B =+≥+=47.一列火车共有n 节车厢,有k (k ≥n )个旅客上火车并随意地选择车厢.求每一节车厢内至少有一个旅客的概率.【解】 设A i ={第i 节车厢是空的},(i =1,…,n ),则精彩文案121(1)1()(1)2()(1)1()(1)n k ki k ki j ki i i n P A n nP A A n n P A A A n--==-=--=-其中i 1,i 2,…,i n 1是1,2,…,n 中的任n 1个.显然n 节车厢全空的概率是零,于是2112111122111111123111()(1)C (1)2()C (1)1()C (1)0()(1)n n nk ki ni ki j n i jnn kn i i i n i i i nn nn i ni S P A n n n S P A A n n S P A A A nS P A S S S S --=≤<≤--≤<<≤+===-=-==--==-==-+-+-∑∑∑121121C (1)C (1)(1)C (1)k kn n kn n n n nnn--=---++--故所求概率为精彩文案121121()1C (1)C (1)nk i i n ni P A n n=-=--+--+111(1)C (1)n n kn n n+----48.设随机试验中,某一事件A 出现的概率为ε>0.试证明:不论ε>0如何小,只要不断地独立地重复做此试验,则A 迟早会出现的概率为1. 【证】在前n 次试验中,A 至少出现一次的概率为1(1)1()n n ε--→→∞49.袋中装有m 只正品硬币,n 只次品硬币(次品硬币的两面均印有国徽).在袋中任取一只,将它投掷r 次,已知每次都得到国徽.试问这只硬币是正品的概率是多少?【解】设A ={投掷硬币r 次都得到国徽}B ={这只硬币为正品} 由题知 (),()m nP B P B m n m n==++ 1(|),(|)12r P A B P A B == 则由贝叶斯公式知()()(|)(|)()()(|)()(|)P AB P B P A B P B A P A P B P A B P B P A B ==+ 121212r rrm m m n m nm n m n m n+==++++ 50.巴拿赫(Banach )火柴盒问题:某数学家有甲、乙两盒火柴,每盒有N 根火柴,每次用火柴时他在两盒中任取一盒并从中任取一根.试求他首次发现一盒空时另一盒恰有r 根的概率是多少?第一次用完一盒火柴时(不是发现空)而另一盒恰有r 根的概率又有多少?精彩文案【解】以B 1、B 2记火柴取自不同两盒的事件,则有121()()2P B P B ==.(1)发现一盒已空,另一盒恰剩r 根,说明已取了2n r 次,设n 次取自B 1盒(已空),nr 次取自B 2盒,第2n r +1次拿起B 1,发现已空。

上海工程技术大学概率论第一章答案

上海工程技术大学概率论第一章答案

习题一2.设A ,B 为随机事件,且P (A )=0.7,P (A -B )=0.3,求P (AB )。

解: P (AB )=1-P (AB )=1-[P (A )-P (A -B )]=1-[0.7-0.3]=0.6。

3. 设A ,B ,C 为三事件,且P (A )=P (B )=1/4,P (C )=1/3且P (AB )=P (BC )=0, P (AC )=1/12,求A ,B ,C 至少有一事件发生的概率。

解:因为 ABC AB ⊂,所以0()()P ABC P AB ≤≤,又 P (AB )=0,则()0P ABC =, P (A ∪B ∪C )=P (A )+P (B )+P (C )-P (AB )-P (BC )-P (AC )+P (ABC )=14+14+13-112=34。

4.将3个不同的球随机地放入4个杯子中去,求所有杯中球的最大个数分别为1,2,3的概率。

解:设i A ={杯中球的最大个数为i },i =1,2,3。

将3个球随机放入4个杯子中,全部可能放法有43种,杯中球的最大个数为1时,每个杯中最多放一球,故3413C 3!3()84P A == 而杯中球的最大个数为3,即三个球全放入一个杯中,故1433C 1()164P A ==,因此 213319()1()()181616P A P A P A =--=--= 或 12143323C C C 9()164P A ==.6.从1,2,3,4,5,6,7,8,9,0这10个数字中任取五个数按先后顺序组成多位数,求下列事件的概率:(1) 这五个数字组成一个五位偶数;(2) 2和3都被抽到且靠在一起. 解(1)5105987648764190P A ⨯⨯⨯⨯-⨯⨯⨯==. (2)145102!876445C P A ⨯⨯⨯⨯==.7.对一个五人学习小组考虑生日问题:(1) 求五个人的生日都在星期日的概率;(2) 求五个人的生日都不在星期日的概率;(3) 求五个人的生日不都在星期日的概率.解:基本事件总数为57,(1)设A 1={五个人的生日都在星期日},所求事件包含基本事件的个数为1个,故 P (A 1)=517=51()7;(2) 设A 2={五个人生日都不在星期日},所求事件包含样本点的个数为65,故P (A 2)=5567=56()7; (3)设A 3={五个人的生日不都在星期日},利用对立事件的性质,可得P (A 3)=1-P (A 1)=1-51()7.8.某地某天下雪的概率为0.3,下雨的概率为0.5,既下雪又下雨的概率为0.1,求:(1)在下雨条件下下雪的概率;(2)这天下雨或下雪的概率。

设ABC为三事件且P(A)=P(B)=1_4P(C)=1_3且P(AB)=P(BC)=0P(AC)=1_12求ABC至少有一事件发生的概率.

设ABC为三事件且P(A)=P(B)=1_4P(C)=1_3且P(AB)=P(BC)=0P(AC)=1_12求ABC至少有一事件发生的概率.

6.设A ,B ,C 为三事件,且P (A )=P (B )=1/4,P (C )=1/3且P (AB )=P (BC )=0,P (AC )=1/12,求A ,B ,C 至少有一事件发生的概率.【解】 P (A ∪B ∪C )=P (A )+P (B )+P (C )-P (AB )-P (BC )-P (AC )+P (ABC )=14+14+13-112=347.从52张扑克牌中任意取出13张,问有5张黑桃,3张红心,3张方块,2张梅花的概率是多少? 【解】 p =5332131313131352C C C C /C8.对一个五人学习小组考虑生日问题: (1) 求五个人的生日都在星期日的概率; (2) 求五个人的生日都不在星期日的概率; (3) 求五个人的生日不都在星期日的概率. 【解】(1) 设A 1={五个人的生日都在星期日},基本事件总数为75,有利事件仅1个,故 P (A 1)=517=(17)5(亦可用独立性求解,下同) (2) 设A 2={五个人生日都不在星期日},有利事件数为65,故P (A 2)=5567=(67)5(3) 设A 3={五个人的生日不都在星期日}P (A 3)=1-P (A 1)=1-(17)59.略.见教材习题参考答案.10.一批产品共N 件,其中M 件正品.从中随机地取出n 件(n <N ).试求其中恰有m 件(m ≤M )正品(记为A )的概率.如果: (1) n 件是同时取出的;(2) n 件是无放回逐件取出的; (3) n 件是有放回逐件取出的.【解】(1) P (A )=C C /C m n m nM N M N --(2) 由于是无放回逐件取出,可用排列法计算.样本点总数有P nN 种,n 次抽取中有m次为正品的组合数为C mn 种.对于固定的一种正品与次品的抽取次序,从M 件正品中取m 件的排列数有P mM 种,从N -M 件次品中取n -m 件的排列数为P n mN M --种,故P (A )=C P P P m m n mn M N MnN -- 由于无放回逐渐抽取也可以看成一次取出,故上述概率也可写成P (A )=C CC m n mM N M n N--可以看出,用第二种方法简便得多.(3) 由于是有放回的抽取,每次都有N 种取法,故所有可能的取法总数为N n 种,n次抽取中有m 次为正品的组合数为C mn 种,对于固定的一种正、次品的抽取次序,m 次取得正品,都有M 种取法,共有M m 种取法,n -m 次取得次品,每次都有N -M 种取法,共有(N -M )n -m 种取法,故()C ()/m m n mn n P A M N M N -=- 此题也可用贝努里概型,共做了n 重贝努里试验,每次取得正品的概率为MN,则取得m 件正品的概率为()C 1m n mmnM M P A N N -⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭11.略.见教材习题参考答案.12. 50只铆钉随机地取来用在10个部件上,其中有3个铆钉强度太弱.每个部件用3只铆钉.若将3只强度太弱的铆钉都装在一个部件上,则这个部件强度就太弱.求发生一个部件强度太弱的概率是多少? 【解】设A ={发生一个部件强度太弱}133103501()C C /C 1960P A ==13.一个袋内装有大小相同的7个球,其中4个是白球,3个是黑球,从中一次抽取3个,计算至少有两个是白球的概率. 【解】 设A i ={恰有i 个白球}(i =2,3),显然A 2与A 3互斥.213434233377C C C 184(),()C 35C 35P A P A ====故 232322()()()35P A A P A P A =+=U 14.有甲、乙两批种子,发芽率分别为0.8和0.7,在两批种子中各随机取一粒,求:(1) 两粒都发芽的概率; (2) 至少有一粒发芽的概率; (3) 恰有一粒发芽的概率.【解】设A i ={第i 批种子中的一粒发芽},(i =1,2)(1) 1212()()()0.70.80.56P A A P A P A ==⨯= (2) 12()0.70.80.70.80.94P A A =+-⨯=U (3) 2112()0.80.30.20.70.38P A A A A =⨯+⨯=U15.掷一枚均匀硬币直到出现3次正面才停止.(1) 问正好在第6次停止的概率;(2) 问正好在第6次停止的情况下,第5次也是出现正面的概率.【解】(1) 223151115()()22232p C ==(2) 1342111C ()()22245/325p == 16.甲、乙两个篮球运动员,投篮命中率分别为0.7及0.6,每人各投了3次,求二人进球数相等的概率.【解】 设A i ={甲进i 球},i =0,1,2,3,B i ={乙进i 球},i =0,1,2,3,则33312123330()(0.3)(0.4)C 0.7(0.3)C 0.6(0.4)i i i P A B ==+⨯⨯+U 22223333C (0.7)0.3C (0.6)0.4+(0.7)(0.6)⨯=0.32076。

概率论与数理统计课后习题答案

概率论与数理统计课后习题答案

习题一1.见教材习题参考答案.2.设A,B,C为三个事件,试用A,B,C(1)A发生,B,C都不发生;(2)A与B发生,C(3)A,B,C都发生;(4)A,B,C(5)A,B,C都不发生;(6)A,B,C(7)A,B,C至多有2个发生;(8)A,B,C至少有2个发生.【解】(1)A BC(2)AB C(3)ABC(4)A∪B∪C=AB C∪A B C∪A BC∪A BC∪A B C∪AB C∪ABC=ABC(5) ABC=A B C(6) ABC(7) A BC∪A B C∪AB C∪AB C∪A BC∪A B C∪ABC=ABC=A∪B∪C(8) AB∪BC∪CA=AB C∪A B C∪A BC∪ABC3..4.设A,B为随机事件,且P(A)=0.7,P(A-B)=0.3,求P(AB).【解】P(AB)=1-P(AB)=1-[P(A)-P(A-B)]=1-[0.7-0.3]=0.65.设A,B是两事件,且P(A)=0.6,P(B)=0.7,(1)在什么条件下P(AB(2)在什么条件下P(AB【解】(1)当AB=A时,P(AB)取到最大值为0.6.(2)当A∪B=Ω时,P(AB)取到最小值为0.3.6.设A,B,C为三事件,且P(A)=P(B)=1/4,P(C)=1/3且P(AB)=P(BC)=0,P(AC)=1/12,求A,B,C至少有一事件发生的概率.【解】 P (A ∪B ∪C )=P (A )+P (B )+P (C )-P (AB )-P (BC )-P (AC )+P (ABC )=14+14+13-112=347.52张扑克牌中任意取出13张,问有5张黑桃,3张红心,3张方块,2张梅花的概率是多少?【解】 p =5332131313131352C C C C /C8.学习小组考虑生日问题: (1) 求五个人的生日都在星期日的概率; (2) 求五个人的生日都不在星期日的概率; (3) 求五个人的生日不都在星期日的概率. 【解】(1) 设A 1={五个人的生日都在星期日},基本事件总数为75,有利事件仅1个,故 P (A 1)=517=(17)5(亦可用独立性求解,下同) (2) 设A 2={五个人生日都不在星期日},有利事件数为65,故P (A 2)=5567=(67)5(3) 设A 3={五个人的生日不都在星期日}P (A 3)=1-P (A 1)=1-(17)59..见教材习题参考答案.10.一批产品共N 件,其中M 件正品.从中随机地取出n 件(n <N ).试求其中恰有m 件(m ≤M )正品(记为A )的概率. (1) n 件是同时取出的; (2)n (3) n 件是有放回逐件取出的.【解】(1) P (A )=C C /C m n m nM N M N --(2) 由于是无放回逐件取出,可用排列法计算.样本点总数有P nN 种,n 次抽取中有m次为正品的组合数为C m n 种.对于固定的一种正品与次品的抽取次序,从M 件正品中取m 件的排列数有P m M 种,从N -M 件次品中取n -m 件的排列数为P n mN M --种,故P (A )=C P PP m m n mn M N M n N--由于无放回逐渐抽取也可以看成一次取出,故上述概率也可写成P (A )=C C C m n mM N Mn N--可以看出,用第二种方法简便得多.(3) 由于是有放回的抽取,每次都有N 种取法,故所有可能的取法总数为N n 种,n次抽取中有m 次为正品的组合数为C m n 种,对于固定的一种正、次品的抽取次序,m 次取得正品,都有M 种取法,共有M m 种取法,n -m 次取得次品,每次都有N -M 种取法,共有(N -M )n -m 种取法,故()C ()/m m n mn n P A M N M N -=- 此题也可用贝努里概型,共做了n 重贝努里试验,每次取得正品的概率为MN,则取得m 件正品的概率为()C 1m n mm n M M P A N N -⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭11..见教材习题参考答案.12. 50只铆钉随机地取来用在10个部件上,其中有3个铆钉强度太弱.每个部件用3只铆钉.若将3只强度太弱的铆钉都装在一个部件上,则这个部件强度就太弱.求发生一个部件强度太弱的概率是多少? 【解】设A ={发生一个部件强度太弱}133103501()C C /C 1960P A ==13.7个球,其中4个是白球,3个是黑球,从中一次抽取3个,计算至少有两个是白球的概率. 【解】 设A i ={恰有i 个白球}(i =2,3),显然A 2与A 3互斥.213434233377C C C 184(),()C 35C 35P A P A ====故 232322()()()35P A A P A P A =+=14.0.8和0.7,在两批种子中各随机取一粒,求:(1) 两粒都发芽的概率; (2) 至少有一粒发芽的概率; (3) 恰有一粒发芽的概率.【解】设A i ={第i 批种子中的一粒发芽},(i =1,2)(1) 1212()()()0.70.80.56P A A P A P A ==⨯= (2) 12()0.70.80.70.80.94P A A =+-⨯=(3) 2112()0.80.30.20.70.38P A A A A =⨯+⨯=15.3次正面才停止.(1) 问正好在第6次停止的概率;(2) 问正好在第6次停止的情况下,第5次也是出现正面的概率.【解】(1) 223151115()()22232p C == (2) 1342111C ()()22245/325p ==16.0.7及0.6,每人各投了3次,求二人进球数相等的概率.【解】 设A i ={甲进i 球},i =0,1,2,3,B i ={乙进i 球},i =0,1,2,3,则33312123330()(0.3)(0.4)C 0.7(0.3)C 0.6(0.4)i i i P A B ==+⨯⨯+22223333C (0.7)0.3C (0.6)0.4+(0.7)(0.6)⨯=0.32076175双不同的鞋子中任取4只,求这4只鞋子中至少有两只鞋子配成一双的概率.【解】 4111152222410C C C C C 131C 21p =-= 18.0.3,下雨的概率为0.5,既下雪又下雨的概率为0.1,求:(1) 在下雨条件下下雪的概率;(2) 这天下雨或下雪的概率. 【解】 设A ={下雨},B ={下雪}.(1) ()0.1()0.2()0.5P AB p B A P A === (2) ()()()()0.30.50.10.7p A B P A P B P AB =+-=+-=19.3个小孩,且其中一个为女孩,求至少有一个男孩的概率(小孩为男为女是等可能的).【解】 设A ={其中一个为女孩},B ={至少有一个男孩},样本点总数为23=8,故()6/86()()7/87P AB P B A P A ===或在缩减样本空间中求,此时样本点总数为7.6()7P B A =20.5%的男人和0.25%的女人是色盲,现随机地挑选一人,此人恰为色盲,问此人是男人的概率(假设男人和女人各占人数的一半).【解】 设A ={此人是男人},B ={此人是色盲},则由贝叶斯公式()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.50.05200.50.050.50.002521⨯==⨯+⨯21.9∶00~10∶00在公园会面,求一人要等另一人半小时以上的概率.题21图题22图【解】设两人到达时刻为x,y,则0≤x,y≤60.事件“一人要等另一人半小时以上”等价于|x-y|>30.如图阴影部分所示.22301604P==22.0,1)中随机地取两个数,求:(1)两个数之和小于65的概率;(2)两个数之积小于14的概率.【解】设两数为x,y,则0<x,y<1.(1)x+y<65.11441725510.68125p=-==(2) xy=<14.1111244111d d ln242xp x y⎛⎫=-=+⎪⎝⎭⎰⎰23.P(A)=0.3,P(B)=0.4,P(A B)=0.5,求P(B|A∪B)【解】()()()()()()()()P AB P A P ABP B A BP A B P A P B P AB-==+-0.70.510.70.60.54-==+-24.15个乒乓球,其中有9个新球,在第一次比赛中任意取出3个球,比赛后放回原盒中;第二次比赛同样任意取出3个球,求第二次取出的3个球均为新球的概率.【解】 设A i ={第一次取出的3个球中有i 个新球},i =0,1,2,3.B ={第二次取出的3球均为新球}由全概率公式,有3()()()i i i P B P B A P A ==∑33123213336996896796333333331515151515151515C C C C C C C C C C C C C C C C C C =∙+∙+∙+∙0.089=25. 按以往概率论考试结果分析,努力学习的学生有90%的可能考试及格,不努力学习的学生有90%的可能考试不及格.据调查,学生中有80%的人是努力学习的,试问: (1)考试及格的学生有多大可能是不努力学习的人? (2)考试不及格的学生有多大可能是努力学习的人? 【解】设A ={被调查学生是努力学习的},则A ={被调查学生是不努力学习的}.由题意知P(A )=0.8,P (A )=0.2,又设B ={被调查学生考试及格}.由题意知P (B |A )=0.9,P (B |A )=0.9,故由贝叶斯公式知(1)()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.20.110.027020.80.90.20.137⨯===⨯+⨯即考试及格的学生中不努力学习的学生仅占2.702% (2) ()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.80.140.30770.80.10.20.913⨯===⨯+⨯即考试不及格的学生中努力学习的学生占30.77%.26. 将两信息分别编码为A 和B 传递出来,接收站收到时,A 被误收作B 的概率为0.02,而B 被误收作A 的概率为0.01.信息A 与B 传递的频繁程度为2∶1.若接收站收到的信息是A ,试问原发信息是A 的概率是多少?【解】 设A ={原发信息是A },则={原发信息是B }C ={收到信息是A },则={收到信息是B } 由贝叶斯公式,得()()()()()()()P A P C A P A C P A P C A P A P C A =+2/30.980.994922/30.981/30.01⨯==⨯+⨯27.【解】设A i ={箱中原有i 个白球}(i =0,1,2),由题设条件知P (A i )=13,i =0,1,2.又设B ={抽出一球为白球}.由贝叶斯公式知11112()()()()()()()i i i P B A P A P A B P A B P B P B A P A ===∑ 2/31/311/31/32/31/311/33⨯==⨯+⨯+⨯28.工厂生产的产品中96%是合格品,检查产品时,一个合格品被误认为是次品的概率为0.02,一个次品被误认为是合格品的概率为0.05,求在被检查后认为是合格品产品确是合格品的概率.【解】 设A ={产品确为合格品},B ={产品被认为是合格品}由贝叶斯公式得()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.960.980.9980.960.980.040.05⨯==⨯+⨯29..统计资料表明,上述三种人在一年内发生事故的概率依次为0.05,0.15和0.30;如果“谨慎的”被保险人占20%,“一般的”占50%,“冒失的”占30%,现知某被保险人在一年内出了事故,则他是“谨慎的”的概率是多少?【解】 设A ={该客户是“谨慎的”},B ={该客户是“一般的”},C ={该客户是“冒失的”},D ={该客户在一年内出了事故} 则由贝叶斯公式得()()(|)(|)()()(|)()(|)()(|)P AD P A P D A P A D P D P A P D A P B P D B P C P D C ==++0.20.050.0570.20.050.50.150.30.3⨯==⨯+⨯+⨯30.过四道工序,设第一、二、三、四道工序的次品率分别为0.02,0.03,0.05,0.03,假定各道工序是相互独立的,求加工出来的零件的次品率. 【解】设A i ={第i 道工序出次品}(i =1,2,3,4).412341()1()i i P A P A A A A ==-12341()()()()P A P A P A P A =-10.980.970.950.970.124=-⨯⨯⨯= 31.0.2,问至少必须进行多少次独立射击才能使至少击中一次的概率不小于0.9?【解】设必须进行n 次独立射击.1(0.8)0.9n -≥即为 (0.8)0.1n ≤ 故 n ≥11 至少必须进行11次独立射击. 32.P (A |B )=P (A |B ),则A ,B 相互独立.【证】 (|)(|)P A B P A B =即()()()()P AB P AB P B P B =亦即 ()()()()P AB P B P AB P B =()[1()][()()]()P AB P B P A P AB P B -=-因此 ()()()P AB P A P B = 故A 与B 相互独立. 33.15,13,14,求将此密码破译出的概率.【解】 设A i ={第i 人能破译}(i =1,2,3),则31231231()1()1()()()i i P A P A A A P A P A P A ==-=-42310.6534=-⨯⨯= 34.0.4,0.5,0.7,若只有一人击中,则飞机被击落的概率为0.2;若有两人击中,则飞机被击落的概率为0.6;若三人都击中,则飞机一定被击落,求:飞机被击落的概率. 【解】设A ={飞机被击落},B i ={恰有i 人击中飞机},i =0,1,2,3由全概率公式,得3()(|)()i i i P A P A B P B ==∑=(0.4×0.5×0.3+0.6×0.5×0.3+0.6×0.5×0.7)0.2+(0.4×0.5×0.3+0.4×0.5×0.7+0.6×0.5×0.7)0.6+0.4×0.5×0.7 =0.45835.25%,为试验一种新药是否有效,把它给10个病人服用,且规定若10个病人中至少有四人治好则认为这种药有效,反之则认为无效,求: (1) 虽然新药有效,且把治愈率提高到35%,但通过试验被否定的概率.(2) 新药完全无效,但通过试验被认为有效的概率. 【解】(1) 310110C(0.35)(0.65)0.5138k k k k p -===∑(2) 10102104C(0.25)(0.75)0.2241kk k k p -===∑36.6位乘客,并等可能地停于十层楼的每一层.试求下列事件的概率:(1) A =“某指定的一层有两位乘客离开”;(2) B =“没有两位及两位以上的乘客在同一层离开”; (3) C =“恰有两位乘客在同一层离开”; (4) D =“至少有两位乘客在同一层离开”.【解】 由于每位乘客均可在10层楼中的任一层离开,故所有可能结果为106种.(1) 2466C 9()10P A =,也可由6重贝努里模型:224619()C ()()1010P A =(2) 6个人在十层中任意六层离开,故6106P ()10P B =(3) 由于没有规定在哪一层离开,故可在十层中的任一层离开,有110C 种可能结果,再从六人中选二人在该层离开,有26C 种离开方式.其余4人中不能再有两人同时离开的情况,因此可包含以下三种离开方式:①4人中有3个人在同一层离开,另一人在其余8层中任一层离开,共有131948C C C 种可能结果;②4人同时离开,有19C 种可能结果;③4个人都不在同一层离开,有49P 种可能结果,故1213114610694899()C C (C C C C P )/10P C =++(4) D=B .故6106P ()1()110P D P B =-=-37. n 个朋友随机地围绕圆桌而坐,求下列事件的概率: (1) 甲、乙两人坐在一起,且乙坐在甲的左边的概率; (2) 甲、乙、丙三人坐在一起的概率;(3) 如果n 个人并排坐在长桌的一边,求上述事件的概率. 【解】 (1) 111p n =-(2) 23!(3)!,3(1)!n p n n -=>-(3) 12(1)!13!(2)!;,3!!n n p p n n n n --''===≥ 38.[0,a ]【解】 设这三段长分别为x ,y ,a -x -y .则基本事件集为由0<x <a ,0<y <a ,0<a -x -y <a 所构成的图形,有利事件集为由()()x y a x y x a x y y y a x y x+>--⎡⎢+-->⎢⎢+-->⎣ 构成的图形,即02022a x a y ax y a ⎡<<⎢⎢⎢<<⎢⎢⎢<+<⎢⎣ 如图阴影部分所示,故所求概率为14p =. 39. 某人有n 把钥匙,其中只有一把能开他的门.他逐个将它们去试开(抽样是无放回的).证明试开k 次(k =1,2,…,n )才能把门打开的概率与k 无关.【证】 11P 1,1,2,,P k n k n p k n n--=== 40.把一个表面涂有颜色的立方体等分为一千个小立方体,在这些小立方体中,随机地取出一个,试求它有i 面涂有颜色的概率P (A i )(i =0,1,2,3). 【解】 设A i ={小立方体有i 面涂有颜色},i =0,1,2,3.在1千个小立方体中,只有位于原立方体的角上的小立方体是三面有色的,这样的小立方体共有8个.只有位于原立方体的棱上(除去八个角外)的小立方体是两面涂色的,这样的小立方体共有12×8=96个.同理,原立方体的六个面上(除去棱)的小立方体是一面涂色的,共有8×8×6=384个.其余1000-(8+96+384)=512个内部的小立方体是无色的,故所求概率为01512384()0.512,()0.38410001000P A P A ====, 24968()0.096,()0.00810001000P A P A ====.41.对任意的随机事件A ,B ,CP (AB )+P (AC )-P (BC )≤P (A). 【证】 ()[()]()P A P A BC P AB AC ≥=()()()P AB P AC P ABC =+-()()()P AB P AC P BC ≥+- 42.3个球随机地放入4个杯子中去,求杯中球的最大个数分别为1,2,3的概率.【解】 设i A ={杯中球的最大个数为i },i =1,2,3.将3个球随机放入4个杯子中,全部可能放法有43种,杯中球的最大个数为1时,每个杯中最多放一球,故3413C 3!3()48P A ==而杯中球的最大个数为3,即三个球全放入一个杯中,故1433C 1()416P A ==因此 213319()1()()181616P A P A P A =--=--= 或 12143323C C C 9()416P A == 43.2n 次,求出现正面次数多于反面次数的概率.【解】掷2n 次硬币,可能出现:A ={正面次数多于反面次数},B ={正面次数少于反面次数},C ={正面次数等于反面次数},A ,B ,C 两两互斥.可用对称性来解决.由于硬币是均匀的,故P (A )=P (B ).所以1()()2P C P A -=由2n 重贝努里试验中正面出现n 次的概率为211()()()22n n nn P C C =故 2211()[1C ]22nn n P A =-44.n 次均匀硬币,求出现正面次数多于反面次数的概率.【解】设A ={出现正面次数多于反面次数},B ={出现反面次数多于正面次数},由对称性知P (A )=P (B )(1) 当n 为奇数时,正、反面次数不会相等.由P (A )+P (B )=1得P (A )=P (B )=0.5(2) 当n 为偶数时,由上题知211()[1C ()]22nn n P A =-45.n +1次,乙掷n 次,求甲掷出正面次数多于乙掷出正面次数的概率.【解】 令甲正=甲掷出的正面次数,甲反=甲掷出的反面次数.乙正=乙掷出的正面次数,乙反=乙掷出的反面次数. 显然有>正正(甲乙)=(甲正≤乙正)=(n +1-甲反≤n -乙反)=(甲反≥1+乙反)=(甲反>乙反)由对称性知P (甲正>乙正)=P (甲反>乙反) 因此P (甲正>乙正)=1246.Sure -thing ):若P (A |C )≥P (B |C ),P (A |)≥P (B |),则P (A )≥P (B ).【证】由P (A |C )≥P (B |C ),得()(),()()P AC P BC P C P C ≥即有 ()()P AC P BC ≥ 同理由 (|)(|),P A C P B C ≥ 得 ()(),P AC P BC ≥故 ()()()()()()P A P AC P AC P BC P BC P B =+≥+= 47.一列火车共有n 节车厢,有k (k ≥n )个旅客上火车并随意地选择车厢.求每一节车厢内至少有一个旅客的概率.【解】 设A i ={第i 节车厢是空的},(i =1,…,n ),则121(1)1()(1)2()(1)1()(1)n k ki k ki j ki i i n P A n nP A A n n P A A A n--==-=--=-其中i 1,i 2,…,i n -1是1,2,…,n 中的任n -1个. 显然n 节车厢全空的概率是零,于是2112111122111111123111()(1)C (1)2()C (1)1()C (1)0()(1)n n nk ki ni ki j n i j nn kn i i i n i i i nn nn i ni S P A n n n S P A A n n S P A A A nS P A S S S S --=≤<≤--≤<<≤+===-=-==--==-==-+-+-∑∑∑121121C (1)C (1)(1)C (1)k kn n kn n n n nnn--=---++--故所求概率为121121()1C (1)C (1)nk i i n ni P A n n=-=--+--+111(1)C (1)n n kn n n+----48.设随机试验中,某一事件A 出现的概率为ε>0.试证明:不论ε>0如何小,只要不断地独立地重复做此试验,则A 迟早会出现的概率为1. 【证】在前n 次试验中,A 至少出现一次的概率为1(1)1()n n ε--→→∞49.袋中装有m 只正品硬币,n 只次品硬币(次品硬币的两面均印有国徽).在袋中任取一只,将它投掷r 次,已知每次都得到国徽.试问这只硬币是正品的概率是多少? 【解】设A ={投掷硬币r 次都得到国徽}B ={这只硬币为正品} 由题知 (),()m nP B P B m n m n==++ 1(|),(|)12r P A B P A B ==则由贝叶斯公式知()()(|)(|)()()(|)()(|)P AB P B P A B P B A P A P B P A B P B P A B ==+ 121212r rr m m m n m n m nm n m n+==++++ 50.巴拿赫(Banach )火柴盒问题:某数学家有甲、乙两盒火柴,每盒有N 根火柴,每次用火柴时他在两盒中任取一盒并从中任取一根.试求他首次发现一盒空时另一盒恰有r 根的概率是多少?第一次用完一盒火柴时(不是发现空)而另一盒恰有r 根的概率又【解】以B 1、B 2记火柴取自不同两盒的事件,则有121()()2P B P B ==.(1)发现一盒已空,另一盒恰剩r 根,说明已取了2n -r 次,设n 次取自B 1盒(已空),n -r 次取自B 2盒,第2n -r +1次拿起B 1,发现已空。

概率论与数理统计答案_北邮版_(第一章)【精选】

概率论与数理统计答案_北邮版_(第一章)【精选】

概率论与数理统计习题及答案习题 一1.写出下列随机试验的样本空间及下列事件包含的样本点. (1) 掷一颗骰子,出现奇数点. (2) 掷二颗骰子,A =“出现点数之和为奇数,且恰好其中有一个1点.”B =“出现点数之和为偶数,但没有一颗骰子出现1点.” (3)将一枚硬币抛两次, A =“第一次出现正面.” B =“至少有一次出现正面.”C =“两次出现同一面.” 【解】{}{}1123456135A Ω==(),,,,,,,,;{}{}{}{}{}(2)(,)|,1,2,,6,(12),(14),(16),(2,1),(4,1),(6,1),(22),(24),(26),(3,3),(3,5),(4,2),(4,4),(4,6),(5,3),(5,5),(6,2),(6,4),(6,6);(3)(,),(,),(,),(,),(,),(,),(,),(,),(i j i j A B A B ΩΩ=======,,,,,,正反正正反正反反正正正反正正正反反{}{},),(,),(,),C =正正正反反2.设A ,B ,C 为三个事件,试用A ,B ,C(1) A 发生,B ,C 都不发生; (2) A 与B 发生,C (3) A ,B ,C 都发生; (4) A ,B ,C (5) A ,B ,C 都不发生; (6) A ,B ,C(7) A ,B ,C 至多有2个发生; (8) A ,B ,C 至少有2个发生. 【解】(1) A BC (2) AB C (3) ABC(4) A ∪B ∪C =AB C ∪A B C ∪A BC ∪A BC ∪A B C ∪AB C ∪ABC =ABC(5) ABC=A B C(6) ABC(7) A BC∪A B C∪AB C∪AB C∪A BC∪A B C∪ABC=ABC=A∪B∪C(8) AB∪BC∪CA=AB C∪A B C∪A BC∪ABC3.指出下列等式命题是否成立,并说明理由:(1) A∪B=(AB)∪B;(2) A B=A∪B;A∩C=AB C;(3) B(4) (AB)( AB)= ∅;(5) 若A⊂B,则A=AB;(6) 若AB=∅,且C⊂A,则BC=∅;(7) 若A⊂B,则B⊃A;(8) 若B⊂A,则A∪B=A.【解】(1)不成立.特例:若Α∩B=φ,则ΑB∪B=B.所以,事件Α发生,事件B必不发生,即Α∪B发生,ΑB∪B不发生.故不成立.(2)不成立.若事件Α发生,则A不发生,Α∪B发生,所以A B不发生,从而不成立.A,AB画文氏图如下:(3)不成立.B所以,若Α-B发生,则AB发生, A B不发生,故不成立.(4)成立.因为ΑB与AB为互斥事件.(5)成立.若事件Α发生,则事件B发生,所以ΑB发生.若事件ΑB发生,则事件Α发生,事件B发生.故成立.(6)成立.若事件C发生,则事件Α发生,所以事件B不发生,故BC=φ.⊂.(7)不成立.画文氏图,可知B A(8)成立.若事件Α发生,由()A AB ⊂,则事件Α∪B 发生.若事件Α∪B 发生,则事件Α,事件B 发生. 若事件Α发生,则成立.若事件B 发生,由B A ⊂,则事件Α发生.4.设A ,B 为随机事件,且P (A )=0.7,P (A -B )=0.3,求P (AB ). 【解】 P (AB )=1-P (AB )=1-[P (A )-P (A -B )]=1-[0.7-0.3]=0.65.设A ,B 是两事件,且P (A )=0.6,P (B )=0.7, (1) 在什么条件下P (AB(2) 在什么条件下P (AB【解】(1) 当AB =A 时,P (AB )取到最大值为0.6.(2) 当A ∪B =Ω时,P (AB )取到最小值为0.3.6.设A ,B ,C 为三事件,且P (A )=P (B )=1/4,P (C )=1/3且P (AB )=P (BC )=0,P (AC )=1/12,求A ,B ,C 至少有一事件发生的概率.【解】 P (A ∪B ∪C )=P (A )+P (B )+P (C )-P (AB )-P (BC )-P (AC )+P (ABC )=14+14+13-112=347.52张扑克牌中任意取出13张,问有5张黑桃,3张红心,3张方块,2张梅花的概率是多少?【解】 p =5332131313131352C C C C /C8.(1) 求五个人的生日都在星期日的概率; (2) 求五个人的生日都不在星期日的概率; (3) 求五个人的生日不都在星期日的概率. 【解】(1) 设A 1={五个人的生日都在星期日},基本事件总数为75,有利事件仅1个,故 P (A 1)=517=(17)5(亦可用独立性求解,下同) (2) 设A 2={五个人生日都不在星期日},有利事件数为65,故P (A 2)=5567=(67)5(3) 设A 3={五个人的生日不都在星期日}P (A 3)=1-P (A 1)=1-(17)59. 从一批由45件正品,5件次品组成的产品中任取3件,求其中恰有一件次品的概率.【解】与次序无关,是组合问题.从50个产品中取3个,有350C 种取法.因只有一件次品,所以从45个正品中取2个,共245C 种取法;从5个次品中取1个,共15C 种取法,由乘法原理,恰有一件次品的取法为245C 15C种,所以所求概率为21455350C C P C =.10.一批产品共N 件,其中M 件正品.从中随机地取出n 件(n <N ).试求其中恰有m 件(m ≤M )正品(记为A )的概率. (1) n 件是同时取出的; (2)n (3) n 件是有放回逐件取出的.【解】(1) P (A )=C C /C m n m nM N M N --(2) 由于是无放回逐件取出,可用排列法计算.样本点总数有P nN 种,n 次抽取中有m次为正品的组合数为C m n 种.对于固定的一种正品与次品的抽取次序,从M 件正品中取m 件的排列数有P m M 种,从N -M 件次品中取n -m 件的排列数为P n mN M --种,故P (A )=C P P P m m n mn M N MnN-- 由于无放回逐渐抽取也可以看成一次取出,故上述概率也可写成P (A )=C C C m n mM N Mn N--可以看出,用第二种方法简便得多.(3) 由于是有放回的抽取,每次都有N 种取法,故所有可能的取法总数为N n 种,n次抽取中有m 次为正品的组合数为C m n 种,对于固定的一种正、次品的抽取次序,m 次取得正品,都有M 种取法,共有M m 种取法,n -m 次取得次品,每次都有N -M 种取法,共有(N -M )n -m 种取法,故()C ()/m m n m nnP A M N M N -=- 此题也可用贝努里概型,共做了n 重贝努里试验,每次取得正品的概率为MN,则取得m 件正品的概率为()C 1m n mm n M M P A N N -⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭11. 在电话号码簿中任取一电话号码,求后面4个数全不相同的概率(设后面4个数中的每一个数都是等可能地取自0,1,…,9). 【解】这是又重复排列问题.个数有10种选择,4个数共有104种选择.4个数全不相同,是排列问题.用10个数去排4个位置,有410P 种排法,故所求概率为4410/10P P =.12. 50只铆钉随机地取来用在10个部件上,每个部件用3只铆钉.其中有3个铆钉强度太弱.若将3只强度太弱的铆钉都装在一个部件上,则这个部件强度就太弱.求发生一个部件强度太弱的概率是多少? 【解】设A ={发生一个部件强度太弱}133103501()C C /C 1960P A ==13.7个球,其中4个是白球,3个是黑球,从中一次抽取3个,计算至少有两个是白球的概率. 【解】 设A i ={恰有i 个白球}(i =2,3),显然A 2与A 3互斥.213434233377C C C 184(),()C 35C 35P A P A ====故 232322()()()35P A A P A P A =+=14.有甲、乙两批种子,发芽率分别为0.8和0.7,在两批种子中各随机取一粒,求:(1) 两粒都发芽的概率; (2) 至少有一粒发芽的概率; (3) 恰有一粒发芽的概率.【解】设A i ={第i 批种子中的一粒发芽},(i =1,2)(1) 1212()()()0.70.80.56P A A P A P A ==⨯= (2) 12()0.70.80.70.80.94P A A =+-⨯=(3) 2112()0.80.30.20.70.38P A A A A =⨯+⨯=15.3次正面才停止.(1) 问正好在第6次停止的概率;(2) 问正好在第6次停止的情况下,第5次也是出现正面的概率.【解】(1) 223151115()()22232p C == (2) 1342111C ()()22245/325p == *16.0.7及0.6,每人各投了3次,求二人进球数相等的概率.【解】 设A i ={甲进i 球},i =0,1,2,3,B i ={乙进i 球},i =0,1,2,3,则3331212330()(0.3)(0.4)C 0.7(0.3)C 0.6(0.4)i i i P A B ==+⨯⨯+22223333C (0.7)0.3C (0.6)0.4+(0.7)(0.6)⨯=0.32076*17.从5双不同的鞋子中任取4只,求这4只鞋子中至少有两只鞋子配成一双的概率.【解】 4111152222410C C C C C 131C 21p =-= 18.0.3,下雨的概率为0.5,既下雪又下雨的概率为0.1,求:(1)在下雨条件下下雪的概率;(2)这天下雨或下雪的概率. 【解】 设A ={下雨},B ={下雪}.(1) ()0.1()0.2()0.5P AB p B A P A === (2) ()()()()0.30.50.10.7p A B P A P B P AB =+-=+-=?19.已知一个家庭有3个小孩,且其中一个为女孩,求至少有一个男孩的概率(小孩为男为女是等可能的).【解】 设A ={其中一个为女孩},B ={至少有一个男孩},样本点总数为23=8,故()6/86()()7/87P AB P B A P A ===或在缩减样本空间中求,此时样本点总数为7.6()7P B A =20.5%的男人和0.25%的女人是色盲,现随机地挑选一人,此人恰为色盲,问此人是男人的概率(假设男人和女人各占人数的一半).【解】 设A ={此人是男人},B ={此人是色盲},则由贝叶斯公式()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.50.05200.50.050.50.002521⨯==⨯+⨯21.两人约定上午9∶00~10∶00在公园会面,求一人要等另一人半小时以上的概率.题21图【解】设两人到达时刻为x,y ,则0≤x ,y ≤60.事件“一人要等另一人半小时以上”等价于|x -y |>30.如图阴影部分所示.22301604P ==22.0,1)中随机地取两个数,求:(1) 两个数之和小于65的概率; (2) 两个数之积小于14的概率.【解】 设两数为x ,y ,则0<x ,y <1. (1) x +y <65. 11441725510.68125p =-==(2) xy =<14.1111244111d d ln 242x p x y ⎛⎫=-=+⎪⎝⎭⎰⎰ 题22图23.P (A )=0.3,P (B )=0.4,P (A B )=0.5,求P (B |A ∪B )【解】 ()()()()()()()()P AB P A P AB P B A B P A B P A P B P AB -==+- 0.70.510.70.60.54-==+-24.15个乒乓球,其中有9个新球,在第一次比赛中任意取出3个球,比赛后放回原盒中;第二次比赛同样任意取出3个球,求第二次取出的3个球均为新球的概率.【解】 设A i ={第一次取出的3个球中有i 个新球},i =0,1,2,3.B ={第二次取出的3球均为新球}由全概率公式,有3()()()i i i P B P B A P A ==∑33123213336996896796333333331515151515151515C C C C C C C C C C C C C C C C C C =∙+∙+∙+∙0.089=25. 按以往概率论考试结果分析,努力学习的学生有90%的可能考试及格,不努力学习的学生有90%的可能考试不及格.据调查,学生中有80%的人是努力学习的,试问: (1)考试及格的学生有多大可能是不努力学习的人? (2)考试不及格的学生有多大可能是努力学习的人? 【解】设A ={被调查学生是努力学习的},则A ={被调查学生是不努力学习的}.由题意知P(A )=0.8,P (A )=0.2,又设B ={被调查学生考试及格}.由题意知P (B |A )=0.9,P (B |A )=0.9,故由贝叶斯公式知(1)()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.20.110.027020.80.90.20.137⨯===⨯+⨯即考试及格的学生中不努力学习的学生仅占2.702% (2) ()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.80.140.30770.80.10.20.913⨯===⨯+⨯即考试不及格的学生中努力学习的学生占30.77%.26. 将两信息分别编码为A 和B 传递出来,接收站收到时,A 被误收作B 的概率为0.02,而B 被误收作A 的概率为0.01.信息A 与B 传递的频繁程度为2∶1.若接收站收到的信息是A ,试问原发信息是A 的概率是多少?【解】 设A ={原发信息是A },则={原发信息是B }C ={收到信息是A },则={收到信息是B } 由贝叶斯公式,得()()()()()()()P A P C A P A C P A P C A P A P C A =+2/30.980.994922/30.981/30.01⨯==⨯+⨯27.在已有两个球的箱子中再放一白球,然后任意取出一球,若发现这球为白球,试求箱子【解】设A i ={箱中原有i 个白球}(i =0,1,2),由题设条件知P (A i )=13,i =0,1,2.又设B ={抽出一球为白球}.由贝叶斯公式知11112()()()()()()()i i i P B A P A P A B P A B P B P B A P A ===∑ 2/31/311/31/32/31/311/33⨯==⨯+⨯+⨯28.96%是合格品,检查产品时,一个合格品被误认为是次品的概率为0.02,一个次品被误认为是合格品的概率为0.05,求在被检查后认为是合格品产品确是合格品的概率.【解】 设A ={产品确为合格品},B ={产品被认为是合格品}由贝叶斯公式得()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+0.960.980.9980.960.980.040.05⨯==⨯+⨯29.某保险公司把被保险人分为三类:“谨慎的”,“一般的”,“冒失的”.统计资料表明,上述三种人在一年内发生事故的概率依次为0.05,0.15和0.30;如果“谨慎的”被保险人占20%,“一般的”占50%,“冒失的”占30%,现知某被保险人在一年内出了事故,则他是“谨慎的”的概率是多少?【解】 设A ={该客户是“谨慎的”},B ={该客户是“一般的”},C ={该客户是“冒失的”},D ={该客户在一年内出了事故} 则由贝叶斯公式得()()(|)(|)()()(|)()(|)()(|)P AD P A P D A P A D P D P A P D A P B P D B P C P D C ==++0.20.050.0570.20.050.50.150.30.3⨯==⨯+⨯+⨯30.次品率分别为0.02,0.03,0.05,0.03,假定各道工序是相互独立的,求加工出来的零件的次品率. 【解】设A i ={第i 道工序出次品}(i =1,2,3,4).412341()1()i i P A P A A A A ==-12341()()()()P A P A P A P A =-10.980.970.950.97=-⨯⨯⨯= 31.设每次射击的命中率为0.2,问至少必须进行多少次独立射击才能使至少击中一次的概率不小于0.9?【解】设必须进行n 次独立射击.则1(0.8)0.9n-≥即为 (0.8)0.1n≤故n ≥1lg8=11.07,至少必须进行11次独立射击. 32.证明:若P (A |B )=P (A |B ),则A ,B 相互独立.【证】 (|)(|)P A B P A B =即()()()()P AB P AB P B P B =亦()()()()P AB P B P AB P B =,即()[1()][()()]()P AB P B P A P AB P B -=- 因此 ()()()P AB P A P B =,故A 与B 相互独立. 33.三人独立地破译一个密码,他们能破译的概率分别为151314,求将此密码破译出的概率. 【解】 设A i ={第i 人能破译}(i =1,2,3),则31231231()1()1()()()i i P A P A A A P A P A P A ==-=-42310.6534=-⨯⨯=34.甲、乙、丙三人独立地向同一飞机射击,设击中的概率分别是0.4,0.5,0.7,若只有一人击中,则飞机被击落的概率为0.2;若有两人击中,则飞机被击落的概率为0.6;若三人都击中,则飞机一定被击落,求:飞机被击落的概率.【解】设A ={飞机被击落},B i ={恰有i 人击中飞机},i =0,1,2,3由全概率公式,得3()(|)()i i i P A P A B P B ==∑=(0.4×0.5×0.3+0.6×0.5×0.3+0.6×0.5×0.7)×0.2+(0.4×0.5×0.3+0.4×0.5×0.7+0.6×0.5×0.7)×0.6+0.4×0.5×0.7×1=0.458。

概率论与数理统计习题册

概率论与数理统计习题册

第六章 样本及抽样分布一、选择题1. 设12,,,n X X X 是来自总体X 的简单随机样本,则12,,,n X X X 必然满足( )A.独立但分布不同;B.分布相同但不相互独立; C 独立同分布; D.不能确定 2.下列关于“统计量”的描述中,不正确的是( ). A .统计量为随机变量 B. 统计量是样本的函数C. 统计量表达式中不含有参数D. 估计量是统计量3下列关于统计学“四大分布”的判断中,错误的是( ). A. 若12~(,),F F n n 则211~(,)F n n FB .若2~(),~(1,)T t n T F n 则C .若)1(~),1,0(~22x X N X 则D .在正态总体下2212()~(1)nii Xx n μσ=--∑4. 设2,i i X S 表示来自总体2(,)i i N μσ的容量为i n 的样本均值和样本方差)2,1(=i ,且两总体相互独立,则下列不正确的是( ).A. 2221122212~(1,1)SF n n S σσ--B.(~(0,1)X X NC.)(~/11111n t n S X μ- D.2222222(1)~(1)n S x n σ--5. 设12,,,n X X X 是来自总体的样本,则211()1ni i X X n =--∑是( ).A.样本矩B. 二阶原点矩C. 二阶中心矩D.统计量 612,,,n X X X 是来自正态总体)1,0(N 的样本,2,S X 分别为样本均值与样本方差,则( ).A. )1,0(~N XB. ~(0,1)nX NC.221~()ni i X x n =∑ D.~(1)Xt n S-7. 给定一组样本观测值129,,,X X X 且得∑∑====91291,285,45i i i i X X 则样本方差2S 的观测值为 ( ).A. 7.5B.60C.320D. 265 8设X 服从)(n t 分布, a X P =>}|{|λ,则}{λ-<X P 为( ).A.a 21B. a 2C. a +21 D. a 211- 9设12,,,n x x x 是来自正态总体2(0,2)N 的简单随机样本,若298762543221)()()2(X X X X c X X X b X X a Y ++++++++=服从2x 分布,则c b a ,,的值分别为( ).A.161,121,81 B. 161,121,201 C. 31,31,31 D. 41,31,2110设随机变量X 和Y 相互独立,且都服从正态分布2(0,3)N ,设921,,,X X X 和921,,,Y Y Y 分别是来自两总体的简单随机样本,则统计量9iXU =∑( ).A. )9(tB. )8(tC. )81,0(ND. )9,0(N二、填空题1.在数理统计中, 称为样本. 2.我们通常所说的样本称为简单随机样本,它具有的两个特点是 .3.设随机变量n X X X ,,,21 相互独立且服从相同的分布,2,σμ==DX EX ,令∑==ni i X n X 11,则EX =;.DX =4.),,,(1021X X X 是来自总体)3.0,0(~2N X 的一个样本,则=⎭⎬⎫⎩⎨⎧≥∑=101244.1i i X P .5.已知样本1621,,,X X X 取自正态分布总体)1,2(N ,X 为样本均值,已知5.0}{=≥λX P ,则=λ .10.6设总体),(~2σμN X ,X 是样本均值,2n S 是样本方差,n 为样本容量,则常用的随机变量22)1(σn S n -服从 分布.第七章 参数估计一、选择题1. 设总体),(~2σμN X ,n X X ,,1 为抽取样本,则∑=-ni i X X n 12)(1是( ).)(A μ的无偏估计 )(B 2σ的无偏估计 )(C μ的矩估计 )(D 2σ的矩估计2 设X 在[0,a]上服从均匀分布,0>a 是未知参数,对于容量为n 的样本n X X ,,1 ,a 的最大似然估计为( )(A )},,,max{21n X X X (B )∑=ni i X n 11(C )},,,min{},,,max{2121n n X X X X X X - (D )∑=+ni i X n 111;3 设总体分布为),(2σμN ,2,σμ为未知参数,则2σ的最大似然估计量为( ).(A )∑=-n i i X X n 12)(1 (B )∑=--n i i X X n 12)(11 (C )∑=-n i i X n 12)(1μ (D )∑=--n i iX n 12)(11μ 4 设总体分布为),(2σμN ,μ已知,则2σ的最大似然估计量为( ). (A )2S (B )21S nn - (C )∑=-n i i X n 12)(1μ (D )∑=--n i i X n 12)(11μ 5 321,,X X X 设为来自总体X 的样本,下列关于)(X E 的无偏估计中,最有效的为( ).(A ))(2121X X + (B ))(31321X X X ++ (C ))(41321X X X ++ (D ))313232321X X X -+6 设)2(,,,21≥n X X X n 是正态分布),(2σμN 的一个样本,若统计量∑-=+-1121)(n i i i X X K 为2σ的无偏估计,则K 的值应该为( )(A )n 21 (B )121-n (C )221-n (D )11-n 7. 设θ为总体X 的未知参数,21,θθ是统计量,()21,θθ为θ的置信度为)10(1<<-a a 的置信区间,则下式中不能恒成的是( ).A. a P -=<<1}{21θθθB. a P P =<+>}{}{12θθθθC. a P -≥<1}{2θθD. 2}{}{12aP P =<+>θθθθ 8 设),(~2σμN X 且2σ未知,若样本容量为n ,且分位数均指定为“上侧分位数”时,则μ的95%的置信区间为( )A. )(025.0u n X σ±B. ))1((05.0-±n t n S XC. ))((025.0n t nS X ±D. ))1((025.0-±n t nS X9 设22,),,(~σμσμN X 均未知,当样本容量为n 时,2σ的95%的置信区间为( )A. ))1()1(,)1()1((2025.022975.02----n x S n n x S nB. ))1()1(,)1()1((2975.022025.02----n x S n n x S nC. ))1()1(,)1()1((2975.022025.02----n t S n n t S n D. ))1((025.0-±n t nS X 二、填空题1. 点估计常用的两种方法是: 和 .2. 若X 是离散型随机变量,分布律是{}(;)P X x P x θ==,(θ是待估计参数),则似然函数是 ,X 是连续型随机变量,概率密度是(;)f x θ,则似然函数是 .3. 设总体X 的概率分布列为:X 0 1 2 3P p 2 2 p (1-p ) p 2 1-2p其中p (2/10<<p ) 是未知参数. 利用总体X 的如下样本值: 1, 3, 0, 2, 3, 3, 1, 3 则p 的矩估计值为__ ___,极大似然估计值为 . 4. 设总体X 的一个样本如下:1.70,1.75,1.70,1.65,1.75 则该样本的数学期望)(X E 和方差)(X D 的矩估计值分别_ ___.5. 设总体X 的密度函数为:⎩⎨⎧+=0)1()(λλx x f 其他10<<x ,设n X X ,,1 是X 的样本,则λ的矩估计量为 ,最大似然估计量为 .6. 假设总体),(~2σμN X ,且∑==ni i X n X 11,n X X X ,,,21 为总体X 的一个样本,则X 是 的无偏估计.7 设总体),(~2σμN X ,n X X X ,,,21 为总体X 的一个样本,则常数k= , 使∑=-ni i X X k 1为σ 的无偏估计量.8 从一大批电子管中随机抽取100只,抽取的电子管的平均寿命为1000小时,样本均方差为40=S .设电子管寿命分布未知,以置信度为95.0,则整批电子管平均寿命μ的置信区间为(给定96.1,645.1025.005.0==Z Z ) . 9设总体),(~2σμN X ,2,σμ为未知参数,则μ的置信度为1α-的置信区间为.10 某车间生产滚珠,从长期实践可以认为滚珠的直径服从正态分布,且直径的方差为04.02=σ,从某天生产的产品中随机抽取9个,测得直径平均值为15毫米,给定05.0=α则滚珠的平均直径的区间估计为 .)96.1,645.1(025.005.0==Z Z 11. 某车间生产滚珠,从某天生产的产品中抽取6个,测得直径为:14.6 15.1 14.9 14.8 15.2 15.1已知原来直径服从)06.0,(N μ,则该天生产的滚珠直径的置信区间为 ,(05.0=α,645.105.0=Z ,96.1025.0=Z ).12. 某矿地矿石含少量元素服从正态分布,现在抽样进行调查,共抽取12个子样算得2.0=S ,则σ的置信区间为 (1.0=α,68.19)11(22=αχ,57.4)11(221=-αχ).第八章 假设检验一、选择题1. 关于检验的拒绝域W,置信水平α,及所谓的“小概率事件”,下列叙述错误的是( ). A. α的值即是对究竟多大概率才算“小”概率的量化描述 B .事件021|),,,{(H W X X X n ∈ 为真}即为一个小概率事件C .设W 是样本空间的某个子集,指的是事件120{(,,,)|}n X X X H 为真D .确定恰当的W 是任何检验的本质问题2. 设总体22),,(~σσμN X 未知,通过样本n X X X ,,,21 检验假设00:μμ=H ,要采用检验估计量( ).A.nX /0σμ- B.nS X /0μ- C.nS X /μ- D.nX /σμ-3. 样本n X X X ,,,21 来自总体)12,(2μN ,检验100:0≤μH ,采用统计量( ). A.nX /12μ- B.nX /12100- C.1/100--n S X D.nS X /μ-4设总体22),,(~σσμN X 未知,通过样本n X X X ,,,21 检验假设00:μμ=H ,此问题 拒绝域形式为 .A.}C >B. }/100{C nS X <- C. }10/100{C S X >- D. }{C X >5.设n X X X ,,,21 为来自总体)3,(2μN 的样本,对于100:0=μH 检验的拒绝域可以形 如( ).A .}{C X >-μ B. {100}X C ->C. }C >D. {100}X C -<6、 样本来自正态总体),(2σμN ,μ未知,要检验100:20=σH ,则采用统计量为( ).A.22)1(σS n - B. 100)1(2S n - C. n X 100μ- D. 1002nS7、设总体分布为),(2σμN ,若μ已知,则要检验100:20≥σH ,应采用统计量( ).A.nS X /μ- B.22)1(σSn - C.100)(21∑=-ni iXμ D.100)(21∑=-ni iX X二、填空题1. 为了校正试用的普通天平, 把在该天平上称量为100克的10个试样在计量标准天平上进 行称量,得如下结果:99.3, 98.7, 100.5, 101,2, 98.399.7 99.5 102.1 100.5, 99.2 假设在天平上称量的结果服从正态分布,为检验普通天平与标准天平有无显著差异,0H 为 .2.设样本2521,,,X X X 来自总体μμ),9,(N 未知.对于检验00:μμ=H ,01:μμ=H , 取拒绝域形如k X ≥-0μ,若取05.0=a ,则k 值为 .第六章 样本及抽样分布答案一、选择题1. ( C )2.(C ) 注:统计量是指不含有任何未知参数的样本的函数3.(D )对于答案D,由于~(0,1),1,2,,i X N i n μσ-=,且相互独立,根据2χ分布的定义有2212()~()nii Xx n μσ=-∑4.(C) 注:1~(1)X t n -才是正确的.5.(D)6C) 注:1~(0,)X N n~(1)t n -才是正确的{}{}12121211P X P X -≤=-≤-(({}2121121P X =-≤-=Φ- 7.(A) ()9922221192859257.591918iii i XX XX S ==--⨯-⨯====--∑∑8.(A) 9.(B) 解:由题意可知122~(0,20)X X N +,345~(0,12)X X X N ++,6789~(0,16)X X X X N +++,且相互独立,因此()()()()22212345678922~3201216X X X X X X X X X χ++++++++,即111,,201216a b c === 10(A) 解:()99211~(0,9)9~0,1ii i i XN X N ==⇒∑∑,()92219~9i i Y χ=∑由t()9t 二、填空题1.与总体同分布,且相互独立的一组随机变量 2.代表性和独立性 3.μ,2nσ4. 0.15.26.2(1)n χ-第七章 参数估计一、选择题1.答案: D.[解] 因为)()(222X E X E -=σ,∑===n i i X n A X E 12221)(ˆ,∑===n i i X n A X E 111)(ˆ, 所以,∑=-=-=ni i X X n X E X E 12222)(1)(ˆ)(ˆˆσ. 2.答案: A.[解]因为似然函数n i in X a a L )max (11)(≤=,当i i X a max =时,)(a L 最大, 所以,a 的最大似然估计为},,,max{21n X X X . 3 答案 A .[解]似然函数⎥⎦⎤⎢⎣⎡--=∏=2212)(21exp 21),(μσσπσμi ni x L , 由0ln ,0ln 2=∂∂=∂∂L L σμ,得22A =∧σ. 4. 答案 C.[解]在上面第5题中用μ取代X 即可.5答案 B.6.答案 C. 7答案 D. 8.答案 D. 9.答案 B.二、填空题:1. 矩估计和最大似然估计;2.∏iix p );(θ,∏iix f );(θ;. 341, 0.2828; [解] (1) p 的矩估计值28/1681===∑=i iXX ,令X p X E =-=43)(,得p 的矩估计为 4/14/)3(ˆ=-=X p. (2)似然函数为4281)]3()[2()]1()[0()()(=======∏=X P X P X P X P x X P p L i i42)21()1(4p p p --=)21ln(4)1ln(2ln 64ln )(ln p p p p L -+-++=令 0218126])(ln [=----='pp p p L , 0314122=+-⇒p p 12/)137(±=⇒p . 由 2/10<<p ,故12/)137(+=p 舍去 所以p 的极大似然估计值为 .2828.012/)137(ˆ=-=p4、 1.71,0.00138;[解] 由矩估计有:nXX E X X Eii∑==22)(ˆ,)(ˆ,又因为22)]([)()(X E X E X D -=,所以71.1575.165.17.175.17.1)(ˆ=++++==X X E且00138.0)(1)(ˆ12=-=∑=n i i X X n X D .5、XX --=112ˆλ, ∑∑==+-=ni ini iXX n 11ln ln ˆλ;[解] (1)λ的矩估计为:210121)1()(21++=++=+⋅=+⎰λλλλλλλx dx x x X E 样本的一阶原点矩为:∑==ni i x n X 11所以有:XX X --=⇒=++112ˆ21λλλ (2)λ的最大似然估计为:λλλλλ)()1()1(),,(111∏∏==+=+=ni i nni i n X X X X L ;∏=++=ni i X n L 1ln )1ln(ln λλ0ln 1ln 1=++=∑=ni i X nd L d λλ 得:∑∑==+-=ni ini iXX n 11ln ln ˆλ.6、μ;[解]μμ===∑=nn X E n X E n i i 1)(1)(.7、)1(2-n n π;[解]注意到n X X X ,,,21 的相互独立性,()n i i X X n X X nX X ---+--=- )1(121 21)(,0)(σnn X X D X X E i i -=-=-所以,)1,0(~2σnn N X X i --, dz enn z X X E nn z i 2212121|||)(|σσπ--∞+∞-⎰-=-dz e nn znn z 221201212σσπ--∞+⎰-=σπnn 122-=因为:⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-∑∑==n i i n i i X X E k X X k E 11||||σσπ=-=nn kn122 所以,)1(2-=n n k π.8、. [992.16,1007.84];[解] 这是分布未知,样本容量较大,均值的区间估计,所以有:05.0,40,1000=α==S X ,96.1025.0=Zμ的95%的置信区间是:]84.1007,16.992[],[025.0025.0=+-Z nSX Z n S X . 9、22((1),(1))X n X n αα--+-; [解]这是2σ为未知的情形,所以)1(~/--n t nS X μ.10、 [14.869,15.131];[解] 这是方差已知均值的区间估计,所以区间为:],[22αασ+σ-Z n x Z n x 由题意得:905.004.0152==α=σ=n x ,代入计算可得:]96.192.015,96.192.015[⨯+⨯-, 化间得:]131.15,869.14[. 11、 [14.754,15.146];[解] 这是方差已知,均值的区间估计,所以有:置信区间为:],[22αασ+σ-Z n X Z n X 由题得:95.14)1.152.158.149.141.156.14(61=+++++=X 696.105.0025.0===αn Z 代入即得:]96.1606.095.14,96.1606.095.14[⨯-⨯- 所以为:]146.15,754.14[ 12、. [0.15,0.31]; [解] 由2222221)1(ααχσχ≤-≤-S n 得: 2222)1(αχσS n -≥,22122)1(αχσ--≤S n所以σ的置信区间为:[)11()1(222αχS n -,)11()1(2212αχ--S n ] , 将12=n ,2.0=S 代入得 [15.0,31.0].第八章 假设检验一、选择题1.C 、2.B 、3.B 、4.C 、5.B 、6.B 、7.C 、8.B 二、填空题 1.100=μ 2. 1.176概率论与数理统计习题及答案习题一1.略.见教材习题参考答案.2.设A,B,C为三个事件,试用A,B,C的运算关系式表示下列事件:(1)A发生,B,C都不发生;(2)A与B发生,C不发生;(3)A,B,C都发生;(4)A,B,C至少有一个发生;(5)A,B,C都不发生;(6)A,B,C不都发生;(7)A,B,C至多有2个发生;(8)A,B,C至少有2个发生.【解】(1)A BC(2)AB C(3)ABC(4)A∪B∪C=AB C∪A B C∪A BC∪A BC∪A B C∪AB C∪ABC=ABC(5) ABC=A B C(6) ABC(7) A BC∪A B C∪AB C∪AB C∪A BC∪A B C∪ABC=ABC=A∪B∪C(8) AB∪BC∪CA=AB C∪A B C∪A BC∪ABC3.略.见教材习题参考答案4.设A,B为随机事件,且P(A)=0.7,P(A-B)=0.3,求P(AB).【解】P(AB)=1-P(AB)=1-[P(A)-P(A-B)]=1-[0.7-0.3]=0.65.设A,B是两事件,且P(A)=0.6,P(B)=0.7,求:(1)在什么条件下P(AB)取到最大值?(2)在什么条件下P(AB)取到最小值?【解】(1)当AB=A时,P(AB)取到最大值为0.6.(2)当A∪B=Ω时,P(AB)取到最小值为0.3.6.设A,B,C为三事件,且P(A)=P(B)=1/4,P(C)=1/3且P(AB)=P(BC)=0,P(AC)=1/12,求A,B,C至少有一事件发生的概率.【解】P(A∪B∪C)=P(A)+P(B)+P(C)-P(AB)-P(BC)-P(AC)+P(ABC)=14+14+13-112=347.从52张扑克牌中任意取出13张,问有5张黑桃,3张红心,3张方块,2张梅花的概率是多少?【解】p=5332131313131352C C C C/C8.对一个五人学习小组考虑生日问题:(1) 求五个人的生日都在星期日的概率; (2) 求五个人的生日都不在星期日的概率; (3) 求五个人的生日不都在星期日的概率. 【解】(1) 设A 1={五个人的生日都在星期日},基本事件总数为75,有利事件仅1个,故 P (A 1)=517=(17)5(亦可用独立性求解,下同) (2) 设A 2={五个人生日都不在星期日},有利事件数为65,故P (A 2)=5567=(67)5(3) 设A 3={五个人的生日不都在星期日}P (A 3)=1-P (A 1)=1-(17)59.略.见教材习题参考答案.10.一批产品共N 件,其中M 件正品.从中随机地取出n 件(n <N ).试求其中恰有m 件(m ≤M )正品(记为A )的概率.如果: (1) n 件是同时取出的;(2) n 件是无放回逐件取出的; (3) n 件是有放回逐件取出的.【解】(1) P (A )=C C /C m n m nM N M N --(2) 由于是无放回逐件取出,可用排列法计算.样本点总数有P nN 种,n 次抽取中有m次为正品的组合数为C m n 种.对于固定的一种正品与次品的抽取次序,从M 件正品中取m 件的排列数有P m M 种,从N -M 件次品中取n -m 件的排列数为P n mN M --种,故P (A )=C P PP m m n mn M N M n N--由于无放回逐渐抽取也可以看成一次取出,故上述概率也可写成P (A )=C C C m n mM N Mn N--可以看出,用第二种方法简便得多.(3) 由于是有放回的抽取,每次都有N 种取法,故所有可能的取法总数为N n 种,n次抽取中有m 次为正品的组合数为C m n 种,对于固定的一种正、次品的抽取次序,m 次取得正品,都有M 种取法,共有M m 种取法,n -m 次取得次品,每次都有N -M 种取法,共有(N -M )n -m 种取法,故()C ()/m m n mn n P A M N M N -=- 此题也可用贝努里概型,共做了n 重贝努里试验,每次取得正品的概率为MN,则取得m 件正品的概率为()C 1m n mm n M M P A N N -⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭11.略.见教材习题参考答案.12. 50只铆钉随机地取来用在10个部件上,每个部件用3只铆钉.其中有3个铆钉强度太弱.若将3只强度太弱的铆钉都装在一个部件上,则这个部件强度就太弱.求发生一个部件强度太弱的概率是多少? 【解】设A ={发生一个部件强度太弱}133103501()C C /C 1960P A ==13.一个袋内装有大小相同的7个球,其中4个是白球,3个是黑球,从中一次抽取3个,计算至少有两个是白球的概率. 【解】 设A i ={恰有i 个白球}(i =2,3),显然A 2与A 3互斥.213434233377C C C 184(),()C 35C 35P A P A ====故 232322()()()35P A A P A P A =+=14.(1) 两粒都发芽的概率; (2) 至少有一粒发芽的概率; (3) 恰有一粒发芽的概率.【解】设A i ={第i 批种子中的一粒发芽},(i =1,2)(1) 1212()()()0.70.80.56P A A P A P A ==⨯= (2) 12()0.70.80.70.80.94P A A =+-⨯=(3) 2112()0.80.30.20.70.38P A A A A =⨯+⨯=15.掷一枚均匀硬币直到出现3次正面才停止.(1) 问正好在第6次停止的概率;(2) 问正好在第6次停止的情况下,第5次也是出现正面的概率.【解】(1) 223151115()()22232p C == (2) 1342111C ()()22245/325p == 16.【解】 设A i ={甲进i 球},i =0,1,2,3,B i ={乙进i 球},i =0,1,2,3,则33312123330()(0.3)(0.4)C 0.7(0.3)C 0.6(0.4)i i i P A B ==+⨯⨯+22223333C (0.7)0.3C (0.6)0.4+(0.7)(0.6)⨯=0.3207617.从5双不同的鞋子中任取4只,求这4只鞋子中至少有两只鞋子配成一双的概率.【解】 4111152222410C C C C C 131C 21p =-= 18.某地某天下雪的概率为0.3,下雨的概率为0.5,既下雪又下雨的概率为0.1,求:(1) 在下雨条件下下雪的概率;(2) 这天下雨或下雪的概率. 【解】 设A ={下雨},B ={下雪}.(1) ()0.1()0.2()0.5P AB p B A P A === (2) ()()()()0.30.50.10.7p A B P A P B P AB =+-=+-=19.已知一个家庭有3个小孩,且其中一个为女孩,求至少有一个男孩的概率(小孩为男为女是等可能的).【解】 设A ={其中一个为女孩},B ={至少有一个男孩},样本点总数为23=8,故()6/86()()7/87P AB P B A P A ===或在缩减样本空间中求,此时样本点总数为7.6()7P B A =20.已知5%的男人和0.25%的女人是色盲,现随机地挑选一人,此人恰为色盲,问此人是男人的概率(假设男人和女人各占人数的一半).【解】 设A ={此人是男人},B ={此人是色盲},则由贝叶斯公式()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.50.05200.50.050.50.002521⨯==⨯+⨯21.两人约定上午9∶00~10∶00在公园会面,求一人要等另一人半小时以上的概率.题21图 题22图【解】设两人到达时刻为x,y ,则0≤x ,y ≤60.事件“一人要等另一人半小时以上”等价于|x -y |>30.如图阴影部分所示.22301604P ==22.从(0,1)中随机地取两个数,求:(1) 两个数之和小于65的概率; (2) 两个数之积小于14的概率.【解】 设两数为x ,y ,则0<x ,y <1. (1) x +y <65. 11441725510.68125p =-==(2) xy =<14.1111244111d d ln 242x p x y ⎛⎫=-=+ ⎪⎝⎭⎰⎰23.设P (A )=0.3,P (B )=0.4,P (A B )=0.5,求P (B |A ∪B ) 【解】 ()()()()()()()()P AB P A P AB P B AB P A B P A P B P AB -==+- 0.70.510.70.60.54-==+-24.在一个盒中装有15个乒乓球,其中有9个新球,在第一次比赛中任意取出3个球,比赛后放回原盒中;第二次比赛同样任意取出3个球,求第二次取出的3个球均为新球的概率.【解】 设A i ={第一次取出的3个球中有i 个新球},i =0,1,2,3.B ={第二次取出的3球均为新球}由全概率公式,有3()()()i i i P B P B A P A ==∑33123213336996896796333333331515151515151515C C C C C C C C C C C C C C C C C C =•+•+•+•0.089=25. 按以往概率论考试结果分析,努力学习的学生有90%的可能考试及格,不努力学习的学生有90%的可能考试不及格.据调查,学生中有80%的人是努力学习的,试问: (1)考试及格的学生有多大可能是不努力学习的人? (2)考试不及格的学生有多大可能是努力学习的人?【解】设A ={被调查学生是努力学习的},则A ={被调查学生是不努力学习的}.由题意知P(A )=0.8,P (A )=0.2,又设B ={被调查学生考试及格}.由题意知P (B |A )=0.9,P (B |A )=0.9,故由贝叶斯公式知(1)()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.20.110.027020.80.90.20.137⨯===⨯+⨯即考试及格的学生中不努力学习的学生仅占2.702%(2) ()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.80.140.30770.80.10.20.913⨯===⨯+⨯即考试不及格的学生中努力学习的学生占30.77%.26. 将两信息分别编码为A 和B 传递出来,接收站收到时,A 被误收作B 的概率为0.02,而B 被误收作AA 与B 传递的频繁程度为2∶1.若接收站收到的信息是A ,试问原发信息是A 的概率是多少?【解】 设A ={原发信息是A },则={原发信息是B }C ={收到信息是A },则={收到信息是B } 由贝叶斯公式,得()()()()()()()P A P C A P A C P A P C A P A P C A =+2/30.980.994922/30.981/30.01⨯==⨯+⨯27.在已有两个球的箱子中再放一白球,然后任意取出一球,若发现这球为白球,试求箱子中原有一白球的概率(箱中原有什么球是等可能的颜色只有黑、白两种) 【解】设A i ={箱中原有i 个白球}(i =0,1,2),由题设条件知P (A i )=13,i =0,1,2.又设B ={抽出一球为白球}.由贝叶斯公式知11112()()()()()()()i i i P B A P A P A B P A B P B P B A P A ===∑ 2/31/311/31/32/31/311/33⨯==⨯+⨯+⨯28.某工厂生产的产品中96%是合格品,检查产品时,一个合格品被误认为是次品的概率为0.02,一个次品被误认为是合格品的概率为0.05,求在被检查后认为是合格品产品确是合格品的概率.【解】 设A ={产品确为合格品},B ={产品被认为是合格品}由贝叶斯公式得()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.960.980.9980.960.980.040.05⨯==⨯+⨯29.某保险公司把被保险人分为三类:“谨慎的”,“一般的”,“冒失的”“谨慎的”被保险人占20%,“一般的”占50%,“冒失的”占30%,现知某被保险人在一年内出了事故,则他是“谨慎的”的概率是多少?【解】 设A ={该客户是“谨慎的”},B ={该客户是“一般的”},C ={该客户是“冒失的”},D ={该客户在一年内出了事故} 则由贝叶斯公式得()()(|)(|)()()(|)()(|)()(|)P AD P A P D A P A D P D P A P D A P B P D B P C P D C ==++0.20.050.0570.20.050.50.150.30.3⨯==⨯+⨯+⨯30.加工某一零件需要经过四道工序,设第一、二、三、四道工序的次品率分别为0.02,0.03,0.05,0.03,假定各道工序是相互独立的,求加工出来的零件的次品率. 【解】设A i ={第i 道工序出次品}(i =1,2,3,4).412341()1()i i P A P A A A A ==-12341()()()()P A P A P A P A =-10.980.970.950.970.124=-⨯⨯⨯= 31.设每次射击的命中率为0.2,问至少必须进行多少次独立射击才能使至少击中一次的概率不小于0.9?【解】设必须进行n 次独立射击.1(0.8)0.9n -≥即为 (0.8)0.1n≤ 故 n ≥11 至少必须进行11次独立射击.32.证明:若P (A |B )=P (A |B ),则A ,B 相互独立.【证】 (|)(|)P A B P A B =即()()()()P AB P AB P B P B =亦即 ()()()()P AB P B P AB P B =()[1()][()()]()P AB P B P A P AB P B -=-因此 ()()()P AB P A P B = 故A 与B 相互独立.33.三人独立地破译一个密码,他们能破译的概率分别为15,13,14,求将此密码破译出的概率.【解】 设A i ={第i 人能破译}(i =1,2,3),则31231231()1()1()()()i i P A P A A A P A P A P A ==-=-42310.6534=-⨯⨯= 34.甲、乙、丙三人独立地向同一飞机射击,设击中的概率分别是0.4,0.5,0.7,若只有一人击中,则飞机被击落的概率为0.2;若有两人击中,则飞机被击落的概率为0.6;若三人都击中,则飞机一定被击落,求:飞机被击落的概率. 【解】设A ={飞机被击落},B i ={恰有i 人击中飞机},i =0,1,2,3由全概率公式,得3()(|)()i i i P A P A B P B ==∑=(0.4×0.5×0.3+0.6×0.5×0.3+0.6×0.5×0.7)0.2+(0.4×0.5×0.3+0.4×0.5×0.7+0.6×0.5×0.7)0.6+0.4×0.5×0.7 =0.45835.已知某种疾病患者的痊愈率为25%,为试验一种新药是否有效,把它给10个病人服用,且规定若10个病人中至少有四人治好则认为这种药有效,反之则认为无效,求: (1) 虽然新药有效,且把治愈率提高到35%,但通过试验被否定的概率. (2) 新药完全无效,但通过试验被认为有效的概率. 【解】(1) 310110C(0.35)(0.65)0.5138k k k k p -===∑(2) 10102104C(0.25)(0.75)0.2241kk k k p -===∑36.一架升降机开始时有6位乘客,并等可能地停于十层楼的每一层.试求下列事件的概率:(1) A =“某指定的一层有两位乘客离开”;(2) B =“没有两位及两位以上的乘客在同一层离开”; (3) C =“恰有两位乘客在同一层离开”; (4) D =“至少有两位乘客在同一层离开”.【解】 由于每位乘客均可在10层楼中的任一层离开,故所有可能结果为106种.(1) 2466C 9()10P A =,也可由6重贝努里模型:224619()C ()()1010P A =(2) 6个人在十层中任意六层离开,故6106P ()10P B =(3) 由于没有规定在哪一层离开,故可在十层中的任一层离开,有110C 种可能结果,再从六人中选二人在该层离开,有26C 种离开方式.其余4人中不能再有两人同时离开的情况,因此可包含以下三种离开方式:①4人中有3个人在同一层离开,另一人在其余8层中任一层离开,共有131948C C C 种可能结果;②4人同时离开,有19C 种可能结果;③4个人都不在同一层离开,有49P 种可能结果,故1213114610694899()C C (C C C C P )/10P C =++ (4) D=B .故6106P ()1()110P D P B =-=-37. n 个朋友随机地围绕圆桌而坐,求下列事件的概率: (1) 甲、乙两人坐在一起,且乙坐在甲的左边的概率; (2) 甲、乙、丙三人坐在一起的概率;(3) 如果n 个人并排坐在长桌的一边,求上述事件的概率. 【解】 (1) 111p n =- (2) 23!(3)!,3(1)!n p n n -=>-(3) 12(1)!13!(2)!;,3!!n n p p n n n n --''===≥ 38.将线段[0,a ]任意折成三折,试求这三折线段能构成三角形的概率【解】 设这三段长分别为x ,y ,a -x -y .则基本事件集为由0<x <a ,0<y <a ,0<a -x -y <a 所构成的图形,有利事件集为由()()x y a x y x a x y y y a x y x+>--⎡⎢+-->⎢⎢+-->⎣ 构成的图形,即02022a x a y ax y a ⎡<<⎢⎢⎢<<⎢⎢⎢<+<⎢⎣ 如图阴影部分所示,故所求概率为14p =. 39. 某人有n 把钥匙,其中只有一把能开他的门.他逐个将它们去试开(抽样是无放回的).证明试开k 次(k =1,2,…,n )才能把门打开的概率与k 无关.【证】 11P 1,1,2,,P k n k n p k n n--===40.把一个表面涂有颜色的立方体等分为一千个小立方体,在这些小立方体中,随机地取出一个,试求它有i 面涂有颜色的概率P (A i )(i =0,1,2,3). 【解】 设A i ={小立方体有i 面涂有颜色},i =0,1,2,3.在1千个小立方体中,只有位于原立方体的角上的小立方体是三面有色的,这样的小立方体共有8个.只有位于原立方体的棱上(除去八个角外)的小立方体是两面涂色的,这样的小立方体共有12×8=96个.同理,原立方体的六个面上(除去棱)的小立方体是一面涂色的,共有8×8×6=384个.其余1000-(8+96+384)=512个内部的小立方体是无色的,故所求概率为01512384()0.512,()0.38410001000P A P A ====, 24968()0.096,()0.00810001000P A P A ====.41.对任意的随机事件A ,B ,C ,试证P (AB )+P (AC )-P (BC )≤P (A ). 【证】 ()[()]()P A P A BC P AB AC ≥=()()()P AB P AC P ABC =+- ()()()P AB P AC P BC ≥+-42.将3个球随机地放入4个杯子中去,求杯中球的最大个数分别为1,2,3的概率. 【解】 设i A ={杯中球的最大个数为i },i =1,2,3.将3个球随机放入4个杯子中,全部可能放法有43种,杯中球的最大个数为1时,每个杯中最多放一球,故3413C 3!3()48P A ==而杯中球的最大个数为3,即三个球全放入一个杯中,故1433C 1()416P A ==因此 213319()1()()181616P A P A P A =--=--= 或 12143323C C C 9()416P A == 43.将一枚均匀硬币掷2n 次,求出现正面次数多于反面次数的概率.【解】掷2n 次硬币,可能出现:A ={正面次数多于反面次数},B ={正面次数少于反面次数},C ={正面次数等于反面次数},A ,B ,C 两两互斥.可用对称性来解决.由于硬币是均匀的,故P (A )=P (B ).所以1()()2P C P A -=由2n 重贝努里试验中正面出现n 次的概率为211()()()22n n nn P C C =故 2211()[1C ]22nn n P A =-44.掷n 次均匀硬币,求出现正面次数多于反面次数的概率.【解】设A ={出现正面次数多于反面次数},B ={出现反面次数多于正面次数},由对称性知P (A )=P (B )(1) 当n 为奇数时,正、反面次数不会相等.由P (A )+P (B )=1得P (A )=P (B )=0.5(2) 当n 为偶数时,由上题知211()[1C ()]22nn n P A =-45.设甲掷均匀硬币n +1次,乙掷n 次,求甲掷出正面次数多于乙掷出正面次数的概率.【解】 令甲正=甲掷出的正面次数,甲反=甲掷出的反面次数.乙正=乙掷出的正面次数,乙反=乙掷出的反面次数. 显然有>正正(甲乙)=(甲正≤乙正)=(n +1-甲反≤n -乙反) =(甲反≥1+乙反)=(甲反>乙反)由对称性知P (甲正>乙正)=P (甲反>乙反) 因此P (甲正>乙正)=1246.证明“确定的原则”(Sure -thing ):若P (A |C )≥P (B |C ),P (A |C )≥P (B |C ),则P (A )≥P (B ).【证】由P (A |C )≥P (B |C ),得()(),()()P AC P BC P C P C ≥即有 ()()P AC P BC ≥ 同理由 (|)(|),P A C P B C ≥ 得 ()(),P AC P BC ≥故 ()()()()()()P A P AC P AC P BC P BC P B =+≥+= 47.一列火车共有n 节车厢,有k (k ≥n )个旅客上火车并随意地选择车厢.求每一节车厢内至少有一个旅客的概率.【解】 设A i ={第i 节车厢是空的},(i =1,…,n ),则121(1)1()(1)2()(1)1()(1)n k ki kki j ki i i n P A n nP A A n n P A A A n--==-=--=-其中i 1,i 2,…,i n -1是1,2,…,n 中的任n -1个. 显然n 节车厢全空的概率是零,于是2112111122111111123111()(1)C (1)2()C (1)1()C (1)0()(1)n n nk ki n i ki j n i j nn kn i i i n i i i nn nn i ni S P A n n n S P A A n n S P A A A nS P A S S S S --=≤<≤--≤<<≤+===-=-==--==-==-+-+-∑∑∑121121C (1)C (1)(1)C (1)kkn n kn n n n nnn--=---++--故所求概率为121121()1C (1)C (1)nk i i n ni P A n n=-=--+--+111(1)C (1)n n kn n n+----48.设随机试验中,某一事件A 出现的概率为ε>0.试证明:不论ε>0如何小,只要不断地独立地重复做此试验,则A 迟早会出现的概率为1. 【证】在前n 次试验中,A 至少出现一次的概率为1(1)1()n n ε--→→∞49.袋中装有m 只正品硬币,n 只次品硬币(次品硬币的两面均印有国徽).在袋中任取一只,将它投掷r 次,已知每次都得到国徽.试问这只硬币是正品的概率是多少? 【解】设A ={投掷硬币r 次都得到国徽}B ={这只硬币为正品} 由题知 (),()m nP B P B m n m n==++ 1(|),(|)12r P A B P A B ==则由贝叶斯公式知()()(|)(|)()()(|)()(|)P AB P B P A B P B A P A P B P A B P B P A B ==+ 121212r rrm m m n m n m n m n m n+==++++ 50.巴拿赫(Banach )火柴盒问题:某数学家有甲、乙两盒火柴,每盒有N 根火柴,每次用火柴时他在两盒中任取一盒并从中任取一根.试求他首次发现一盒空时另一盒恰有r 根的概率是多少?第一次用完一盒火柴时(不是发现空)而另一盒恰有r 根的概率又有多少? 【解】以B 1、B 2记火柴取自不同两盒的事件,则有121()()2P B P B ==.(1)发现一盒已空,另一盒恰剩r 根,说明已取了2n -r 次,设n 次取自B 1盒(已空),n -r 次取自B 2盒,第2n -r +1次拿起B 1,发现已空。

概率论与数理统计第一章概率论的基本概念

概率论与数理统计第一章概率论的基本概念

第一章概率论的基本概念在现实世界中发生的现象千姿百态,概括起来无非是两类现象:确定性的和随机性的.例如:水在通常条件下温度达到100℃时必然沸腾,温度为0℃时必然结冰;同性电荷相互排斥,异性电荷相互吸引等等,这类现象称为确定性现象,它们在一定的条件下一定会发生.另有一类现象,在一定条件下,试验有多种可能的结果,但事先又不能预测是哪一种结果,此类现象称为随机现象.例如:测量一个物体的长度,其测量误差的大小;从一批电视机中随便取一台,电视机的寿命长短等都是随机现象.概率论与数理统计,就是研究和揭示随机现象统计规律性的一门基础学科.这里我们注意到,随机现象是与一定的条件密切联系的.例如:在城市交通的某一路口,指定的一小时内,汽车的流量多少就是一个随机现象,而“指定的一小时内”就是条件,若换成2小时内,5小时内,流量就会不同.如将汽车的流量换成自行车流量,差别就会更大,故随机现象与一定的条件是有密切联系的.概率论与数理统计的应用是很广泛的,几乎渗透到所有科学技术领域,如工业、农业、国防与国民经济的各个部门.例如,工业生产中,可以应用概率统计方法进行质量控制,工业试验设计,产品的抽样检查等.还可使用概率统计方法进行气象预报、水文预报和地震预报等等.另外,概率统计的理论与方法正在向各基础学科、工程学科、经济学科渗透,产生了各种边缘性的应用学科,如排队论、计量经济学、信息论、控制论、时间序列分析等.第一节样本空间、随机事件1. 随机试验人们是通过试验去研究随机现象的,为对随机现象加以研究所进行的观察或实验,称为试验.若一个试验具有下列三个特点:1°可以在相同的条件下重复地进行;2°每次试验的可能结果不止一个,并且事先可以明确试验所有可能出现的结果;3°进行一次试验之前不能确定哪一个结果会出现.则称这一试验为随机试验(Random trial),记为E.下面举一些随机试验的例子.E1:抛一枚硬币,观察正面H和反面T出现的情况.E2:掷两颗骰子,观察出现的点数.E3:在一批电视机中任意抽取一台,测试它的寿命.E4:城市某一交通路口,指定一小时内的汽车流量.E5:记录某一地区一昼夜的最高温度和最低温度.2. 样本空间与随机事件在一个试验中,不论可能的结果有多少,总可以从中找出一组基本结果,满足:1°每进行一次试验,必然出现且只能出现其中的一个基本结果.2°任何结果,都是由其中的一些基本结果所组成.随机试验E的所有基本结果组成的集合称为样本空间(Sample space),记为Ω.样本空间的元素,即E的每个基本结果,称为样本点.下面写出前面提到的试验E k(k=1,2,3,4,5)的样本空间Ωk:Ω1:{H,T};Ω2:{(i,j)|i,j=1,2,3,4,5,6};Ω3:{t|t≥0};Ω4:{0,1,2,3,…};Ω5:{(x,y)|T0≤x≤y≤T1},这里x表示最低温度,y表示最高温度,并设这一地区温度不会小于T0也不会大于T1.随机试验E的样本空间Ω的子集称为E的随机事件(Random event),简称事件①,通常用大写字母A,B,C,…表示.在每次试验中,当且仅当这一子集中的一个样本点出现时,称这一事件发生.例如,在掷骰子的试验中,可以用A表示“出现点数为偶数”这个事件,若试验结果是“出现6点”,就称事件A发生.特别地,由一个样本点组成的单点集,称为基本事件.例如,试验E1有两个基本事件{H}、{T};试验E2有36个基本事件{(1,1)}、{(1,2)}、…、{(6,6)}.每次试验中都必然发生的事件,称为必然事件.样本空间Ω包含所有的样本点,它是Ω自身的子集,每次试验中都必然发生,故它就是一个必然事件.因而必然事件我们也用Ω表示.在每次试验中不可能发生的事件称为不可能事件.空集不包含任何样本点,它作为样本空间的子集,在每次试验中都不可能发生,故它就是一个不可能事件.因而不可能事件我们也用表示.3.事件之间的关系及其运算事件是一个集合,因而事件间的关系与事件的运算可以用集合之间的关系与集合的运算来处理.下面我们讨论事件之间的关系及运算.1°如果事件A发生必然导致事件B发生,则称事件A包含于事件B(或称事件B包含事件A),记作A⊂B(或B⊃A).A⊂B的一个等价说法是,如果事件B不发生,则事件A必然不发生.若A⊂B且B⊂A,则称事件A与B相等(或等价),记为A=B.为了方便起见,规定对于任一事件A,有⊂A.显然,对于任一事件A,有A⊂Ω.2°“事件A与B中至少有一个发生”的事件称为A与B的并(和),记为A∪B.由事件并的定义,立即得到:对任一事件A,有A∪Ω=Ω;Α∪=A.A= niiA1=表示“A1,A2,…,A n中至少有一个事件发生”这一事件.A= ∞=1iiA表示“可列无穷多个事件A i中至少有一个发生”这一事件.3°“事件A与B同时发生”的事件称为A与B的交(积),记为A∩B或(AB).由事件交的定义,立即得到:对任一事件A,有A∩Ω=A; A∩=.①严格地说,事件是指Ω中满足某些条件的子集.当Ω是由有限个元素或由无穷可列个元素组成时,每个子集都可作为一个事件.若Ω是由不可列无限个元素组成时,某些子集必须排除在外.幸而这种不可容许的子集在实际应用中几乎不会遇到.今后,我们讲的事件都是指它是容许考虑的那种子集.B = ni i B 1=表示“B 1,…,B n n 个事件同时发生”这一事件.B = ∞=1i i B 表示“可列无穷多个事件B i同时发生”这一事件. 4°“事件A 发生而B 不发生”的事件称为A 与B 的差,记为A B .由事件差的定义,立即得到:对任一事件A ,有 A A =; A =A ; A Ω=.5°如果两个事件A 与B 不可能同时发生,则称事件A 与B 为互不相容(互斥),记作A ∩B =.基本事件是两两互不相容的.6°若A ∪B =Ω且A ∩B =,则称事件A 与事件B 互为逆事件(对立事件).A 的对立事件记为A ,A 是由所有不属于A 的样本点组成的事件,它表示“A 不发生”这样一个事件.显然A =ΩA .在一次试验中,若A 发生,则A 必不发生(反之亦然),即在一次试验中,A 与A 二者只能发生其中之一,并且也必然发生其中之一.显然有A =A. 对立事件必为互不相容事件,反之,互不相容事件未必为对立事件. 以上事件之间的关系及运算可以用文氏(Venn)图来直观地描述.若用平面上一个矩形表示样本空间Ω,矩形内的点表示样本点,圆A 与圆B 分别表示事件A 与事件B ,则A 与B 的各种关系及运算如下列各图所示(见图11~图16).图1 1 图1 2 图13图1 4 图1 5 图16可以验证一般事件的运算满足如下关系:1°交换律 A ∪B=B ∪A , A ∩B=B ∩A ;2°结合律 A ∪(B ∪C)=(A ∪B)∪C ,A ∩(B ∩C)=(A ∩B)∩C ;3°分配律 A ∪(B ∩C)=(A ∪B)∩(A ∪C),A ∩(B ∪C)=(A ∩B)∪(A ∩C);分配律可以推广到有穷或可列无穷的情形,即A ∩(n i i A 1=)=)(1 n i iA A =, A ∪(1n i i A =)= ni i A A 1)(=;A ∩( ∞=1i i A )=)(1 ∞=i i A A , A ∪(1i i A ∞=)= ∞=1)(i i A A . 4°A B =A B =A AB ; 5°对有穷个或可列无穷个A i ,恒有 ;,1111n i i n i i n i in i i A A A A ====== ;,1111 ∞=∞=∞=∞===i i i i i ii i A A A A例1.1 设A ,B ,C 为三个事件,用A ,B ,C 的运算式表示下列事件:(1) A 发生而B 与C 都不发生:A C B 或A B C 或A (B ∪C ).(2) A ,B 都发生而C 不发生:AB C 或AB C .(3) A ,B ,C 至少有一个事件发生:A ∪B ∪C .(4) A ,B ,C 至少有两个事件发生:(AB )∪(AC )∪(BC ).(5) A ,B ,C 恰好有两个事件发生:(AB C )∪(AC B )∪(BC A ).(6) A ,B ,C 恰好有一个事件发生:(A C B )∪(B C A )∪(C B A ).(7) A ,B 至少有一个发生而C 不发生:(A ∪B )C .(8) A ,B ,C 都不发生:C B A 或C B A .例1.2 在数学系的学生中任选一名学生.若事件A 表示被选学生是男生,事件B 表示该生是三年级学生,事件C 表示该生是运动员.(1) 叙述AB C 的意义.(2) 在什么条件下ABC =C 成立?(3) 在什么条件下B A ⊂成立?解 (1) 该生是三年级男生,但不是运动员.(2) 全系运动员都是三年级男生.(3) 全系女生都在三年级.例1.3 设事件A 表示“甲种产品畅销,乙种产品滞销”,求其对立事件A .解 设B=“甲种产品畅销”,C =“乙种产品滞销”,则A =BC ,故C B BC A ===“甲种产品滞销或乙种产品畅销”.第二节 概率、古典概型除必然事件与不可能事件外,任一随机事件在一次试验中都有可能发生,也有可能不发生.人们常常希望了解某些事件在一次试验中发生的可能性的大小.为此,我们首先引入频率的概念,它描述了事件发生的频繁程度,进而我们再引出表示事件在一次试验中发生的可能性大小的数——概率.1.频率定义1.1 设在相同的条件下,进行了n 次试验.若随机事件A 在n 次试验中发生了k 次,则比值k /n 称为事件A 在这n 次试验中发生的频率(Frequency ),记为f n (A )= k /n . 由定义1.1容易推知,频率具有以下性质:1° 对任一事件A ,有0≤f n (A )≤1;2° 对必然事件Ω,有f n (Ω)=1;3° 若事件A ,B 互不相容,则f n (A ∪B )=f n (A )+f n (B )一般地,若事件A 1,A 2,…,A m 两两互不相容,则∑===mi i n m i i n A f A f 11)()( .事件A 发生的频率f n (A )表示A 发生的频繁程度,频率大,事件A 发生就频繁,在一次试验中,A 发生的可能性也就大.反之亦然.因而,直观的想法是用f n (A )表示A 在一次试验中发生可能性的大小.但是,由于试验的随机性,即使同样是进行n 次试验,f n (A )的值也不一定相同.但大量实验证实,随着重复试验次数n 的增加,频率f n (A )会逐渐稳定于某个常数附近,而偏离的可能性很小.频率具有“稳定性”这一事实,说明了刻画事件A 发生可能性大小的数——概率具有一定的客观存在性.(严格说来,这是一个理想的模型,因为我们在实际上并不能绝对保证在每次试验时,条件都保持完全一样,这只是一个理想的假设).历史上有一些著名的试验,德·摩根(De Morgan )蒲丰(Buffon)和皮尔逊(Pearson)曾进行过大量掷硬币试验,所得结果如表1-1所示. 表1-1试验者掷硬币次数 出现正面次数 出现正面的频率 德·摩根2048 1061 0.5181 蒲丰4040 2048 0.5069 皮尔逊12000 6019 0.5016 皮尔逊 24000 12012 0.5005可见出现正面的频率总在0.5附近摆动,随着试验次数增加,它逐渐稳定于0.5.这个0.5就反映正面出现的可能性的大小.每个事件都存在一个这样的常数与之对应,因而可将频率f n (A )在n 无限增大时逐渐趋向稳定的这个常数定义为事件A 发生的概率.这就是概率的统计定义.定义1.2 设事件A 在n 次重复试验中发生的次数为k ,当n 很大时,频率k /n 在某一数值p 的附近摆动,而随着试验次数n 的增加,发生较大摆动的可能性越来越小,则称数p 为事件A 发生的概率,记为P (A )=p .要注意的是,上述定义并没有提供确切计算概率的方法,因为我们永远不可能依据它确切地定出任何一个事件的概率.在实际中,我们不可能对每一个事件都做大量的试验,况且我们不知道n 取多大才行;如果n 取很大,不一定能保证每次试验的条件都完全相同.而且也没有理由认为,取试验次数为n +1来计算频率,总会比取试验次数为n 来计算频率将会更准确、更逼近所求的概率.为了理论研究的需要,我们从频率的稳定性和频率的性质得到启发,给出概率的公理化定义.2.概率的公理化定义定义1.3 设Ω为样本空间,A 为事件,对于每一个事件A 赋予一个实数,记作P (A ),如果P (A )满足以下条件:1°非负性:P (A )≥0;2°规范性:P (Ω)=1;3°可列可加性:对于两两互不相容的可列无穷多个事件A 1,A 2,…,A n ,…,有∑∞=∞==11)()(n n n n A P A P则称实数P (A )为事件A 的概率(Probability ).在第五章中将证明,当n →∞时频率f n (A )在一定意义下接近于概率P (A ).基于这一事实,我们就有理由用概率P (A )来表示事件A 在一次试验中发生的可能性的大小. 由概率公理化定义,可以推出概率的一些性质.性质1 P ()=0证 令 A n = (n =1,2,…),则∞=1n n A =,且A i A j =(i ≠j ,i ,j =1,2,…). 由概率的可列可加性得P ()=∑∑∞=∞=∞===111)()(n n nn n P A P A P (),而P ()≥0及上式知P ()=0.这个性质说明:不可能事件的概率为0.但逆命题不一定成立,我们将在第二章加以说明.性质2 (有限可加性) 若A 1,A 2,…,A n 为两两互不相容事件,则有.)()(11∑===nk k n k k A P A P证 令A n +1=A n +2=…=,则A i A j =.当i ≠j ,i ,j =1,2,…时,由可列可加性,得.)()()()(1111∑∑=∞======nk k k k n k k n k k A P A P A P A P性质3 设A ,B 是两个事件,若A ⊂B ,则有);()()(A P B P A B P -=- 或 ()()P A P B ≤.证 由A ⊂B ,知B =A ∪(B -A )且A ∩(B -A )=.再由概率的有限可加性有P (B )=P (A ∪(B -A ))=P (A )+P (B -A ),即 P (B -A )=P (B )-P (A );又由P (B -A )≥0,得P (A )≤P (B )性质4 对任一事件A ,P (A )≤1证 因为A ⊂Ω,由性质3得P (A )≤P (Ω)=1性质5 对于任一事件A ,有 )(A P =1-P (A )证 因为A ∪A =Ω,A ∩A=,由有限可加性,得1=P (Ω)=P (A ∪A )=P (A )+P (A ),即 P (A )=1-P (A )性质6(加法公式) 对于任意两个事件A ,B 有P (A ∪B )=P (A )+P (B )-P (AB )证 因为A ∪B =A ∪(B -AB )且A ∩(B -AB )=.由性质2,3得P (A ∪B ) =P (A ∪(B -AB )) =P (A )+P (B -AB )=P (A )+P (B )-P (AB )性质6还可推广到三个事件的情形.例如,设A 1,A 2,A 3为任意三个事件,则有P (A 1∪A 2∪A 3) =P (A 1)+P (A 2)+P (A 3)-P (A 1A 2)-P (A 1A 3)-P (A 2A 3)+P (A 1A 2A 3)一般地,设A 1,A 2,…,A n 为任意n 个事件,可由归纳法证得P (A 1∪…∪A n ) =).()1()()()(211111n n n k j i kj i n i n j i j i i A A A P A A A P A A P A P ⋅⋅⋅-+⋅⋅⋅-+--≤<<≤=≤<≤∑∑∑例1.4 设A ,B 为两事件,P (A )=0.5,P (B )=0.3,P (AB )=0.1,求:(1) A 发生但B 不发生的概率;(2) A 不发生但B 发生的概率; (3) 至少有一个事件发生的概率;(4) A ,B 都不发生的概率;(5) 至少有一个事件不发生的概率.解(1) P (A B )=P (A -B )=P (A -AB )=P (A )-P (AB )=0.4;(2) P (A B )=P (B -AB )=P (B )-P (AB )=0.2;(3) P (A ∪B )=0.5+0.3-0.1=0.7;(4) P (B A )=P (B A )=1-P (A ∪B )=1-0.7=0.3;(5) P (A ∪B )=P (AB )=1-P (AB )=1-0.1=0.9.3. 古典概型定义1.4 若随机试验E 满足以下条件:1°试验的样本空间Ω只有有限个样本点,即Ω={ω1,ω2,…,ωn };2°试验中每个基本事件的发生是等可能的,即P ({ω1})=P ({ω2})=…=P ({ωn }),则称此试验为古典概型,或称为等可能概型.由定义可知{ω1},{ω2},…,{ωn }是两两互不相容的,故有1=P (Ω)=P ({ω1}∪…∪{ωn })=P ({ω1})+…+P ({ωn }), 又每个基本事件发生的可能性相同,即P ({ω1})=P ({ω2})=…=P ({ωn }),故 1=nP ({ωi }),从而 P ({ωi })=1/n ,i=1,2,…,n设事件A 包含k 个基本事件即 A ={ωi 1}∪{ωi 2}∪…∪{ωik }, 则有P (A )=P ({ωi 1}∪{ωi 2}∪…∪{ωik })=P ({ωi 1})+P ({ωi 2})+…+P ({ωik })=个k n n n /1/1/1+++=k /n 由此,得到古典概型中事件A 的概率计算公式为P (A )=k /n =A 所包含的样本点数/Ω中样本点总数 (1.1)称古典概型中事件A 的概率为古典概率.一般地,可利用排列、组合及乘法原理、加法原理的知识计算k 和n ,进而求得相应的概率.例1.5 将一枚硬币抛掷三次,求:(1) 恰有一次出现正面的概率;(2) 至少有一次出现正面的概率.解 将一枚硬币抛掷三次的样本空间Ω={HHH ,HHT ,HTH ,THH ,HTT ,THT ,TTH ,TTT }Ω中包含有限个元素,且由对称性知每个基本事件发生的可能性相同.(1) 设A 表示“恰有一次出现正面”,则 A ={HTT ,THT ,TTH },故有 P (A )=3/8.(2) 设B 表示“至少有一次出现正面”, 由B ={TTT },得P (B )=1-P (B )=1-1/8=7/8当样本空间的元素较多时,我们一般不再将Ω中的元素一一列出,而只需分别求出Ω中与A 中包含的元素的个数(即基本事件的个数),再由(1.1)式求出A 的概率.例1.6 一口袋装有6只球,其中4只白球,2只红球.从袋中取球两次,每次随机地取一只.考虑两种取球方式:(a ) 第一次取一只球,观察其颜色后放回袋中,搅匀后再任取一球.这种取球方式叫做有放回抽取.(b ) 第一次取一球后不放回袋中,第二次从剩余的球中再取一球.这种取球方式叫做不放回抽取.试分别就上面两种情形求:(1) 取到的两只球都是白球的概率;(2) 取到的两只球颜色相同的概率;(3) 取到的两只球中至少有一只是白球的概率.解 (a )有放回抽取的情形:设A 表示事件“取到的两只球都是白球”,B 表示事件“取到的两只球都是红球”,C 表示事件“取到的两只球中至少有一只是白球”.则A ∪B 表示事件“取到的两只球颜色相同”,而C =B . 在袋中依次取两只球,每一种取法为一个基本事件,显然此时样本空间中仅包含有限个元素,且由对称性知每个基本事件发生的可能性相同,因而可利用(1.1)式来计算事件的概率.第一次从袋中取球有6只球可供抽取,第二次也有6只球可供抽取.由乘法原理知共有6×6种取法,即基本事件总数为6×6.对于事件A 而言,由于第一次有4只白球可供抽取,第二次也有4只白球可供抽取,由乘法原理知共有4×4种取法,即A 中包含4×4个元素.同理,B 中包含2×2个元素,于是P (A )= (4×4)/(6×6)=4/9,P (B )= (2×2)/(6×6)=1/9由于AB =,故P (A ∪B )=P (A )+P (B )=5/9,P (C )=P (B )=1-P (B )=8/9.(b)不放回抽取的情形:第一次从6只球中抽取,第二次只能从剩下的5只球中抽取,故共有6×5种取法,即样本点总数为6×5.对于事件A 而言,第一次从4只白球中抽取,第二次从剩下的3只白球中抽取,故共有4×3种取法,即A 中包含4×3个元素,同理B 中包含2×1个元素,于是P (A )= (4×3)/(6×5) =2624P P =2/5, P (B )=(2×1)/(6×5) =2622P P =1/15. 由于AB=,故P (A ∪B )=P (A )+P (B )=7/15,P (C )=1-P (B )=14/15.在不放回抽取中,一次取一个,一共取m 次也可看作一次取出m 个,故本例中也可用组合的方法,得P (A )=2624C C =2/5, P (B )=2624C C =1/15.例1.7 箱中装有a 只白球,b 只黑球,现作不放回抽取,每次一只.(1) 任取m +n 只,恰有m 只白球,n 只黑球的概率(m ≤a ,n ≤b );(2) 第k 次才取到白球的概率(k ≤b +1);(3) 第k 次恰取到白球的概率.解 (1)可看作一次取出m +n 只球,与次序无关,是组合问题.从a +b 只球中任取m +n只,所有可能的取法共有n mb a ++C 种,每一种取法为一基本事件且由于对称性知每个基本事件发生的可能性相同.从a 只白球中取m 只,共有ma C 种不同的取法,从b 只黑球中取n 只,共有n b C 种不同的取法.由乘法原理知,取到m 只白球,n 只黑球的取法共有m aC n b C 种,于是所求概率为p 1=n m b a n b ma ++C C C . (2) 抽取与次序有关.每次取一只,取后不放回,一共取k 次,每种取法即是从a+b 个不同元素中任取k 个不同元素的一个排列,每种取法是一个基本事件,共有k b a +P 个基本事件,且由于对称性知每个基本事件发生的可能性相同.前k -1次都取到黑球,从b 只黑球中任取k -1只的排法种数,有1P -k b 种,第k 次抽取的白球可为a 只白球中任一只,有1P a 种不同的取法.由乘法原理,前k -1次都取到黑球,第k 次取到白球的取法共有11P P a k b -种,于是所求概率为p 2=k ba a kb +-P P P 11. (3) 基本事件总数仍为k b a +P .第k 次必取到白球,可为a 只白球中任一只,有1P a 种不同的取法,其余被取的k -1只球可以是其余a+b -1只球中的任意k -1只,共有11P --+k b a 种不同的取法,由乘法原理,第k 次恰取到白球的取法有111k a a b P P -+-种,故所求概率为p 3=111k a a b k a b P P a P a b-+-+=+. 例1.7(3)中值得注意的是p 3与k 无关,也就是说其中任一次抽球,抽到白球的概率都跟第一次抽到白球的概率相同,为ba a +,而跟抽球的先后次序无关(例如购买福利彩票时,尽管购买的先后次序不同,但各人得奖的机会是一样的).例1.8 有n 个人,每个人都以同样的概率1/N 被分配在N (n<N )间房中的任一间中,求恰好有n 个房间,其中各住一人的概率.解 每个人都有N 种分法,这是可重复排列问题,n 个人共有N n 种不同分法.因为没有指定是哪几间房,所以首先选出n 间房,有nN C 种选法.对于其中每一种选法,每间房各住一人共有n !种分法,故所求概率为p =n n N N n !C . 许多直观背景很不相同的实际问题,都和本例具有相同的数学模型.比如生日问题:假设每人的生日在一年365天中的任一天是等可能的,那么随机选取n (n ≤365)个人,他们的生日各不相同的概率为p 1=nn n 365!C 365, 因而n 个人中至少有两个人生日相同的概率为p 2=1-n n n 365!C 365. 例如n =64时p 2=0.997,这表示在仅有64人的班级里,“至少有两人生日相同”的概率与1相差无几,因此几乎总是会出现的.这个结果也许会让大多数人惊奇,因为“一个班级中至少有两人生日相同”的概率并不如人们直觉中想象的那样小,而是相当大.这也告诉我们,“直觉”并不很可靠,说明研究随机现象统计规律是非常重要的.例1.9 12名新生中有3名优秀生,将他们随机地平均分配到三个班中去,试求:(1) 每班各分配到一名优秀生的概率;(2) 3名优秀生分配到同一个班的概率.解 12名新生平均分配到三个班的可能分法总数为34448412)!4(!12C C C = (1) 设A 表示“每班各分配到一名优秀生”3名优秀生每一个班分配一名共有3!种分法,而其他9名学生平均分配到3个班共有3)!3(!9种分法,由乘法原理,A 包含基本事件数为 3!·3)!3(!9=2)!3(!9 故有P (A )=2)!3(!9/3)!4(!12=16/55 (2) 设B 表示“3名优秀生分到同一班”,故3名优秀生分到同一班共有3种分法,其他9名学生分法总数为!4!4!1!9C C C 444819=,故由乘法原理,B 包含样本总数为3·!4!4!1!9. 故有 P (B )=()2!4!9·3/()3!4!12=3/55 4.几何概型上述古典概型的计算,只适用于具有等可能性的有限样本空间,若试验结果无穷多,它显然已不适合.为了克服有限的局限性,可将古典概型的计算加以推广. 设试验具有以下特点:(1) 样本空间Ω是一个几何区域,这个区域大小可以度量(如长度、面积、体积等),并把Ω的度量记作m (Ω).(2) 向区域Ω内任意投掷一个点,落在区域内任一个点处都是“等可能的”.或者设落在Ω中的区域A 内的可能性与A 的度量m (A )成正比,与A 的位置和形状无关.不防也用A 表示“掷点落在区域A 内”的事件,那么事件A 的概率可用下列公式计算:P (A )=m (A )/m (Ω),称它为几何概率.例1.10 在区间(0,1)内任取两个数,求这两个数的乘积小于1/4的概率. 解 设在(0,1)内任取两个数为x ,y ,则0<x <1,0<y <1图1-7即样本空间是由点(x ,y )构成的边长为1的正方形Ω,其面积为 1.令A 表示“两个数乘积小于1/4”,则A ={(x ,y )|0<xy <1/4,0<x <1,0<y <1}事件A 所围成的区域见图1-7,则所求概率P (A ) =2ln 2141d 414311d )411(11d d 114/114/111/411/4+=+-=--=-⎰⎰⎰⎰x x x x y x x图1-8例1.11 两人相约在某天下午2∶00~3∶00在预定地方见面,先到者要等候20分钟,过时则离去.如果每人在这指定的一小时内任一时刻到达是等可能的,求约会的两人能会到面的概率.解 设x ,y 为两人到达预定地点的时刻,那么,两人到达时间的一切可能结果落在边长为60的正方形内,这个正方形就是样本空间Ω,而两人能会面的充要条件是|x -y |≤20,即x-y ≤20且y-x ≤20.令事件A 表示“两人能会到面”,这区域如图1-8中的A .则P (A ) =.95604060)()(222=-=Ωm A m第三节 条件概率、全概率公式1. 条件概率的定义定义1.5 设A ,B 为两个事件,且P (B )>0,则称P (AB )/P (B )为事件B 已发生的条件下事件A 发生的条件概率,记为P (A |B ),即P (A |B )= P (AB )/P (B )易验证,P (A |B )符合概率定义的三条公理,即: 1° 对于任一事件A ,有P (A |B )≥0;2° P (Ω|B )=1;3°,)()(11∑∞=∞==i i i B A P B A P 其中A 1,A 2,…,A n ,…为两两互不相容事件.这说明条件概率符合定义1.3中概率应满足的三个条件,故对概率已证明的结果都适用于条件概率.例如,对于任意事件A 1,A 2,有P (A 1∪A 2|B )=P (A 1|B )+P (A 2|B )-P (A 1A 2|B )又如,对于任意事件A ,有P (A |B )=1-P (A |B ).例1.12 某电子元件厂有职工180人,男职工有100人,女职工有80人,男女职工中非熟练工人分别有20人与5人.现从该厂中任选一名职工,求:(1) 该职工为非熟练工人的概率是多少?(2) 若已知被选出的是女职工,她是非熟练工人的概率又是多少?解 题(1)的求解我们已很熟悉,设A 表示“任选一名职工为非熟练工人”的事件,则P (A )=25/180=5/36而题(2)的条件有所不同,它增加了一个附加的条件,已知被选出的是女职工,记“选出女职工”为事件B ,则题(2)就是要求出“在已知B 事件发生的条件下A 事件发生的概率”,这就要用到条件概率公式,有P (A |B ) =P (AB )/P (B )/=(5/180)/(80/180)= 1/16此题也可考虑用缩小样本空间的方法来做,既然已知选出的是女职工,那么男职工就可排除在考虑范围之外,因此“B 已发生条件下的事件A ”就相当于在全部女职工中任选一人,并选出了非熟练工人.从而ΩB 样本点总数不是原样本空间Ω的180人,而是全体女职工人数80人,而上述事件中包含的样本点总数就是女职工中的非熟练工人数5人,因此所求概率为P (A |B )=5/80=1/16例1.13 某科动物出生之后活到20岁的概率为0.7,活到25岁的概率为0.56,求现年为20岁的动物活到25岁的概率.解 设A 表示“活到20岁以上”的事件,B 表示“活到25岁以上”的事件,则有P (A )=0.7,P (B )=0.56且B ⊂A.得 P (B |A )=P (AB )/P (A ) =P (B )/P (A ) =0.56/0.7=0.8.例1.14 一盒中装有5只产品,其中有3只正品,2只次品,从中取产品两次,每次取一只,作不放回抽样,求在第一次取到正品条件下,第二次取到的也是正品的概率.解 设A 表示“第一次取到正品”的事件,B 表示“第二次取到正品”的事件由条件得P (A )=(3×4)/(5×4)= 3/5,P (AB )= (3×2)/(5×4)= 3/10,故有 P (B |A )=P (AB )/P (A )=(3/10)/( 3/5)= 1/2.此题也可按产品编号来做,设1,2,3号为正品,4,5号为次品,则样本空间为Ω={1,2,3,4,5},若A 已发生,即在1,2,3中抽走一个,于是第二次抽取所有可能结果的集合中共有4只产品,其中有2只正品,故得P (B |A )=2/4=1/2.2.乘法定理由条件概率定义P (B |A )=P (AB )/P (A ),P (A )>0,两边同乘以P (A )可得P (AB )=P (A )P (B |A ),由此可得定理1.1(乘法定理) 设P (A )>0,则有P (AB )=P (A )P (B |A )易知,若P (B )>0,则有P (AB )=P (B )P (A |B )乘法定理也可推广到三个事件的情况,例如,设A ,B ,C 为三个事件,且P (AB )>0,则有P (ABC )=P (C |AB )P (AB )=P (C |AB )P (B |A )P (A )一般地,设n 个事件为A 1,A 2,…,A n ,若P (A 1A 2…A n -1)>0,则有P (A 1A 2…A n )=P (A 1)P (A 2|A 1)P (A 3|A 1A 2)…P (A n |A 1A 2…A n -1).事实上,由A 1⊃A 1A 2⊃…⊃A 1A 2…A n -1,有 P (A 1)≥P (A 1A 2)≥…≥P (A 1A 2…A n -1)>0故公式右边的条件概率每一个都有意义,由条件概率定义可知P (A 1)P (A 2|A 1)P (A 3|A 1A 2)…P (A n |A 1A 2…A n -1)=P (A 1))()()()()()(1212121321121-⋅⋅⋅n n A A A P A A A P A A P A A A P A P A A P =P (A 1A 2…A n ) 例1.15 一批彩电,共100台,其中有10台次品,采用不放回抽样依次抽取3次,每次抽一台,求第3次才抽到合格品的概率.解 设A i (i =1,2,3)为第i 次抽到合格品的事件,则有)(321A A A P =)()()(21312A A A P A A P A P =10/100·9/99·90/98≈0.0083. 例1.16 设盒中有m 只红球,n 只白球,每次从盒中任取一只球,看后放回,再放入k 只与所取颜色相同的球.若在盒中连取四次,试求第一次,第二次取到红球,第三次,第四次取到白球的概率.解 设R i (i =1,2,3,4)表示第i 次取到红球的事件,i R (i =1,2,3,4)表示第i 次取到白球的事件.则有。

习题第1章

习题第1章

第1章概率论的基本概念本章教学基本要求1、了解随机事件、频率、概率等基本概念及频率与概率的关系;2、理解事件间的基本关系及运算;3、掌握加法法则、条件概率和乘法法则、全概率公式和贝叶斯公式等的应用;4、掌握伯努利概型。

随机事件一 主要知识归纳;1、随机试验,随机事件,样本空间,基本事件,必然事件,不可能事件;2、事件的关系:包含、相等、互斥、对立;3、事件的运算:事件的补、积(交)、和(并)、差二 基础练习1、对于任意事件,A B ,下列式子中正确的是 ( ) (A) A B A B +-= (B) A B A A +-= (C) A B A B A +-=- (D) A B A A B +-=-#2、设,,A B C 是某个随机试验中的三个事件,则下列说法错误的是( )(A) 事件“,,A B C 中至少有一个发生”可表示为:A B C ++ (B) 事件“,,A B C 同时发生”可表示为:ABC ;(C) 事件“,,A B C 中恰好有一个不发生”可表示为:A B C ++; (D) 事件“A 与B 同时发生,且C 不发生”可表示为:ABC3、一批产品中随机抽两次,每次抽一件。

以A 表示事件“两次都抽得正品”,B 表示事件“至少抽得一件次品”,则下列关系式中正确的是( )(A) A B ⊂(B) B A ⊂(C) A B = (D) A B =?4、设A , B , C 为随机事件, 则事件“A , B , C 都不发生”可表示为__________。

5、设{|02)x x Ω=≤<,1{|1}2A x x =<<13{|}42B x x =≤<,则 A B +=_____________, AB =_____________ , A B +=______________。

6、设某试验的样本空间{1,2,,10}Ω=,事件{3,4,5)A =,{4,5,6}B =,{6,7,8}C =,则AB = __________________,A B =_________________, ABC =____________________, ()A B C =__________________。

设AB是两事件且P(A)=0.6P(B)=0.7求(1)在什么条件下P(AB)取到最大值

设AB是两事件且P(A)=0.6P(B)=0.7求(1)在什么条件下P(AB)取到最大值

设AB是两事件且P(A)=0.6P(B)=0.7求(1)在什么条件下P(AB)取到最大值5.设A ,B 是两事件,且P (A )=0.6,P (B )=0.7,求:(1)在什么条件下P (AB )取到最大值?(2)在什么条件下P (AB )取到最小值?【解】(1)当AB =A 时,P (AB )取到最大值为0.6.(2)当A ∪B =Ω时,P (AB )取到最小值为0.3.6.设A ,B ,C 为三事件,且P (A )=P (B )=1/4,P (C )=1/3且P (AB )=P (BC )=0,P (AC )=1/12,求A ,B ,C 至少有一事件发生的概率.【解】 P (A ∪B ∪C )=P (A )+P (B )+P (C )-P (AB )-P (BC )-P (AC )+P (ABC ) =14+14+13-112=347.从52张扑克牌中任意取出13张,问有5张黑桃,3张红心,3张方块,2张梅花的概率是多少?【解】 p =5332131313131352C C C C /C 8.对一个五人学习小组考虑生日问题:(1)求五个人的生日都在星期日的概率;(2)求五个人的生日都不在星期日的概率;(3)求五个人的生日不都在星期日的概率.【解】(1)设A 1={五个人的生日都在星期日},基本事件总数为75,有利事件仅1个,故 P (A 1)=517=(17)5 (亦可用独立性求解,下同)(2)设A 2={五个人生日都不在星期日},有利事件数为65,故P (A 2)=5567=(67)5 (3) 设A 3={五个人的生日不都在星期日}P (A 3)=1-P (A 1)=1-(17)5 9.略.见教材习题参考答案.10.一批产品共N 件,其中M 件正品.从中随机地取出n 件(n<="">(1) n 件是同时取出的;(2) n 件是无放回逐件取出的;(3) n 件是有放回逐件取出的.【解】(1) P (A )=C C /C m n m n M N M N --(2) 由于是无放回逐件取出,可用排列法计算.样本点总数有P nN 种,n 次抽取中有m次为正品的组合数为C m n 种.对于固定的一种正品与次品的抽取次序,从M 件正品中取m 件的排列数有P m M 种,从N -M 件次品中取n -m 件的排列数为P n m N M --种,故P (A )=C P P P mm n m n M N M n N --由于无放回逐渐抽取也可以看成一次取出,故上述概率也可写成P (A )=C C C m n m MN M n N-- 可以看出,用第二种方法简便得多.(3)由于是有放回的抽取,每次都有N 种取法,故所有可能的取法总数为N n 种,n次抽取中有m 次为正品的组合数为C mn 种,对于固定的一种正、次品的抽取次序,m 次取得正品,都有M 种取法,共有M m 种取法,n -m 次取得次品,每次都有N -M 种取法,共有(N -M )n -m 种取法,故()C ()/m m n m n n P A M N M N -=- 此题也可用贝努里概型,共做了n 重贝努里试验,每次取得正品的概率为M N,则取得m 件正品的概率为 ()C 1m n m mn M M P A N N -=- ?。

山东科技大学概率论卓相来岳嵘第一章习题解析

山东科技大学概率论卓相来岳嵘第一章习题解析

习 题 一1.写出以下随机试验的样本空间:〔1〕生产产品直到有10件正品为止,记录生产产品的总件数. 〔2〕在单位圆内任意取一点,记录它的坐标.〔3〕对某工厂出厂的产品进行检查,合格的记上“正品〞,不合格的记上“次品〞,如连续查出2个次品就停止检查,或检查4个产品就停止检查,记录检查的结果. 1.〔1〕{}10,11,;S = 〔2〕{}1),(22<+=y x y x S ,〔3〕{}1111,1110,1101,0111,1011,1010,1100,0110,0101,0100,100,00=S .其中0表示次品,1表示正品.2.写出以下随机试验的样本空间及以下事件包含的样本点. 〔1〕 掷一颗骰子,出现奇数点. 〔2〕 掷二颗骰子,A =“出现点数之和为奇数,且恰好其中有一个1点.〞B =“出现点数之和为偶数,但没有一颗骰子出现1点.〞 〔3〕将一枚硬币抛两次, A =“第一次出现正面.〞 B =“至少有一次出现正面.〞C =“两次出现同一面.〞2.【解】{}{}1123456135A Ω==(),,,,,,,,;{}{}{}{}{}(2)(,)|,1,2,,6,(12),(14),(16),(2,1),(4,1),(6,1),(22),(24),(26),(3,3),(3,5),(4,2),(4,4),(4,6),(5,3),(5,5),(6,2),(6,4),(6,6);(3)(,),(,),(,),(,),(,),(,),(,),(,),(i j i j A B A B ΩΩ=======,,,,,,正反正正反正反反正正正反正正正反反{}{},),(,),(,),C =正正正反反 C B A ,,为三事件,用C B A ,,的运算关系表示以下各事件: 〔1〕A 发生,B 与C 不发生. 〔2〕A 与B 都发生,而C 不发生. 〔3〕C B A ,,中至少有一个发生.〔4〕C B A ,,都发生. 〔5〕C B A ,,都不发生.〔6〕C B A ,,中不多于一个发生. 〔7〕C B A ,,中不多于两个发生. 〔8〕C B A ,,中至少有两个发生.3.【解】〔1〕 A BC 〔2〕 AB C 〔3〕A ∪B ∪C 〔4〕ABC (5) C B A (6) C B C A B A ⋃⋃(7) A BC ∪A B C ∪AB C ∪AB C ∪A BC ∪A B C ∪ABC =ABC =A ∪B ∪C (8) AB C ∪A B C ∪A BC ∪ABC= AB ∪BC ∪CA .A 表示“被选出者是男生〞;事件B 表示“被选出者是三年级学生〞;事件C 表示“被选出者是运发动〞.〔1〕说出事件C AB 的含义;〔2〕什么时候有恒等式C C B A = ; 〔3〕什么时候关系式B C ⊆正确; 〔4〕什么时候等式B A =成立.4.(1)该生是三年级男生但不是运发动;(2)当某系的运发动全是三年级男生时;(3)当某系除三年级外其它年级的学生都不是运发动时;(4)当某系三年级的学生都是女生,而其它年级都没有女生时.5.盒中有10只晶体管. 令i A 表示“10只晶体管中恰有i 只次品〞, B 表示“10只晶体管中不多于3只次品〞, C 表示“10只晶体管中次品不少于4只〞.问事件(0,1,2,3)i A i =,B ,C 之间哪些有包含关系?哪些互不相容?哪些互逆?5. ,0,1,2,3i A B i ⊂=;0123,,,,A A A A C 两两互不相容,B 与C 互不相容;B 与C 互逆。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3028108.对一个五人学习小组考虑生日问题:
(1)求五个人的生日都在星期日的概率;
(2)求五个人的生日都不在星期日的概率;
(3).
求五个人的生日不都在星期日的概率
大学数学云课堂
大学数学云课堂3028108.对一个五人学习小组考虑生日问题:
(1)求五个人的生日都在星期日的概率;
(2)求五个人的生日都不在星期日的概率;
(3).求五个人的生日不都在星期日的概率1(1){}A =解设五个人的生日都在星期日,
571基本事件总数为,有利事件仅个,故51()1/7.
P A =2(2){}A =设五个人生日都不在星期日,55526()6/7.
P A =有利事件数为,故3(3){},A =设五个人的生日不都在星期日故
531()1()11/7.
P A P A =-=-故:点睛都不在与不都在的区别。

相关文档
最新文档