1.2一元二次方程解法(1)
解一元二次方程配方法
1.2.解一元二次方程-配方法(1)第二课时教学内容配方法解一元二次方程(1)教材P10-12页教材分析对于一元二次方程,配方法是解法中的通法,它的推导建立在直接开平方法的基础上,他又是公式法的基础:同时一元二次方程又是今后学生学习二次函数等知识的基础。
一元二次方程是中学数学的主要内容之一,在初中数学中占有重要地位。
我们从知识的发展来看,学生通过一元二次方程的学习,可以对已学过的一元二次方程、二次根式、平方根的意义、完全平方式等知识加以巩固。
初中数学中,一些常用的解题方法、计算技巧以及主要的数学思想,如观察、类比、转化等,在本章教材中都有比较多的体现、应用和提升。
我们想通过一元二次方程来解决实际问题,首先就要学会一元二次方程的解法。
教学目标知识能力1.会用直接开平方法解形如(X+m)2=n(n≧0)2.会用配方法解简单的数字系数的一元二次方程。
过程与方法1.理解配方法;知道“配方”是一种常用的数学方法。
2. 了解用配方法解一元二次方程的基本步骤。
情感、态度与价值观1.通过用配方法将一元二次方程变形的过程,让学生进一步体会转化的思想方法,并增强他们的数学应用意识和能力,激发学生的学习兴趣。
2.能根据具体问题的实际意义,验证结果的合理性。
教学重难点及突破重点用配方法解一元二次方程难点理解配方法的基本过程突破老师必须从学生的认知结构和心理特征出发,利用他们有强烈的好奇心和求知欲。
当他们在解决实际问题时发现要解的方程不再是以前所学过的一元一次方程或可化为一元一次方程的其他方程时,他们自然会想进一步研究和探索配方法解方程的问题。
课前预习方案:复习直接开平法解一元二次方程,完全平方公式,预习本课内容,完成P13页练习1、2题。
教学设想:利用多媒体辅助教学,直观地展示教学内容,有效地突出重点,突破难点,使学生多种感官共同参与到整个学习过程中,激发学生的学习兴趣,提供课堂效率。
本节课由简到难展开学习,使学生认识配方法的基本原理并掌握具体解法。
1.2《一元二次方程的解法—直接开方法》教案
§1.2一元二次方程的解法⑴——直接开方法班级________姓名____________一.学习目标:1.由平方根的定义探寻直接开方法;2.掌握形如:ax2=b;a(x-m)2=b;a(x-m)2=b(x-n)2的解题方法.二.学习重点:会用直接开平方法解一元二次方程.学习难点:体会整体思想在解题中的作用.三.教学过程Ⅰ.知识准备①4的平方根是;81的平方根是;100的算术平方根是.②若x2=a,则叫的平方根;记作x=.③x2=14,则x=.若分式x2-92x-6的值为零,则x的值为.Ⅱ.活动探究【复习】回忆数的开方一章中的知识,请大家生回答下列问题,并说明解决问题的依据.求下列各式中的x:1.x2=225;2.x2-169=0;3.36x2=49;4.4x2-25=0.【新知探究】我们已经学过了一些方程知识,那么上述方程属于什么方程呢?阅读:解方程x2-4=0.解:移项,得x2=4.∴x=±4=±2即x1=2,x2=−2.我们把这种解一元二次方程的方法叫做“直接开平方法”.思考:比较用直接开平方法解方程和求一个非负数的平方根的差异。
例1:解下列一元二次方程.⑴x2=196;⑵9x2=16;⑶4x2-3=0.例2:解下列一元二次方程.⑴(x− 2)2=5;⑵(x-1)2-18=0;⑶3(x+2)2=27;⑷12(2-x)2-9=0.【题后反思】你能否总结一下,能使用直接开平方法的一元二次方程的形式是怎样的?一般解题步骤又是怎样的?例3:用“直接开方法”解下列方程:⑴(3x-2)2=(x+1)2;⑵(x+2)2-(2x+3)2=0.【思考】若将⑵中的两项加上系数又如何解呢?4(x+2)2-9(2x + 3)2=0【课内反馈】1.①方程x2=9的根为;②方程4x2=100的解为.2.①方程6x2-1=23的解为;②方程(x+1)2=16的解为.3.关于x的方程x2+k=0有实数根的条件是()A.k>0 B.k<0 C.k≥0 D.k≤04.解下列方程⑴2x2=50;⑵12y2=16;⑶(x-2)2=6;⑷(2m-4)2-18=0.。
1.2.2 一元二次方程的解法-配方法(解析版)
1.2.2 一元二次方程的解法-配方法考点一.配方法解一元二次方程: (1)配方法解一元二次方程: 将一元二次方程配成的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法. (2)配方法解一元二次方程的理论依据是公式:. (3)用配方法解一元二次方程的一般步骤: ①把原方程化为的形式; ②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1; ③方程两边同时加上一次项系数一半的平方; ④再把方程左边配成一个完全平方式,右边化为一个常数; ⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解.要点:(1)配方法解一元二次方程的口诀:一除二移三配四开方;(2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方.(3)配方法的理论依据是完全平方公式.考点二、配方法的应用1.用于比较大小:在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小.2.用于求待定字母的值:配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值.3.用于求最值:“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值.4.用于证明:“配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用.题型1:配方法解一元二次方程1.用配方法解一元二次方程2620x x -+=,此方程可化为( )A .2(3)7x -=B .2(3)11x -=C .2(3)7x +=D .2(3)11x +=【答案】A 【分析】将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后可得答案.2222()a ab b a b ±+=±【解析】解:2620x x -+=Q ,262x x \-=-,则26929x x -+=-+,即()237x -=,故选:A .【点睛】本题主要考查解一元二次方程的能力,解题的关键是熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法.2.用配方法解一元二次方程23610x x +-=时,将它化为()2x a b +=的形式,则a b +的值为( )A .103B .73C .2D .433.用配方法解下列方程时,配方有错误的是( )A .22990x x --=化为2(1)100x -=B .2890x x ++=化为2(4)25x +=C .22740t t --=化为2781416t æö-=ç÷èøD .23420x x --=化为221039x æö-=ç÷èø【答案】B【分析】根据配方的步骤计算即可解题.【解析】()2222890,89,816916,47x x x x x x x ++=+=-++=-++=故B 错误.且ACD 选项均正确,故选:B【点睛】考查了用配方法解一元二次方程,配方步骤:第一步平方项系数化1;第二步移项,把常数项移到右边;第三步配方,左右两边加上一次项系数一半的平方;第四步左边写成完全平方式;第五步,直接开方即可.4.关于y 的方程249996y y -=,用___________法解,得1y =__,2y =__.【答案】 配方 102 98-【分析】利用配方法解一元二次方程即可得.【解析】249996y y -=,24499964y y -+=+,2(2)10000y -=,2100y -=±,1002y =±+,12102,98y y ==-,故答案为:配方,102,98-.【点睛】本题考查了利用配方法解一元二次方程即可得,熟练掌握配方法是解题关键.5.用配方法解方程ax 2+bx +c =0(a ≠0),四个学生在变形时得到四种不同结果,其中配方正确的是( )A .2224()24b ac b x a a -+=B .2224()22b b ac x a a -+=C .2224()24b b ac x a a -+=D .2222()22b b ac x a a ++=6.用配方法解方程22103x x -+=,正确的是( )A .212251()1,,333x x x -===-B .224(),39x x -==C .238(29x -=-,原方程无实数解D .2()1839x -=-,原方程无实数解7.用配方法解下列方程:(1)2352x x -=;(2)289x x +=;(3)212150x x +-=;(4)21404x x --=;(5)2212100x x ++=;(6)()22040x px q p q ++=-³.8.ABC D 的三边分别为a 、b 、c ,若8+=b c ,21252bc a a =-+,按边分类,则ABC D 是______三角形【答案】等腰【分析】将8+=b c ,代入21252bc a a =-+中得到关系式,利用完全平方公式变形后,根据非负数的性质求出a 与c 的值,进而求出b 的值,即可确定出三角形形状.【解析】解:∵8+=b c ∴8b c =- ,∴()288bc c c c c =-=-+,∴2212528bc a a c c =-+=-+,即2212361680a a c c -+++-=,整理得:()()22640a c -+-=,∵()260a -³,()240c -³,∴60a -=,即6a =;40c -=,即4c =,∴844b =-=,则△ABC 为等腰三角形.故答案是:等腰.【点睛】此题考查了配方法的应用,非负数的性质,以及等腰三角形的判定,熟练掌握完全平方公式是解本题的关键.9.如果一个三角形的三边均满足方程210250x x -+=,则此三角形的面积是______10.已知三角形的三条边为,,a b c ,且满足221016890a a b b -+-+=,则这个三角形的最大边c 的取值范围是( )A .c >8B .5<c <8C .8<c <13D .5<c <13【答案】C【分析】先利用配方法对含a 的式子和含有b 的式子配方,再根据偶次方的非负性可得出a 和b 的值,然后根据三角形的三边关系可得答案.【解析】解:∵a 2-10a +b 2-16b +89=0,∴(a 2-10a +25)+(b 2-16b +64)=0,∴(a -5)2+(b -8)2=0,∵(a -5)2≥0,(b -8)2≥0,∴a -5=0,b -8=0,∴a =5,b =8.∵三角形的三条边为a ,b ,c ,∴b -a <c <b +a ,∴3<c <13.又∵这个三角形的最大边为c ,∴8<c <13.故选:C .【点睛】本题考查了配方法在三角形的三边关系中的应用,熟练掌握配方法、偶次方的非负性及三角形的三边关系是解题的关键.题型3:配方法的应用2-比较整式大小与求值问题11.若M =22x -12x +15,N =2x -8x +11,则M 与N 的大小关系为( )A .M ≥NB .M >NC .M ≤ND .M <N 【答案】A【解析】∵M=22x -12x +15,N=2x -8x +11,∴M-N=222222(21215)(811)2121581144(2)x x x x x x x x x x x -+--+=-+-+-=-+=- .∵2(2)0x -³,∴M-N ³0,∴M ³N.故选A.点睛:比较两个含有同一字母的代数式的大小关系时,当无法直接比较两者的大小关系时,可以通过求出两者的“差”,再看“差”的值是“正数”、“负数”或“0”来比较两者的大小.12.已知下面三个关于x 的一元二次方程2ax bx c 0++=,2bx cx a 0++=,2cx ax b 0++=恰好有一个相同的实数根a ,则a b c ++的值为( )A .0B .1C .3D .不确定【答案】A【分析】把x =a 代入3个方程得出a •a 2+ba +c =0,ba 2+ca +a =0,ca 2+a •a +b =0,3个方程相加即可得出(a +b +c )(a 2+a +1)=0,即可求出答案.【解析】把x =a 代入ax 2+bx +c =0,bx 2+cx +a =0,cx 2+ax +b =0得:a •a 2+ba +c =0,ba 2+ca +a =0,ca 2+a •a +b =0,相加得:(a +b +c )a 2+(b +c +a )a +(a +b +c )=0,13.已知实数m ,n ,c 满足2104m m c -+=,22112124n m m c =-++,则n 的取值范围是( )A .74n ³-B .74n >-C .2n ³-D .2n >-14.若x 为任意实数时,二次三项式26x x c -+的值都不小于0,则常数c 满足的条件是( )A .0c ³B .9c ³C .0c >D .9c >【答案】B【分析】把二次三项式进行配方即可解决.【解析】配方得:226(3)9x x c x c -+=--+∵2(3)0x -³,且对x 为任意实数,260x x c -+³∴90c -+³∴9c ³故选:B【点睛】本题考查了配方法的应用,对于二次项系数为1的二次三项式,加上一次项系数一半的平方,再减去这个数即可配成完全平方式.15.无论x 、y 取任何实数,多项式x 2+y 2-2x -4y+16的值总是_______数.【答案】正【解析】x 2+y 2-2x -4y +16=(x 2-2x +1)+(y 2-4y +4)-1-4+16=(x -1)2+(y -2)2+11,由于(x -1)2≥0,(y -2)2≥0,故(x -1)2+(y -2)2+11≥11,所以x 2+y 2-2x -4y +16的值总是正数.故答案为正.点睛:要证明一个式子的值总是正数,可以用配方法将式子写成多个非负数之和与一个正数的和的形式即可证明.16.不论x ,y 为什么数,代数式4x 2+3y 2+8x ﹣12y +7的值( )A .总大于7B .总不小于9C .总不小于﹣9D .为任意有理数【答案】C【分析】先将原式配方,然后根据偶次方的非负性质,判断出代数式的值总不小于−9即可.【解析】解:4x 2+3y 2+8x ﹣12y +7=4x 2+8x +4+3y 2−12y +3=4(x 2+2x +1)+3(y 2−4y +1)=4(x +1)2+3(y 2−4y +4−4+1)=4(x +1)2+3(y −2)2−9,∵(x +1)2≥0,(y −2)2≥0,∴4x 2+3y 2+8x ﹣12y +7≥−9.即不论x 、y 为什么实数,代数式4x 2+3y 2+8x ﹣12y +7的值总不小于−9.故选:C .【点睛】此题主要考查了配方法的应用,以及偶次方的非负性质的应用,要熟练掌握.解决本题的关键是掌握配方法.17.若12123y z x +--==,则x 2+y 2+z 2可取得的最小值为( )A .3B .5914C .92D .618.关于代数式12a a ++,有以下几种说法,①当3a =-时,则12a a ++的值为-4.②若12a a ++值为2,则a =③若2a >-,则12a a ++存在最小值且最小值为0.在上述说法中正确的是( )A .①B .①②C .①③D .①②③19.我国南宋时期数学家秦九韶曾提出利用三角形的三边求面积的公式,此公式与古希腊几何学家海伦提出的公式如出一辙,即三角形的三边长分别为a ,b ,c ,记2a b c p ++=,则其面积S =.这个公式也被称为海伦—秦九韶公式.若3p =,2c =,则此三角形面积的最大值是_________.20.已知y=x,y均为实数),则y的最大值是______.21.已知152a b c +--=-,则a b c ++=____________22.已知212y x x c =+-,无论x 取任何实数,这个式子都有意义,则c 的取值范围_______.【答案】c <−1【分析】将原式分母配方后,根据完全平方式的值为非负数,只需−c−1大于0,求出不等式的解集即可得到c 的范围.【解析】原式分母为:x 2+2x−c =x 2+2x +1−c−1=(x +1)2−c−1,∵(x +1)2≥0,无论x 取任何实数,这个式子都有意义,∴−c−1>0,解得:c <−1.故填:c <−1【点睛】此题考查了配方法的应用,以及分式有意义的条件,灵活运用配方法是解本题的关键.23.(1)设220,3a b a b ab >>+=,求a b a b+-的值.(2)已知代数式257x x -+,先用配方法说明:不论x 取何值,这个代数式的值总是正数;再求出当x 取何值时,这个代数式的值最小,最小值是多少?24.选取二次三项式2(0)ax bx c a ++¹中的两项,配成完全平方式的过程叫作配方.例如①选取二次项和一次项配方:2242(2)2x x x -+=--;②选取二次项和常数项配方:2242(4)x x x x -+=+-或2242((4x x x x -+=+-+;③选取一次项和常数项配方:22242x x x -+=-.根据上述材料解决下面问题:(1)写出284x x -+的两种不同形式的配方.(2)已知22330x y xy y ++-+=,求y x 的值.(3)已知a 、b 、c 为三条线段,且满足()222214(23)a b c a b c ++=++,试判断a 、b 、c 能否围成三角形,并说明理由.25.若实数x ,y ,z 满足x <y <z 时,则称x ,y ,z 为正序排列.已知x =﹣m 2+2m ﹣1,y =﹣m 2+2m ,若当m 12>时,x ,y ,z 必为正序排列,则z 可以是( )A .m 14+B .﹣2m +4C .m 2D .1A.甲B.乙C.丙D.丁故选:D .【点睛】本题考查了解一元二次方程,掌握配方法是解题的关键.7.代数式243x x -+的最小值为( ).A .1-B .0C .3D .5【答案】A【分析】利用配方法对代数式做适当变形,通过计算即可得到答案.【解析】代数式()2224344121x x x x x -+=-+-=--∵()220x -³,∴()2211x --³-即代数式2|431x x -+³-,故选:A .【点睛】本题考查了完全平方公式和不等式的知识;解题的关键是熟练掌握完全平方公式和不等式的性质,从而完成求解.8.已知625N m =-,22M m m =-(m 为任意实数),则M 、N 的大小关系为( )A .M N<B .M N >C .M N =D .不能确定【答案】B 【分析】求出M N -的结果,再判断即可.【解析】根据题意,可知()22226258169490M N m m m m m m -=--+=-++=-+>,所以M N >.故选:B .【点睛】本题主要考查了整式的加减运算,配方法的应用,掌握配方法是解题的关键.9.若22242021p a b a b =++++,则p 的最小值是( )A .2021B .2015C .2016D .没有最小值【答案】C【分析】将等式右边分组,配成两个完全平方式,即可根据平方的非负性进行解答.【解析】解:22242021p a b a b =++++2221442016a ab b =++++++()()2221442016a ab b =++++++()()22120162a b ++=++,∵()210a +³,()220b +³,∴p 的最小值为2016,故选:C .【点睛】本题主要考查了配方法的应用,解题的关键是将原式分组配方.10.新定义:关于x 的一元二次方程21()0a x m k -+=与22()0a x m k -+=称为“同族二次方程”.如22021(3)40x -+=与23(3)40x -+=是“同族二次方程”.现有关于x 的一元二次方程22(1)10x -+=与()()22480a x b x ++-+=是“同族二次方程”,那么代数式22021ax bx ++能取的最小值是( )A .2013B .2014C .2015D .2016【答案】D【分析】根据同族二次方程的定义,可得出a 和b 的值,从而解得代数式的最小值.【解析】解:22(1)10x -+=Q 与2(2)(4)80a x b x ++-+=为同族二次方程.22(2)(4)8(2)(1)1a x b x a x \++-+=+-+,22(2)(4)8(2)2(2)3a x b x a x a x a \++-+=+-+++,∴42(2)83b a a -=-+ìí=+î,解得:510a b =ìí=-î.∴()22220215102021512016ax bx x x x ++=-+=-+\当1x =时,22021ax bx ++取最小值为2016.故选:D .【点睛】此题主要考查了配方法的应用,解二元一次方程组的方法,理解同族二次方程的定义是解答本题的关键.二、填空题11.将一元二次方程2410x x -+=变形为()2x h k +=的形式为______三、解答题。
2.2_一元一次方程的解法(1.2)
叫做配方(completing the square)法.
填一填
添上一个适当的数,使下列的多项式成为一个完全平方式 x2+2x+___=(________)2 1 x + 1 x2-2x+___=(________)2 1 x - 1
x2+4x+___=(________)2 4 x + 2
x2+6x+___=(________)2 9 x + 3 x2+10x+___=(________)2 x + 5 25
2
A.(x 6) 2
C.(x 3) 2
2
用配方法解下列方程:
(1) x 5 x 6 0
2
(2) x 4 3 x 11
2
(3) -x2+4x-3=0 (4)x2-8x-4=0
师生合作 1
配方法
例2 解方程 3x2+8x-3=0.
解 : 3x 2 8x 3 0.
4 5 5.开方:根据平方根意义,方程两 x . 3 3 边开平方; 4 5 4 5 x .x 3 3 3 3 6.求解:解一元一次方程; 1 x1 , x2 3. 7.定解:写出原方程的解.
3
1、解方程2 x 5x 2 0
2
2、解方程4 x 1 3x
移项:把常数项移到方程的右边; 配方:方程两边都加上一次项系数一半的平方 开方:根据平方根意义,方程两边开平方; 求解:解一元一次方程; 定解:写出原方程的解.
(1)下列将方程 6 x 7 0配方变形 x
2
正确的是
2
( C
一元二次方程的解法
一元二次方程的解法一元二次方程是指形如ax^2 + bx + c = 0的方程,其中a、b、c为已知常数,而x为未知数。
解一元二次方程的方法有多种,下面将介绍两种常用的解法:因式分解法和配方法。
一、因式分解法因式分解法是指将一元二次方程分解成两个一次因式的乘积,再令每个一次因式等于零,解得方程的两个根。
例如,解方程x^2 - 5x + 6 = 0:首先,找到两个数的乘积等于常数项c,且和等于中间项b的相反数。
在本例中,c为6,b为-5,可以将6拆解为-2和-3,-2与-3的和为-5,符合要求。
然后,将方程分解为(x - 2)(x - 3) = 0。
接下来,令每个一次因式等于零,即(x - 2) = 0和(x - 3) = 0。
最后,解得x = 2和x = 3,这两个值分别为方程的两个根。
二、配方法配方法是指通过将一元二次方程移项,并用一个常数将方程的两边补全为一个完全平方的形式,从而将一元二次方程转化为一个平方差的形式,进而求解方程。
例如,解方程x^2 + 4x - 5 = 0:首先,将方程移项,得到x^2 + 4x = 5。
然后,通过添加一个与方程中一次项的系数一半相等的常数的平方,使得方程的左边成为一个完全平方。
在本例中,一次项的系数为4,可以添加(4/2)^2 = 4的平方,得到x^2 + 4x + 4 = 5 + 4,即(x + 2)^2 = 9。
接下来,令要解的方程的平方项等于右边的常数,即(x + 2)^2 = 9。
最后,开方,解得x + 2 = ±3,即x = 1和x = -5,这两个值分别为方程的两个根。
总结起来,一元二次方程的解法包括因式分解法和配方法。
通过运用这两种解法,可以求得一元二次方程的根,从而解决实际问题。
1.2.1 一元二次方程的解法-直接开平方法(解析版)
1.2.1 一元二次方程的解法-直接开平方法考点一、直接开方法解一元二次方程: (1)直接开方法解一元二次方程: 利用平方根的定义直接开平方求一元二次方程的解的方法称为直接开平方法. (2)直接开平方法的理论依据: 平方根的定义. (3)能用直接开平方法解一元二次方程的类型有两类: ①形如关于x 的一元二次方程,可直接开平方求解. 若,则;表示为,有两个不等实数根; 若,则x=O ;表示为,有两个相等的实数根; 若,则方程无实数根. ②形如关于x 的一元二次方程,可直接开平方求解,两根是 .要点:用直接开平方法解一元二次方程的理论依据是平方根的定义,应用时应把方程化成左边是含未知数的完全平方式,右边是非负数的形式,就可以直接开平方求这个方程的根.题型1:直接开平方法解一元二次方程1.一元二次方程2250x -=的解为( )A .125x x ==B .15=x ,25x =-C .125x x ==-D .1225x x ==【答案】B 【解析】【分析】先移项,再通过直接开平方法进行解方程即可.解:2250x -=,移项得:2=25x ,开平方得:15=x ,25x =﹣,故选B .本题主要考查用开平方法解一元二次方程,解题关键在于熟练掌握开平方方法.2.若()222a =-,则a 是( )A .-2B .2C .-2或2D .4【答案】C 【解析】【分析】先计算2(2)-,再用直接开平方法解一元二次方程即可.()2224a =-=Q 2a \=±故选C 【点睛】本题考查了有理数的乘方,直接开平方法解一元二次方程,熟练直接开平方法是解题的关键.3.方程x 2- =0的根为_______.【答案】x=± 【解析】【分析】,得出x 2=8,利用直接开平方法即可求解.解: x 2- =0,∴x 2=8,∴x =±故答案为:x =±.【点睛】本题考查直接开平方法解一元二次方程及算术平方根,解题关键是熟练掌握直接开平方法的解题步骤.4.有关方程290x +=的解说法正确的是( )A .有两不等实数根3和3-B .有两个相等的实数根3C .有两个相等的实数根3-D .无实数根【答案】D【分析】利用直接开平方法求解即可.∵290x +=,∴290x =-<,∴该方程无实数解.故选:D 【点睛】考查了直接开平方法解一元二次方程.解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x 2=a (a ≥0)的形式,利用数的开方直接求解.5.若方程()20ax b ab =>的两个根分别是4m -与38m -,则ba=_____.【答案】1【解析】【分析】利用直接开平方法得到x =,得到方程的两个根互为相反数,所以4380m m -+-=,解得3m =,则方程的两个根分别是1与1-1=,然后两边平方得到b a 的值.解:∵()20ax b ab =>,∴2b x a=,∴x =,∴方程的两个根互为相反数,∵方程2ax b =的两个根分别是4m -与38m -,∴4380m m -+-=,解得3m =,∴4341m -=-=-,383381m -=´-=,∴一元二次方程ax 2=b 的两个根分别是1与1-,1=,∴1ba=.故答案为:1.【点睛】本题考查了解一元二次方程﹣直接开平方法:形如2x p =或()()20nx m p p +=³的一元二次方程可采用直接开平方的方法解一元二次方程.如果方程化成2x p =的形式,那么可得x =()()20nx m p p +=³的形式,那么nx m +=6.解方程:(1)23270x -=; (2)2(5)360x --=;(3)21(2)62x -=; (4)()()4490+--=y y .【答案】(1)123,3x x ==-;(2)1211,1x x ==-;(3)122,2x x ==-;(4)125,5y y ==-.【解析】【分析】(1)先移项,再两边同除以3,然后利用直接开方法解方程即可得;(2)先移项,再利用直接开方法解方程即可得;(3)先两边同乘以2,再利用直接开方法解方程即可得;(4)先利用平方差公式去括号,再移项合并同类项,然后利用直接开方法解方程即可得.(1)23270x -=,2327x =,29x =,3x =±,即123,3x x ==-;(2)2(5)360x --=,2(5)36x -=,56x -=或56x -=-,11x =或1x =-,即1211,1x x ==-;(3)21(2)62x -=,2(2)12x -=,2x -=2x -=-,2x =或2x =-+,即122,2x x ==-;(4)()()4490+--=y y ,21690y --=,225y =,5y =±,即125,5y y ==-.【点睛】本题考查了利用直接开方法解一元二次方程,一元二次方程的主要解法包括:直接开方法、配方法、公式法、因式分解法、换元法等,熟练掌握各解法是解题关键.7.计算:4(3x +1)2﹣1=0、3274y ﹣2=0的结果分别为( )A .x =±12,y =±23B .x =±12,y =23C .x =﹣16,y =23D .x =﹣16或﹣12,y =23【答案】D 【解析】【分析】直接开平方与开立方,再解一次方程即可.解:由4(3x +1)2﹣1=0得(3x +1)2=14,所以3x +1=±12,解得x =﹣16或x =﹣12,由3274y ﹣2=0得y 3=827,所以y =23,所以x =﹣16或﹣12,y =23.故选:D .【点睛】本题考查开平方法解一元二次方程与立方根法解三次方程,掌握平方根与立方根性质与区别是解题关键.82x = )A .120,x x ==B .120,x x ==C .12x x ==D .12x x ==【答案】A 【解析】【分析】利用直接开方法解一元二次方程即可得.2x =(23x =,利用直接开方法得:x解得120,x x ==故选:A .【点睛】本题考查了利用直接开方法解一元二次方程,熟练掌握直接开方法是解题关键.题型2:直接开平方法解一元二次方程的条件9.下列方程中,不能用直接开平方法求解的是( )A .230x =-B .2(14)0x =--C .220x =+D .22()12()x =--【答案】C 【解析】【分析】方程整理后,判断即可得到结果230x =-移项得23x =,可用直接开平方法求解;2(10)4x -=-移项得2(14)x =-,可用直接开平方法求解;22()(12)4x ==--,可用直接开平方法求解.故选C.【点睛】此题考查解一元二次方程直接开平方法,掌握运算法则是解题关键10.方程y 2=-a 有实数根的条件是( )A .a ≤0B .a ≥0C .a >0D .a 为任何实数【答案】A 【解析】【分析】根据平方的非负性可以得出﹣a ≥0,再进行整理即可.解:∵方程y 2=﹣a 有实数根,∴﹣a ≥0(平方具有非负性),∴a ≤0;故选:A .【点睛】此题考查了直接开平方法解一元二次方程,关键是根据已知条件得出﹣a ≥0.11.有下列方程:①x 2-2x=0;②9x 2-25=0;③(2x-1)2=1;④21(x 3)273+=.其中能用直接开平方法做的是( )A .①②③B .②③C .②③④D .①②③④【答案】C 【解析】【分析】利用因式分解法与直接开平方法判断即可得到结果.①x 2-2x=0,因式分解法;②9x 2-25=0,直接开平方法;③(2x-1)2=1,直接开平方法;④21(x 3)273+=,直接开平方法,则能用直接开平方法做的是②③④.故选:C.【点睛】考查直接开方法解一元二次方程,掌握一元二次方程的几种解法是解题的关键.12.方程 x 2=(x ﹣1)0 的解为( )A .x=-1B .x=1C .x=±1D .x=0【答案】A 【解析】【分析】根据(x-1)0有意义,可得x-1≠0,求出x≠1,通过解方程x 2=1,确定x 的值即可.∵(x-1)0有意义,∴x-1≠0,即x≠1,∵x 2=(x ﹣1)0∴x 2=1,即x=±1∴x=-1.故选A.【点睛】本题考查了解一元二次方程—直接开平方法,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x 2=a (a≥0)的形式,利用数的开方直接求解.同时还考查了零次幂.13.如果方程()257x m -=-可以用直接开平方求解,那么m 的取值范围是( ).A .0m >B .7m …C .7m >D .任意实数【答案】B 【解析】【分析】根据70-³m 时方程有实数解,可求出m 的取值范围.由题意可知70-³m 时方程有实数解,解不等式得7m …,故选B .【点睛】形如()2+m =a x 的一元二次方程当a≥0时方程有实数解.14.已知方程()200ax c a +=¹有实数根,则a 与c 的关系是( ).A .0c =B .0c =或a 、c 异号C .0c =或a 、c 同号D .c 是a 的整数倍【答案】B 【解析】【分析】将原方程化为2a=c-x 的形式,根据2x 0³可判断出正确答案.原方程可化为2a=c -x ,∵2x 0³,∴c0a -³时方程才有实数解.当c=0时,20=x 有实数根;当a 、c 异号时,c0a -³,方程有实数解.故选B .【点睛】形如2=a x 的一元二次方程当a≥0时方程有实数解.题型3:直接开平方法解一元二次方程的复合型15.用直接开平方的方法解方程22(31)(25)x x +=-,做法正确的是( )A .3125x x +=-B .31(25)x x +=--C .31(25)x x +=±-D .3125x x +=±-【答案】C 【解析】【分析】一元二次方程22(31)(25)x x +=-,表示两个式子的平方相等,因而这两个数相等或互为相反数,据此即可把方程转化为两个一元一次方程,即可求解.解:22(31)(25)x x +=-开方得31(25)x x +=±-,故选:C .【点睛】本题考查了解一元二次方程-直接开平方法,关键是将方程右侧看做一个非负已知数,根据法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”来求解.16.方程224(21)25(1)0x x --+=的解为( )A .127x x ==-B .1217,3x x =-=-C .121,73x x ==D .1217,3x x =-=【答案】B 【解析】【分析】移项后利用直接开平方法解答即可.解:移项,得224(21)25(1)x x -=+,两边直接开平方,得2(21)5(1)x x -=±+,即2(21)5(1)x x -=+或2(21)5(1)x x -=-+,解得:17x =-,213x =-.故选:B .【点睛】本题考查了一元二次方程的解法,属于基本题型,熟练掌握直接开平方法是解题的关键.17.解方程:(1)21(2)602y +-=;(2)22(4)(52)x x -=-.【答案】(1)122,2y y =-=--;(2)121,3x x ==.【解析】【分析】(1)原方程先整理,再利用直接开平方法解答即可;(2)利用直接开平方法求解即可.解:(1)21(2)602y +-=,整理,得2(2)12y +=.∴2y +=±即122,2y y ==-;(2)22(4)(52)x x -=-Q ,4(52)x x \-=±-,∴452x x -=-或()452x x -=--,解得:121,3x x ==.【点睛】本题考查了一元二次方程的解法,属于基础题型,熟练掌握直接开平方法是解题的关键.题型3:一元二次方程的根的概念深入理解18.一元二次方程2251440t -=的根与249(1)25x -=的根( )A .都相等B .都不相等C .有一个根相等D .无法确定【答案】C【解析】【分析】运用直接开平方法分别求出两个方程的解,然后再进行判断即可得解.2251440t -=,214425t =,∴125t =±;249(1)25x -=,715x -=±,∴1125x =,225x =-;∴两个方程有一个相等的根125.故选C.【点睛】此题主要考查了用直接开平方法解一元二次方程和确定方程的解,用直接开方法求一元二次方程的解的类型有:x 2=a (a≥0);ax 2=b (a ,b 同号且a≠0);(x+a )2=b (b≥0);a (x+b )2=c (a ,c 同号且a≠0).题型4:直接开平方法解一元二次方程的根的通用形式19.关于x 的方程(x+a)2 =b(b>0)的根是( )A .-aB .C .当b≥0时,D .当a≥0时,【答案】A【解析】【分析】由b>0,可两边直接开平方,再移项即可得.∵b>0,∴两边直接开平方,得:∴-a ,故选A【点睛】此题考查解一元二次方程-直接开平方法,解题关键在于掌握运算法则20.形如2()(0)ax b p a +=¹的方程,下列说法错误的是( )A .0p >时,原方程有两个不相等的实数根B .0p =时,原方程有两个相等的实数根C .0p <时,原方程无实数根D .原方程的根为x =【答案】D【解析】【分析】根据应用直接开平方法求解的条件逐项判断即得答案.解:A 、当0p >时,原方程有两个不相等的实数根,故本选项说法正确,不符合题意;B 、当0p =时,原方程有两个相等的实数根,故本选项说法正确,不符合题意;C 、当0p <时,原方程无实数根,故本选项说法正确,不符合题意;D 、当0p ³时,原方程的根为x =故选:D .【点睛】本题考查了一元二次方程的解法,属于基本题目,熟练掌握应用直接开平方法求解的条件是关键.题型5:直接开平方法解一元二次方程-降次21.方程4160x -=的根的个数是( )A .1B .2C .3D .4【答案】B【解析】【分析】移项得416x ==24,然后两边同时开四次方得x-=±2,由此即可解决问题.解:∵4160x -=∴416x ==24,∴x=±2,∴方程4160x -=的根是x=±2.故选B.【点睛】本题考查高次方程的解法,解题的关键是降次,这里通过开四次方把四次降为了一次.题型6:直接开平方法解一元二次方程-换元法22.若()222225a b +-=,则22a b +的值为( )A .7B .-3C .7或-3D .21【答案】A【解析】【分析】把()222225a b +-=两边开方得到a 2+b 2-2=±5,然后根据非负数的性质确定22a b +的值.解:∵()222225a b +-=,∴a 2+b 2-2=±5,∴a 2+b 2=7或a 2+b 2=-3(舍去),即a 2+b 2的值为7.故选A .【点睛】本题考查解一元二次方程-直接开平方法:形如x 2=p 或(nx+m )2=p (p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.题型7:直接开平方法解一元二次方程-创新题,数系的扩充23.我们知道,一元二次方程21x =-没有实数根,即不存在一个实数的平方等于1-.若我们规定一个新数“i ”,使其满足21i =-(即方程21x =-有一个根为i ),并且进一步规定:一切实数可以与新数进行四则运算,且原有运算律和运算法则仍然成立,于是有()21232422,1,(1),(1)1i i i i i i i i i i ==-=×=-=-==-=,从而对于任意正整数n ,我们可以得到()41444n n n i i i i i +=×=×=,同理可得424341,,1n n n i i i i ++=-=-=.那么234202*********i i i i i i ++++++L 的值为________.【答案】1-【解析】【分析】根据()41444nn n i i i i i +=×=×=,424341,,1n n n i i i i ++=-=-=,化简各式即可求解.解:依题意有()()()22123242,1,1,11i i i i i i i i i i ==-=×=-=-==-=,∵2022÷4=505…2,∴2022i =21i =-∴234202*********i i i i i i ++++++L =−1−i +1+i +…+1+i −1=−1.故答案为:-1.【点睛】此题考查了一元二次方程的解,实数的运算,根据题意得出数字之间的变化规律是解本题的关键.一、单选题1.方程()2690x +-=的两个根是( )A .13x =,29x =B .13x =-,29x =C .13x =,29x =-D .13x =-,29x =-【答案】D【分析】根据直接开平方法求解即可.【解析】解:()2690x +-=,()269x +=,63x \+=±,123,9x x \=-=-,故选:D .A .0k ³B .0h ³C .0hk >D .0k <【答案】A 【分析】根据平方的非负性即可求解.【解析】解:()20x h +³Q ,0k \³.故选:A .【点睛】本题考查了直接开平方法解一元二次方程,理解直接开平方法的条件是解题的关键.5.已知()22230aa x x ---+=是关于x 的一元二次方程,那么a 的值为( )A .2±B .2C .2-D .以上选项都不对【答案】C【分析】只含有一个未知数,且未知数的最高次数是2的整式方程是一元二次方程,根据定义解答即可.【解析】解:∵()22230aa x x ---+=是关于x 的一元二次方程,∴222,20a a -=-¹,解得2a =-,故选:C .【点睛】此题考查了一元二次方程的定义,解一元二次方程,熟记定义是解题的关键.6.用直接开平方的方法解方程22(31)(25)x x +=-,做法正确的是( )A .3125x x +=-B .31(25)x x +=--C .31(25)x x +=±-D .3125x x +=±-【答案】C【分析】一元二次方程22(31)(25)x x +=-,表示两个式子的平方相等,因而这两个数相等或互为相反数,据此即可把方程转化为两个一元一次方程,即可求解.【解析】解:22(31)(25)x x +=-开方得31(25)x x +=±-,故选:C .【点睛】本题考查了解一元二次方程-直接开平方法,关键是将方程右侧看做一个非负已知数,根据法则:【解析】∵根据题意可得:420420a b c a b c ++=ìí-+=î①②,①-②=40b =,得0b =,①+②=820a c +=,∴解得:0b =,4c a =-.将a 、b 、c 代入原方程()200ax bx c a ++=¹可得,∵240ax bx a +-=,240ax a -=24ax a=∴2x =±故选:D .【点睛】本题考查解一元二次方程,联立关于a 、b 、c 的方程组,由方程组推出a 、b 、c 的数量关系是解题关键.二、填空题11.方程240x -=的根是______.【答案】12x =-,22x =【分析】根据直接开平方法求解即可.【解析】解:240x -=,24x =,∴2x =±,即12x =-,22x =.【点睛】本题考查了解一元二次方程,掌握用直接开平方法解一元二次方程是解题的关键.12.方程()219x +=的根是_____.【答案】1224x x ==-,【分析】两边开方,然后解关于x 的一元一次方程.【解析】解:由原方程,得13x +=±.=−1.故答案为:-1.【点睛】此题考查了一元二次方程的解,实数的运算,根据题意得出数字之间的变化规律是解本题的关键.两边开平方,得63x +=第二步所以3x =- 第三步“小华的解答从第_________步开始出错,请写出正确的解答过程.【答案】(1)-1;(2)二 ;正确的解答过程,见解析【分析】(1)利用平方差公式展开,合并同类项即可;(2)根据直接开平方法求解即可.【解析】(1)解:2(1)(1)+--m m m 221m m =--=-1;(2)解:第二步开始出现错误;正确解答过程:移项,得(x +6)2=9,两边开平方,得x +6=3或x +6=-3,解得x 1=-3,x 2=-9,故答案为:二.【点睛】本题主要考查了整式的混合运算、解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.27.嘉嘉和琪琪用图中的A 、B 、C 、D 四张带有运算的卡片,做一个“我说你算”的数学游戏,规则如下:嘉嘉说一个数,并对这个数按这四张带有运算的卡片排列出一个运算顺序,然后琪琪根据这个运算顺序列式计算,并说出计算结果.例如,嘉嘉说2,对2按A B C D ®®®的顺序运算,则琪琪列式计算得:222[(23)(3)2](152)(17)289+´--=--=-=.(1)嘉嘉说-2,对-2按C A D B ®®®的顺序运算,请列式并计算结果;。
苏科版九年级(上)数学课时练习:1.2一元二次方程的解法(含答案)
1.2一元二次方程的解法题号一二三总分得分第Ⅰ卷(选择题)一.选择题(共12小题)1.已知关于x的一元二次方程3x2+4x﹣5=0,下列说法正确的是()A.方程有两个相等的实数根B.方程有两个不相等的实数根C.没有实数根D.无法确定2.关于x的一元二次方程x2﹣4x+3=0的解为()A.x1=﹣1,x2=3 B.x1=1,x2=﹣3 C.x1=1,x2=3 D.x1=﹣1,x2=﹣33.一元二次方程(x+1)(x﹣3)=2x﹣5根的情况是()A.无实数根 B.有一个正根,一个负根C.有两个正根,且都小于3 D.有两个正根,且有一根大于3 4.若α,β是一元二次方程3x2+2x﹣9=0的两根,则+的值是()A. B.﹣C.﹣D.5.一元二次方程y2﹣y﹣=0配方后可化为()A.(y+)2=1 B.(y﹣)2=1 C.(y+)2=D.(y﹣)2= 6.下列一元二次方程中,没有实数根的是()A.x2﹣2x=0 B.x2+4x﹣1=0 C.2x2﹣4x+3=0 D.3x2=5x﹣2[来源:]7.若实数x满足方程(x2+2x)•(x2+2x﹣2)﹣8=0,那么x2+2x的值为()A.﹣2或4 B.4 C.﹣2 D.2或﹣48.△ABC三边a,b,c满足a2+b+|﹣2|=10a+2﹣22,△ABC 为()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形9.若a满足不等式组,则关于x的方程(a﹣2)x2﹣(2a﹣1)x+a+=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根D.以上三种情况都有可能10.如图,若将左图正方形剪成四块,恰能拼成右图的矩形,设a=1,则这个正方形的面积为()A. B.C.D.(1+)211.关于x的一元二次方程的两根应为()A.B.,C.D.12.已知α,β是方程x2+2019x+1=0的两个根,则(1+2019α+α2)(1+2019β+β2)的值为()A.1 B.2 C.3 D.4第Ⅱ卷(非选择题)二.填空题(共5小题)13.若关于x的一元二次方程x2﹣2x+a﹣1=0有实数根,则a的取值范围是.14.如果α,β(α≠β)是一元二次方程x2+2x﹣1=0的两个根,则α2+α﹣β的值是.15.若关于x的方程(3+a)x2﹣5x+1=0有实数根,则整数a的最大值.16.已知关于x的一元二次方程x2﹣mx+2m﹣1=0的两根x1、x2满足x12+x22=14,则m=17.对于一切正整数n,关于x的一元二次方程x2﹣(n+3)x﹣3n2=0的两个根记为a n、b n,则++…+=.三.解答题(共6小题)18.解方程(1)x2﹣36=0(2)x2﹣3x+2=019.已知关于x的一元二次方程(x﹣3)(x﹣2)=p(p+1).(1)试证明:无论p取何值此方程总有两个实数根;(2)若原方程的两根x1,x2,满足x12+x22﹣x1x2=3p2+1,求p的值.20.我们规定:方程ax2+bx+c=0的变形方程为a(x+1)2+b(x+1)+c=0.例如,方程2x2﹣3x+4=0的变形方程为2(x+1)2﹣3(x+1)+4=0(1)直接写出方程x2+2x﹣5=0的变形方程;(2)若方程x2+2x+m=0的变形方程有两个不相等的实数根,求m的取值范围;(3)若方程ax2+bx+c=0的变形方程为x2+2x+1=0,直接写出a+b+c 的值.21.已知关于x的一元二次方程(m2﹣4)x2+(2m﹣1)x+1=0.(1)m为何值时,方程有实数根?(2)若x1,x2是方程的两个实数根,S=﹣+﹣++10,求S的取值范围.22.阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)已知a2+6ab+10b2+2b+1=0,求a﹣b的值;(2)已知△ABC的三边长a、b、c都是正整数,且满足2a2+b2﹣4a ﹣6b+11=0,求△ABC的周长;(3)已知x+y=2,xy﹣z2﹣4z=5,求xyz的值.23.先阅读后解题.已知m2+2m+n2﹣6n+10=0,求m和n的值.解:把等式的左边分解因式:(m2+2m+1)+(n2﹣6n+9)=0.即(m+1)2+(n﹣3)2=0.因为(m+1)2≥0,(n﹣3)2≥0.所以m+1=0,n﹣3=0即m=﹣1,n=﹣3.利用以上解法,解下列问题:(1)已知:x2﹣4x+y2+2y+5=0,求x和y的值.(2)已知a,b,c是△ABC的三边长,满足a2+b2=12a+8b﹣52且△ABC为等腰三角形,求c.参考答案一.选择题1.B.2.C.3.D.4.C.5.B.6.C.7.B.8.A.9.C.10.A.11.B.12.D二.填空题13.a≤2.14.315.3.16.[来源:]﹣2.17.﹣三.解答题18.解:(1)∵x2﹣36=0,∴x2=36,则x=6或x=﹣6;(2)∵x2﹣3x+2=0,∴(x﹣1)(x﹣2)=0,则x﹣1=0或x﹣2=0,解得:x=1或x=2.19.解:(1)证明:原方程可变形为x2﹣5x+6﹣p2﹣p=0.∵△=(﹣5)2﹣4(6﹣p2﹣p)=25﹣24+4p2+4p=4p2+4p+1=(2p+1)2≥0,∴无论p取何值此方程总有两个实数根;[来源:学+科+网Z+X+X+K] (2)∵原方程的两根为x1、x2,∴x1+x2=5,x1x2=6﹣p2﹣p.又∵x12+x22﹣x1x2=3p2+1,∴(x1+x2)2﹣3x1x2=3p2+1,∴52﹣3(6﹣p2﹣p)=3p2+1,∴25﹣18+3p2+3p=3p2+1,∴3p=﹣6,∴p=﹣2.20.解:(1)用x+1表示方程x2+2x﹣5=0里的x,可得(x+1)2+2(x+1)﹣5=0.(2)用x+1表示方程x2+2x+m=0里的x,得(x+1)2+2(x+1)+m=0.整理,得x2+4x+3+m=0∵变形后的方程有两个不相等的实数根,∴△=42﹣4(3+m)=4﹣4m>0,∴m<1.(3)a+b+c=1.(方程ax2+bx+c=0的变形方程为a(x+1)2+b(x+1)+c=0,[来源:学。
一元二次方程的解法十字相乘法
对于多项式 x2 +(a+b)x+ab
x
a
步骤:
1.竖分二次项与常数项;
x
b
2.交叉相乘,积相加;
3.检验确定,横写因式。
x2 ax+bx=(a+b)x ab
即:x 2+(a+b)x+ab=(x+a)(x+b)
十字相乘法: 借助十字交叉线分解因式的方法
对于二次三项式的分解因式, 借用一个十字叉帮助我们分解因式, 这种方法叫做十字相乘法。
=(x-2)(x+5)
当常数项是负数 时,分解的两个 数异号,其中绝 对值较大数符号 与一次项系数符 号相一致。
因式分解时,不但要 注意首尾分解,而且 需十分注意一次项系 数,才能保证因式分 解的正确性。
练习 因式分解:
(1) x2 + 5x+ 6
(2)
课后练习:分解因式 (x-y)2+(x-y)-6
总结:
二次多项式x2+px+q在分解因式时: 如果常数项q是正数,那么把它分解成两个 同号因数,它们的符号与一次项系数p的符 号相同;
如果常数项q是负数,那么把它分解成两个 异号因数,其中绝对值较大的因数与一次 项系数p的符号相同; 对于分解的两个因数,还要看它们的和是 不是等于一次项系数。
总结:
2.
3.
4.
1.2 一元二次方程的解法
——十字相乘法
复习回顾
一、计算:
(1) (x+1)(x+ 2)
(2)
(3)
(4) 总结:
复习回顾
反过来: (1)
(2)
(3)
(4) 所以:
= (x+1)(x+2)
1.2一元二次方程解法(1)备课笔记
课题
1.2一元二次方程的解法(1)
—直接开平方法
课型
新授
教
学
设
想
教学
目标
1.通过平方根的意义,会用直接开平方法解形如(x+h)2=k(h,k为常数,k≥0)的方程;
2.经历解方程的过程,体会降次—转化的数学思想.
重点
难点
重点:会用直接开平方法解形如(x+h)2=k(h,k为常数,k≥0)的方程
难点:体会降次—转化的数学思想
教学
准备
PPT
教
学
过
程ห้องสมุดไป่ตู้
一 次 备 课
三 次 备 课
一、情境创设
我们已经会解一元一次方程,如何解一元二次方程?
对于一元二次方程x2= 2,根据平方根的意义,x是2的平方根,即x=
于是,我们知道一元二次方程x2=2有两个根,它们分别记为x1= ,x2=- .这种直接通过求平方根来解一元二次方程的方法叫做直接开平方法.
活动二、解方程:
(1)(x+1)2=2(2)
(3) (x+2.5)2-12=0 (4) 16(2-x)2-9=0
活动实施:
1.教师出示问题,鼓励学生自己尝试,交流;
2.提问:你是怎么解一元二次方程的?每一步的依据是什么?
活动三、解方程:
(x-2)2=(2x+3)2
活动实施:
1.教师出示问题,鼓励学生自己尝试,交流;
三、课堂小结
1.用直接开平方法解一元二次方程的主要步骤有哪些?
2.任意一个一元二次方程都能用直接开平方法求解吗?请举例说明
教
学
过
程
一 次 备 课
三 次 备 课
教
学
一元二次方程4种解法
一元二次方程4种解法
一元二次方程的4种解法是:一般式、工具方法、因式分解法和
求根公式法。
一、一般式:
一般式又称“把头挑出来法”或“十字相乘法”。
在这种方法中,首先把一元二次方程化为化简的一般式,如ax^2+bx+c=0,然后分别根
据a, b, c 的意义,将系数和常数参数代入系数表中,仿照公式的形
式完成无穷多种可能的解答,最后通过对称性和排除法的方法排除不
符合要求的解,从而得出结论。
二、工具方法:
工具方法就是联立矩阵等数学工具,来快速解决一元二次方程,
尤其是在涉及数量较大的情况下,使用矩阵来解决更加有利。
只要建
立好系数矩阵,就可以根据其特点,按照一定步骤,使用乘法、加法、分解等技巧,求得矩阵解,从而获得满足一元二次方程的解。
三、因式分解法:
因式分解法是把原方程转换成两个一元一次方程的形式,然后分
别求解,最后将解代入原方程,检验是否仍然满足原方程。
首先,将
原方程化成两个一元一次方程的形式,例如:ax^2+bx+c=0,我们把它
化为 (ax+m)(ax+n)=0,其中m和n分别是ax+m=0及ax+n=0的解。
然后,我们可以把m和n代入到原方程中,检验是否是原方程的解,即
看是否能使原方程成立。
四、求根公式法:
求根公式法是根据一元二次方程的特征,用公式求解一元二次方
程解。
一元二次方程有两个解,因此也有对应的两个求根公式,即复
根公式:x_1=(-b+sqrt(b^2-4ac))/(2a)和x_2=(-b-sqrt(b^2-
4ac))/(2a)。
通过将常数值代入到公式,就可以求出一元二次方程的解。
1.2.2一元二次方程的解法(配方法1)
1.利用直接开平方法解下列方程 (1) (2) x -6=0 (x+3) =5
2 2
2.能利用直接开平方法求解的一 元二次方程具有什么特征?
议一议
如何解方程: x +6x+4=0?
2
(1)观察 (x+3)2=5与这个方程有什么关
系?
(2)你能将方程转化成(x+h)2=k(k ≥ 0)的 形式吗?
x1 2 1, x 2 9 .
解方程
(2) x 12 x 13 0.
2
练习
1、解下列方程
(1) x 4 x 1 0;
2
( 2 ) x 8 x 9 0;
2
(3) x 3 x 4 0 .
2
2.用配方法说明:不论k取何实 数,多项式k2-3k+5的值必定 大于零.
小结: 解一元二次方程的基本思路
二次方程 一次方程
把原方程变为(x+h)2=k的形式 (其中h、k是常数)。 当k≥0时,两边同时开平方,这 样原方程就转化为两个一元一次方程。 当k<0时,原方程的解又如何? 2 例:x 2 x 4 0
拓展:
2-3x+p=0配方得到 把方程x
(x+m)2=
1 2
(1)求常数p,m的值;
(2)求方程的解。
2
怎样把该方程的左边写成(x+ 的形式,其中减去的正数,
2 2 2
)2-
= 0
x 6x 3 3 4 0
( x 3) 5 0
2
而对于这个方程,我们就可以应因式分解法或直接开 平方法求解
探 究
对于方程 ( x 3) 5 0
1.2一元二次方程解法(共4课时)同步课时练习含答案
一元二次方程课时练习1.2一元二次方程解法(1)复习巩固1.方程x2-256=0的根是()A.16 B.-16C.16或-16 D.14或-142.用直接开平方法解方程(x-3)2=8,得方程的根为()A.x=3+B.x1=3+x2=3-C.x=3-D.x1=3+x2=3-3.以下的配方运算中,不正确的是()A.x2+8x+9=0,化为(x+4)2=25B.2t2-7t-4=0,化为2781=416 t⎛⎫-⎪⎝⎭C.x2-2x-99=0,化为(x-1)2=100D.3x2-4x-2=0,化为2210=39 x⎛⎫-⎪⎝⎭4.若将方程x2-6x-5=0化成(x+m)2=n的形式,则m,n的值分别是() A.3和5 B.-3和5 C.-3和14 D.3和14 5.若x2+6x+a2是一个完全平方式,则a的值是()A.3 B.-3 C.±3 D.6.用适当的数填空.(1)x2+3x+__________=(x+__________)2;(2)16x2-8x+__________=(4x-__________)2;(3)a2-4ab+__________=(a-__________)2.7.方程(2x-1)2-25=0的解为__________.8.当x=__________时,代数式x2-8x+12的值是-4.9.用配方法解方程6x2-x-12=0.10.用配方法解方程x(x+8)=16.能力提升11.有一三角形的两边长分别是8和6,第三边的长是一元二次方程x 2-16x +60=0的一个实数根,则该三角形的面积是( )A .24B .24或C .48D .12.若4x 2+(k -1)x +9是完全平方式,则k 的值为( ) A .±12 B .-11或-12 C .13 D .13或-1113.当x 取任意值时,代数式x 2-4x +9的最小值为( ) A .0 B .9 C .5 D .414.在实数范围内定义一种运算“※”:a ※b =a 2-b ,按照这个规则,(x +3)※25的结果刚好为0,则x 的值为__________.15.若(x 2+y 2-5)2=4,则x 2+y 2=__________. 16.用配方法解方程(x -1)2-2(x -1)+12=0. 17.阅读理解:解方程4x 2-6x -3=0. 解:4x 2-6x -3=0,配方,得4x 2-6x +262-⎛⎫ ⎪⎝⎭-262-⎛⎫⎪⎝⎭-3=0,即4x 2-6x +9=12. 故(2x -3)2=12.即132x ,232x 以上解答过程出错的原因是什么?请写出正确的解答过程.参考答案复习巩固1.C 因为x 2-256=0,所以x 2=256. 故x 1=16,x 2=-16,应选C.2.B 因为(x -3)2=8,所以x -3=±.故x 1=3+,x 2=3-.3.A 由x 2+8x +9=0,配方可得(x +4)2=7.4.C 将x 2-6x -5=0配方,得(x -3)2=14,对应(x +m )2=n ,可得出m =-3,n =14.故选C.5.C 原式=x 2+6x +9-9+a 2=(x +3)2+(a 2-9), 由其是一个完全平方式知a 2-9=0,得a =±3. 6.(1)94 32(2)1 1 (3)4b 2 2b 7.3或-2 因为(2x -1)2-25=0,所以(2x -1)2=25. 所以2x -1=±5.所以x 1=3,x 2=-2. 8.4 因为据题意可得x 2-8x +12=-4, 所以x 2-8x +16=0.所以(x -4)2=0.所以x =4. 9.解:原式两边都除以6,移项得x 2-16x =2. 配方,得222111261212x x ⎛⎫⎛⎫-+-=+- ⎪ ⎪⎝⎭⎝⎭,即221171212x ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭因此1171212x -=或1171212x -=-, 所以132x =,243x =-. 10.解:原方程可化为x 2+8x =16,配方,得x 2+8x +42=16+42,即(x +4)2=32,所以x +4=±.所以14x ,2=4x -.能力提升11. B 解方程x 2-16x +60=0,得x 1=10,x 2=6. 根据三角形的三边关系,知x 1=10,x 2=6均合题意.当三角形的三边分别为6,8, 10时,构成的是直角三角形,其面积为12×6×8=24; 当三边分别为6,6,8时,构成的是等腰三角形,根据等腰三角形的“三线合一”性质及勾股定理,可求得底边上的高为此时三角形的面积为182⨯⨯故选B. 12.D 因为4x 2+(k -1)x +9=(2x )2+(k -1)x +32是完全平方式,所以k -1=±2×2×3, 即k -1=±12. 所以k =13或k =-11.13.C x 2-4x +9=x 2-4x +4+5=(x -2)2+5. 因为(x -2)2≥0,所以(x -2)2+5的最小值为5, 即x 2-4x +9的最小值为5.14.2或-8 由规则可得(x +3)2-25=0,解得x 1=2,x 2=-8.15.7或3 由题意可知x 2+y 2-5=, 即x 2+y 2=5±2,所以x 2+y 2=7或x 2+y 2=3.16.解:设x -1=y ,则原方程可化为y 2-2y +12=0.解得1y =±.因此x -1=12±,即2x =.故x 1=2+2,x 2=2-2. 17.解:错在没有把二次项系数化为1. 正解:原式可化为23324x x -=, 配方,得23939216416x x -+=+,即2321=416x ⎛⎫- ⎪⎝⎭,3=44x -±,得134x +=,234x =.一元二次方程课时练习1.2一元二次方程解法(2)复习巩固1.一元二次方程2x 2-3=4x 化为一般形式后,a ,b ,c 的值分别为( ) A .2,-3,4 B .2,-4,-3 C .2,4,-3 D .2,-3,- 4 2.一元二次方程x 2+3x -4=0的解是( ) A .x 1=1,x 2=-4 B .x 1=-1,x 2=4 C .x 1=-1,x 2=-4 D .x 1=1,x 2=43.用公式法解方程x 2-6x -6=0,正确的结果是( )A .x =-3B .x =-3C .x =-D .x =4.用公式法解方程2t 2=8t +3,得到( )A .tB .tC .4=2t ± D .4=2t -± 5.若两个相邻正奇数的积为255,则这两个奇数的和是( ) A .30 B .31 C .32 D .346.一元二次方程3x 2+5=4x 中,b 2-4ac 的值为__________.7.方程3x 2x -2=0的解是____________.8.若关于x 的一元二次方程(m -1)x 2+x +m 2+2m -3=0有一根为0,则m 的值是__________.9.有一长方形的桌子,长为3m ,宽为2m ,一长方形桌布的面积是桌面面积的2倍,且将桌布铺到桌面上时各边垂下的长度相同,则桌布长为__________,宽为__________.10.用公式法解下列方程: (1)2x 2+8x -1=0;(2)(x +1)(x -1)=.能力提升11.关于x 的一元二次方程x 2-m (3x -2n )-n 2=0中,二次项系数、一次项系数、常数项分别是( )A .1,3mn,2mn -n 2B .1,-3m,2mn -n 2C .1,-m ,-n 2D .1,3m,2mn -n 212.解方程(x -1)2-5(x -1)+4=0时,我们可以将x -1看成一个整体,设x -1=y ,则原方程可化为y 2-5y +4=0,解得y 1=1,y 2=4.当y =1时,即x -1=1,解得x =2;当y =4时,即x -1=4,解得x =5,所以原方程的解为x 1=2,x 2=5.则利用这种方法求得方程(2x +5)2-4(2x +5)+3=0的解为( )A .x 1=1,x 2=3B .x 1=-2,x 2=3C . x 1=-3,x 2=-1D .x 1=-1,x 2=-2 13.如果12x 2+1与4x 2-3x -5互为相反数,则x 的值为__________. 14.已知线段AB 的长为a .以AB 为边在AB 的下方作正方形ACDB .取AB 边上一点E .以AE 为边在AB 的上方作正方形AENM .过点E 作EF ⊥CD ,垂足为F 点.若正方形AENM 与四边形EFDB 的面积相等,则AE 的长为__________.15.解关于x 的方程x 2-m (3x -2m +n )-n 2=0(其中m ,n ≥0). 16.阅读材料,回答问题.材料:为解方程x 4-x 2-6=0,可将方程变形为(x 2)2-x 2-6=0,然后设x 2=y ,则(x 2)2=y 2,原方程化为y 2-y -6=0①,解得y 1=-2,y 2=3.当y =-2时,x 2=-2无意义,舍去;当y =3时,x 2=3,解得=x ±所以原方程的解为1x ,2=x 问题:(1)在由原方程得到方程①的过程中,利用__________法达到了降次的目的,体现了__________的数学思想.(2)利用上述的解题方法,解方程(x 2-x )2-4(x 2-x )-12=0.参考答案复习巩固1.B2.A 因为a =1,b =3,c =-4,b 2-4ac =32-4×1×(-4)=25,所以352x -±==.所以x 1=1,x 2=-4.3.D 因为a =1,b =-6,c =-6,b 2-4ac =(-6)2-4×1×(-6)=60;所以663212x ±±===±⨯.4.A5.C6.-447.62621+=x 62622-=x 8.-3 由题意,得m 2+2m -3=0,且m -1≠0.解得m =-3.9.4m 3m 桌布的面积为3×2×2=12(m 2).设垂下的长度为x ,则(3+2x )(2+2x )=12,解得12x =.故桌布的长为4m ,宽为3m.10.解:(1)a =2,b =8,c =-1,代入公式x =,得1x =,242x --=.(2)原方程化简得x 2--1=0,a =1,b =-,c =-1,代入公式2b x a-=,得1x =2x =能力提升11.B 原方程可化为x 2-3mx +2mn -n 2=0.故选B.12.D 由题意可知,这种解方程的方法为整体代入法,设2x +5=y ,则(2x +5)2-4(2x +5)+3=0可化为y 2-4y +3=0,解得y 1=1,y 2=3.当y =1时,即2x +5=1,解得x =-2;当y =3时,即2x +5=3,解得x =-1.所以方程(2x +5)2-4(2x +5)+3=0的解为x 1=-1,x 2=-2.13.43或23- 由题意,得212x +1+4x 2-3x -5=0,解得43x =或23x =-.14.12a设AE的长为x,则BE的长为a-x,根据题意,得x2=(a-x)·a.解得x=.故AE.一元二次方程课时练习1.2一元二次方程解法(3)复习巩固1.一元二次方程x 2+2x +2=0的根的情况是( ) A .有两个相等的实数根 B .有两个不相等的实数根 C .只有一个实数根 D .无实数根2.下列方程中,有两个相等实数根的是( )A .x 2-+5=0B .2x 2+4x +35=0C .2x 2-15x -50=0D .20x --3.一元二次方程x 2+4x +c =0中,c <0,该方程的根的情况是( ) A .没有实数根B .有两个不相等的实数根 C .有两个相等的实数根 D .不能确定4.若关于x 的一元二次方程x 2+(m -2)x +m +1=0有两个相等的实数根,则m 的值是( )A .0B .8C .D .0或8 5.若一元二次方程x 2-ax +2=0有两个实数根,则a 的值可以是( ) A .0 B .1 C .2 D .36.若关于x 的方程x 2+-1=0有两个不相等的实数根,则k 的取值范围是( ) A .k >-1 B .k ≥-1 C .k >1 D .k ≥07.关于x 的一元二次方程x 2-ax +(a -1)=0的根的情况是__________.8.若|b -1|0,且一元二次方程kx 2+ax +b =0有实数根,则k 的取值范围是__________.9.当k 取何值时,关于x 的一元二次方程x 2-4x +k -5=0 (1)有两个不相等的实数根; (2)有两个相等的实数根; (3)没有实数根.能力提升10.对于关于x的方程kx2+(1-k)x-1=0,下列说法正确的是()A.当k=0时,方程无解B.当k=1时,方程有一个实数解C.当k=-1时,方程有两个相等的实数解D.当k≠0时,方程总有两个不相等的实数解11.已知a,b,c是△ABC三边的长,且关于x的方程a(1+x2)+2bx-c(1-x2)=0的两根相等,则三角形的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.锐角三角形12.若一元二次方程ax2-2x+4=0有两个不相等的实数根,则a的取值范围为__________.13.若关于x的方程(a-6)x2-8x+6=0有实数根,则整数a的最大值是__________.14.证明不论m为何值,方程2x2-(4m-1)x-m2-m=0总有两个不相等的实数根.15.已知关于x的一元二次方程kx2-(4k+1)x+3k+3=0(k是整数).(1)求证:该方程有两个不相等的实数根.(2)若此方程的两个实数根分别为x1,x2(x1<x2),设y=x2-x1,判断y是否为变量k的函数?如果是,请写出函数解析式;若不是,请说明理由.参考答案复习巩固1.D因为Δ=22-4×1×2=4-8=-4<0,所以原方程无实数根.2.A3.B由于Δ=42-4c=16-4c,而c<0,故Δ>0.因此该方程有两个不相等的实数根.4.D由题意,得(m-2)2-4×1×(m+1)=0.解得m1=0,m2=8.故选D.5.D由题意,得(-a)2-4×1×2≥0.化简,得a2≥8.四个选项中满足a2≥8的只有3,故选D.6.D由题意得24110k⎧(-⨯⨯(-)>⎪⎨≥⎪⎩,,解得k≥0.7.有实数根因为Δ=(-a)2-4×1×(a-1)=a2-4a+4=(a-2)2≥0,所以原方程一定有实数根.8.k≤4,且k≠0由|b-1|0,得a=4,b=1.故一元二次方程kx2+ax+b=0即kx2+4x+1=0.因为该方程有实数根,所以16-4k×1≥0,且k≠0.解得k≤4,且k≠0.9.解:Δ=(-4)2-4(k-5)=16-4k+20=36-4k.(1)因为方程有两个不相等的实数根,所以Δ>0,即36-4k>0.解得k<9.(2)因为方程有两个相等的实数根,所以Δ=0,即36-4k=0.解得k=9.(3)因为方程没有实数根,所以Δ<0,即36-4k<0.解得k>9.能力提升10.C当k=0时,方程变为x-1=0,x=1.故选项A错误.当k=1时,方程变为x2-1=0,方程有两个实数解x1=1,x2=-1.故选项B错误;当k=-1时,方程变为-x2+2x-1=0,解得x1=x2=1.故选项C正确,选项D错误.故选C.11.B原方程可变形为(a+c)x2+2bx+a-c=0.依题意,得4b2-4(a+c)(a-c)=0.整理,得b2+c2=a2.所以此三角形是直角三角形.故选B.12.14a<,且a≠0因为方程ax2-2x+4=0有两个不相等的实数根,所以4-16a>0,解得14 a<.因为ax2-2x+4=0是一元二次方程,所以a≠0. 13.8讨论:(1)若a=6,则原方程变为-8x+6=0.此时34 x=.(2)若a≠6,则b2-4ac=(-8)2-24(a-6)≥0.解得263 a≤.综上,263a≤.故整数a的最大值为8.14.证明:因为b2-4ac=[-(4m-1)]2-4×2×(-m2-m)=24m2+1>0,所以不论m为何值,方程2x2-(4m-1)x-m2-m=0总有两个不相等的实数根.15.(1)证明:因为k是整数,所以12k≠.所以2k-1≠0.因为b2-4ac=(4k+1)2-4k(3k+3)=(2k-1)2>0,所以原方程有两个不相等的实数根.(2)解:y是k的函数.解方程kx2-(4k+1)x+3k+3=0,得41212k kxk(+)±(-) =.所以x=3或x=1+1 k .因为k是整数,k≠0,所以11 k ≤.所以1+1k≤2<3.又因为x1<x2,所以x1=1+1k,x2=3.所以11 312yk k⎛⎫=-+=-⎪⎝⎭.一元二次方程课时练习1.2一元二次方程解法(4)复习巩固1.一元二次方程x(x-1)=0的解是()A.x=0 B.x=1C.x=0或x=1 D.x=0或x=-12.一元二次方程x2-x+14=0的根是()A.11 2x=,21 =2x-B.x1=2,x2=-2C.x1=x2=12-D.x1=x2=123.解方程(x+5)2-3(x+5)=0,较为简便的方法是()A.直接开平方法B.因式分解法C.配方法D.公式法4.方程x(x-4)=32-8x的解是()A.x=-8 B.x1=4,x2=-8C.x1=-4,x2=8 D.x1=2,x2=-85.用因式分解法把方程(x-1)(x-2)=12分解成两个一元一次方程,下列分解中正确的是()A.x-5=0,x+2=0 B.x-1=3,x-2=4C.x-1=2,x-2=6 D.x+5=0,x-2=06.如果方程x2+mx-2m=0的一个根为-1,那么方程x2-6mx=0的根为()A.x=2 B.x=0C.x1=2,x2=0 D.以上答案都不对7.方程(x-1)(x+2)=2(x+2)的根是__________.8.如果代数式3x2-6的值为21,那么x的值为__________.9.已知x=2是一元二次方程(m-2)x2+4x-m2=0的一个根,则m的值是__________.10.用因式分解法解下列一元二次方程:(1)(x-1)(x+3)=-3;(2)(3x-1)2=4(2x+3)2.能力提升11.已知关于x的方程x2+px+q=0的两根为x1=3,x2=-4,则二次三项式x2+px +q可分解为()A.(x+3)(x-4) B.(x-3)(x+4)C.(x+3)(x+4) D.(x-3)(x-4)12.用因式分解法解方程x2-mx-7=0时,将左边分解后有一个因式为x+1,则m的值为()A.7 B.-7 C.6 D.-613.定义新运算“⊕”如下:当a≥b时,a⊕b=ab+b;当a<b时,a⊕b=ab-a.若(2x-1)⊕(x+2)=0,则x=__________.14.按指定的方法解下列方程:(1)12(2x-1)2-32=0(直接开平方法);(2)3x2+4x+1=0(配方法);(3)x2-x-7=0(公式法);(4)x2-1=3x-3(因式分解法).15.小张和小林一起解方程x(3x+2)-6(3x+2)=0.小张将方程左边分解因式,得(3x+2)(x-6)=0,所以3x+2=0或x-6=0.方程的两个解为12 3x=-,x2=6.小林的解法是这样的:移项,得x(3x+2)=6(3x+2),方程两边都除以(3x+2),得x=6.小林说:“我的方法多简便!”可另一个解12 3x=-哪里去了?小林的解法对吗?你能解开这个谜吗?16.有一大一小两个正方形,小正方形的边长比大正方形边长的一半多4 cm,大正方形的面积比小正方形面积的2倍少32 cm2,求这两个正方形的边长.参考答案复习巩固1.C由x(x-1)=0,得x=0或x-1=0,即x=0或x=1.故选C.2.D因为x2-x+14=0,即212x⎛⎫-=⎪⎝⎭,所以x1=x2=1 2 .3.B4.B移项,得x(x-4)-(32-8x)=0,即x(x-4)-8(4-x)=0,也即(x-4)(x+8)=0.故x1=4,x2=-8.5.A原方程可化为x2-3x-10=0,即(x-5)(x+2)=0.故x-5=0或x+2=0. 6.C因为x2+mx-2m=0的一个根为-1,所以(-1)2-m-2m=0,得13 m=.所以方程x2-6mx=0即为x2-2x=0,解得x1=2,x2=0.7.x1=-2,x2=3移项,得(x-1)(x+2)-2(x+2)=0,即(x+2)(x-3)=0.故x1=-2,x2=3.8.±3由题意,得3x2-6=21,解得x=±3.9.0或4把x=2代入方程(m-2)x2+4x-m2=0,得4(m-2)+8-m2=0.解这个方程,得m1=0,m2=4.10.解:(1)因为将原方程整理,可得x2+2x=0,即x(x+2)=0,所以x=0或x+2=0.所以x1=0,x2=-2.(2)整理,得(3x-1)2-[2(2x+3)]2=0,即[3x-1+2(2x+3)][3x-1-2(2x+3)]=0,(3x-1+4x+6)(3x-1-4x-6)=0,(7x+5)(-x-7)=0,所以7x+5=0或-x-7=0.所以157x =-,x 2=-7. 能力提升11.B 因为方程x 2+px +q =0的两根为x 1=3,x 2=-4,所以x 2+px +q =(x -3)[x -(-4)]=(x -3)(x +4).12.C 由题意可得x +1=0,则x =-1,即方程x 2-mx -7=0有一个解为-1.因此(-1)2-m ×(-1)-7=0.故m =6.13.-1或12若2x -1<x +2,此时x <3.根据定义,(2x -1)⊕(x +2)=(2x -1)(x +2)-(2x -1)=0,解得x 1=-1,212x =,这两个解均符合题意.若2x -1≥x +2,此时x ≥3.根据定义,(2x -1)⊕(x +2)=(2x -1)·(x +2)+(x +2)=0,解得x 1=-2,x 2=0,这两个解均不符合题意.综上所述,x =-1或12x =. 14.解:(1)将原方程整理,得(2x -1)2=64,开平方,得2x -1=±8,2x =1±8,182x ±=, 所以118922x +==,218722x -==-. (2)将原方程移项,得3x 2+4x =-1,方程两边同时除以3,得24133x x +=-,配方,得22242123333x x ⎛⎫⎛⎫++=-+ ⎪ ⎪⎝⎭⎝⎭,即22139x ⎛⎫+= ⎪⎝⎭,2133x +=±,2133x =-±.所以1211333x =-+=-,221133x =--=-.(3)因为b 2-4ac =(-1)2-4×(-7)=29,所以x =即1x =2x =. (4)原方程可化为x 2-1-3x +3=0,即(x +1)(x -1)-3(x -1)=0,(x -1)(x +1-3)=0, 于是x -1=0或x -2=0,所以x 1=1,x 2=2.15.解:小林的解法不对,因为3x +2可能为0,等式两边不能同时除以一个等于零的整式.16.解:设大正方形的边长为x cm,根据题意,得2242x⎛⎫+⎪⎝⎭-x2=32.整理,得x2-16x=0,即x(x-16)=0.解得x1=16,x2=0(不合题意,舍去).因此16×12+4=12(cm).答:大正方形的边长为16cm,小正方形的边长为12cm。
高中一元二次方程的解法
高中一元二次方程的解法如下:1. 直接开平方法:如果一元二次方程的二次项系数为a,一次项系数为b,常数项为c,且a≠0,那么x^2=b/a,那么这样的方程就可以通过直接开平方的方法解出其解。
2. 配方法:把一元二次方程配成(x+m)^2=n的形式,再利用直接开平方法求解,这样可以使计算简化。
3. 因式分解法:利用乘法公式来分解因式,通过因式分解来求解一元二次方程。
首先要通过观察或分析,确定一元二次方程的最高项和一次项的分母为1时可能有几个因式在x^2±2bx+c=0;或b^2-4ac≥0时可用公式求得解。
下面我们以一些例题的形式展示这些解法:例1:(1)方程x^2-4x+3=0;(2)方程(x-1)^2-2(x-1)+2=0;解:(1)由原方程,得(x-1.5)^2-2.25=0。
直接开平方得:x-1.5=±1.5,所以x?=3,x?=0;(2)由原方程,得(x-1-1)^2=0,所以x?=x?=2。
例2:用因式分解法解方程:x^2-3x+2=0。
解:原式=(x-1)(x-2)=0,得x?=1,x?=2。
除了上述两种方法外,还有公式法等其他解法。
公式法需要用到一元二次方程的求根公式,通过使用根公式来解一元二次方程。
具体步骤包括将一元二次方程化为一般形式,确定判别式的值,根据判别式的值确定根的个数,然后使用根的公式求出方程的根。
总结:高中一元二次方程的解法包括直接开平方法、配方法、因式分解法和公式法等。
选择哪种方法取决于方程的特点和需要,有时候可能需要多种方法联合使用来解决问题。
理解和掌握这些解法对于解决一元二次方程问题非常重要。
另外需要注意的是,在实际应用中,一元二次方程往往需要通过数学模型建立、数据处理和分析等方法进行求解。
这就需要结合实际问题和数学知识进行综合应用和创新思考。
1.2.3一元二次方程的解法(公式法1)解读
求根公式 : X=
这是收获的
时刻,让我 们共享学习 的成果
二、用公式法解一元二次方
程的一般步骤:
1、把方程化成一般形式。 并写
出a,b,c的值。
2、求出b2-4ac的值。
3、代入求根公式 :
X=
(a≠0, b2-4ac≥0)
4、写出方程的解: x1=?, x2=?
这是收获的
时刻,让我 们共享学习 的成果
例 4 解方程: x 21 3 x 6
解:去括号,化简为一般式:
b b2 4ac x 2a
3x 7x 8 0
2
这里
a 3、 b= - 7、 c= 8
49 96 - 47 0
2 b2 4ac ( 7 ) 4 3 8
方程没有实数解。
(2)x2+x-6=0
(3)3x2-6x-2=0
解: a 1, b 1, c 6 b 4ac 1 24 25 0
2
解: a 3, b 6, c 2 b 4ac 36 24 60 0
2
1 25 1 5 x 2 2
b2-4ac= 52-4×3×(-2) = 49 .
a 1, b 2, c 5 b 4ac 4 20 24 0
2
x=
= .
=
.
2 24 x 1 6 2
即
x1 = -2 ,
x2 =
.
x1 1 6 , x2 1 6
做一做
1.用公式法解下列方程:
b b 4ac 3、代入求根公式 : x 2a
2
x2 4、写出方程的解: x1、
一元二次方程概念及其解法课件
般式推断出来。 5、通过本节的学习,可以由题目中方程
的形式来找到解题的最优方法。
2019/11/26
09数本二班 朱先钊
返回
3
◆一元二次方程的一般式:
一元二次方程,就是只有一个未知数 且未知数最高次数为2的整式方程,
其一般形式为: ax2 bx c 0
又因为 x1 70 50
所以,本题解得 x 5 为原题的解。
2019/11/26
09数本二班 朱先钊
10
※配方法:将方程的左边化成含未知
数的完全平方,右边是数值的过程。
x2 75x 350 0
x2 75x (75)2 (75)2 3500
2
2
配方得到:(x 75)2 (75)2 3500
2019/11/26
09数本二班 朱先钊
21
◆对解一元二次方程的归纳总结:
1、遇到一个二次方程时,看是否满足一元二次方程的 定义,如果满足则按照解一元二次方程的方法解题。
2、一个一元二次方程只有二次项和常数项,那么我们 直接运用开平方法就能很快解得此题。
3、遇到既有二次也有一次项的一元二次方程,首先想 到运用因式分解法能不能很简单的化成几个整式或因 式的乘积形式,如果过于复杂,则运用配方法解此题。
想一想
1、你能举出几个一元二次 方程一般式的例子吗?
2、根据一元二次方程的定 义及一般式能否推断出一元 三次方程的定义及一般式呢?
2019/11/26
09数本二班 朱先钊
返回4
例1: 判断下列方程是不是一元二次方程
(1)3x2 1 y 0 3
一元二次方程解法
3、用配方法解形如ax2+bx+c=0的一元二次 方程的过程,体现了什么数学思想?一般 步骤是什么? 转化的思想
系数化为1,移项,配方,开方,求解,定根
1、解下列关于x的方程:
(1) (x 6)(x 6)1 (2) 4 x 2(53 )2(8 21 5 )
(3) ( 32)x232
(1) x2 1(a 0) a
(2) x2a0(a0) (3) (xa)2 b2
(4) (a x c )2 d (d 0 ,a 0 )
3、填空:
(1) x28x1__ 6 x4_2
(2) x25x_ 2 4_ 5 x_ 52 2
(3) x24 3x_49_x_23 _2
(3)4x 2 6x94_ _4x_ 43 _2
((45))a 2x x2 2 5 3 b x x 2_ _ 904b_ 0_ a2 2 a xx 2_ 3 0_ _ 2 b a_ 22
3、用配方法说明:不论k取何实 数,多项式k2-3k+5的值必定 大于零.
设这个数为x,根据题意得: x2 -x=0
将方程左边配方就可求得x的值。
还可以如何求x的值?
将方程左边分解因式,得x(x-1)=0 则有 x=0或x-1=0
∴
x1=0或x2=1
x2-9=0
解:原方程可变形为
(x+3)(x-3)=0
AB=0A=0或B=0
X+3=0 或 x-3=0 ∴ x1=-3 ,x2=3
化 x24x22122
的
左边写成完全平方的形式
数
(x2)2 5
变成了(x+h)2=k 的
学
开平方 形式
思
1·2一元二次方程的解法
1·2一元二次方程的解法知识点1. 直接开平方法直接开平方法依据是平方根的定义及其性质,直接开平方法运用于解形如x2=k(k≥0)(或(x+h)2=k(k ≥0)的一元二次方程。
根据平方根的定义可知,当k≥0时,x=±k(或x+h=±k,即x=-h±k);当k<0时,方程没有实数根。
例1、用直接开平方法解下列方程(1)x2—9=0 (2)4(x—2)2—36=0变式:用直接开平方法求(x—1)2=4的解为_________________.知识点2. 配方法(重点)配方法是解一元二次方程的重要方法,熟练掌握完全平方公式是配方法的基础。
对于二次项系数为1的方程,在方程两边同时加上一次项系数一半的平方即可配方;若二次项系数不为1时,一般应先将二次项系数化为1,然后再进行配方比较简单。
配方法的一般步骤:(1)移项:把常数项移到方程的右边,含有未知数的项移到方程左边;(2)化二次项系数为1:利用等式的性质,在方程两边同时除以二次项系数;(3)配方:方程两边同时加上一次项系数一半的平方,将方程左边配成一个关于未知数的代数式的平方。
(4)开方:利用直接开方法进行求解。
例2、用配方法解下列方程:(1)x2-4x-3=0 (2)2x2-3x-1=0变式:用配方法解方程x2-2x-5=0时,原方程应变形为()A.(x+1)2=6B.(x-1)2=6C.(x+2)2=9D.(x-2)2=9变式:用配方法解方程:2x2+3=7x知识点3. 公式法(重点)一般地,对于一元二次方程ax2+bx+c=0(a≠0),当b2-4ac≥0时,它的解为x=a acb b24 2-±-,这个公式叫做一元二次方程的求根公式,利用求根公式直接解一元二次方程的方法叫做公式法。
用公式法解一元二次方程的一般步骤:(1)把一元二次方程化成一般形式;(2)确定a、b、c的值;(3)求出b2-4ac的值(或代数式);(4)如果b2-4ac≥0,那么把a、b、c的值代入求根公式x=a acb b24 2-±-中求出方程的根,如果b2-4ac<0,那么方程没有实数根。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2一元二次方程解法(
1) NO45一.学习目标
学会用直接开平方法解形如n m x 2)((0n )的方程.
二.自学指导
(1)一元二次方程12x 的解为.
(2)思考如何解一元二次方程0142x .
三.自学检测
1.解下列方程:
(1)081.02x (2)0
492x (3)4)1(2x (4)09)1(42y (5)2
)1(2x (
6)05)32(2x 2.若一元二次方程0492k x 有解,求k 的取值范围.
3.请你构造一个一元二次方程,使得该方程的解为x =3或-1.
当堂训练 NO45
必做题:
姓名1.方程22x 的解为 .
2. 若一元二次方程
0132k x 有解,则k 的取值范围是 . 3.直线x y 34
与反比例函数x y
12
的图像交点坐标为 . 4.解下列方程
(1)01442m (2)322x (3)29(2)1210
x (4)5)1(42x (5)05)1(22x (6) 0
1)1(31
2x 选做题:
5.某工厂经过两年时间将某种产品的产量从每年14400台提高到16900台,设平均每年增长的百分率为x ,则x = .
6.两个连续奇数的积等于255,求这两个连续奇数是多少?。