4、等差数列2
4.2.2等差数列的前n项和(第一课时)课件(人教版)
A.5
√
B.6
C.7
)
D.8
a1
17
解析 由 7a5+5a9=0,得 d =- 3 .
又a9>a5,所以d>0,a1<0.
d
1 a1 1 17 37
d 2
因为函数 y=2x +a1-2x 的图象的对称轴为 x=2- d =2+ 3 = 6 ,
取最接近的整数 6,故 Sn 取得最小值时 n 的值为 6.
已知等差数列{ an }的首项为a1,项数
是n,第n项为an,求前n项和Sn .
S n a1 (a1 d ) (a1 2d ) ... [a1 (n 1)d ], ①
S n an (an d ) (an 2d ) ... [an (n 1)d ], ②
跟踪练习
8.植树节某班20名同学在一段直线公路一侧植树,每人植树一棵,相邻两棵树相距
10米,开始时需将树苗集中放置在某一棵树坑旁边,使每位同学从各自树坑出发前
来领取树苗往返所走的路程总和最小,此最小值为________米.
解析 假设20位同学是1号到20号依次排列,
使每位同学从各自树坑出发前来领取树苗往返所走的路程总和最小,
由①+②,得
2Sn (a1 an)+(a1 an)+(a1 an)+...+(a1 an)
n个
n(a1 an )
2 S n n(a1 an ) 即Sn
2
求和公式
可知三
求一
等差数列的前n项和的公式:
n(a1 an )
Sn
不含d
等差数列(课时1 等差数列的概念及通项公式)高二数学课件(人教A版2019选择性必修第二册)
情境设置
问题2:观察等差数列的通项公式,你认为它与我们熟悉的哪一类函数有关?
[答案] 由于 ,故 是函数 当 时的函数值,即 ,点 则是函数 图象上的均匀分布的孤立的点,而 是直线 的斜率,记为 ,实际上,如果已知直线上任意两点 , ,由斜率的公式可知 ,公差 的符号决定了数列的单调性,当 时,数列 为递增数列,当 时,数列 为常数列,当 时,数列 为递减数列.
已知数列 中, , .
(1) 证明:数列 是等差数列.
[解析] 由已知得, , , 所以数列 是以2为首项,2为公差的等差数列.
(2) 求数列 的通项公式.
[解析] 由(1)知, ,所以 .
巩固训练
1.若数列 满足 ,则数列 是( ).A.公差为1的等差数列 B.公差为 的等差数列C.公差为 的等差数列 D.不是等差数列
2.熟练掌握等差数列是关于 的一次函数这一结构特征,并且公差 是一次项系数,它的符号决定了数列的单调性,当 时,数列 为递增数列,当 时,数列 为常数列,当 时,数列 为递减数列.
1.设 是等差数列,下列结论中正确的是( ).A.若 ,则 B.若 ,则 C.若 ,则 D.若 ,则
情境设置
问题2:问题1的结论可给我们什么样的启示?
[答案] 可以用等差中项的定义来证明一个数列是等差数列,即证明: .
问题3:若数列 的通项公式 ,则该数列是等差数列吗?
[答案] 是.因为 ,所以数列 是等差数列.
新知生成
等差数列的判定方法有以下三种:
(1)定义法: 为等差数列.
问题4:由等差数列的定义可知,如果 , , 这三个数是等差数列,你能求出 的值吗?
[答案] 由定义可知 ,即 ,解得 .
新知生成
四年级奥数第五讲-等差数列(二)-教师版
第五讲等差数列(二)解题方法某些问题以转化为求若干个数的和解决这些问题时先要判断这些数是否成为等差数列,如果是等差数列才可以运用它的一些公式。
在解决自然数的数字问题时,应根据题目的具体特点,有时可考虑将题中的数适当分组,并将每组中的数合理配对,使问题得以顺利解决。
例题1小王看一本书第一天看了20页,以后每天都比前一天多看2页,第30天看了78页正好看完。
这本书共有多少页?提示根据条件“以后每天比前一天多看2页”可以知道他每天看的页数都是按照一定规律排列的数,即20、22、24、…、76、78。
要求这本书共有多少页也就是求出这列数的和。
解:由题意可知,这列数是一个等差数列,首项=20,末项=78,项数=30,所以这本书共有(20+78)×30÷2=1470(页)答:这本书共有1470页。
引申1、文丽学英语单词,第一天学会了3个,以后每天都比前一天多学会1个,最后一天学会了21个。
文丽在这些天中共学会了多少个英语单词?解:文丽每天学会的单词个数是一个等差数列,即3、4、5、6、…、21。
首项=3,末项=21,项数=(21-3)÷2+1=10。
所以,文丽在这些天中共学会了(3+21)×10÷2=120(个)答:文丽在这些天中共学会了120个英语单词。
2、李师傅做一批零件,第一天做了25 个,以后每天都比前一天多做2个,第20天做了63个正好做完。
这批零件共有多少个?答:(25+63)×20÷2=880(个)3、小李读一本短篇小说,她第一天读了20页这个等差数列共有多少项?答:这个等差数列共有29项。
例题2 建筑工地上堆着一些钢管(如图所示),求这堆钢管一共有多少根。
提示:根据图可以知道,这是一个以3为首项,以1为公差的等差数列,求钢管一共有多少根其实是求这列数的和。
解:求钢管一共有多少根,其实就是求3+4+5+…+9+10的和。
项数=(10-3)÷1+1=8,根据公式求和为:3+4+5+…+9+10=(3+10)×8÷2=13×8÷ 2=52(根)。
等差数列的概念第1课时课件上学期高二人教A版(2019)选择性必修第二册
分析:根据数列的递推关系, 利用取倒数法进行转化,
构造等差数列, 求出通项公式即可求值.
+
解: ∵an+1= +, ∴两边取倒数得 = = +1,
即
+
−
=1, 即数列
+
是公差d=1的等差数列,
∵首项为 =1, ∴ =1+(n-1)×1=n,
下面,我们利用通项公式解决等差数列的一些问题.
例1 (1)已知等差数列{an}的通项公式为an=5-2n,求数
列{an}的公差和首项;
(2)求等差数列8,5,2,······的第20项;
分析:(1)已知等差数列的通项公式,只要根据等差
数列的定义,由an+1-an = d ,即可求出公差d,
(2)可以先根据数列的两个已知项求出通项公式,再利
度, 得到从距离地面20米起每升高100米处的大气温度(单
位: ⁰C)依次为
25 , 24 , 23 , 22 , 21.
(3)
4.某人向银行贷款a万元,贷款时间为n年. 如果个人
贷款月利率为r, 那么按照等额本金方式还款,他从某月开
始,每月应还本金b(=)万元,每月支付给银行的利息
(单位:元)依次为
些具有特殊变化规律的数列,建立它们的通项公式和前n项
和公式,并运用它们解决实际问题和数学问题,从中感受
数学模型的现实意义与应用. 下面,我们从一类取值规律比
较简单的数列入手.
4.2.1 等 差 数 列 的 概 念
请看下面几个问题中的数列.
高中数学第4章数列 第2课时等差数列的性质课件苏教版选择性必修第一册
培养数学建模及数学运算素养.
NO.1
情境导学·探新知
知识点1 知识点2
如图,第一层有 1 个球,第二层有 2 个球,最上层有 16 个球, 那么,从上面数第二层有几个球?
每隔一层的球数有什么规律? 每隔二层呢? 每隔三层呢?
知识点 1 等差数列的图象 等差数列的通项公式 an=a1+(n-1)d,当 d=0 时,an 是一个固 定常数;当 d≠0 时,an 相应的函数是一次函数;点(n,an)分布在以_d 为斜率的直线上,是这条直线上的一列孤立的点.
知识点 2 等差数列的性质 (1){an}是公差为 d 的等差数列,若正整数 m,n,p,q 满足 m+ n=p+q,则 am+an=a_p_+__a_q_. ①特别地,当 m+n=2k(m,n,k∈N*)时,am+an=2ak. ②对有穷等差数列,与首末两项“等距离”的两项之和等于首末 两项的和__,即 a1+an=a2+an-1=…=ak+an-k+1=….
[解] 记 2017 年为第 1 年,由题设可知第 1 年获利 200 万元, 第 2 年获利 180 万元,第 3 年获利 160 万元,……则该公司每年获得 的利润构成等差数列{an},且当 an<0 时,该公司生产此产品将出现 亏损.
设第 n 年的利润为 an, 因为 a1=200,公差 d=-20, 所以 an=a1+(n-1)d=220-20n.
2.已知在等差数列{an}中,a7+a9=16,a4=1,则 a12= ________.
15 [由等差数列的性质得 a7+a9=a4+a12=16,又∵a4=1,∴a12 =15.]
NO.2
合作探究·释疑难
类型1 类型2 类型3
类型 1 灵活设元解等差数列 【例 1】 已知递减等差数列{an}的前三项和为 18,前三项的乘 积为 66,求数列的通项公式,并判断-34 是否为该数列的项.
四年级等差数列 (2)
四年级等差数列【专题导引】和、差的变化规律见下表(m ≠0)一个加数(a ) 另一个加数(b ) 和(c ) ±m 不变 ±m 不变 ±m±m ±m m 不变【典型例题】【C 1】两个数相加,一个加数增加3,另一个加数减少3,和是否会起变化?【试一试】1、两个数相加,一个加数增加5,另一个加数减少5,和是否会起变化?2、两个数相加,一个加数减少6,另一个加数增加2,和是否会起变化?【C 2】如果a -b=20,那么a -(b -2)=20+( )。
【试一试】1、如果a -b=18,那么(a+2)-b=18+( )。
2、如果a -b=18,那么(a -2)-b=18-( )。
【B 1】两个数相加,一个加数减少10,另一个加数增加10,和是否会起变化?【试一试】被减数(a )减数(b ) 差(c ) ±m 不变 ±m 不变 ±m m ±m±m不变 ++1、两个数相加,一个加数增加15,另一个加数减少15,和是否会起变化?2、两个数相加,一个加数增加6,另一个加数也增加6,和是否会起变化?】两个数相加,如果一个加数减少8,要使和增加8,另一个加数应有什么变化?【B2【试一试】1、两个数相加,如果一个加数增加9,要使和增加17,另一个加数应有什么变化?2、两个数相加,如果一个加数增加11,要使和减少11,另一个加数应有什么变化?【B】两数相减,如果被减数减少2,减数也减少2,差是否会起变化?3【试一试】(1)两数相减,如果被减数增加30,减数也增加30,差是否会起变化?(2)两数相减,如果被减数增加23,减数减少23,差是否会起变化?【A】两数相减,如果被减数增加20,要使差减少16,减数应有什么变化?1【试一试】(1)两数相减,被减数减少12,要使差增加8,减数应有什么变化?(2)两数相减,被减数减少36,要使差减少40,减数应有什么变化?】被减数、减数、差相加得2076,差是减数的一半。
【课件】等差数列的概念及通项公式课件-2022-2023学年高二下人教A(2019)选择性必修第二册
n= +(n-1)·
4
4
4
1
a2 020=4×2
020+1=506.
=
1
n+1,故其第
4
优化设计大本
(2)(方法1)这五个数构成的等差数列是{an},依题意知a1=-1,a5=7,设公差为
d,则-1+4d=7,解得d=2,所以其第2,3,4项即a,b,c的值分别为
a=a2=-1+2=1,b=a3=-1+4=3,c=a4=-1+6=5.
{an}不一定是等差数列,忽略了第1项.
×)
学习新知
问题5
你能根据等差数列的概念写出它的递推公式吗?
设数列an 的首项为 a1 ,公差为 d ,则由定义可得:
an 1 an d
学习新知
追问1
你能根据递推公式,推导出等差数列的通项公式吗?
an 1 an d
a2 a1 d
课前预习
【诊断分析】 判断正误.(请在括号中打“√”或“×”)
(1)若某数列中的各项依次为16,32,48,64,80,96,112,128,…,320,则该数列为等
差数列.
( √ )
[解析] 该数列从第2项起每一项与它前一项的差都是16,是等差数列.
(2)若一个数列从第2项起每一项与它前一项的差都是常数,则这个数列一定
(方法2)依题意,得-1,a,b,c,7成等差数列,所以b是-1和7的等差中项,即
-1+7
b= 2 =3.同理,a
是-1 和 b 的等差中项,c 是 b 和 7 的等差中项,所以
-1+
3+7
a= 2 =1,c= 2 =5.故
等差数列的概念(第2课时)(教学课件)高二数学(人教A版2019选修第二册)
解得 d=±2
∴当d=2时,这三个数分别为2,4,6;
当d=-2时,这三个数分别为6,4,2.
7. 某公司购置了一台价值为220万元的设备,随着设备在使用过程中老化,
其价值会逐年减少.经验表明,每经过一年其价值就会减少d(d为正常数)
万元.已知这台设备的使用年限为10年,超过10年,它的价值将低于购进价
=3
7
∴ a25=a5+(25-5)d =10+20×3=70
(2) a10=a5+(10-5)d =10+5×2=20
6. 三数成等差数列,它们的和为12,首尾二数的积也为12,求此三数.
解:设这三个数分别为a-d,a,a+d, 则
(a-d)+a+(a+d)=12,即3a=12
∴a=4
又∵ (a-d)(a+d)=12,即(4-d)(4+d)=12
第10排的座位有a10 =2 10 13 33(个 ).
n1
18,
2. 画出数列 an
的图象,并求通过图象上所有点
an1 3,1 n 6
的直线的斜率.
解:数列的图象如图示.
an
18
15
12
9
6
由等差数列定义可知,数列{an }是等差数列,且a1 18,ห้องสมุดไป่ตู้ 3. 3
个数,使它们和原数列的数一起构成一个新的等差数列{bn}.
(1)求数列{bn} 的通项公式.
(2) b29是不是数列{an} 的项?若是,它是{an} 的第几项?若不是 ,请说明理由.
分析:(1) {an}是一个确定的数列,只要把a1 ,a2表示为{bn}中的项,就可
二年级上册数学试题-等差数列(2)全国通用(含答案)
第十二讲 等差数列(二)1、等差数列中常用的计算公式:等差数列的求和公式:和=(首项+末项)⨯项数÷2字母公式:2)(1÷⨯+=n a a S n n末项=首项+(项数1-)⨯公差,字母公式:d n a a n ⨯-+=)1(1项数=(末项-首项)÷公差1+,字母公式:1)(1+÷-=d a a n n首项=末项-(项数-1)×公差 字母公式:1n a a (n 1)d =--⨯公差=(末项-首项)÷(项数-1)字母公式:n 1d (a a )(n 1)=-÷-2、等差数列中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半,即中间项=和÷项数.奇数项等差数列求和公式为:和=中间项×项数【例1】等差数列:3,10,17,24,……,73(1)公差是多少?(2)数列共有多少项?(3)按照这样的顺序,第18项是多少?【答案】(1)7;(2)11;(3)122.【解析】(1)公差为10-3=7;(2)项数=(末项-首项)÷公差+1=(73-3)÷5+1=11(项)(3)第18项为3+(18-1)×7=122.【例2】一个等差数列共有13项,每一项都比它前面一项大2,并且首项为23,求末项是多少?【答案】47.【解析】此数列是首项为23,项数为13,公差为2的等差数列.则根据末项公式得:末项=首项+(项数-1)×公差=23+(13-1)×2=47.【例3】在数字1和73之间插入5个数,使这些数构成等差数列,求这个等差数列的公差是多少?【答案】12.【解析】 首项是1,末项是73,项数是5+2=7(项),公差=(73-1)÷(7-1)=12.【例4】一个等差数列的第五项是17,第九项是29,求公差是多少?求首项是多少?【答案】3;5.【解析】第五项与第九项之间有9-5=4(个)公差,公差为(29-17)÷(9-5)=3.因为第九项=首项+(9-1)×公差,所以首项=第九项-(9-1)×公差=29-8×3=5.【例5】编号为1~9的九个盒子中各放有一些糖果,已知每个盒子都比前一号盒子多同样数量的糖果.如果第5号盒子放10颗糖果,那么九个盒子里一共放了多少颗糖果?【答案】12.【解析】题目中的第五个盒子中的糖果数是10颗,就是中间项是10,项数是9,和=中间项×项数,所以一共有10×9=90(颗).【例6】把84米长的一根绳子分成7段,使后面一段都比前面一段多3米.那么这7段绳子中最长的一段长多少米?【答案】21米.【解析】奇数项等差数列,中间项=和÷项数,中间段(第四段)是:84÷7=12(米),最长的一段长12+3×3=21(米).【例7】一个等差数列的第5项是15,前11项之和为198,这个数列的第20项是多少?【答案】60.【解析】因为11项的和为198,所以第6项(中间项):198÷11=18,公差:(18-15)÷(6-5)=3,第20项:15+3×(20-5)=60.【例8】数列:2、4、6、8、10、12、……是由连续偶数组成的,如果其中五个连续偶数的和是320,求它们中最小的一个.【答案】60.【解析】利用等差数列的“中项公式”,对于奇数个连续偶数,最中间的数是320÷5=64,因相邻偶数相差2,所以第1项比第3项(中间项)少2个公差,那么第1项是64-2×2=60.【例9】有15个盒子中共放了300个乒乓球,已知每个盒子都比前一号盒子多放同样多的乒乓球.如果1号盒子放6个球,那么后面的盒子比它前一号盒子多放几个球?如果3号盒子放15个球,那么后面的盒子比它前一号盒子多放几个球?【答案】2;1.【解析】此题求的是公差.利用奇数项的等差数列求和,和=中间项×项数,则中间项(第8个盒子)为300÷15=20;若1号盒子放6个球,则公差为(20-6)÷7=2;若3号盒子放15个球,则公差为(20-15)÷(8-3)=1.【例10】有9个数成等差数列,从小到大排成一行,中间的数是9.前6个数的和比后3个数的和少9.那么第9个数是多少?【答案】17.【解析】总和为9×9=81,后三个数为(81+9)÷2=45,第8个数为45÷3=15,公差为(15-9)÷(8-5)=2,第9个数是15+2=17.【例11】若干人围成20圈,一圈套一圈,从外圈向内圈人数依次少4人,如果共有880人,问最外圈有多少人?最内圈有多少人?【答案】82;6.【解析】根据偶数项的等差数列特点分组,第一项与最后一项,第二项与倒数第二项,第三项与倒数第三项,……,每组的和都相等,都是880÷(20÷2)=88,而第一项与第20项的差为(20-1)×4=76,利用和差公式,可得最外圈有(88+76)÷2=82(人),最内圈有88-82=6(人).【例12】盒子里放有1个乒乓球.一位魔术师第一次从盒子里拿出1个乒乓球,将它变成5个球后放回盒子里;第二次从盒子里拿出2个球,将每个球各变成5个球后放回盒子里;……;第十次从盒子里拿出10个乒乓球,将每个球各变成5个球后放回到盒子里,这时盒子里共有多少个乒乓球?【答案】221个.【解析】魔术师第一次魔术后乒乓球增加5-1=4(个),第二次后增加2×4=8(个),第三次后增加3×4=12(个),……,第十次后增加10×4=40(个).这时盒子里一共有1+4+8+12+……+40=1+(4+40)×10÷2=221(个).课后练习:1.一个等差数列共有9项,每一项都比它前面一项大5,并且首项为17,求末项是多少?【答案】57.【解析】此数列是首项为17,项数为9,公差为5的等差数列.则根据末项公式得:末项=首项+(项数-1)×公差=17+(9-1)×5=57.2.一个等差数列的第一项是8,第十项是80,求公差是几?【答案】8.【解析】第十项=首项+(10-1)×公差,所以第一项与第十项之间有10-1=9(个)公差,公差为(80-8)÷(10-1)=8.~的七个盒子中放了一些玻璃球,已知每个盒子都比前一号3.小明在编号为17盒子多放同样多的玻璃球.如果4号盒子里放27个玻璃球,那么七个盒子里共放了多少个?【答案】189个.【解析】题目中的第四个盒子中的玻璃球个数是27,就是中间项是27,项数是7,和=中间项×项数,所以一共有7×27=189(个).4.学校礼堂共有20排座位,已知第一排是15个座位,以后每排比前一排多一定数量的座位,第十排有33个座位,求第20排有多少个座位?【答案】53个.【解析】首项是15,第十项是33,公差是(33-15)÷(10-1)=2(个),所以第20排有15+(20-1)×2=53(个).5.一个等差数列的第3项是7,前9项之和为99,这个数列的第20项是多少?【答案】41.【解析】因为9项的和为99,所以第5项(中间项):99÷9=11,公差:(11-7)÷(5-3)=2,第20项:7+2×(20-3)=41.6.7个连续奇数的和为91,其中最小的数是多少?【答案】7.【解析】项数是7,和是91,中间项(第4项):91÷7=13,连续的奇数所以公差为2,第1项:13-2×(4-1)=7.7.有13个数成等差数列,从大到小排成一行,中间的数是20.前6个数的和比后7个数的和大64.那么第13个数是多少?【答案】8.【解析】13个数的中间的数是第7个数,即第7项为20.总和为13×20=260,后7个数的和为(260-64)÷2=98,第10个数为98÷7=14,公差为(20-14)÷(10-7)=2,第13个数是14-2×(13-10)=8.8.幼儿园380个小朋友围成若干个圆(一圈套一圈)做游戏,已知最内圈20人,最外圈56人,如果相邻两圈相差的人数相等,那么相邻两圈相差多少人?【答案】4人.【解析】这一等差数列的和是380,首项20,末项56,先根据公式“和=(首项+末项)×项数÷2”求出项数:380÷[(20+56)÷2]=10(圈).再根据公式“公差=(末项-首项)÷(项数-1)”求出公差:(56-20)÷(10-1)=4(人).9.在一次考试中几个同学的分数恰好构成了等差数列,排名第六的小红分数为78分,前9名同学的分数之和为720分,这几个同学中排名第一的同学考了多少分?【答案】88分.【解析】前9项的中间项(第5名)为720÷9=80(分),公差(80-78)÷(6-5)=2(分),则排名第一的同学考了80+(5-1)×2=88(分).10.盒子里放有2个乒乓球.一位魔术师第一次从盒子里拿出2个乒乓球,将每个球各变成3个球后放回盒子里;第二次从盒子里拿出3个球,将每个球各变成3个球后放回盒子里;……;第十次从盒子里拿出11个乒乓球,将每个球各变成3个球后放回到盒子里,这时盒子里共有多少个乒乓球?【答案】132个.【解析】魔术师第一次魔术后乒乓球增加2×(3-1)=4(个),第二次后增加3×(3-1)=6(个),第三次后增加4×(3-1)=8(个),……,第十次后增加11×(3-1)=22(个).这时盒子里一共有2+4+6+8+……+22=2+(4+22)×10÷2=132(个)乒乓球.。
第四章 数列(单元解读)(人教A版2019选择性必修第二册)
约2课时 约4课时 约4课时 约2课时 约2课时
四、本章知识网络
五、本章重点
数列的概念是研究数列的基础,因此是本章教学的重点. 此外,等差数列、等比数列是两种 “最基本”的数列,对它 们的概念、取值规律与应用的研究,将为学生今后进一步学习 其他类型 的数列打下基础,因此等差数列、等比数列的概念、 性质与应用也是本章的重点内容.
十一、本章知识梳理
4.项的个数的“奇偶”性质: (1)若等差数列的项数为 2n,则 S 偶-S 奇=nd,SS偶奇=aan+n 1. (2)若等差数列的项数为 2n-1,则 S 奇-S 偶=an,SS奇偶=n-n 1(S 奇=nan,S 偶 =(n-1)an). 5.已知等差数列{an}和{bn}的前 n 项和分别为 Sn,Tn,则abnn=TS22nn--11,abmn= 2n-1 S2m-1 2m-1·T2n-1.
十一、本章知识梳理
等差数列前n项和的最值 (1)在等差数列{an}中,
an≥0, 当a1>0,d<0时,Sn有最 大 值,使Sn取得最值的n可由不等式组__a_n_+_1≤__0__ 确定;
an≤0, 当a1<0,d>0时,Sn有最 小 值,使Sn取得最值的n可由不等式组__a_n_+_1≥__0__ 确定.
人教版 高中数学选择性必修二
第四章 《数列》 单元解读
一、总体设计
数列是一类特殊的函数,是数学重要的研究对象,是研究其他函数 的基本工具,在日常生活中也有着广泛的应用。
本章通过对具体例子的分析,抽象出了数列的概念,通过数学运算、 逻辑推理等研究了两类特殊的数列——等差数列和等比数列的取值规律 ,并运用它们解决了一些问题。因为数列是一类特殊的函数,所以本章 注重函数思想和方法的应用。
4.2.2等差数列的前n项和公式(2)课件高二下学期数学人教A版选择性
(1) 在等差数列{an}中,a1=13,S3=S11,求Sn的最大值; (2) 在等差数列{an}中,d>0,若|a3|=|a9|,求Sn的最小值.
【解析】 (1) 因为a1=13,S3=S11, 所以 3a1+3×2 2d=11a1+11×2 10d,所以 d=-2, 所以 Sn=13n+nn- 2 1×(-2)
由③-②,得10d+10d+…+10d=S-910,
所以S-910=600,所以S=1 510,
即第21项到第30项的和为1 510.
内容索引
例4 有一等差数列共有2n(n∈N*)项,它的奇数项之和与偶数项之和分别为24和30 ,若最后一项与第一项之差为10.5,求此数列的首项、公差和项数.
内容索引
内容索引
(3) 由题意知a1+a2+a3+a4=25,an-3+an-2+an-1+an=63. 因为{an}是等差数列,所以a1+an=a2+an-1=a3+an-2=a4+an-3, 所以4(a1+an)=25+63=88,即a1+an=22. 因为 Sn=a1+2ann=286,所以 n=26.
内容索引
【解析】 (1) ba35++ba1113=ab11++ab1155=TS1155=7×151+5+3 2=11087.
(2) ab53+ +ab1124=ab11+ +ab1166=TS1166=7×161+6+3 2=11194. (3) 设Tn=(7n+2)k,Sn=(n+3)k,k≠0, 所以a5=T5-T4=37k-30k=7k, b6=S6-S5=9k-8k=k, 所以ab56=7kk=7.
【解析】 由题意知Sa偶2n--Sa奇1==n2dn=-61,d=10.5, n=4,
解得d=23. 因为 a1+a3+a5+a7=4a1+12d=24, 所以 a1=32. 故此数列的首项 a1=32,公差 d=32,项数 2n=8.
等差数列公式大全
等差数列公式大全
数列公式又称为等差数列公式,它指的是一组以等差数列形式列出来的数列函数。
1.一般项公式:an=a1+(n-1)d。
2.和公式:Sn=n(a1+an)/2。
3.等比数列的一般项公式:an=a1*q^(n-1)。
4.等比数列的和公式:Sn=a1*(1-q^n)/(1-q)。
5.等比级数的和公式:S=a1/(1-q)。
6.飞利浦及公式:Sn=a1+(n-1)*d+(n-1)*(n-2)*c/2。
7.等差数列的最后一项公式:an=(a1+an-1)/2+d。
8.三项和公式:Sn=a1+an+an-1。
9.等差数列的公差公式:d=[an-a1]/n-1。
10.二项和公式:Sn=a1+an。
11.等差数列的方程:x+a=n(x+d)。
12.栢西秋-埃泽勒等比数列的和公式: Sn=a1*[1-qn+n(1-q)]/ (1-q)^2。
13.等差数列的前n项和公式:Sn=n(a1+an)/2。
14.亚里士多德等比数列的和公式:Sn=a1(qn-1)/(q-1)。
15.等差数列的最大项公式:an=a1+(n-1)*d。
湘教版数学高二湘教版必修4讲义 9.2等差数列(二)
9.2 等差数列(二)1.能根据等差数列的定义推出等差数列的重要性质.2.能运用等差数列的性质解决有关问题.在等差数列{a n }中,若已知首项a 1和公差d 的值,由通项公式a n =a 1+(n -1)d 可求出任意一项的值,如果已知a m 和公差d 的值,有没有一个公式也能求任意一项的值?由等差数列的通项公式能得到等差数列的哪些性质?1.等差数列的图象等差数列的通项公式a n =a 1+(n -1)d ,当d =0时,a n 是关于n 的常数函数;当d ≠0时,a n 是关于n 一次的函数;点(n ,a n )分布在以d 为斜率的直线上,是这条直线上的一列孤立的点.2.等差数列的项与序号的关系(1)等差数列通项公式的推广:在等差数列{a n }中,已知a 1,d, a m, a n (m ≠n ),则d =a n -a 1n -1=a n -a mn -m从而有a n =a m +(n -m )d . (2)项的运算性质:在等差数列{a n }中,若m +n =p +q (m ,n ,p ,q ∈N *),则a m +a n =a p +a q .3.等差数列的性质 (1)等差数列的项的对称性在有穷等差数列中,与首末两项“等距离”的两项之和等于首项与末项的和.即a 1+a n =a 2+a n -1=a 3+a n -2=….(2)若{a n }、{b n }分别是公差为d ,d ′的等差数列,则有数列 结论{c +a n } 公差为d 的等差数列(c 为任一常数) {c ·a n } 公差为cd 的等差数列(c 为任一常数) {a n +a n +k } 公差为2d 的等差数列(k 为常数,k ∈N *) {pa n +qb n }公差为pd +qd ′的等差数列(p ,q 为常数)(3){a n }n 为递增数列;d <0⇔{a n }为递减数列;d =0⇔{a n }为常数列.要点一 等差数列性质的应用例1 (1)已知等差数列{a n }中,a 2+a 6+a 10=1,求a 4+a 8.(2)设{a n }是公差为正数的等差数列,若a 1+a 2+a 3=15,a 1a 2a 3=80,求a 11+a 12+a 13的值. 解 (1)方法一 根据等差数列的通项公式,得 a 2+a 6+a 10=(a 1+d )+(a 1+5d )+(a 1+9d )=3a 1+15d . 由题意知,3a 1+15d =1,即a 1+5d =13.∴a 4+a 8=2a 1+10d =2(a 1+5d )=23.方法二 根据等差数列性质 a 2+a 10=a 4+a 8=2a 6.由a 2+a 6+a 10=1,得3a 6=1,解得a 6=13,∴a 4+a 8=2a 6=23.(2){a n }是公差为正数的等差数列,设公差为d , ∵a 1+a 3=2a 2,∴a 1+a 2+a 3=15=3a 2, ∴a 2=5, 又a 1a 2a 3=80,∴a 1a 3=(5-d )(5+d )=16⇒d =3或d =-3(舍去), ∴a 12=a 2+10d =35,a 11+a 12+a 13=3a 12=105.规律方法 解决本类问题一般有两种方法:一是运用等差数列{a n }的性质:若m +n =p +q =2w ,则a m +a n =a p +a q =2a w (m ,n ,p ,q ,w 都是正整数);二是利用通项公式转化为数列的首项与公差的结构完成运算,属于通性通法,两种方法都运用了整体代换与方程的思想. 跟踪演练1 在等差数列{a n }中: (1)若a 3=5,则a 1+2a 4=________;(2)a 1+a 2+a 3=-24,a 18+a 19+a 20=78,则此数列a 1+a 20等于________.答案(1)15(2)18解析(1)a1+2a4=a1+(a3+a5)=(a1+a5)+a3=2a3+a3=3a3=15.(2)由已知可得(a1+a2+a3)+(a18+a19+a20)=-24+78⇒(a1+a20)+(a2+a19)+(a3+a18)=54⇒a1+a20=18.要点二等差数列的设法与求解例2三个数成等差数列,和为6,积为-24,求这三个数.解方法一设等差数列的等差中项为a,公差为d,则这三个数分别为a-d,a,a+d.依题意,3a=6且a(a-d)(a+d)=-24,所以a=2,代入a(a-d)(a+d)=-24,化简得d2=16,于是d=±4,故三个数为-2,2,6或6,2,-2.方法二设首项为a,公差为d,这三个数分别为a,a+d,a+2d,依题意,3a+3d=6且a(a+d)(a+2d)=-24,所以a=2-d,代入a(a+d)(a+2d)=-24,得2(2-d)(2+d)=-24,4-d2=-12,即d2=16,于是d=±4,三个数为-2,2,6或6,2,-2.规律方法利用等差数列的定义巧设未知量可以简化计算.一般地有如下规律:当等差数列{a n}的项数n为奇数时,可设中间一项为a,再以公差为d向两边分别设项:…a-2d,a-d,a,a+d,a+2d,…;当项数为偶数项时,可设中间两项为a-d,a+d,再以公差为2d向两边分别设项:…a-3d,a-d,a+d,a+3d,…,这样可减少计算量.跟踪演练2四个数成递增等差数列,中间两数的和为2,首末两项的积为-8,求这四个数.解方法一设这四个数为a-3d,a-d,a+d,a+3d(公差为2d),依题意,2a=2,且(a-3d)(a+3d)=-8,即a=1,a2-9d2=-8,∴d2=1,∴d=1或d=-1.又四个数成递增等差数列,所以d>0,∴d =1,故所求的四个数为-2,0,2,4.方法二 若设这四个数为a ,a +d ,a +2d ,a +3d (公差为d ), 依题意,2a +3d =2,且a (a +3d )=-8, 把a =1-32d 代入a (a +3d )=-8,得⎝⎛⎭⎫1-32d ⎝⎛⎭⎫1+32d =-8,即1-94d 2=-8, 化简得d 2=4,所以d =2或-2.又四个数成递增等差数列,所以d >0,所以d =2, 故所求的四个数为-2,0,2,4.要点三 由递推关系式构造等差数列求通项例3 已知数列{a n }满足a 1=15,且当n >1,n ∈N *时,有a n -1a n =2a n -1+11-2a n ,设b n =1a n ,n ∈N *.(1)求证:数列{b n }为等差数列;(2)试问a 1a 2是否是数列{a n }中的项?如果是,是第几项;如果不是,请说明理由. (1)证明 当n >1,n ∈N *时,a n -1a n =2a n -1+11-2a n ⇔1-2a n a n =2a n -1+1a n -1⇔1a n -2=2+1a n -1⇔1a n -1a n -1=4⇔b n -b n -1=4,且b 1=1a 1=5.∴{b n }是等差数列,且公差为4,首项为5.(2)解 由(1)知b n =b 1+(n -1)d =5+4(n -1)=4n +1. ∴a n =1b n =14n +1,n ∈N *.∴a 1=15,a 2=19,∴a 1a 2=145.令a n =14n +1=145,得n =11.即a 1a 2=a 11,∴a 1a 2是数列{a n }中的项,是第11项.规律方法 已知数列的递推公式求数列的通项时,要对递推公式进行合理变形,构造出等差数列求通项,需掌握常见的几种变形形式,考查学生推理能力与分析问题的能力. 跟踪演练3 在数列{a n }中,a 1=2,a n +1=a n +2n +1. (1)求证:数列{a n -2n }为等差数列;(2)设数列{b n }满足b n =2log 2(a n +1-n ),求{b n }的通项公式. (1)证明 (a n +1-2n +1)-(a n -2n )=a n +1-a n -2n =1(与n 无关), 故数列{a n -2n }为等差数列,且公差d =1.(2)解 由(1)可知,a n -2n =(a 1-2)+(n -1)d =n -1, 故a n =2n +n -1,所以b n =2log 2(a n +1-n )=2n . 要点四 等差数列的实际应用例4 甲、乙两人连续6年对某县农村养鸡业规模进行调查,提供两个不同的信息图如图所示.甲调查表明:从第1年每个养鸡场出产1万只鸡上升到第6年平均每个鸡场出产2万只鸡.乙调查表明:由第1年养鸡场个数30个减少到第6年10个.请你根据提供的信息说明,求:(1)第2年养鸡场的个数及全县出产鸡的总只数;(2)到第6年这个县的养鸡业比第1年是扩大了还是缩小了?请说明理由; (3)哪一年的规模最大?请说明理由.解 由题干图可知,从第1年到第6年平均每个鸡场出产的鸡数成等差数列,记为{a n },公差为d 1,且a 1=1,a 6=2;从第1年到第6年的养鸡场个数也成等差数列,记为{b n },公差为d 2,且b 1=30,b 6=10;从第1年到第6年全县出产鸡的总只数记为数列{c n }, 则c n =a n b n .(1)由a 1=1,a 6=2,得⎩⎪⎨⎪⎧a 1=1,a 1+5d 1=2,∴⎩⎪⎨⎪⎧a 1=1,d 1=0.2⇒a 2=1.2;由b 1=30,b 6=10,得⎩⎪⎨⎪⎧b 1=30,b 1+5d 2=10,∴⎩⎪⎨⎪⎧b 1=30,d 2=-4⇒b 2=26.所以c 2=a 2b 2=1.2×26=31.2.所以第2年养鸡场的个数为26个,全县出产鸡的总只数是31.2万只; (2)c 6=a 6b 6=2×10=20<c 1=a 1b 1=30, 所以到第6年这个县的养鸡业比第1年缩小了.(3)∵a n =1+(n -1)×0.2=0.2n +0.8,b n =30+(n -1)×(-4)=-4n +34(1≤n ≤6), ∴c n =a n b n =(0.2n +0.8)(-4n +34) =-0.8n 2+3.6n +27.2(1≤n ≤6).∵对称轴为n =94,所以当n =2时,c n 最大.所以第2年的规模最大.规律方法 本题可以按照解析几何中的直线问题求解,但是,如果换个角度,利用构造等差数列模型来解决,更能体现出等差数列这一函数特征.这种解答方式的转变,同学们要在学习中体会,在体会中升华.跟踪演练4 某公司经销一种数码产品,第1年获利200万元,从第2年起由于市场竞争等方面的原因,利润每年比上一年减少20万元,按照这一规律如果公司不开发新产品,也不调整经营策略,从哪一年起,该公司经销这一产品将亏损?解 由题意可知,设第1年获利为a 1,第n 年获利为a n ,则a n -a n -1=-20,(n ≥2,n ∈N *),每年获利构成等差数列{a n },且首项a 1=200,公差d =-20, 所以a n =a 1+(n -1)d =200+(n -1)×(-20)=-20n +220. 若a n <0,则该公司经销这一产品将亏损, 由a n =-20n +220<0,解得n >11,即从第12年起,该公司经销这一产品将亏损.1.在等差数列{a n }中,a 1+a 9=10,则a 5的值为( ) A .5 B .6 C .8 D .10 答案 A解析 ∵a 1+a 9=2a 5=10,∴a 5=5.2.在等差数列{a n }中,已知a 4=2,a 8=14,则a 15等于( ) A .35B .-35C .23D .-23 答案 A解析 由a 8-a 4=4d =12,得d =3,所以a 15=a 8+(15-8)d =14+7×3=35.3.由公差d ≠0的等差数列a 1,a 2,…,a n 组成一个新的数列a 1+a 3,a 2+a 4,a 3+a 5,…下列说法正确的是( ) A .新数列不是等差数列 B .新数列是公差为d 的等差数列 C .新数列是公差为2d 的等差数列 D .新数列是公差为3d 的等差数列 答案 C解析 ∵(a n +1+a n +3)-(a n +a n +2)=(a n +1-a n )+(a n +3-a n +2)=2d , ∴数列a 1+a 3,a 2+a 4,a 3+a 5,…是公差为2d 的等差数列.4.已知三个数成等差数列并且数列是递增的,它们的和为18,平方和为116,则这三个数依次为______. 答案 4,6,8解析 设这三个数为a -d ,a ,a +d ,由已知得⎩⎪⎨⎪⎧(a -d )+a +(a +d )=18, ①(a -d )2+a 2+(a +d )2=116,② 由①得a =6,代入②得d =±2. ∵该数列是递增数列, ∴d >0,即d =2. ∴这三个数依次为4,6,8.1.在等差数列{a n }中,当m ≠n 时,d =a m -a nm -n 为公差公式,利用这个公式很容易求出公差,还可变形为a m =a n +(m -n )d .2.等差数列{a n }中,每隔相同的项抽出来的项按照原来的顺序排列,构成的新数列仍然是等差数列.3.等差数列{a n }中,若m +n =p +q ,则a m +a n =a p +a q (m ,n ,p ,q ∈N *),特别地,若m +n =2p ,则a n +a m =2a p .4.在等差数列{a n }中,首项a 1与公差d 是两个最基本的元素;有关等差数列的问题,如果条件与结论间的联系不明显,则均可化成有关a 1、d 的关系列方程组求解,但是,要注意公式的变形及整体代换,以减少计算量.一、基础达标1.已知等差数列{a n }的公差为d (d ≠0),且a 3+a 6+a 10+a 13=32,若a m =8,则m 为( ) A .12B .8C .6D .4 答案 B解析 由等差数列性质a 3+a 6+a 10+a 13=(a 3+a 13)+(a 6+a 10)=2a 8+2a 8=4a 8=32, ∴a 8=8,又d ≠0,∴m =8.2.设公差为-2的等差数列{a n },如果a 1+a 4+a 7+…+a 97=50,那么a 3+a 6+a 9+…+a 99等于( ) A .-182 B .-78 C .-148 D .-82答案 D解析 a 3+a 6+a 9+…+a 99=(a 1+2d )+(a 4+2d )+(a 7+2d )+…+(a 97+2d ) =(a 1+a 4+…+a 97)+2d ×33=50+2×(-2)×33=-82. 3.下面是关于公差d >0的等差数列{a n }的四个命题: p 1:数列{a n }是递增数列; p 2:数列{na n }是递增数列;p 3:数列⎩⎨⎧⎭⎬⎫a n n 是递增数列;p 4:数列{a n +3nd }是递增数列; 其中的真命题为( ) A .p 1,p 2 B .p 3,p 4 C .p 2,p 3 D .p 1,p 4答案 D解析 a n =a 1+(n -1)d =dn +a 1-d ,因d >0,所以p 1正确;a n +3nd =4dn +a 1-d ,因4d >0,所以是递增数列,p 4正确,故选D.4.在等差数列{a n }中,若a 2+a 4+a 6+a 8+a 10=80,则a 7-12a 8的值为( )A .4B .6C .8D .10 答案 C解析 由a 2+a 4+a 6+a 8+a 10=5a 6=80,∴a 6=16, ∴a 7-12a 8=12(2a 7-a 8)=12(a 6+a 8-a 8)=12a 6=8.5.在等差数列{a n }中,已知a 3+a 8=10,则3a 5+a 7=________. 答案 20解析 方法一 依题意2a 1+9d =10,所以3a 5+a 7=3(a 1+4d )+a 1+6d =4a 1+18d =20. 方法二 3a 5+a 7=a 5+a 6+a 4+a 7=a 3+a 8+a 3+a 8=20.6.若a ,b ,c 成等差数列,则二次函数y =ax 2-2bx +c 的图象与x 轴的交点的个数为________. 答案 1或2解析 ∵a ,b ,c 成等差数列,∴2b =a +c , ∴Δ=4b 2-4ac =(a +c )2-4ac =(a -c )2≥0.∴二次函数y =ax 2-2bx +c 的图象与x 轴的交点个数为1或2. 7.在等差数列{a n }中,已知a m =n ,a n =m ,求a m +n 的值. 解 方法一 设公差为d , 则d =a m -a n m -n =n -m m -n=-1,从而a m +n =a m +(m +n -m )d =n +n ·(-1)=0.方法二 设等差数列的通项公式为a n =kn +b (k ,b 为常数),则⎩⎪⎨⎪⎧a m =km +b =n ,a n =kn +b =m ,得k =-1,b =m +n .所以a m +n =k (m +n )+b =0. 二、能力提升8.等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=450,则a 2+a 8的值等于( ) A .45 B .75 C .180 D .300答案 C解析 ∵a 3+a 4+a 5+a 6+a 7=(a 3+a 7)+(a 4+a 6)+a 5 =5a 5=450,∴a 5=90.∴a 2+a 8=2a 5=180.9.已知数列{a n }为等差数列且a 1+a 7+a 13=4π,则tan(a 2+a 12)的值为( ) A. 3 B .±3 C .-33D .- 3 答案 D解析 由等差数列的性质得a 1+a 7+a 13=3a 7=4π, ∴a 7=4π3.∴tan(a 2+a 12)=tan(2a 7)=tan 8π3=tan 2π3=- 3.10.已知{a n }为等差数列,a 3+a 8=22,a 6=7,则a 5=________. 答案 15解析 a 5+a 6=a 3+a 8=22, ∴a 5=22-a 6=22-7=15.11.正项数列{a n }中,a 1=1,a n +1-a n +1=a n +a n . (1)数列{a n }是否为等差数列?说明理由.(2)求a n . 解 (1)∵a n +1-a n +1=a n +a n ,∴a n +1-a n =a n +1+a n ,高中数学-打印版校对打印版 ∴(a n +1+a n )·(a n +1-a n )=a n +1+a n ,∴a n +1-a n =1, ∴{a n }是等差数列,公差为1.(2)由(1)知{a n }是等差数列,且d =1,∴a n =a 1+(n -1)×d =1+(n -1)×1=n ,∴a n =n 2.12.成等差数列的四个数之和为26,第二个数与第三个数之积为40,求这四个数. 解 设这四个数为a -3d ,a -d ,a +d ,a +3d ,则由题设得⎩⎪⎨⎪⎧ (a -3d )+(a -d )+(a +d )+(a +3d )=26,(a -d )(a +d )=40,∴⎩⎪⎨⎪⎧ 4a =26,a 2-d 2=40. 解得⎩⎨⎧ a =132,d =32或⎩⎨⎧ a =132,d =-32.所以这四个数为2,5,8,11或11,8,5,2.三、探究与创新13.已知数列{a n },满足a 1=2,a n +1=2a n a n +2. (1)数列⎩⎨⎧⎭⎬⎫1a n 是否为等差数列?说明理由. (2)求a n .解 (1)数列⎩⎨⎧⎭⎬⎫1a n 是等差数列,理由如下; ∵a 1=2,a n +1=2a n a n +2,∴1a n +1=a n +22a n =12+1a n , ∴1a n +1-1a n =12,即{1a n }是首项为1a 1=12, 公差为d =12的等差数列. (2)由上述可知1a n =1a 1+(n -1)d =n 2, ∴a n =2n.。
等差数列的概念第2课时课件上学期高二人教A版(2019)选择性必修第二册
−
−
a1+4d=10
d= − = =3
a1+11d=31
∴ a25=a5+(25-5)d
解得 a1= - 2 , d =3
=10+20×3=70
∴ a25=a1+24d = -2+24×3=70
{
(2) a10=a5+(10-5)d =10+5×2=20
一个新的等差数列{bn}.
(1)求数列{bn} 的通项公式.
(2) b29是不是数列{an} 的项?若是,它是{an} 的第几项?若
不是 ,请说明理由.
分析: (1) {an}是一个确定的数列,只要把a1 ,a2表示为
{bn}中的项,就可以利用等差数列的定义得出{bn}的通项公
式;
(2)设{an}中的第n项是{bn}中的第cn项,根据条件可以求
13
a
=
a
=
2
2
解得
或
3
3
d =
d =
2
2
∴这四个数所成的等差数列为2, 5, 8, 11或11, 8, 5, 2.
等差数列的性质
设 {an}是公差为d的等差数列,那么
性质1 an =a1+(n-1)d
−
性质2 d= −
性质3 an =am+(n-m)d
性质4
出n与cn的关系式,由此即可判断b29是否为{an}的项.
例7 已知等差数列{an} 的首项a1=2,d=8 , 在{an}中每
相邻两项之间都插入3个数,使它们和原数列的数一起构成
一个新的等差数列{bn}.
新教材选择性必修第二册4.2.1 等差数列的概念
4.2.1 《等差数列的概念》教学设计一、教材分析本节课选自《2019人教A版高中数学选择性必修二》第四章《数列》,即《等差数列》第一课时。
研究等差数列的定义和通项公式的推导,借助生活中丰富的典型实例,让学生通过分析、推理、归纳等活动过程,从中了解和体验等差数列的定义和通项公式。
等差数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。
等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。
是学生探究特殊数列的开始,它对后续内容的学习,无论在知识上,还是在方法上都具有积极的意义。
二、学情分析已经有了一年的高中学习经历,学生有一定的理性分析能力和概括能力,并且计算能力严重欠缺。
针对以上问题,我将调整上课的节奏,上课时由浅入深,尽量让学生自己发现问题,提出问题,然后解决问题。
经过第一节学习,学生已经对数列的知识有了初步的接触和认识,对数学公式的运用已具备一定的技能,已经经历过由观察到抽象的数学活动过程。
他们的思维正从经验性的逻辑思维向抽象思维发展。
但学生的基础弱,所以我授课时注重从具体的生活实例出发,注重引导、启发和探究以符合这类学生的心理发展特点,从而促进思维能力的进一步发展。
三、教学目标1、通过本节课的学习使学生能理解并掌握等差数列的概念,能用定义判断一个数列是否为等差数列,引导学生了解等差数列的通项公式的推导过程及思想,会求等差数列的公差及通项公式。
初步引入“数学建模”的思想方法并能运用。
并在此过程中培养学生理解等差数列是一种函数模型。
2、等差数列概念的理解及由此得到的“性质”的方法。
培养学生“逻辑推理”的能力,通过练习,提高学生的“数学运算”能力及分析问题和解决问题的能力。
3、在解决问题的过程中培养学生主动探索、勇于发现的求知精神。
使学生认识事物的变化形态,养成细心观察、认真分析、善于总结的良好思维习惯。
并通过一定的实例激发同学们的民族自豪感和爱国热情。
新教材高中数学4-2-1等差数列的概念第一课时等差数列的概念及通项公式课件新人教A版选择性必修第二册
[对点练清]
1.若5,x,y,z,21成等差数列,则x+y+z的值为
()
A.26 B.29 C.39 D.52
解析:因为5,x,y,z,21成等差数列,所以y是x,z的等差中项,也是5,21 的等差中项,所以x+z=2y,5+21=2y,所以y=13,x+z=26,所以x+y +z=39.
(2)由x1=3,得2p+q=3.① 又x4=24p+4q,x5=25p+5q, 且x1+x5=2x4, 得3+25p+5q=25p+8q,即q=1.② 将②代入①,得p=1.故p=1,q=1.
[方法技巧] 三数 a,b,c 成等差数列的条件是 b=a+2 c(或 2b=a+c),可用来进行等差 数列的判定或有关等差中项的计算问题.如要证{an}为等差数列,可证 2an+1=
当 n=1 时,S1=b1=32,满足上式,所以 Sn=nn+ +21. 所以 an=Sn-Sn-1=nn+ +21-n+n 1=n+1 1-n1(n≥2). 当 n=1 时,a1=S1=b1=32≠-12,
32,n=1, 所以 an=n+1 1-n1,n≥2,
答案:ACD
3. 已知2m与n的等差中项为5,m与2n的等差中项为4,则m与n的等差中项为 ________. 解析:依题意可得2m+n=10,m+2n=8,两式相加得3m+3n=18,所以m +n=6,故m与n的等差中项为3. 答案:3
知识点二 等差数列的通项公式 (一)教材梳理填空
已知等差数列{an}的首项为a1,公差为d.
A.4-2n
B.2n-4
C.6-2n
D.2n-6
解析:∵a1=4,d=-2,∴an=4+(n-1)×(-2)=6-2n. 答案:C
四年级等差数列 (2)
四年级等差数列【专题导引】和、差的变化规律见下表【m ≠0】一个加数【a 】 另一个加数【b 】 和【c 】 ±m 不变 ±m 不变 ±m±m ±m m 不变【典型例题】【C 1】两个数相加,一个加数增加3,另一个加数减少3,和是否会起变化?【试一试】1、两个数相加,一个加数增加5,另一个加数减少5,和是否会起变化?2、两个数相加,一个加数减少6,另一个加数增加2,和是否会起变化?【C 2】如果a -b=20,那么a -【b -2】=20+【 】。
【试一试】1、如果a -b=18,那么【a+2】-b=18+【 】。
2、如果a -b=18,那么【a -2】-b=18-【 】。
【B 1】两个数相加,一个加数减少10,另一个加数增加10,和是否会起变化?【试一试】被减数【a 】减数【b 】 差【c 】 ±m 不变 ±m 不变 ±m m ±m±m不变 ++1、两个数相加,一个加数增加15,另一个加数减少15,和是否会起变化?2、两个数相加,一个加数增加6,另一个加数也增加6,和是否会起变化?】两个数相加,如果一个加数减少8,要使和增加8,另一个加数应有什么变化?【B2【试一试】1、两个数相加,如果一个加数增加9,要使和增加17,另一个加数应有什么变化?2、两个数相加,如果一个加数增加11,要使和减少11,另一个加数应有什么变化?【B】两数相减,如果被减数减少2,减数也减少2,差是否会起变化?3【试一试】【1】两数相减,如果被减数增加30,减数也增加30,差是否会起变化?【2】两数相减,如果被减数增加23,减数减少23,差是否会起变化?【A】两数相减,如果被减数增加20,要使差减少16,减数应有什么变化?1【试一试】【1】两数相减,被减数减少12,要使差增加8,减数应有什么变化?【2】两数相减,被减数减少36,要使差减少40,减数应有什么变化?】被减数、减数、差相加得2076,差是减数的一半。