面积法在初中数学计算和证明中的应用

合集下载

中考数学解题方法及提分突破训练:面积法专题(含解析)

中考数学解题方法及提分突破训练:面积法专题(含解析)

,那么点B′的坐标是()A. (-2,3)B.(2,-3)C.(3,-2)或(-2,3)D.(-2,3)或(2,-3)3.(2012 呼和浩特)如图是某几何体的三视图及相关数据(单位:cm),则该几何体的侧面积为cm.Array4.(2012•潍坊)如图,三角形ABC的两个顶点B、C在圆上,顶点A在圆外,AB、AC分别交圆于E、D两点,连接EC、BD.(1)求证:△ABD∽△ACE;(2)若△BEC与△BDC的面积相等,试判定三角形ABC的形状二名词释义平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有时会收到事半功倍的效果。

运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法。

用归纳法或分析法证明平面几何题,其困难在添置辅助线。

面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到求证的结果。

所以用面积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。

面积问题主要涉及以下两部分内容:(一)怎样证明面积相等。

以下是常用的理论依据1.三角形的中线把三角形分成两个面积相等的部分。

2.同底同高或等底等高的两个三角形面积相等。

3.平行四边形的对角线把其分成两个面积相等的部分。

4.同底(等底)的两个三角形面积的比等于高的比。

同高(或等高)的两个三角形面积的比等于底的比。

5.三角形的面积等于等底等高的平行四边形的面积的一半。

16.三角形的中位线截三角形所得的三角形的面积等于原三角形面积的417.三角形三边中点的连线所成的三角形的面积等于原三角形面积的48.有一个角相等或互补的两个三角形的面积的比等于夹角的两边的乘积的比。

(二)用面积法解几何问题(常用的解题思路)1.分解法:通常把一个复杂的图形,分解成几个三角形。

2.作平行线法:通过平行线找出同高(或等高)的三角形。

初中数学解题十大技巧方法

初中数学解题十大技巧方法

初中数学解题十大技巧方法一直都有同学和家长问:“数学是一门弱势学科,我到底应该如何进行提高呢?”下面是小偏整理的初中数学解题十大技巧方法,感谢您的每一次阅读。

初中数学解题十大技巧方法1、配方法所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。

通过配方解决数学问题的方法叫配方法。

其中,用的最多的是配成完全平方式。

配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。

2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式。

因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。

因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

3、换元法换元法是数学中一个非常重要而且应用十分广泛的解题方法。

我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

4、判别式法与韦达定理一元二次方程a2+b+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。

韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。

5、待定系数法在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。

初中数学中两种特殊的解题法

初中数学中两种特殊的解题法

1、特殊值法:一般用来解填空和选择2、例:如图,已知在直角梯形ABCD中,AD∥BC,∠ABC = 90°,BE⊥CD,CD =BC.求证:AB = BE.面积法:不仅可用于计算面积,而且用它来证明平面几何题有时会收到事半功倍的效果.运用面积关系来证明或计算平面几何题的方法,称为面积方法。

1)用归纳法或分析法证明平面几何题,其困难在添置辅助线.2)面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到求证的结果.所以用面积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置辅助线,即使需要添置辅助线,也很容易考虑到.练习:如图,在△ABC中,∠A=90°,D是AC上一点,BD=DC,P是BC上任一点,PE⊥BD于E,PF⊥AC于F.求证:PE+PF=AB.3、几何变换法几何变换包括:(1)平移;(2)旋转;(3)对称.例:如图,线段AB=CD,AB与CD相交于点O,且∠AOC=60°,CE是由AB 平移所得,则AC+BD与AB的大小关系是______________【解析】将AB沿AC平移到CE,连结BE、DE,由平移的特征可知AB=CE,AC=BE,∴∠OCE=∠AOC=60°,又∵CD=AB,∴CD=CE,所以△CDE是等腰三角形,即CD=CE=DE=AB,∵,所以DB+AC>AB,而当AC∥DB时,DB+AC=AB,故练习:复习“全等三角形”的知识时,老师布置了一道作业题:“如图①,已知在△ABC中,AB=AC,P是△ABC内部任意一点,将AP绕A顺时针旋转至AQ,使∠QAP=∠BAC,连接BQ、CP,则BQ=CP.”小亮是个爱动脑筋的同学,他通过对图①的分析,证明了△ABQ≌△ACP,从而证得BQ=CP之后,将点P移到等腰三角形ABC之外,原题中的条件不变,发现“BQ=CP”仍然成立,请你就图②给出证明.。

初中数学学习十大技巧

初中数学学习十大技巧

初中数学学习十大技巧初中数学学习十大技巧1、配方法所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。

通过配方解决数学问题的方法叫配方法。

其中,用的最多的是配成完全平方式。

配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。

2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式。

因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。

因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

3、换元法换元法是数学中一个非常重要而且应用十分广泛的解题方法。

我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

4、判别式法与韦达定理一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。

韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。

5、待定系数法在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。

它是中学数学中常用的方法之一。

6、构造法在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。

(完整版)初中数学解题必备10大思想方法

(完整版)初中数学解题必备10大思想方法

初中数学解题必备10大思想方法1、配方法所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。

通过配方解决数学问题的方法叫配方法。

其中,用的最多的是配成完全平方式。

配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。

2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式。

因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。

因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

3、换元法换元法是数学中一个非常重要而且应用十分广泛的解题方法。

我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

4、判别式法与韦达定理一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。

韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。

5、待定系数法在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。

它是中学数学中常用的方法之一。

6、构造法在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。

八年级数学竞赛例题专题讲解:面积法

八年级数学竞赛例题专题讲解:面积法

八年级数学竞赛例题专题讲解:面积法阅读与思考平面几何学的产生源于人们测量土地面积的需要,面积关联着几何图形的重要元素边与角.所谓面积法是指借助面积有关的知识来解决一些直接或间接与面积问题有关的数学问题的一种方法.有许多数学问题,虽然题目中没有直接涉及面积,但由于面积联系着几何图形的重要元素,所以借助于有关面积的知识求解,常常简捷明快.用面积法解题的基本思路是:对某一平面图形面积,采用不同方法或从不同角度去计算,就可得到一个含边或角的关系式,化简这个面积关系式就可得到求解或求证的结果.下列情况可以考虑用面积法:(1)涉及三角形的高、垂线等问题;(2)涉及角平分线的问题.例题与求解【例1】如图,从等边三角形内一点向三边作垂线,已知这三条垂线段的长分别为1,3,5,则这个等边三角形的边长为______________.(全国初中数学联赛试题) 解题思路:从寻求三条垂线段与等边三角形的高的关系入手.等腰三角形底边上任一点到两腰距离之和等于一腰上的高,那么等边三角形呢?等腰梯形呢?【例2】如图,△AOB中,∠O=,OA=OB,正方形CDEF的顶点C在DA上,点D在OB上,点F在AB上,如果正方形CDEF的面积是△AOB的面积的,则OC:OD等于( )A.3:1 B.2:1C.3:2 D.5:3解题思路:由面积关系,可能想到边、角之间的关系,这时通过设元,即可把几何问题代数化来解决.【例3】如图,在□ABCD中,E为AD上一点,F为AB上一点,且BE=DF,BE与DF交于G,求证:∠BGC=∠DGC.(长春市竞赛试题)解题思路:要证∠BGC=∠DGC,即证CG为∠BGD的平分线,不妨用面积法寻找证题的突破口.【例4】如图,设P为△ABC内任意一点,直线AP,BP,CP交BC,CA,AB于点D、E、F.求证:(1);(2).(南京市竞赛试题)解题思路:过P点作平行线,产生比例线段.【例5】如图,在△ABC中,E,F,P分别在BC,CA,AB上,已知AE,BF,CP相交于一点D,且,求的值.解题思路:利用上例的结论,通过代数恒等变形求值.(黄冈市竞赛试题)【例6】如图,设点E,F,G,H分别在面积为1的四边形ABCD的边AB,BC,CD,DA上,且(是正数),求四边形EFGH的面积.(河北省竞赛试题)解题思路:连对角线,把四边形分割成三角形,将线段的比转化为三角形的面积比.线段比与面积比的相互转化,是解面积问题的常用技巧.转化的基本知识有:(1) 等高三角形面积比,等于它们的底之比;(2) 等底三角形面积比,等于它们的高之比;(3) 相似三角形面积比,等于它们相似比的平方.能力训练1.如图,正方形ABCD的边长为4cm,E是AD的中点,BM⊥EC,垂足为M,则BM=______.(福建省中考试题)2.如图,矩形ABCD中,P为AB上一点,AP=2BP,CE⊥DP于E,AD=,AB=,则CE=__________.(南宁市中考试题)第1题图第2题图第3题图3.如图,已知八边形ABCDEFGH中四个正方形的面积分别为25,48,121,114,PR=13,则该八边形的面积为____________.(江苏省竞赛试题) 4. 在△ABC中,三边长为,,,表示边上的高的长,,的意义类似,则(++)的值为____________. (上海市竞赛试题)5.如图,△ABC的边AB=2,AC=3,Ⅰ,Ⅱ,Ⅲ分别表示以AB,BC,CA为边的正方形,则图中三个阴影部分的面积之和的最大值是__________.(全国竞赛试题) 6.如图,过等边△ABC内一点P向三边作垂线,PQ=6,PR=8,PS=10,则△ABC的面积是 ( ).A. B.C.D.(湖北省黄冈市竞赛试题)第5题图第6题图第7题图7.如图,点D是△ABC的边BC上一点,若∠CAD=∠DAB=,AC=3,AB=6,则AD的长是( ).A.2 B. C.3 D.8.如图,在四边形ABCD中,M,N分别是AB,CD的中点,AN,BN,DM,CM划分四边形所成的7个区域的面积分别为,,,,,,,那么恒成立的关系式是( ).A.+=B.+=C.+= D.+=9.已知等边△ABC和点P,设点P到△ABC三边AB,AC,BC的距离分别为,,,△ABC的高为.若点P在一边BC上(如图1),此时,可得结论:++=.请直接用上述信息解决下列问题:当点P在△ABC内(如图2)、点P在△ABC外(如图3)这两种情况时,上述结论是否还成立?若成立.请给予证明;若不成立,,,与之间又有怎样的关系?请写出你的猜想,不需证明.(黑龙江省中考试题)10.如图,已知D,E,F分别是锐角△ABC的三边BC,CA,AB上的点,且AD、BE、CF相交于P点,AP=BP=CP=6,设PD=,PE=,PF=,若,求的值.(“希望杯”邀请赛试题)11.如图,在凸五边形ABCDE中,已知AB∥CE,BC∥AD,BE∥CD,DE∥AC,求证:AE∥BD.(加拿大数学奥林匹克试题)12.如图,在锐角△ABC中,D,E,F分别是AB,BC,CA边上的三等分点. P,Q,R分别是△ADF,△BDE,△CEF的三条中线的交点.(1) 求△DEF与△ABC的面积比;(2) 求△PDF与△ADF的面积比;(3) 求多边形PDQERF与△ABC的面积比.13.如图,依次延长四边形ABCD的边AB,BC,CD,DA至E,F,G,H,使,若,求的值.(上海市竞赛试题)14.如图,一直线截△ABC的边AB,AC及BC的延长线分别交于F,E,D三点,求证:.(梅涅劳斯定理)15.如图,在△ABC中,已知,求的值.(“华罗庚金杯”少年数学邀请赛试题)。

数学方法篇:面积法

数学方法篇:面积法

数学方法篇三:面积法用面积法解几何问题是一种重要的数学方法,在初中数学中有着广泛的应用,这种方法有时显得特别简捷,有出奇制胜、事半功倍之效。

(一)怎样证明面积相等。

以下是常用的理论依据1.三角形的中线把三角形分成两个面积相等的部分。

2.同底同高或等底等高的两个三角形面积相等。

3.平行四边形的对角线把其分成两个面积相等的部分。

4.同底(等底)的两个三角形面积的比等于高的比。

同高(或等高)的两个三角形面积的比等于底的比。

5.三角形的面积等于等底等高的平行四边形的面积的一半。

6.三角形的中位线截三角形所得的三角形的面积等于原三角形面积的417.三角形三边中点的连线所成的三角形的面积等于原三角形面积的418.有一个角相等或互补的两个三角形的面积的比等于夹角的两边的乘积的比。

(二)用面积法解几何问题(常用的解题思路)1.分解法:通常把一个复杂的图形,分解成几个三角形。

2.作平行线法:通过平行线找出同高(或等高)的三角形。

3.利用有关性质法:比如利用中点、中位线等的性质。

4.还可以利用面积解决其它问题。

【范例讲析】一、怎样证明面积问题1. 分解法例1. 从△ABC的各顶点作三条平行线AD、BE、CF,各与对边或延长线交于D、E、F,求证:△DEF的面积=2△ABC的面积。

2. 作平行线法例2. 已知:在梯形ABCD中,DC//AB,M为腰BC上的中点,二、用面积法解几何问题1. 用面积法证线段相等例1. 已知:如图,AD是△ABC的中线,CF⊥AD于F,BE⊥AD交AD的延长线于E。

求证:CF=BE。

2. 用面积法证两角相等例2. 如图,C是线段AB上的一点,△ACD、△BCE都是等边三角形,AE、BD相交于O。

求证:∠AOC=∠BOC 。

3. 用面积法证线段不等例3. 如图,在△ABC中,已知AB>AC,∠A的平分线交BC于D。

求证:BD>CD。

4. 用面积法证线段的和差例4. 已知:如图,设等边△ABC一边上的高为h,P为等边△ABC内的任意一点,PD⊥BC于D,PE⊥AC于E,PF⊥AB于F。

初中数学常用十种解题方法

初中数学常用十种解题方法

初中数学常用的十种解题方法数学的解题方法是随着对数学对象的研究的深入而发展起来的。

教师钻研习题、精通解题方法,可以促进教师进一步熟练地掌握中学数学教材,练好解题的基本功,提高解题技巧,积累教学资料,提高业务水平和教学能力。

下面介绍的解题方法,都是初中数学中最常用的,有些方法也是中学教学大纲要求掌握的。

1、配方法所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。

通过配方解决数学问题的方法叫配方法。

其中,用的最多的是配成完全平方式。

配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。

2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式。

因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。

因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

3、换元法换元法是数学中一个非常重要而且应用十分广泛的解题方法。

我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

4、判别式法与韦达定理一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。

韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。

5、待定系数法在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。

面积法在初中数学解题中的应用-最新教育文档

面积法在初中数学解题中的应用-最新教育文档

面积法在初中数学解题中的应用数学是中学阶段基础教育的主要学科之一,对启发学生思维、开发学生智力、培养逻辑能力等方面都有举足轻重的作用。

其中,平面几何又是中学数学学科中重要的内容。

学习平面几何相关知识有助于帮助学生形成良好的几何思维习惯,同时能有效培育和提升学生的数学演绎和推理能力。

平面几何在中国也拥有十分悠久的发展历史,同样,平面几何中的面积问题与平面几何一样历史悠久,从溯源的角度上看,面积还是几何学的起源之一。

面积及面积法在日常生活中的运用随处可见,与生活息息相关、紧密相连。

文章围绕面积法在初中数学解题中的应用展开研究,从面积简史、面积及面积法的基本概念入手,结合解题实例,详细分析面积法在初中数学解?}过程中的巧妙应用。

在中学数学中,关于面积和面积法相关知识的教学已达到一定深度。

通过对面积和面积法的学习,一方面能够使学生更好、更直观地学习、理解和掌握数学知识,另一方面通过面积法,构建“数形结合”几何模型,能够将中学数学中一些较为抽象和代数化知识进行更为直观、具象的几何解释。

这些都对培养学生的数学品质,理解数学思想,提升和强化学生具象思维和直觉思维等大有裨益。

对此,有必要更加深入地研究和探索面积及面积法的相关发展历程、概念,以及其在中学数学解题中的巧妙运用,来增强中学生数学思维的灵活性,提高学生的数学素养。

一、与面积相关内容的概述(一)中国古代数学的面积发展史面积的发展史最早可以追溯到古埃及时期,其在中国的发展也同样历史悠久、源远流长。

与其他古代文明相比,面积在中国数学史上的发展有着独特的风格和特色,其在中国古代的实际运用主要在于对田垄、土地的测量。

早在公元前2世纪,中国古代的数学家就著有《算术书》,该书是中国数学史上首次系统性地提出和阐释面积相关的算题,其中就包括对田地的测量以及土地税征收等,以及与实际生产生活密切联系的面积问题。

在之后的历史发展中,又相继有《九章算术》《九章算术注》《孙子算经》《缀术》等相关著作问世。

初中数学常用的9种经典解题方法(附实例)

初中数学常用的9种经典解题方法(附实例)

初中数学常用的9种经典解题方法(附实例)1、配方法通过把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式解决数学问题的方法,叫配方法。

配方法用的最多的是配成完全平方式,它是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。

例:用配方法将二次函数一般式变为顶点式2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式,是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。

因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

例:用因式分解法解一元二次方程3,换元法换元法是数学中一个非常重要而且应用十分广泛的解题方法。

通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

例:换元法化简整式换元法1令a= x+2y,b= x-2y=(a+b)(a-b)a+b=2x, a-b=4y∴ 原式=2x•4y=8xy换元法2令a=x, b=2y=4ab=8xy4,判别式法与韦达定理韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。

例:判别式:△=b2-4ac韦达定理5、待定系数法在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。

它是中学数学中常用的方法之一。

初中数学最经典的9大解题方法

初中数学最经典的9大解题方法

初中数学最经典的9大解题方法1、配方法通过把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式解决数学问题的方法,叫配方法。

配方法用的最多的是配成完全平方式,它是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。

2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式,是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。

因式分解的方法,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

例:用因式分解法解一元二次方程3、换元法换元法是数学中一个非常重要而且应用十分广泛的解题方法。

通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

4、判别式&韦达定理一元二次方程ax2bxc=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。

韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。

判别式:△=b2-4ac韦达定理5、待定系数法在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。

它是中学数学中常用的方法之一。

例: 把多项式x2+ax+b分解因式,得(x+1)(x﹣3)则a,b的值分别是()A.a=2,b=3 B.a=﹣2,b=﹣3B.a=﹣2,b=3 D.a=2,b=﹣3试题分析:根据多项式乘以多项式的法则可得(x+1)(x﹣3)=x•x﹣x•3+1•x﹣1×3=x2﹣3x+x﹣3=x2﹣2x﹣3,对比系数可以得到a=﹣2,b=﹣3.故答案选B。

初中数学-面积问题与面积方法

初中数学-面积问题与面积方法
∴P到BE及CF的距离相等
即 的边BE上的高等于 的边CF上的高

评注:解决本题的关键是运用“平行得等积”。
例2(2003年德国数学竞赛)在平行四边形ABCD中,M、N分别在AB、BC上,且M、N不与端点重合, 。设AN与CM相交于点Q。求证:DQ平分 。
证明:设点Q到AB、BC、CD、DA的距离分别为a、b、c、d
2. 中,设 为a边上的高,R、r分别为 外接圆、内切圆的半径, ,则
三角形的面积公式形式多样,注意根据问题需要灵活选取。
3.(1)相似三角形面积的比等于相似比的平方;
(2)等底(或等高)的三角形的面积比等于其所对应的高(或底)的比。
4.共角定理
若 与 相等或互补,则 。
5.共边定理
如图,若直线AB与PQ相交于M,则 。


又∵


评注:本题涉及到圆内接四边形,其另一种解法是运用托勒密定理,请参考本章超级训练第3题。
例6(2000年全国高中数学联赛)如图,在锐角三角形ABC的BC边上有两点E、F,满足∠BAE=∠CAF,作FM⊥AB,FN⊥AC(M、N为垂足),延长AE交三角形ABC的外接圆于D点。证明:四边形AMDN与三角形ABC的面积相等。
作 和 的平分线,且交于点M。于是,BM是AK的中垂线,DM是EK的中垂线。特别地,有 ,即M是 的外心。
因为
所以,
所以 ,即
又因为 ,
所以
故AE是 的斜边,即M是AE的中点。
因为 , ,
所以
评注:巧妙地构造K点,采用“割补法”求解。
例8(2004年首届中国东南地区数学奥林匹克)设点D为等腰 的底边BC上一点,F为过A、D、C三点的圆在 内的弧上一点,过B、D、F三点的圆与边AB交于点E。求证: 。

初中几何模型与解法中考几何专题:等面积法

初中几何模型与解法中考几何专题:等面积法

初中几何模型与解法:等面积法教学目标1、学会寻找同一个图形两种计算面积的方法,列出等量关系;2、学会运用等面积法建立等式求解线段长或证明线段之间的数量关系3、学会运用等面积法巧妙求解一些不规则图形的面积重、难点重点:运用等面积法建立等式;难点:运用等面积法巧妙求解一些不规则图形的面积知识导图知识梳理方法概述:运用同一图形的两种计算面积的方法,列出等量关系,从而求解线段的长度,或者证明线段之间的等量关系,甚至求解不规则图形的面接!技巧归纳:1、当图形中出现两个(或者以上)的垂直关系时,常用此法.2、计算多边形面积的常用方法:(1)面积计算公式(2)对于公式⑤的证明(如右图):S=S △ABD +S △CBD===*(3)割补法:将不规则图形“分割或补全’为规则图形.+=又∵ABC =AC AB∴该直角三角形斜边AB上的高CD=导学一:等面积法在直角三角形的应用知识点讲解1在直角三角形中,两条直角边、斜边以及斜边上的高,知道任意两个可以运用勾股定理、等面积思想求出剩余两个。

如图:基本公式:①勾股定理:②等面积法:证明②:即:,例题1.如图,在Rt ABC ,∠C=90°,当直角边AC =4,斜边AB =5时,求该直角三角形斜边AB上的高CD ?【参考答案】=2.如图,在Rt ABC (BC AC ),∠C=90°,当斜边AB =10cm,斜边AB上的高CD =4.8cm 时,求该直角三角形直角边AC和BC的长度?【参考答案】解:设AC =x,BC =y,(y由勾股定理:==100又∵ABC =AC AB ∴x y=48再由.得到解得:答:AC =6,BC =8同步练习1.如图,在Rt ABC,∠C=90°,且AC=24,BC=7,作ABC的三个内角的角平分线交于点P,再过点P依次作PD⊥AB于D,作PE⊥BC于E,作PF⊥AC于F.(1)求证:PD=PE=PF;(2)求出:PD的值.【参考答案】(1)证明∵AP平分∠CAB,且PD⊥AB,PF⊥AC∴PD=PF同理,PD=PE综上,PD=PE=PF(2)解:C、=5设:PD=PE=PF=dABC =AC =84sp;ABC&en=APBBPC CPA 84=++d =3,PD=32.如图,△ABC的顶点A,B,C在边长为1的正方形网格的格点上,则BC边长的高为()B、D、A、【参考答案】C 解:∵S△ABC =3×4−×2×3−×2×1−×2×4=4∵BC==,∴BC边长的高==故选:C.导学二:等面积法在等腰三角形的应用知识点讲解1在等腰三角形中,可以运用“割补法”的等面积思想,先建立有关“腰以及腰上的高”的等式,再通过等式两边约分来探索出线段之间的数量关系!例题1.如图,在△ABC中,AB=AC,AC边上的高BD=10cm.(1)如图1,求AB边上高CE的长;(2)如图2,若点P为BC边上任意一点,PM⊥AB于点M,PN⊥AC于点N,求PM+PN的值;(3)如图3,若点P为BC延长线上任意一点,PM⊥AB于M,PN⊥AC于点N,在①PM+PN;②PM PN中有一个是定值,判断出来并求值.【参考答案】(1)由S△ABC=×AB×CE=×AC×BD∵AB=AC,BD=10∴CE=10(2)如图,连接AP由S△ABP+S△ACP=S△ABC×AB×PM+×AC×PD=×AC×BD∵AB=AC,BD=10∴PM+PN=10(3)如图,连接APPM−PN是定值理由如下:连接AP,由S△ABP−S△ACP=S△ABC×AB×PM−×AC×PD=×AC×BD∵AB=AC,BD=10∴PM−PN=102.已知等边△ABC和内部一点P,设点P到△ABC三边的AB、BC、AC的距离分别是h1,h2,h3,△ABC的高为h,问h1、h2、h3与h之间有怎样的数量关系?请说明理由。

“面积法”在数学解题中的应用

“面积法”在数学解题中的应用

“面积法”在数学解题中的应用作者:张敏勇来源:《读与写·下旬刊》2011年第09期摘要: 在初中平面几何中,有一类题目,可能有多种解法,如果适当运用图形之间的面积关系,将会使问题解决途径浅显易懂,暂且称这一解决问题的方法为“面积法”,本文举例说明这一方法在解题中的应用。

面积法在数学解题中的应用是很广泛的,灵活运用这一方法,对于培养学生的思维方式,拓展解决问题的思路都是有益的。

关键词: 数学;解题方法;面积法中图分类号:G633.6 文献标识码:E 文章编号:1672-1578(2011)09-0260-011.用面积法比较线段的大小如图1,在⊿ABC中,AB>AC,BD、CE分别是AC、AB上的高,判断CE的大小。

解:∵⊿=1 2 AB•CE=1 2 AC•BD;AB>∴CE<图2.用面积法证明勾股定理如图2,直角三角形的两条直角边是a和b,斜边是c,求证:图证明:将所给三角形如图拼接,使C,A,D在同一直线上,连接BE。

易证BC∥ED,∠BAC+∠EAD=∴∠BAE=∴梯形= 1 2 (a+b)(a+b)=整理得3.用面积求角度已知菱形ABCD的对角线AC、BD的乘积等于菱形的一条边的平方,求菱形的一个钝角的大小。

解:作AE⊥BC于∵菱形=BC•AE=又∵AC•BD=;BC•AE=;菱形中BC=∴AE=又∵AE⊥∴∠ABE=30°;∴∠BAD=150°图4.用面积法证角平线定理已知⊿ABC,AD平分∠BAC,求证: AB AC =证明:作DE⊥AB于E,DF⊥AC于F,AG⊥BC于G。

∵AD平分∠BAC,DE⊥AB,DF⊥∴DE=又∵⊿= 1 2 AB•DE=⊿=1 2 AC•DF=∴ AB•DE AC•DF =AB AC =图4的问题,每隔多少时间发车.如果应用“设而不求”的方法.我们可设汽车的速度为,自行车的速度为,两地间每隔x分钟发一次车,则相邻两车的距离为由题意可得:20(-)①②∴20(-)∴代入①得:20(-)∴其实每一道应用题都有多种建立方程的等量关系的途径和疗法如果学生在教师的引导下,通过多种途径,应用多种方法去分析、思考。

初中数学-面积问题与面积方法

初中数学-面积问题与面积方法

面积问题与面积方法[赛点突破]1.利用面积关系解决几何问题,古已有之,最典型的例子就是勾股定理的许多采用面积割补的证明。

在数学竞赛中,有些问题是要求出指定图形的面积,也有些问题从表面上看似乎不直接涉及到面积,但若用等积变换与面积法去解答,往往会收到事半功倍的效果。

在运用等积变换与面积法时,常常用到以下的公式和定理。

2.ABC ∆中,设a h 为a 边上的高,R 、r 分别为ABC ∆外接圆、内切圆的半径,1()2p a b c ,则11sin 22ABCa Sah ab C ()()()rp p p a p b p c22sin sin sin 4abcR A B CR三角形的面积公式形式多样,注意根据问题需要灵活选取。

3.(1)相似三角形面积的比等于相似比的平方;(2)等底(或等高)的三角形的面积比等于其所对应的高(或底)的比。

4.共角定理若ABC 与'''A B C 相等或互补,则'''''''ABC A B C S AB BCS A B B C 。

5.共边定理如图,若直线AB 与PQ 相交于M ,则PAB QABS PMSQM。

ABPQMABPM Q[范例解密]例1 已知:如图,P 是△ABC 中BAC 平分线上的任一点,过C 作CE ∥PB 交AB 的延长线于E ,过B 作BF ∥PC 交AC 的延长线于F.求证:BECF 。

分析:利用角平分线性质得到距离相等,结合等底等高的两个三角形面积相等,将问题转化为等积问题。

证明:连结PE 、PF ∵ CE ∥PB,BF ∥PC ∴ ,= =PBEPBCPCFPBCS S SS∴ =PBE PCFSS又∵ P 是BAC 平分线上的点∴ P 到BE 及CF 的距离相等即PBE 的边BE 上的高等于PCF 的边CF 上的高∴ BE CF评注:解决本题的关键是运用“平行得等积”。

初中数学解题的方法与技巧

初中数学解题的方法与技巧

初中数学解题的方法与技巧基本方法1、配方法所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。

通过配方解决数学问题的方法叫配方法。

其中,用的最多的是配成完全平方式。

配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。

2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式。

因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。

因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

3、换元法换元法是数学中一个非常重要而且应用十分广泛的解题方法。

我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

4、判别式法与韦达定理一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。

韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。

5、待定系数法在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。

它是中学数学中常用的方法之一。

6、构造法在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。

例谈等面积法在初数学解题中的应用

例谈等面积法在初数学解题中的应用

例谈等面积法在初中数学解题中的应用贵州省榕江县三江中学 潘光联等面积法是一种常用的、重要的数学解题思想方法。

它是利用“同一个图形的面积相等”、“分割图形后各部分面积之和等于原图形的面积”、“同底等高或等底同高的两个三角形的面积相等”等性质解决有关的数学问题。

在解题中,灵活运用等面积法解答相关问题,可以使解题思路清晰,解题过程简捷。

下面举例说明等积法在初中数学解题中的应用:一.求三角形的高例1.如图1所示,在△ABC 中,AB=10,BC=6,AC=8,求AB 边上的高CD 的长.解:在△ABC 中,.10010,10086222222===+=+AB AC BC Θ.222AB AC BC =+∴∴△ABC 是直角三角形.利用三角形面积计算公式得,.2121CD AB BC AC ⋅=⋅ 即8.41068=⨯=⋅=AB BC AC CD Θ 二.求图形的面积例2. 如图2所示,⊙O 的半径为3,OA=6,AB 切⊙O 于B ,弦BC ∥OA ,连接AC ,则图中阴影部分的面积是多少?分析:连接OB 、OC ,将图中不规则的阴影部分的面积转化为扇形0BC 的面积是解决此问题的切入点和关键.解:连接OB 、OC ,由BC ∥OA 知,△OCB 与△ACB 的边CB 上的高相等.故由等积性质可知,CB ACB S S 0∆∆=易知,∠BOC=ο60. 所以ππ2336036020=⨯==CB S S 扇形阴影. 三.求三角形内切圆半径例3.如图3所示,已知⊙O 是△ABC 的内切圆,∠C=ο90,AC=4,BC=3. 求⊙O 的半径.解:设⊙O 的半径为r ,连接0A 、0B 、OC 、OE 、OF 、OG..∵⊙O 是△ABC 的内切圆,∴OG ⊥AB ,OE ⊥BC ,OF ⊥AC ,且OE=OF=OG=r.在Rt △ABC 中,由勾股定理,得.5432222=+=+=AC BC AB于是由ACO BCO ABO ABC S S S S ∆∆∆∆++=,得.21212121AC BC r AC r BC r AB ⋅=⋅+⋅+⋅ 即 .)(AC BC r AC BC AB ⋅=++ ∴.143543=++⨯=++⋅=AC BC AB AC BC r 四.求函数的解析式例4.如图4所示,线段AB=8,直线m 与⊙o 相切于点 D,且m ∥AB ,P 是直线m 上的一点,PB 交以AB 为直径的圆于C,连结AC.设PB=x,AC=y,求y 与x 的函数关系式.分析:因为AB 是⊙O 的直径,所以AC ⊥BP ,又因为把直线m 与⊙o 相切于点 D,且m ∥AB ,所以DO ⊥AB,BP和AC 看成三角形的底和高,于是很自然地连接AP 、OD ,利用同一个三角形的面积相等的性质,就可以得到x 与y 的关系.解:连结AP ,∵AB 是⊙O 的直径,∴AC ⊥BP .又∵直线m 与⊙o 相切于点D,且m ∥AB ,∴DO ⊥AB即△ABP 的AB 边上的高是4, ∴,42121⨯=⋅AB AC BP 即xy=8×4. xy 32= (x >4). 五.在探究规律题中的应用例5.如图-5所示,将一个边长为1的正方形平均分成两个面积是21矩形,又将一个面积为21矩形平均分成两个面积是41的矩形,再将一个面积为41的矩形平局分成两个面积是81的矩形,如此进行分割下去,如果分割n 次后,按图中揭示的规律计算: n 2121212*********++++++Λ 分析:分割图形后各部分面积之和等于原图形的面积根,得.21221121212121161814121444432-=-=+++=+++ 于是利用这个规律就可以把问题解决.解:n 2121212*********++++++Λ=.212211n n n -=- 总之,等面积法是一种重要的数学解题思想方法。

三角形等面积法在初中教学中的应用

三角形等面积法在初中教学中的应用

三角形等面积法在初中教学中的应用摘要:关于三角形等面积法是近些年初中数学的一种常规解题思路,它的优势在于可以更加快速的找到解题关键,将一些晦涩难懂的知识点变得简单化。

本文将结合现有的一些典型例题,利用三角形等面积法解决相关问题,以此来培养学生的数学思维,提高学生的解题能力。

关键词:三角形等面积法;初中数学;具体应用前言:在现有的初中数学教学中,采用三角形等面积法是一个比较快捷实用的方法,结合几年的教学经验可以发现,即便部分几何题目的问题并没有涉及到三角形的面积计算,但是我们却可以按照图形进行数形结合,将其与实际问题相联系,进而解决这类问题一、分析三角形之间的相关联系,提升学生简单几何的能力在解决三角形的面积时,通常会利用到三角形的边长以及角度之间的关系。

尤其是在一些几何题目当中可能会让你求解一些与已知条件看似毫无关系的边长和角度,此时,很多同学就会将问题复杂化,但实际上如果你仔细观察就会发现,这道题很可能就是利用了三角形的等面积公式,将一个复杂的几何问题转变为一个解方程的题目,而这类题型的实际目的就是让学生发现图形中图形之间的关系,培养学生的数学几何能力,采用“以数解形”的思想,了解几何题背后的实际含义。

例题1如图,直角三角形ABC中,∠ACB=90°BC=4,AC=4,求CD的长度图1解:∵根据勾股定理可知,AB²=AC²+BC²∴AB=4又∵S△ABC=AB*CD/2=AC*BC/2即4*CD/2=4*4/2∴CD=4二、熟悉三角形的基本属性,培养学生的空间想象能力在一些复杂的几何题目中,通常会将圆、平行四边形等图形与三角形结合起来,此时学生不仅要熟知三角形的一些基本定理,尤其是等腰三角形、等边三角形等特殊图形,要充分利用45°、60°等角度。

同时也要熟悉相关图形的定理,做到活学活用,最后看能否利用等面积法将几何问题转换为简单方程,进而更快速的求解题目。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

面积法在初中数学计算和证明中的应用
等面积法是一种常用的、重要的数学解题方法.它是利用“同一个图形的面积相等”、“分割图形后各部分的面积之和等于原图形的面积”、“同底等高或等底同高的两个三角形面积相等”等性质解决有关数学问题,在解题中,灵活运用等面积法解决相关问题,可以使解题思路清晰,解题过程简便快捷.
先从三角形的面积说起:
可以以三角形的任意一条边为底,
那么对应不同的底边就有三条不同的高线,
在计算三角形的面积时,需要注意底和高的对应关系。

根据上面的式子可知,若已知三角形的一组对应的底边和高的长度以及另一组底边的长度,可以算出另一组底边上的高线的长度,反之亦然,
这种方法就是利用同一个三角形面积的不同表示方法来计算线段的长度,一般是求垂线段的长度,因此称为等面积法求垂线段的长度。

在初中几何中,经常会出现利用等面积法求垂线段长度的题目。

等面积法求垂线段长度
直角三角形中,等面积法求斜边上的高
因此,我们得到一个常用的公式:直角三角形斜边上的高等于两直角边的乘积除以斜边。

格点中,等面积法求垂线段长度
等腰三角形中,等面积法求线段比例关系
将一个三角形分成若干个小三角形,这些小三角形的面积之和
等于这个三角形的面积,分别表示出各个三角形的面积,即可
得到线段之间的关系,进而可以求出线段之和或线段之间的和
差关系。

直角三角形中,等面积法求角平分线交点到三边的距离
等腰三角形中,等面积法求两线段之和
矩形中,等面积法求垂线段长度之和
矩形中,等面积法证明线段和差关系
等面积法证明垂线段之间的数量关系
平方差公式、完全平方公式都可以用几何方法来证明,证明的过程就用到等面积法;勾股定理也常用等面积法来证明。

等面积法证明勾股定理
等面积法与乘法公式
等面积法在几何综合探究题中的应用
留一道练习题:。

相关文档
最新文档