二七区高级中学2018-2019学年上学期高二数学12月月考试题含解析

合集下载

2018-2019学年上学期高二数学12月月考试题含解析(1625)

2018-2019学年上学期高二数学12月月考试题含解析(1625)

孙吴县第二中学校2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 已知集合A={0,1,2},则集合B={x ﹣y|x ∈A ,y ∈A}的元素个数为( ) A .4B .5C .6D .92. 集合{}5,4,3,2,1,0=S ,A 是S 的一个子集,当A x ∈时,若有A x A x ∉+∉-11且,则称x 为A 的一个“孤立元素”.集合B 是S 的一个子集, B 中含4个元素且B 中无“孤立元素”,这样的集合B 共有个A.4B. 5C.6D.73. 在△ABC 中,a 2=b 2+c 2+bc ,则A 等于( ) A .120° B .60° C .45° D .30°4. 从一群学生中抽取一个一定容量的样本对他们的学习成绩进行分析,已知不超过70分的人数为8人,其累计频率为0.4,则这样的样本容量是( )A .20人B .40人C .70人D .80人5. 已知集合},052|{2Z x x x x M ∈<+=,},0{a N =,若∅≠N M ,则=a ( )A .1-B .C .1-或D .1-或2-6. 已知数列{a n }满足a 1=1,a 2=2,a n+2=(1+cos2)a n +sin2,则该数列的前10项和为( )A .89B .76C .77D .357. 阅读如右图所示的程序框图,若输入0.45a =,则输出的k 值是( ) (A ) 3 ( B ) 4 (C ) 5 (D ) 68. 已知等比数列{a n }的第5项是二项式(x+)4展开式的常数项,则a 3•a 7( ) A .5 B .18C .24D .369. 已知不等式组⎪⎩⎪⎨⎧≥+≤+≥-1210y x y x y x 表示的平面区域为D ,若D 内存在一点00(,)P x y ,使001ax y +<,则a 的取值范围为( )A .(,2)-∞B .(,1)-∞C .(2,)+∞D .(1,)+∞10.过抛物线22(0)y px p =>焦点F 的直线与双曲线2218-=y x 的一条渐近线平行,并交其抛物线于A 、B 两点,若>AF BF ,且||3AF =,则抛物线方程为( )A .2y x = B .22y x = C .24y x = D .23y x =【命题意图】本题考查抛物线方程、抛物线定义、双曲线标准方程和简单几何性质等基础知识,意在考查方程思想和运算能力.11.已知f (x )在R 上是奇函数,且f (x+4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (7)=( )A .﹣2B .2C .﹣98D .9812.如图是某几何体的三视图,正视图是等腰梯形,俯视图中的曲线是两个同心的半圆组成的半圆环,侧视图是直角梯形.则该几何体表面积等于( )A .12+ B .12+23π C .12+24π D .12+π二、填空题13.已知,0()1,0x e x f x x ì³ï=í<ïî,则不等式2(2)()f x f x ->的解集为________.【命题意图】本题考查分段函数、一元二次不等式等基础知识,意在考查分类讨论思想和基本运算能力. 14.若函数f (x )=﹣m 在x=1处取得极值,则实数m 的值是 .15.已知线性回归方程=9,则b= .16.若曲线f (x )=ae x+bsinx (a ,b ∈R )在x=0处与直线y=﹣1相切,则b ﹣a= . 17.(sinx+1)dx 的值为 .18.已知某几何体的三视图如图所示,则该几何体的体积为 .三、解答题19.已知数列{a n}满足a1=﹣1,a n+1=(n∈N*).(Ⅰ)证明:数列{+}是等比数列;(Ⅱ)令b n=,数列{b n}的前n项和为S n.①证明:b n+1+b n+2+…+b2n<②证明:当n≥2时,S n2>2(++…+)20.设函数f(x)=x2e x.(1)求f(x)的单调区间;(2)若当x∈[﹣2,2]时,不等式f(x)>m恒成立,求实数m的取值范围.21.如图,在直三棱柱ABC﹣A1B1C1中,AC=3,BC=4,AA1=4,AB=5,点D是AB的中点.(1)求证:AC⊥BC1;(2)求证:AC1∥平面CDB1.22.已知椭圆C的中心在坐标原点O,长轴在x轴上,离心率为,且椭圆C上一点到两个焦点的距离之和为4.(Ⅰ)椭圆C的标准方程.(Ⅱ)已知P、Q是椭圆C上的两点,若OP⊥OQ,求证:为定值.(Ⅲ)当为(Ⅱ)所求定值时,试探究OP⊥OQ是否成立?并说明理由.23.已知顶点在坐标原点,焦点在x轴上的抛物线被直线y=2x+1截得的弦长为,求此抛物线方程.24.已知f(x)是定义在[﹣1,1]上的奇函数,f(1)=1,且若∀a、b∈[﹣1,1],a+b≠0,恒有>0,(1)证明:函数f(x)在[﹣1,1]上是增函数;(2)解不等式;(3)若对∀x∈[﹣1,1]及∀a∈[﹣1,1],不等式f(x)≤m2﹣2am+1恒成立,求实数m 的取值范围.孙吴县第二中学校2019-2020学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】B【解析】解:①x=0时,y=0,1,2,∴x ﹣y=0,﹣1,﹣2; ②x=1时,y=0,1,2,∴x ﹣y=1,0,﹣1; ③x=2时,y=0,1,2,∴x ﹣y=2,1,0; ∴B={0,﹣1,﹣2,1,2},共5个元素. 故选:B .2. 【答案】C 【解析】试题分析:根据题中“孤立元素”定义可知,若集合B 中不含孤立元素,则必须没有三个连续的自然数存在,所有B 的可能情况为:{}0,1,3,4,{}0,1,3,5,{}0,1,4,5,{}0,2,3,5,{}0,2,4,5,{}1,2,4,5共6个。

2018-2019学年上学期高二数学12月月考试题含解析(1689)

2018-2019学年上学期高二数学12月月考试题含解析(1689)

铁岭县第二中学校2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 投篮测试中,每人投3次,至少投中2次才能通过测试.己知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( ) A .0.648 B .0.432 C .0.36 D .0.3122. 在正方体ABCD ﹣A ′B ′C ′D ′中,点P 在线段AD ′上运动,则异面直线CP 与BA ′所成的角θ的取值范围是( )A .0<B .0C .0D .03. 已知椭圆(0<b <3),左右焦点分别为F 1,F 2,过F 1的直线交椭圆于A ,B 两点,若|AF 2|+|BF 2|的最大值为8,则b 的值是( )A .B .C .D .4. 若复数2b ii++的实部与虚部相等,则实数b 等于( ) (A ) 3 ( B ) 1 (C ) 13(D )12-5. 设等比数列{a n }的公比q=2,前n 项和为S n ,则=( )A .2B .4C .D .6. 函数y=2sin 2x+sin2x 的最小正周期( )A .B .C .πD .2π7. 已知正三棱柱111ABC A B C -的底面边长为4cm ,高为10cm ,则一质点自点A 出发,沿着三棱柱的侧面,绕行两周到达点1A 的最短路线的长为( )A .16cmB .C .D .26cm8. 设函数()''y f x =是()'y f x =的导数.某同学经过探究发现,任意一个三次函数()()320f x ax bx cx d a =+++≠都有对称中心()()00,x f x ,其中0x 满足()0''0f x =.已知函数()3211533212f x x x x =-+-,则1232016...2017201720172017f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭( ) A .2013 B .2014 C .2015D .20161111]9. 如果点P 在平面区域220,210,20x y x y x y -+≥⎧⎪-+≤⎨⎪+-≤⎩上,点Q 在曲线22(2)1x y ++=上,那么||PQ 的最小值为( )A 51B 15- C. 221 D2110.某几何体的三视图如图所示,该几何体的体积是()A .B .C .D .11.P 是双曲线=1(a >0,b >0)右支上一点,F 1、F 2分别是左、右焦点,且焦距为2c ,则△PF 1F 2的内切圆圆心的横坐标为( )A .a B .b C .cD .a+b ﹣c 12.若椭圆+=1的离心率e=,则m 的值为( )A.1 B.或C.D.3或二、填空题13.若数列{a n}满足:存在正整数T,对于任意的正整数n,都有a n+T=a n成立,则称数列{a n}为周期为T的周期数列.已知数列{a n}满足:a1>=m (m>a ),a n+1=,现给出以下三个命题:①若m=,则a5=2;②若a3=3,则m可以取3个不同的值;③若m=,则数列{a n}是周期为5的周期数列.其中正确命题的序号是.14.定义在R上的偶函数f(x)在[0,+∞)上是增函数,且f(2)=0,则不等式f(log8x)>0的解集是.15.设变量x,y满足约束条件,则的最小值为.16.抛物线y2=8x上到顶点和准线距离相等的点的坐标为.17.已知双曲线﹣=1(a>0,b>0)的一条渐近线方程是y=x,它的一个焦点在抛物线y2=48x的准线上,则双曲线的方程是.18()23k x=-+有两个不等实根,则的取值范围是.三、解答题19.在平面直角坐标系中,△ABC各顶点的坐标分别为:A(0,4);B(﹣3,0),C (1,1)(1)求点C到直线AB的距离;(2)求AB边的高所在直线的方程.20.已知f (x )=|﹣x|﹣|+x|(Ⅰ)关于x 的不等式f (x )≥a 2﹣3a 恒成立,求实数a 的取值范围;(Ⅱ)若f (m )+f (n )=4,且m <n ,求m+n 的取值范围.21.(本题12分)已知数列{}n x 的首项13x =,通项2n n x p nq =+(*n N ∈,p ,为常数),且145x x x ,,成等差数列,求: (1)p q ,的值;(2)数列{}n x 前项和n S 的公式.22.某种产品的广告费支出x 与销售额y (单位:百万元)之间有如下对应数据: x 2 4 5 6 8 y 30 40 60 50 70(1)画出散点图; (2)求线性回归方程;(3)预测当广告费支出7(百万元)时的销售额.23.设p:关于x的不等式a x>1的解集是{x|x<0};q:函数的定义域为R.若p∨q是真命题,p∧q是假命题,求实数a的取值范围.24.已知命题p:x2﹣2x+a≥0在R上恒成立,命题q:若p或q为真,p且q为假,求实数a的取值范围.铁岭县第二中学校2019-2020学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】A【解析】解:由题意可知:同学3次测试满足X∽B(3,0.6),该同学通过测试的概率为=0.648.故选:A.2.【答案】D【解析】解:∵A1B∥D1C,∴CP与A1B成角可化为CP与D1C成角.∵△AD1C是正三角形可知当P与A重合时成角为,∵P不能与D1重合因为此时D1C与A1B平行而不是异面直线,∴0<θ≤.故选:D.3.【答案】D【解析】解:∵|AF1|+|AF2|=|BF1|+|BF2|=2a=6,|AF2|+|BF2|的最大值为8,∴|AB|的最小值为4,当AB⊥x轴时,|AB|取得最小值为4,∴=4,解得b2=6,b=.故选:D.【点评】本题考查了椭圆的标准方程及其性质,考查了推理能力与计算能力,属于中档题.4.【答案】C【解析】b +i 2+i =(b +i)(2-i)(2+i)(2-i)=2b +15+2-b 5i ,因为实部与虚部相等,所以2b +1=2-b ,即b =13.故选C. 5. 【答案】C【解析】解:由于q=2,∴∴;故选:C .6. 【答案】C【解析】解:函数y=2sin 2x+sin2x=2×+sin2x=sin (2x ﹣)+1,则函数的最小正周期为=π,故选:C .【点评】本题主要考查三角恒等变换,函数y=Asin (ωx+φ)的周期性,利用了函数y=Asin(ωx+φ)的周期为,属于基础题.7. 【答案】D 【解析】考点:多面体的表面上最短距离问题.【方法点晴】本题主要考查了多面体和旋转体的表面上的最短距离问题,其中解答中涉及到多面体与旋转体的侧面展开图的应用、直角三角形的勾股定理的应用等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,学生的空间想象能力、以及转化与化归思想的应用,试题属于基础题. 8. 【答案】D 【解析】1120142201520161...2201720172017201720172017f f f f f f ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++++⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦()12201620162=⨯⨯=,故选D. 1 考点:1、转化与划归思想及导数的运算;2、函数对称的性质及求和问题.【方法点睛】本题通过 “三次函数()()320f x ax bx cx d a =+++≠都有对称中心()()0,x f x ”这一探索性结论考查转化与划归思想及导数的运算、函数对称的性质及求和问题,属于难题.遇到探索性结论问题,应耐心读题,分析新结论的特点,弄清新结论的性质,按新结论的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.本题的解答就是根据新结论性质求出()311533212f x x x x =-+-的对称中心后再利用对称性和的.第Ⅱ卷(非选择题共90分)9. 【答案】A 【解析】试题分析:根据约束条件画出可行域||PQ Z =表示圆上的点到可行域的距离,当在点A 处时,求出圆心到可行域的距离内的点的最小距离5,∴当在点A 处最小, ||PQ 最小值为15-,因此,本题正确答案是15-.考点:线性规划求最值.10.【答案】A【解析】解:几何体如图所示,则V=,故选:A.【点评】本题考查的知识点是由三视图求体积,正确得出直观图是解答的关键.11.【答案】A【解析】解:如图设切点分别为M,N,Q,则△PF1F2的内切圆的圆心的横坐标与Q横坐标相同.由双曲线的定义,PF1﹣PF2=2a.由圆的切线性质PF1﹣PF2=F I M﹣F2N=F1Q﹣F2Q=2a,∵F1Q+F2Q=F1F2=2c,∴F2Q=c﹣a,OQ=a,Q横坐标为a.故选A.【点评】本题巧妙地借助于圆的切线的性质,强调了双曲线的定义.12.【答案】D【解析】解:当椭圆+=1的焦点在x轴上时,a=,b=,c=由e=,得=,即m=3当椭圆+=1的焦点在y轴上时,a=,b=,c=由e=,得=,即m=.故选D【点评】本题主要考查了椭圆的简单性质.解题时要对椭圆的焦点在x轴和y轴进行分类讨论.二、填空题13.【答案】①②.【解析】解:对于①由a n+1=,且a1=m=<1,所以,>1,,,∴a5=2 故①正确;对于②由a3=3,若a3=a2﹣1=3,则a2=4,若a1﹣1=4,则a1=5=m.若,则.若a1>1a1=,若0<a1≤1则a1=3,不合题意.所以,a3=2时,m即a1的不同取值由3个.故②正确;若a=m=>1,则a2=,所a3=>1,a4=1故在a1=时,数列{a}是周期为3的周期数列,③错;n故答案为:①②【点评】本题主要考查新定义题目,属于创新性题目,但又让学生能有较大的数列的知识应用空间,是较好的题目14.【答案】(0,)∪(64,+∞).【解析】解:∵f(x)是定义在R上的偶函数,∴f(log8x)>0,等价为:f(|log8x|)>f(2),又f(x)在[0,+∞)上为增函数,∴|log8x|>2,∴log8x>2或log8x<﹣2,∴x>64或0<x<.即不等式的解集为{x|x>64或0<x<}故答案为:(0,)∪(64,+∞)【点评】本题考查函数奇偶性与单调性的综合,是函数性质综合考查题,熟练掌握奇偶性与单调性的对应关系是解答的关键,根据偶函数的对称性将不等式进行转化是解决本题的关键.15.【答案】4.【解析】解:作出不等式组对应的平面区域,则的几何意义为区域内的点到原点的斜率,由图象可知,OC的斜率最小,由,解得,即C(4,1),此时=4,故的最小值为4,故答案为:4【点评】本题主要考查线性规划的应用,利用直线斜率的定义以及数形结合是解决本题的关键.16.【答案】(1,±2).【解析】解:设点P坐标为(a2,a)依题意可知抛物线的准线方程为x=﹣2a2+2=,求得a=±2∴点P的坐标为(1,±2)故答案为:(1,±2).【点评】本题主要考查了两点间的距离公式、抛物线的简单性质,属基础题.17.【答案】【解析】解:因为抛物线y2=48x的准线方程为x=﹣12,则由题意知,点F(﹣12,0)是双曲线的左焦点,所以a2+b2=c2=144,又双曲线的一条渐近线方程是y=x,所以=,解得a2=36,b2=108,所以双曲线的方程为.故答案为:.【点评】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,确定c和a2的值,是解题的关键.18.【答案】53,124⎛⎤⎥⎝⎦ 【解析】试题分析:作出函数y =()23y k x =-+的图象,如图所示,函数y =的图象是一个半圆,直线()23y k x =-+的图象恒过定点()2,3,结合图象,可知,当过点()2,0-时,303224k -==+,当直线()23y k x =-+与圆相切时,即2=,解得512k =,所以实数的取值范围是53,124⎛⎤⎥⎝⎦.111]考点:直线与圆的位置关系的应用.【方法点晴】本题主要考查了直线与圆的位置关系的应用,其中解答中涉及到点到直线的距离公式、两点间的斜率公式,以及函数的图像的应用等知识点的综合考查,着重考查了转化与化归思想和学生的分析问题和解答问题的能力,属于中档试题,本题的解答中把方程的根转化为直线与半圆的交点是解答的关键.三、解答题19.【答案】 【解析】解(1)∵,∴根据直线的斜截式方程,直线AB:,化成一般式为:4x ﹣3y+12=0,∴根据点到直线的距离公式,点C 到直线AB的距离为; (2)由(1)得直线AB的斜率为,∴AB边的高所在直线的斜率为,由直线的点斜式方程为:,化成一般式方程为:3x+4y ﹣7=0,∴AB 边的高所在直线的方程为3x+4y ﹣7=0.20.【答案】【解析】解:(Ⅰ)关于x 的不等式f (x )≥a 2﹣3a 恒成立,即|﹣x|﹣|+x|≥a 2﹣3a恒成立.由于f (x )=|﹣x|﹣|+x|=,故f (x )的最小值为﹣2,∴﹣2≥a 2﹣3a ,求得1≤a ≤2.(Ⅱ)由于f (x )的最大值为2,∴f (m )≤2,f (n )≤2,若f (m )+f (n )=4,∴m <n ≤﹣,∴m+n <﹣5.【点评】本题主要考查分段函数的应用,求函数的最值,函数的恒成立问题,属于中档题.21.【答案】(1)1,1==q p ;(2)2)1(221++-=-n n S n n . 考点:等差,等比数列通项公式,数列求和. 22.【答案】【解析】解:(1)(2)设回归方程为=bx+a则b=﹣5/﹣5=1380﹣5×5×50/145﹣5×52=6.5故回归方程为=6.5x+17.5(3)当x=7时,=6.5×7+17.5=63,所以当广告费支出7(百万元)时,销售额约为63(百万元).【点评】本题考查线性回归方程的求法和应用,本题解题的关键是利用最小二乘法求出线性回归方程的系数,这是解答正确的主要环节.23.【答案】【解析】解:∵关于x的不等式a x>1的解集是{x|x<0},∴0<a<1;故命题p为真时,0<a<1;∵函数的定义域为R,∴⇒a≥,由复合命题真值表知:若p∨q是真命题,p∧q是假命题,则命题p、q一真一假,当p真q假时,则⇒0<a<;当q真p假时,则⇒a≥1,综上实数a的取值范围是(0,)∪[1,+∞).24.【答案】【解析】解:若P是真命题.则△=4﹣4a≤0∴a≥1;…(3分)若q为真命题,则方程x2+2ax+2﹣a=0有实根,∴△=4a2﹣4(2﹣a)≥0,即,a≥1或a≤﹣2,…(6分)依题意得,当p真q假时,得a∈ϕ;…(8分)当p假q真时,得a≤﹣2.…(10分)综上所述:a的取值范围为a≤﹣2.…(12分)【点评】本题考查复合函数的真假与构成其简单命题的真假的关系,解决此类问题应该先求出简单命题为真时参数的范围,属于基础题.。

2018-2019学年上学期高二数学12月月考试题含解析(1610)

2018-2019学年上学期高二数学12月月考试题含解析(1610)

睢阳区第二中学校2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 下列函数中,为偶函数的是( )A .y=x+1B .y=C .y=x 4D .y=x 52. 函数 y=x 2﹣4x+1,x ∈[2,5]的值域是( )A .[1,6]B .[﹣3,1]C .[﹣3,6]D .[﹣3,+∞)3. 已知一三棱锥的三视图如图所示,那么它的体积为( )A .13 B .23C .1D .2 4. 已知抛物线28y x =与双曲线2221x y a-=的一个交点为M ,F 为抛物线的焦点,若5MF =,则该双曲线的渐近线方程为A 、530x y ±=B 、350x y ±=C 、450x y ±=D 、540x y ±=5. 二项式(x 2﹣)6的展开式中不含x 3项的系数之和为( )A .20B .24C .30D .366. 已知=(2,﹣3,1),=(4,2,x ),且⊥,则实数x 的值是( )A .﹣2B .2C .﹣D .7. 已知集合A={x|x 是平行四边形},B={x|x 是矩形},C={x|x 是正方形},D={x|x 是菱形},则( )A .A ⊆B B .C ⊆B C .D ⊆C D .A ⊆D8. 函数f (x )=x 3﹣3x 2+5的单调减区间是( )A .(0,2)B .(0,3)C .(0,1)D .(0,5)9. 利用计算机在区间(0,1)上产生随机数a ,则不等式ln (3a ﹣1)<0成立的概率是( )A .B .C .D .10.复数z=在复平面上对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 11.若某程序框图如图所示,则该程序运行后输出的值是( )A.7B.8C. 9D. 10【命题意图】本题考查阅读程序框图,理解程序框图的功能,本质是循环语句循环终止的条件.12.拋物线E :y 2=2px (p >0)的焦点与双曲线C :x 2-y 2=2的焦点重合,C 的渐近线与拋物线E 交于非原点的P 点,则点P 到E 的准线的距离为( ) A .4 B .6 C .8D .10二、填空题13.设R m ∈,实数x ,y 满足23603260y m x y x y ≥⎧⎪-+≥⎨⎪--≤⎩,若182≤+y x ,则实数m 的取值范围是___________.【命题意图】本题考查二元不等式(组)表示平面区域以及含参范围等基础知识,意在考查数形结合的数学思想与运算求解能力.14.利用计算机产生1到6之间取整数值的随机数a 和b ,在a+b 为偶数的条件下,|a ﹣b|>2发生的概率是 .15.在三棱柱ABC ﹣A 1B 1C 1中,底面为棱长为1的正三角形,侧棱AA 1⊥底面ABC ,点D 在棱BB 1上,且BD=1,若AD 与平面AA 1C 1C 所成的角为α,则sin α的值是 .16.等比数列{a n}的前n项和S n=k1+k2·2n(k1,k2为常数),且a2,a3,a4-2成等差数列,则a n=________.17.多面体的三视图如图所示,则该多面体体积为(单位cm).18.抛物线y2=8x上一点P到焦点的距离为10,则P点的横坐标为.三、解答题19.对于定义域为D的函数y=f(x),如果存在区间[m,n]⊆D,同时满足:①f(x)在[m,n]内是单调函数;②当定义域是[m,n]时,f(x)的值域也是[m,n].则称[m,n]是该函数的“和谐区间”.(1)证明:[0,1]是函数y=f(x)=x2的一个“和谐区间”.(2)求证:函数不存在“和谐区间”.(3)已知:函数(a∈R,a≠0)有“和谐区间”[m,n],当a变化时,求出n﹣m的最大值.20.已知数列{a n}的前n项和为S n,a1=3,且2S n=a n+1+2n.(1)求a2;(2)求数列{a n}的通项公式a n;(3)令b n=(2n﹣1)(a n﹣1),求数列{b n}的前n项和T n.21.已知函数f(x)=sin2x•sinφ+cos2x•cosφ+sin(π﹣φ)(0<φ<π),其图象过点(,.)(Ⅰ)求函数f(x)在[0,π]上的单调递减区间;(Ⅱ)若x0∈(,π),sinx0=,求f(x0)的值.22.计算:(1)8+(﹣)0﹣;(2)lg25+lg2﹣log29×log32.23.(本小题满分12分)已知函数()23cos cos 2f x x x x ++. (1)当63x ππ⎡⎤∈-⎢⎥⎣⎦,时,求函数()y f x =的值域;(2)已知0ω>,函数()212x g x f ωπ⎛⎫=+ ⎪⎝⎭,若函数()g x 在区间236ππ⎡⎤-⎢⎥⎣⎦,上是增函数,求ω的最大值.24.已知集合A={x|x 2+2x <0},B={x|y=}(1)求(∁R A )∩B ;(2)若集合C={x|a <x <2a+1}且C ⊆A ,求a 的取值范围.睢阳区第二中学校2019-2020学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】C【解析】解:对于A ,既不是奇函数,也不是偶函数, 对于B ,满足f (﹣x )=﹣f (x ),是奇函数,对于C ,定义域为R ,满足f (x )=f (﹣x ),则是偶函数, 对于D ,满足f (﹣x )=﹣f (x ),是奇函数,故选:C .【点评】本题主要考查了偶函数的定义,同时考查了解决问题、分析问题的能力,属于基础题.2. 【答案】C【解析】解:y=x 2﹣4x+1=(x ﹣2)2﹣3 ∴当x=2时,函数取最小值﹣3 当x=5时,函数取最大值6 ∴函数 y=x 2﹣4x+1,x ∈[2,5]的值域是[﹣3,6]故选C【点评】本题考查了二次函数最值的求法,即配方法,解题时要分清函数开口方向,辨别对称轴与区间的位置关系,仔细作答3. 【答案】 B【解析】解析:本题考查三视图与几何体的体积的计算.如图该三棱锥是边长为2的正方体1111ABCD A B C D -中的一个四面体1ACED ,其中11ED =,∴该三棱锥的体积为112(12)2323⨯⨯⨯⨯=,选B . 4. 【答案】A【解析】:依题意,不妨设点M 在第一象限,且Mx 0,y 0,由抛物线定义,|MF |=x 0+p2,得5=x 0+2.∴x 0=3,则y 20=24,所以M 3,26,又点M 在双曲线上, ∴32a2-24=1,则a 2=925,a =35, 因此渐近线方程为5x ±3y =0.5. 【答案】A【解析】解:二项式的展开式的通项公式为T r+1=•(﹣1)r•x12﹣3r,令12﹣3r=3,求得r=3,故展开式中含x3项的系数为•(﹣1)3=﹣20,而所有系数和为0,不含x3项的系数之和为20,故选:A.【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.6.【答案】A【解析】解:∵=(2,﹣3,1),=(4,2,x),且⊥,∴=0,∴8﹣6+x=0;∴x=﹣2;故选A.【点评】本题考查向量的数量积判断向量的共线与垂直,解题的关键是将垂直关系转化为两向量的内积为0,建立关于x的方程求出x的值.7.【答案】B【解析】解:因为菱形是平行四边形的特殊情形,所以D⊂A,矩形与正方形是平行四边形的特殊情形,所以B⊂A,C⊂A,正方形是矩形,所以C⊆B.故选B.8.【答案】A【解析】解:∵f(x)=x3﹣3x2+5,∴f′(x)=3x2﹣6x,令f′(x)<0,解得:0<x<2,故选:A.【点评】本题考察了函数的单调性,导数的应用,是一道基础题.9.【答案】C【解析】解:由ln(3a﹣1)<0得<a<,则用计算机在区间(0,1)上产生随机数a,不等式ln(3a﹣1)<0成立的概率是P=,故选:C.10.【答案】A【解析】解:∵z===+i ,∴复数z 在复平面上对应的点位于第一象限.故选A .【点评】本题考查复数的乘除运算,考查复数与复平面上的点的对应,是一个基础题,在解题过程中,注意复数是数形结合的典型工具.11.【答案】A【解析】运行该程序,注意到循环终止的条件,有n =10,i =1;n =5,i =2;n =16,i =3;n =8,i =4;n =4,i =5;n =2,i =6;n =1,i =7,到此循环终止,故选 A. 12.【答案】【解析】解析:选D.双曲线C 的方程为x22-y22=1,其焦点为(±2,0),由题意得p2=2,∴p =4,即拋物线方程为y 2=8x , 双曲线C 的渐近线方程为y =±x ,由⎩⎪⎨⎪⎧y2=8xy =±x ,解得 x =0(舍去)或x =8,则P 到E 的准线的距离为8+2=10,故选D. 二、填空题13.【答案】[3,6]-. 【解析】14.【答案】.【解析】解:由题意得,利用计算机产生1到6之间取整数值的随机数a和b,基本事件的总个数是6×6=36,即(a,b)的情况有36种,事件“a+b为偶数”包含基本事件:(1,1),(1,3),(1,5),(2,2),(2,4),(2,6),(3,1),(3,3),(3,5),(4,2),(4,4),(4,6)(5,1),(5,3),(5,5),(6,2),(6,4),(6,6)共18个,“在a+b为偶数的条件下,|a﹣b|>2”包含基本事件:(1,5),(2,6),(5,1),(6,2)共4个,故在a+b为偶数的条件下,|a﹣b|>2发生的概率是P==故答案为:【点评】本题主要考查概率的计算,以条件概率为载体,考查条件概率的计算,解题的关键是判断概率的类型,从而利用相应公式,分别求出对应的测度是解决本题的关键.15.【答案】.【解析】解:如图所示,分别取AC,A1C1的中点O,O1,连接OO1,取OE=1,连接DE,B1O1,AE.∴BO⊥AC,∵侧棱AA1⊥底面ABC,∴三棱柱ABC﹣A1B1C1是直棱柱.由直棱柱的性质可得:BO⊥侧面ACC1A1.∴四边形BODE是矩形.∴DE⊥侧面ACC1A1.∴∠DAE是AD与平面AA1C1C所成的角,为α,∴DE==OB.AD==.在Rt△ADE中,sinα==.故答案为:.【点评】本题考查了直棱柱的性质、空间角、空间位置关系、等边三角形的性质,考查了推理能力与计算能力,属于中档题.16.【答案】【解析】当n=1时,a1=S1=k1+2k2,当n≥2时,a n=S n-S n-1=(k1+k2·2n)-(k1+k2·2n-1)=k2·2n-1,∴k1+2k2=k2·20,即k1+k2=0,①又a2,a3,a4-2成等差数列.∴2a3=a2+a4-2,即8k2=2k2+8k2-2.②由①②联立得k1=-1,k2=1,∴a n=2n-1.答案:2n-117.【答案】cm3.【解析】解:如图所示,由三视图可知:该几何体为三棱锥P﹣ABC.该几何体可以看成是两个底面均为△PCD,高分别为AD和BD的棱锥形成的组合体,由几何体的俯视图可得:△PCD的面积S=×4×4=8cm2,由几何体的正视图可得:AD+BD=AB=4cm,故几何体的体积V=×8×4=cm3,故答案为:cm3【点评】本题考查由三视图求几何体的体积和表面积,根据已知的三视图分析出几何体的形状是关键.18.【答案】8.【解析】解:∵抛物线y2=8x=2px,∴p=4,由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,∴|MF|=x+=x+2=10,∴x=8,故答案为:8.【点评】活用抛物线的定义是解决抛物线问题最基本的方法.抛物线上的点到焦点的距离,叫焦半径.到焦点的距离常转化为到准线的距离求解.三、解答题19.【答案】【解析】解:(1)∵y=x2在区间[0,1]上单调递增.又f(0)=0,f(1)=1,∴值域为[0,1],∴区间[0,1]是y=f(x)=x2的一个“和谐区间”.(2)设[m,n]是已知函数定义域的子集.∵x≠0,[m,n]⊆(﹣∞,0)或[m,n]⊆(0,+∞),故函数在[m,n]上单调递增.若[m,n]是已知函数的“和谐区间”,则故m、n是方程的同号的相异实数根.∵x2﹣3x+5=0无实数根,∴函数不存在“和谐区间”.(3)设[m,n]是已知函数定义域的子集.∵x≠0,[m,n]⊆(﹣∞,0)或[m,n]⊆(0,+∞),故函数在[m,n]上单调递增.若[m,n]是已知函数的“和谐区间”,则故m、n是方程,即a2x2﹣(a2+a)x+1=0的同号的相异实数根.∵,∴m,n同号,只须△=a2(a+3)(a﹣1)>0,即a>1或a<﹣3时,已知函数有“和谐区间”[m,n],∵,∴当a=3时,n﹣m取最大值20.【答案】【解析】解:(1)当n=1时,2S1=2a1=a2+2,∴a2=4…1;(2)当n≥2时,2a n=2s n﹣2s n﹣1=a n+1+2n﹣a n﹣2(n﹣1)=a n+1﹣a n+2,∴a n+1=3a n﹣2,∴a n+1﹣1=3(a n﹣1)…4,∴,∴{a n﹣1}从第二项起是公比为3的等比数列…5,∵,∴,∴;(3)∴ (8)∴① (9)∴②①﹣②得:,=,=(2﹣2n)×3n﹣4, (11)∴ (12)【点评】本题考查等比数列的通项公式,数列的递推公式,考查“错位相减法”求数列的前n项和,考查计算能力,属于中档题.21.【答案】【解析】(本小题满分12分)φ解:(Ⅰ)f(x)=+﹣=+=)由f(x)图象过点()知:所以:φ=所以f(x)=令(k ∈Z )即:所以:函数f (x )在[0,π]上的单调区间为:(Ⅱ)因为x 0∈(π,2π),则:2x 0∈(π,2π)则: =sin所以=)=【点评】本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数单调区间的确定,三角函数的求值问题,属于基础题型.22.【答案】 【解析】解:(1)8+(﹣)0﹣=2﹣1+1﹣(3﹣e ) =e ﹣.(2)lg25+lg2﹣log 29×log 32 = ==1﹣2=﹣1.…(6分)【点评】本题考查指数式、对数式化简求值,是基础题,解题时要认真审题,注意对数、指数性质及运算法则的合理运用.23.【答案】(1)332⎡⎤⎢⎥⎣⎦,;(2).【解析】试题分析:(1)化简()sin 226f x x π⎛⎫=++ ⎪⎝⎭,结合取值范围可得1sin 2126x π⎛⎫-≤+≤ ⎪⎝⎭⇒值域为332⎡⎤⎢⎥⎣⎦,;(2)易得()s i n 22123x g xf x ωππω⎛⎫⎛⎫=+=++ ⎪ ⎪⎝⎭⎝⎭和233363x πωππωππω⎡⎤+∈-++⎢⎥⎣⎦,,由()g x 在236ππ⎡⎤-⎢⎥⎣⎦,上是增函数⇒222Z 336322k k k ωππωππππππ⎡⎤⎡⎤-++⊆-++∈⎢⎥⎢⎥⎣⎦⎣⎦,,,⇒ 223322632k k ωππππωππππ⎧-+≥-+⎪⎪⎨⎪+≤+⎪⎩⇒534112k k ωω⎧≤-⎪⎨⎪≤+⎩⇒151212k -<<,Z k ∈⇒0k =⇒1ω≤⇒ω的最大值为.考点:三角函数的图象与性质. 24.【答案】【解析】解:(1)A={x|x 2+2x <0}={x|﹣2<x <0},B={x|y=}={x|x+1≥0}={x|x ≥﹣1},∴∁R A={x|x ≤﹣2或x ≥0}, ∴(∁R A )∩B={x|x ≥0};…(2)当a ≥2a+1时,C=∅,此时a ≤﹣1满足题意; 当a <2a+1时,C ≠∅,应满足,解得﹣1<a≤﹣;综上,a的取值范围是.…。

2018-2019学年上学期高二数学12月月考试题含解析(1578)

2018-2019学年上学期高二数学12月月考试题含解析(1578)

顺河回族区第二中学校2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 已知全集为R ,集合{}|23A x x x =<->或,{}2,0,2,4B =-,则()R A B =ð( )A .{}2,0,2-B .{}2,2,4-C .{}2,0,3-D .{}0,2,42. 在△ABC 中,sinB+sin (A ﹣B )=sinC 是sinA=的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也非必要条件 3. 已知双曲线的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是( ) A .(1,2] B .(1,2) C .[2,+∞) D .(2,+∞)4. “1<x <2”是“x <2”成立的( ) A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件5. 某企业为了监控产品质量,从产品流转均匀的生产线上每间隔10分钟抽取一个样本进行检测,这种抽样方法是( )A .抽签法B .随机数表法C .系统抽样法D .分层抽样法6. 已知a=,b=20.5,c=0.50.2,则a ,b ,c 三者的大小关系是( )A .b >c >aB .b >a >cC .a >b >cD .c >b >a7. 已知||=3,||=1,与的夹角为,那么|﹣4|等于( )A .2B .C .D .138. 已知{}n a 是等比数列,25124a a ==,,则公比q =( ) A .12- B .-2 C .2 D .129. 将函数)63sin(2)(π+=x x f 的图象向左平移4π个单位,再向上平移3个单位,得到函数)(x g 的图象,则)(x g 的解析式为( )A .3)43sin(2)(--=πx x g B .3)43sin(2)(++=πx x g C .3)123sin(2)(+-=πx x g D .3)123sin(2)(--=πx x g【命题意图】本题考查三角函数的图象及其平移变换理论,突出了对函数图象变换思想的理解,属于中等难度.10.设集合A={x|2x ≤4},集合B={x|y=lg (x ﹣1)},则A ∩B 等于( ) A .(1,2) B .[1,2] C .[1,2) D .(1,2]11.函数的定义域为( )A .{x|1<x ≤4}B .{x|1<x ≤4,且x ≠2}C .{x|1≤x ≤4,且x ≠2}D .{x|x ≥4}12.设定义域为(0,+∞)的单调函数f (x ),对任意的x ∈(0,+∞),都有f[f (x )﹣lnx]=e+1,若x 0是方程f (x )﹣f ′(x )=e 的一个解,则x 0可能存在的区间是( ) A .(0,1) B .(e ﹣1,1)C .(0,e ﹣1)D .(1,e )二、填空题13.已知α为钝角,sin (+α)=,则sin (﹣α)= .14.已知数列{a n }中,a 1=1,a n+1=a n +2n ,则数列的通项a n = .15.利用计算机产生1到6之间取整数值的随机数a 和b ,在a+b 为偶数的条件下,|a ﹣b|>2发生的概率是 .16.设有一组圆C k :(x ﹣k+1)2+(y ﹣3k )2=2k 4(k ∈N *).下列四个命题: ①存在一条定直线与所有的圆均相切; ②存在一条定直线与所有的圆均相交; ③存在一条定直线与所有的圆均不相交; ④所有的圆均不经过原点.其中真命题的代号是 (写出所有真命题的代号).17.图中的三个直角三角形是一个体积为20的几何体的三视图,则h =__________.18.已知正四棱锥O ABCD -的体积为2, 则该正四棱锥的外接球的半径为_________三、解答题19.本小题满分10分选修45-:不等式选讲 已知函数2()log (12)f x x x m =++--. Ⅰ当7=m 时,求函数)(x f 的定义域;Ⅱ若关于x 的不等式2)(≥x f 的解集是R ,求m 的取值范围.20.(本小题满分12分)△ABC 的三内角A ,B ,C 的对边分别为a ,b ,c ,AD 是BC 边上的中线. (1)求证:AD =122b2+2c2-a2;(2)若A =120°,AD =192,sin B sin C =35,求△ABC 的面积.21.已知函数f (x )=log a (x 2+2),若f (5)=3; (1)求a 的值;(2)求的值;(3)解不等式f (x )<f (x+2).22.(本小题满分12分)已知圆()()22:1225C x y -+-=,直线()()():211740L m x m y m m R +++--=∈.(1)证明: 无论m 取什么实数,L 与圆恒交于两点; (2)求直线被圆C 截得的弦长最小时L 的方程.23.已知集合A={x|x <﹣1,或x >2},B={x|2p ﹣1≤x ≤p+3}.(1)若p=,求A ∩B ;(2)若A ∩B=B ,求实数p 的取值范围.24.某种产品的广告费支出x 与销售额y (单位:百万元)之间有如下对应数据: x 2 4 5 6 8 y 30 40 60 50 70(1)画出散点图; (2)求线性回归方程;(3)预测当广告费支出7(百万元)时的销售额.顺河回族区第二中学校2019-2020学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】A【解析】考点:1、集合的表示方法;2、集合的补集及交集.2.【答案】A【解析】解:∵sinB+sin(A﹣B)=sinC=sin(A+B),∴sinB+sinAcosB﹣cosAsinB=sinAcosB+cosAsinB,∴sinB=2cosAsinB,∵sinB≠0,∴cosA=,∴A=,∴sinA=,当sinA=,∴A=或A=,故在△ABC中,sinB+sin(A﹣B)=sinC是sinA=的充分非必要条件,故选:A3.【答案】C【解析】解:已知双曲线的右焦点为F,若过点F且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则该直线的斜率的绝对值小于等于渐近线的斜率,∴≥,离心率e2=,∴e≥2,故选C【点评】本题考查双曲线的性质及其应用,解题时要注意挖掘隐含条件.4.【答案】A【解析】解:设A={x|1<x<2},B={x|x<2},∵A⊊B,故“1<x<2”是“x<2”成立的充分不必要条件.故选A.【点评】本题考查的知识点是必要条件,充分条件与充要条件判断,其中熟练掌握集合法判断充要条件的原则“谁小谁充分,谁大谁必要”,是解答本题的关键.5.【答案】C【解析】解:由题意知,这个抽样是在传送带上每隔10分钟抽取一产品,是一个具有相同间隔的抽样,并且总体的个数比较多,∴是系统抽样法,故选:C.【点评】本题考查了系统抽样.抽样方法有简单随机抽样、系统抽样、分层抽样,抽样选用哪一种抽样形式,要根据题目所给的总体情况来决定,若总体个数较少,可采用抽签法,若总体个数较多且个体各部分差异不大,可采用系统抽样,若总体的个体差异较大,可采用分层抽样.属于基础题.6.【答案】A【解析】解:∵a=0.50.5,c=0.50.2,∴0<a<c<1,b=20.5>1,∴b>c>a,故选:A.7.【答案】C【解析】解:||=3,||=1,与的夹角为,可得=||||cos<,>=3×1×=,即有|﹣4|===.故选:C.【点评】本题考查向量的数量积的定义和性质,考查向量的平方即为模的平方,考查运算能力,属于基础题.8. 【答案】D 【解析】试题分析:∵在等比数列}{a n 中,41,2a 52==a ,21,81q 253=∴==∴q a a .考点:等比数列的性质. 9. 【答案】B【解析】根据三角函数图象的平移变换理论可得,将)(x f 的图象向左平移4π个单位得到函数)4(π+x f 的图象,再将)4(π+x f 的图象向上平移3个单位得到函数3)4(++πx f 的图象,因此=)(x g 3)4(++πx f 3)43sin(23]6)4(31sin[2++=+++=πππx x .10.【答案】D【解析】解:A={x|2x≤4}={x|x ≤2}, 由x ﹣1>0得x >1∴B={x|y=lg (x ﹣1)}={x|x >1} ∴A ∩B={x|1<x ≤2} 故选D .11.【答案】B【解析】解:要使函数有意义,只须,即,解得1<x ≤4且x ≠2,∴函数f (x )的定义域为{x|1<x ≤4且x ≠2}. 故选B12.【答案】 D【解析】解:由题意知:f (x )﹣lnx 为常数,令f (x )﹣lnx=k (常数),则f (x )=lnx+k . 由f[f (x )﹣lnx]=e+1,得f (k )=e+1,又f (k )=lnk+k=e+1, 所以f (x )=lnx+e ,f ′(x )=,x >0.∴f(x)﹣f′(x)=lnx﹣+e,令g(x)=lnx﹣+﹣e=lnx﹣,x∈(0,+∞)可判断:g(x)=lnx﹣,x∈(0,+∞)上单调递增,g(1)=﹣1,g(e)=1﹣>0,∴x0∈(1,e),g(x0)=0,∴x0是方程f(x)﹣f′(x)=e的一个解,则x0可能存在的区间是(1,e)故选:D.【点评】本题考查了函数的单调性,零点的判断,构造思想,属于中档题.二、填空题13.【答案】﹣.【解析】解:∵sin(+α)=,∴cos(﹣α)=cos[﹣(+α)]=sin(+α)=,∵α为钝角,即<α<π,∴<﹣,∴sin(﹣α)<0,∴sin(﹣α)=﹣=﹣=﹣,故答案为:﹣.【点评】本题考查运用诱导公式求三角函数值,注意不同角之间的关系,正确选择公式,运用平方关系时,必须注意角的范围,以确定函数值的符号.14.【答案】2n﹣1.【解析】解:∵a1=1,a n+1=a n+2n,∴a2﹣a1=2,a3﹣a2=22,…a n﹣a n﹣1=2n﹣1,相加得:a n﹣a1=2+22+23+2…+2n﹣1,a n=2n﹣1,故答案为:2n﹣1,15.【答案】.【解析】解:由题意得,利用计算机产生1到6之间取整数值的随机数a和b,基本事件的总个数是6×6=36,即(a,b)的情况有36种,事件“a+b为偶数”包含基本事件:(1,1),(1,3),(1,5),(2,2),(2,4),(2,6),(3,1),(3,3),(3,5),(4,2),(4,4),(4,6)(5,1),(5,3),(5,5),(6,2),(6,4),(6,6)共18个,“在a+b为偶数的条件下,|a﹣b|>2”包含基本事件:(1,5),(2,6),(5,1),(6,2)共4个,故在a+b为偶数的条件下,|a﹣b|>2发生的概率是P==故答案为:【点评】本题主要考查概率的计算,以条件概率为载体,考查条件概率的计算,解题的关键是判断概率的类型,从而利用相应公式,分别求出对应的测度是解决本题的关键.16.【答案】②④【解析】解:根据题意得:圆心(k﹣1,3k),圆心在直线y=3(x+1)上,故存在直线y=3(x+1)与所有圆都相交,选项②正确;考虑两圆的位置关系,圆k:圆心(k﹣1,3k),半径为k2,圆k+1:圆心(k﹣1+1,3(k+1)),即(k,3k+3),半径为(k+1)2,两圆的圆心距d==,两圆的半径之差R﹣r=(k+1)2﹣k2=2k+,任取k=1或2时,(R﹣r>d),C k含于C k+1之中,选项①错误;若k取无穷大,则可以认为所有直线都与圆相交,选项③错误;将(0,0)带入圆的方程,则有(﹣k+1)2+9k2=2k4,即10k2﹣2k+1=2k4(k∈N*),因为左边为奇数,右边为偶数,故不存在k 使上式成立,即所有圆不过原点,选项④正确.则真命题的代号是②④. 故答案为:②④【点评】本题是一道综合题,要求学生会将直线的参数方程化为普通方程,会利用反证法进行证明,会利用数形结合解决实际问题.17.【答案】 【解析】试题分析:由三视图可知该几何体为三棱锥,其中侧棱VA ⊥底面ABC ,且ABC ∆为直角三角形,且5,,6AB VA h AC ===,所以三棱锥的体积为115652032V h h =⨯⨯⨯==,解得4h =.考点:几何体的三视图与体积. 18.【答案】118【解析】因为正四棱锥O ABCD -的体积为22,设外接球的半径为R ,依轴截面的图形可知:22211(2)(28R R R =-+∴= 三、解答题19.【答案】【解析】Ⅰ当7m =时,函数)(x f 的定义域即为不等式1270x x ++-->的解集.[来由于1(1)(2)70x x x ≤-⎧⎨-+--->⎩,或12(1)(2)70x x x -<<⎧⎨+--->⎩,或2(1)(2)70x x x ≥⎧⎨++-->⎩. 所以3x <-,无解,或4x >.综上,函数)(x f 的定义域为(,3)(4,)-∞-+∞Ⅱ若使2)(≥x f 的解集是R ,则只需min (124)m x x ≤++--恒成立. 由于124(1)(2)41x x x x ++--≥+---=-所以m 的取值范围是(,1]-∞-.20.【答案】 【解析】解:(1)证明:∵D 是BC 的中点,∴BD =DC =a2.法一:在△ABD 与△ACD 中分别由余弦定理得c 2=AD 2+a24-2AD ·a2cos ∠ADB ,① b 2=AD 2+a24-2AD ·a2·cos ∠ADC ,②①+②得c 2+b 2=2AD 2+a22,即4AD 2=2b 2+2c 2-a 2,∴AD =122b2+2c2-a2.法二:在△ABD 中,由余弦定理得AD 2=c 2+a24-2c ·a2cos B=c 2+a24-ac ·a2+c2-b22ac=2b2+2c2-a24,∴AD =122b2+2c2-a2.(2)∵A =120°,AD =1219,sin B sin C =35,由余弦定理和正弦定理与(1)可得 a 2=b 2+c 2+bc ,① 2b 2+2c 2-a 2=19,②b c =35,③ 联立①②③解得b =3,c =5,a =7,∴△ABC 的面积为S =12bc sin A =12×3×5×sin 120°=1534.即△ABC 的面积为1543.21.【答案】【解析】解:(1)∵f (5)=3,∴,即log a 27=3 解锝:a=3…(2)由(1)得函数,则=… (3)不等式f (x )<f (x+2),即为化简不等式得…∵函数y=log 3x 在(0,+∞)上为增函数,且的定义域为R .∴x 2+2<x 2+4x+6…即4x >﹣4, 解得x >﹣1,所以不等式的解集为:(﹣1,+∞)…22.【答案】(1)证明见解析;(2)250x y --=. 【解析】试题分析:(1)L 的方程整理为()()4270x y m x y +-++-=,列出方程组,得出直线过圆内一点,即可证明;(2)由圆心()1,2M ,当截得弦长最小时, 则L AM ⊥,利用直线的点斜式方程,即可求解直线的方程.1111](2)圆心()1,2M ,当截得弦长最小时, 则L AM ⊥, 由12AM k =-得L 的方程()123y x -=-即250x y --=. 考点:直线方程;直线与圆的位置关系. 23.【答案】【解析】解:(1)当p=时,B={x|0≤x≤},∴A∩B={x|2<x≤};(2)当A∩B=B时,B⊆A;令2p﹣1>p+3,解得p>4,此时B=∅,满足题意;当p≤4时,应满足,解得p不存在;综上,实数p的取值范围p>4.24.【答案】【解析】解:(1)(2)设回归方程为=bx+a则b=﹣5/﹣5=1380﹣5×5×50/145﹣5×52=6.5故回归方程为=6.5x+17.5(3)当x=7时,=6.5×7+17.5=63,所以当广告费支出7(百万元)时,销售额约为63(百万元).【点评】本题考查线性回归方程的求法和应用,本题解题的关键是利用最小二乘法求出线性回归方程的系数,这是解答正确的主要环节.。

2018-2019学年上学期高二数学12月月考试题含解析(440)

2018-2019学年上学期高二数学12月月考试题含解析(440)

云龙区第二中学校2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1.已知集合A={x|x≥0},且A∩B=B,则集合B可能是()A.{x|x≥0} B.{x|x≤1} C.{﹣1,0,1} D.R2.函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.3.数列{a n}是等差数列,若a1+1,a3+2,a5+3构成公比为q的等比数列,则q=()A.1 B.2 C.3 D.44.某大学的8名同学准备拼车去旅游,其中大一、大二、大三、大四每个年级各两名,分乘甲、乙两辆汽车,每车限坐4名同学(乘同一辆车的4名同学不考虑位置),其中大一的孪生姐妹需乘同一辆车,则乘坐甲车的4名同学中恰有2名同学是来自同一年级的乘坐方式共有()种.A.24B.18C.48D.36【命题意图】本题考查排列与组合的基础知识,考查学生分类讨论,运算能力以及逻辑推理能力.5.在《张邱建算经》中有一道题:“今有女子不善织布,逐日所织的布比同数递减,初日织五尺,末一日织一尺,计织三十日”,由此推断,该女子到第10日时,大约已经完成三十日织布总量的()A.33% B.49% C.62%D.88%6. 将n 2个正整数1、2、3、…、n 2(n ≥2)任意排成n 行n 列的数表.对于某一个数表,计算某行或某列中的任意两个数a 、b (a >b )的比值,称这些比值中的最小值为这个数表的“特征值”.当n=2时,数表的所有可能的“特征值”的最大值为( )A .B .C .2D .37. 双曲线的渐近线方程是( )A .B .C .D .8. 函数的定义域是( )A .[0,+∞)B .[1,+∞)C .(0,+∞)D .(1,+∞)9. 如果执行如图所示的程序框图,那么输出的a=( )A .2B .C .﹣1D .以上都不正确10.在△ABC 中,已知D 是AB 边上一点,若=2,=,则λ=( )A .B .C .﹣D .﹣ 11.函数()()f x x R Î是周期为4的奇函数,且在02[,]上的解析式为(1),01()sin ,12x x x f x x x ì-#ï=íp <?ïî,则 1741()()46f f +=( ) A .716 B .916 C .1116 D .1316【命题意图】本题考查函数的奇偶性和周期性、分段函数等基础知识,意在考查转化和化归思想和基本运算能力.12.已知集合M={x|x 2<1},N={x|x >0},则M ∩N=( )A.∅B.{x|x>0} C.{x|x<1} D.{x|0<x<1}可.二、填空题13.曲线在点(3,3)处的切线与轴x的交点的坐标为.14.已知i是虚数单位,且满足i2=﹣1,a∈R,复数z=(a﹣2i)(1+i)在复平面内对应的点为M,则“a=1”是“点M在第四象限”的条件(选填“充分而不必要”“必要而不充分”“充要”“既不充分又不必要”)15.【盐城中学2018届高三上第一次阶段性考试】已知函数f(x)=lnx-mx(m∈R)在区间[1,e]上取得最小值4,则m=________.16.设α为锐角,若sin(α﹣)=,则cos2α=.17.在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是.18.抽样调查表明,某校高三学生成绩(总分750分)X近似服从正态分布,平均成绩为500分.已知P(400<X<450)=0.3,则P(550<X<600)=.三、解答题19.求下列各式的值(不使用计算器):(1);(2)lg2+lg5﹣log21+log39.20.如图,⊙O的半径为6,线段AB与⊙相交于点C、D,AC=4,∠BOD=∠A,OB与⊙O相交于点.(1)求BD长;(2)当CE⊥OD时,求证:AO=AD.21.(本题满分14分)已知函数x a x x f ln )(2-=.(1)若)(x f 在]5,3[上是单调递减函数,求实数a 的取值范围;(2)记x b x a x f x g )1(2ln )2()()(--++=,并设)(,2121x x x x <是函数)(x g 的两个极值点,若27≥b , 求)()(21x g x g -的最小值.22.已知y=f (x )是R 上的偶函数,x ≥0时,f (x )=x 2﹣2x(1)当x <0时,求f (x )的解析式.(2)作出函数f (x )的图象,并指出其单调区间.23.在平面直角坐标系中,矩阵M对应的变换将平面上任意一点P(x,y)变换为点P (2x+y,3x).(Ⅰ)求矩阵M的逆矩阵M﹣1;(Ⅱ)求曲线4x+y﹣1=0在矩阵M的变换作用后得到的曲线C′的方程.24.火车站北偏东方向的处有一电视塔,火车站正东方向的处有一小汽车,测得距离为31,该小汽车从处以60的速度前往火车站,20分钟后到达处,测得离电视塔21,问小汽车到火车站还需多长时间?云龙区第二中学校2019-2020学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】A【解析】解:由A={x|x≥0},且A∩B=B,所以B⊆A.A、{x|x≥0}={x|x≥0}=A,故本选项正确;B、{x|x≤1,x∈R}=(﹣∞,1]⊊[0,+∞),故本选项错误;C、若B={﹣1,0,1},则A∩B={0,1}≠B,故本选项错误;D、给出的集合是R,不合题意,故本选项错误.故选:A.【点评】本题考查了交集及其运算,考查了基本初等函数值域的求法,是基础题.2.【答案】D【解析】解:∵f(x)=y=2x2﹣e|x|,∴f(﹣x)=2(﹣x)2﹣e|﹣x|=2x2﹣e|x|,故函数为偶函数,当x=±2时,y=8﹣e2∈(0,1),故排除A,B;当x∈[0,2]时,f(x)=y=2x2﹣e x,∴f′(x)=4x﹣e x=0有解,故函数y=2x2﹣e|x|在[0,2]不是单调的,故排除C,故选:D3.【答案】A【解析】解:设等差数列{a n}的公差为d,由a1+1,a3+2,a5+3构成等比数列,得:(a3+2)2=(a1+1)(a5+3),整理得:a32+4a3+4=a1a5+3a1+a5+3即(a1+2d)2+4(a1+2d)+4=a1(a1+4d)+4a1+4d+3.化简得:(2d+1)2=0,即d=﹣.∴q===1.故选:A.【点评】本题考查了等差数列的通项公式,考查了等比数列的性质,是基础的计算题.4. 【答案】A【解析】分类讨论,有2种情形.孪生姐妹乘坐甲车,则有12121223=C C C 种. 孪生姐妹不乘坐甲车,则有12121213=C C C 种. 共有24种. 选A.5. 【答案】B 【解析】6. 【答案】B【解析】解:当n=2时,这4个数分别为1、2、3、4,排成了两行两列的数表,当1、2同行或同列时,这个数表的“特征值”为;当1、3同行或同列时,这个数表的特征值分别为或;当1、4同行或同列时,这个数表的“特征值”为或,故这些可能的“特征值”的最大值为.故选:B .【点评】题考查类比推理和归纳推理,属基础题.7. 【答案】B【解析】解:∵双曲线标准方程为,其渐近线方程是=0,整理得y=±x . 故选:B .【点评】本题考查双曲线的简单性质的应用,令标准方程中的“1”为“0”即可求出渐近线方程.属于基础题.8. 【答案】A【解析】解:由题意得:2x ﹣1≥0,即2x ≥1=20,因为2>1,所以指数函数y=2x为增函数,则x ≥0.所以函数的定义域为[0,+∞)故选A【点评】本题为一道基础题,要求学生会根据二次根式的定义及指数函数的增减性求函数的定义域.9.【答案】B【解析】解:模拟执行程序,可得a=2,n=1执行循环体,a=,n=3满足条件n≤2016,执行循环体,a=﹣1,n=5满足条件n≤2016,执行循环体,a=2,n=7满足条件n≤2016,执行循环体,a=,n=9…由于2015=3×671+2,可得:n=2015,满足条件n≤2016,执行循环体,a=,n=2017不满足条件n≤2016,退出循环,输出a的值为.故选:B.10.【答案】A【解析】解:在△ABC中,已知D是AB边上一点∵=2,=,∴=,∴λ=,故选A.【点评】经历平面向量分解定理的探求过程,培养观察能力、抽象概括能力、体会化归思想,基底给定时,分解形式唯一,字母系数是被基底唯一确定的数量.11.【答案】C12.【答案】D【解析】解:由已知M={x|﹣1<x<1},N={x|x>0},则M∩N={x|0<x<1},故选D.【点评】此题是基础题.本题属于以不等式为依托,求集合的交集的基础题,二、填空题13.【答案】(,0).【解析】解:y′=﹣,∴斜率k=y′|x=3=﹣2,∴切线方程是:y﹣3=﹣2(x﹣3),整理得:y=﹣2x+9,令y=0,解得:x=,故答案为:.【点评】本题考查了曲线的切线方程问题,考查导数的应用,是一道基础题.14.【答案】充分不必要【解析】解:∵复数z=(a﹣2i)(1+i)=a+2+(a﹣2)i,∴在复平面内对应的点M的坐标是(a+2,a﹣2),若点在第四象限则a+2>0,a﹣2<0,∴﹣2<a<2,∴“a=1”是“点M在第四象限”的充分不必要条件,故答案为:充分不必要.【点评】本题考查条件问题,考查复数的代数表示法及其几何意义,考查各个象限的点的坐标特点,本题是一个基础题.15.【答案】-3e【解析】f′(x)=1x+2mx=2x mx,令f′(x)=0,则x=-m,且当x<-m时,f′(x)<0,f(x)单调递减,当x>-m时,f′(x)>0,f(x)单调递增.若-m≤1,即m≥-1时,f(x)min=f(1)=-m≤1,不可能等于4;若1<-m≤e,即-e≤m<-1时,f(x)min=f(-m)=ln(-m)+1,令ln(-m)+1=4,得m=-e3(-e,-1);若-m>e,即m<-e时,f(x)min=f(e)=1-me,令1-me=4,得m=-3e,符合题意.综上所述,m=-3e.16.【答案】﹣.【解析】解:∵α为锐角,若sin(α﹣)=,∴cos(α﹣)=,∴sin=[sin(α﹣)+cos(α﹣)]=,∴cos2α=1﹣2sin2α=﹣.故答案为:﹣.【点评】本题主要考查了同角三角函数关系式,二倍角的余弦函数公式的应用,属于基础题.17.【答案】.【解析】解:在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥,8个三棱锥的体积为:=.剩下的凸多面体的体积是1﹣=.故答案为:.【点评】本题考查几何体的体积的求法,转化思想的应用,考查空间想象能力计算能力.18.【答案】0.3.【解析】离散型随机变量的期望与方差.【专题】计算题;概率与统计.【分析】确定正态分布曲线的对称轴为x=500,根据对称性,可得P(550<ξ<600).【解答】解:∵某校高三学生成绩(总分750分)ξ近似服从正态分布,平均成绩为500分,∴正态分布曲线的对称轴为x=500,∵P(400<ξ<450)=0.3,∴根据对称性,可得P(550<ξ<600)=0.3.故答案为:0.3.【点评】本题考查正态分布曲线的特点及曲线所表示的意义,正确运用正态分布曲线的对称性是关键.三、解答题19.【答案】【解析】解:(1)=4+1﹣﹣=1;(2)lg2+lg5﹣log21+log39=1﹣0+2=3.【点评】本题考查对数的运算法则的应用,有理指数幂的化简求值,考查计算能力.20.【答案】【解析】解:(1)∵OC=OD,∴∠OCD=∠ODC,∴∠OAC=∠ODB.∵∠BOD=∠A,∴△OBD∽△AOC.∴,∵OC=OD=6,AC=4,∴,∴BD=9.…(2)证明:∵OC=OE,CE⊥OD.∴∠COD=∠BOD=∠A.∴∠AOD=180°﹣∠A﹣∠ODC=180°﹣∠COD﹣∠OCD=∠ADO.∴AD=AO …【点评】本题考查三角形相似,角的求法,考查推理与证明,距离的求法.21.【答案】【解析】【命题意图】本题综合考查了利用导数研究函数的单调问题,利用导数研究函数的最值,但本题对函数的构造能力及运算能力都有很高的要求,判别式的技巧性运用及换元方法也是本题的一大亮点,本题综合性很强,难度大,但有梯次感.(2)∵x b x x x b x a x a x x g )1(2ln 2)1(2ln )2(ln )(22--+=--++-=,22.【答案】【解析】解:(1)设x<0,则﹣x>0,∵x>0时,f(x)=x2﹣2x.∴f(﹣x)=(﹣x)2﹣2(﹣x)=x2+2x ∵y=f(x)是R上的偶函数∴f(x)=f(﹣x)=x2+2x(2)单增区间(﹣1,0)和(1,+∞);单减区间(﹣∞,﹣1)和(0,1).【点评】本题主要考查利用函数的奇偶性来求对称区间上的解析式,然后作出分段函数的图象,进而研究相关性质,本题看似简单,但考查全面,具体,检测性很强.23.【答案】【解析】解:(Ⅰ)设点P(x,y)在矩阵M对应的变换作用下所得的点为P′(x′,y′),则即=,∴M=.又det(M)=﹣3,∴M﹣1=;(Ⅱ)设点A(x,y)在矩阵M对应的变换作用下所得的点为A′(x′,y′),则=M﹣1=,即,∴代入4x+y﹣1=0,得,即变换后的曲线方程为x+2y+1=0.【点评】本题主要考查矩阵与变换等基础知识,考查运算求解能力及化归与转化思想,属于中档题.24.【答案】【解析】解:由条件=,设,在中,由余弦定理得.=.在中,由正弦定理,得()(分钟)答到火车站还需15分钟.。

二七区高中2018-2019学年上学期高二数学12月月考试题含解析

二七区高中2018-2019学年上学期高二数学12月月考试题含解析

二七区高中2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 在△ABC 中,若A=2B ,则a 等于( ) A .2bsinAB .2bcosAC .2bsinBD .2bcosB2. 如图所示是一个几何体的三视图,其中正视图是一个正三角形,则这个几何体的表面积是( )A. B. C.+ D.++13. 已知函数f (x )=a x ﹣1+log a x 在区间[1,2]上的最大值和最小值之和为a ,则实数a 为( ) A.B.C .2D .44. 设a=60.5,b=0.56,c=log 0.56,则( ) A .c <b <a B .c <a <b C .b <a <c D .b <c <a5. 已知三个数1a -,1a +,5a +成等比数列,其倒数重新排列后为递增的等比数列{}n a 的前三 项,则能使不等式1212111n na a a a a a +++≤+++成立的自然数的最大值为( ) A .9 B .8 C.7D .5 6. 两个圆锥有公共底面,且两圆锥的顶点和底面圆周都在同一个球面上.若圆锥底面面积是球面面积的,则这两个圆锥的体积之比为( ) A .2:1 B .5:2 C .1:4 D .3:1 7. 下列命题的说法错误的是( )A .若复合命题p ∧q 为假命题,则p ,q 都是假命题B .“x=1”是“x 2﹣3x+2=0”的充分不必要条件C .对于命题p :∀x ∈R ,x 2+x+1>0 则¬p :∃x ∈R ,x 2+x+1≤0D .命题“若x 2﹣3x+2=0,则x=1”的逆否命题为:“若x ≠1,则x 2﹣3x+2≠0”8. 如图是某工厂对一批新产品长度(单位:mm )检测结果的频率分布直方图.估计这批产品的中位数为( )A .20B .25C .22.5D .22.759. 如图,棱长为1的正方体ABCD ﹣A 1B 1C 1D 1中,M 为线段A 1B 上的动点,则下列结论正确的有( ) ①三棱锥M ﹣DCC 1的体积为定值 ②DC 1⊥D 1M ③∠AMD 1的最大值为90° ④AM+MD 1的最小值为2.A .①②B .①②③C .③④D .②③④10.已知双曲线(a >0,b >0)的一条渐近线方程为,则双曲线的离心率为( )A .B .C .D .11.以过椭圆+=1(a >b >0)的右焦点的弦为直径的圆与其右准线的位置关系是( )A .相交B .相切C .相离D .不能确定12.已知命题p 和命题,若p q ∧为真命题,则下面结论正确的是( )A .p ⌝是真命题B .q ⌝是真命题C .p q ∨是真命题D .()()p q ⌝∨⌝是真命题二、填空题13.命题:“∀x ∈R ,都有x 3≥1”的否定形式为 .14.设α为锐角, =(cos α,sin α),=(1,﹣1)且•=,则sin (α+)= .15.等差数列{}n a 的前项和为n S ,若37116a a a ++=,则13S 等于_________.16.抛物线y 2=4x 的焦点为F ,过F 且倾斜角等于的直线与抛物线在x 轴上方的曲线交于点A ,则AF 的长为 .17.球O 的球面上有四点S ,A ,B ,C ,其中O ,A ,B ,C 四点共面,△ABC 是边长为2的正三角形,平面SAB ⊥平面ABC ,则棱锥S ﹣ABC 的体积的最大值为 .18.设曲线y=x n+1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,令a n =lgx n ,则a 1+a 2+…+a 99的值为 .三、解答题19.2015年第7届女足世界杯在加拿大埃德蒙顿联邦体育场打响,某连锁分店销售某种纪念品,每件纪念品的成本为4元,并且每件纪念品需向总店交3元的管理费,预计当每件纪念品的售价为x 元(7≤x ≤9)时,一年的销售量为(x ﹣10)2万件.(Ⅰ)求该连锁分店一年的利润L (万元)与每件纪念品的售价x 的函数关系式L (x );(Ⅱ)当每件纪念品的售价为多少元时,该连锁分店一年的利润L 最大,并求出L 的最大值.20.(本小题满分12分)已知函数21()(3)ln 2f x x a x x =+-+. (1)若函数()f x 在定义域上是单调增函数,求的最小值;(2)若方程21()()(4)02f x a x a x -+--=在区间1[,]e e上有两个不同的实根,求的取值范围.21.已知(+)n展开式中的所有二项式系数和为512,(1)求展开式中的常数项;(2)求展开式中所有项的系数之和.22.已知在等比数列{a n}中,a1=1,且a2是a1和a3﹣1的等差中项.(1)求数列{a n}的通项公式;(2)若数列{b n}满足b1+2b2+3b3+…+nb n=a n(n∈N*),求{b n}的通项公式b n.23.全集U=R,若集合A={x|3≤x<10},B={x|2<x≤7},(1)求A∪B,(∁U A)∩(∁U B);(2)若集合C={x|x>a},A⊆C,求a的取值范围.24.如图,M、N是焦点为F的抛物线y2=2px(p>0)上两个不同的点,且线段MN中点A的横坐标为,(1)求|MF|+|NF|的值;(2)若p=2,直线MN与x轴交于点B点,求点B横坐标的取值范围.二七区高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】D【解析】解:∵A=2B,∴sinA=sin2B,又sin2B=2sinBcosB,∴sinA=2sinBcosB,根据正弦定理==2R得:sinA=,sinB=,代入sinA=2sinBcosB得:a=2bcosB.故选D2.【答案】D【解析】解:由三视图可知:该几何体是如图所示的三棱锥,其中侧面PAC⊥面ABC,△PAC是边长为2的正三角形,△ABC是边AC=2,边AC上的高OB=1,PO=为底面上的高.于是此几何体的表面积S=S+S△ABC+2S△PAB=××2+×2×1+2×××=+1+.△PAC故选:D【点评】本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.3.【答案】A【解析】解:分两类讨论,过程如下:①当a>1时,函数y=a x﹣1和y=log a x在[1,2]上都是增函数,∴f(x)=a x﹣1+log a x在[1,2]上递增,∴f(x)max+f(x)min=f(2)+f(1)=a+log a2+1=a,∴log a 2=﹣1,得a=,舍去;②当0<a <1时,函数y=a x ﹣1 和y=log a x 在[1,2]上都是减函数, ∴f (x )=ax ﹣1+log a x在[1,2]上递减,∴f (x )max +f (x )min =f (2)+f (1)=a+log a 2+1=a , ∴log a 2=﹣1,得a=,符合题意; 故选A .4. 【答案】A【解析】解:∵a=60.5>1,0<b=0.56<1,c=log 0.56<0, ∴c <b <a . 故选:A .【点评】本题考查了指数函数与对数函数的单调性,属于基础题.5. 【答案】C 【解析】试题分析:因为三个数1,1,5a a a -++等比数列,所以()()()2115,3a a a a +=-+∴=,倒数重新排列后恰好为递增的等比数列{}n a 的前三项,为111,,842,公比为,数列1n a ⎧⎫⎨⎬⎩⎭是以为首项,12为公比的等比数列,则不等式1212111n n a a a a a a +++≤+++等价为()1181122811212n n ⎛⎫-- ⎪⎝⎭≤--,整理,得722,17,n n n N +≤∴≤≤≤∈,故选C. 1考点:1、等比数列的性质;2、等比数列前项和公式. 6.【答案】D【解析】解:设球的半径为R,圆锥底面的半径为r ,则πr2=×4πR2=,∴r=.∴球心到圆锥底面的距离为=.∴圆锥的高分别为和.∴两个圆锥的体积比为: =1:3.故选:D .7. 【答案】A【解析】解:A.复合命题p∧q为假命题,则p,q至少有一个命题为假命题,因此不正确;B.由x2﹣3x+2=0,解得x=1,2,因此“x=1”是“x2﹣3x+2=0”的充分不必要条件,正确;C.对于命题p:∀x∈R,x2+x+1>0 则¬p:∃x∈R,x2+x+1≤0,正确;D.命题“若x2﹣3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0”,正确.故选:A.8.【答案】C【解析】解:根据频率分布直方图,得;∵0.02×5+0.04×5=0.3<0.5,0.3+0.08×5=0.7>0.5;∴中位数应在20~25内,设中位数为x,则0.3+(x﹣20)×0.08=0.5,解得x=22.5;∴这批产品的中位数是22.5.故选:C.【点评】本题考查了利用频率分布直方图求数据的中位数的应用问题,是基础题目.9.【答案】A【解析】解:①∵A1B∥平面DCC1D1,∴线段A1B上的点M到平面DCC1D1的距离都为1,又△DCC1的面积为定值,因此三棱锥M﹣DCC1的体积V==为定值,故①正确.②∵A1D1⊥DC1,A1B⊥DC1,∴DC1⊥面A1BCD1,D1P⊂面A1BCD1,∴DC1⊥D1P,故②正确.③当0<A1P<时,在△AD1M中,利用余弦定理可得∠APD1为钝角,∴故③不正确;④将面AA1B与面A1BCD1沿A1B展成平面图形,线段AD1即为AP+PD1的最小值,在△D1A1A中,∠D1A1A=135°,利用余弦定理解三角形得AD1==<2,故④不正确.因此只有①②正确.故选:A.10.【答案】A【解析】解:∵双曲线的中心在原点,焦点在x轴上,∴设双曲线的方程为,(a>0,b>0)由此可得双曲线的渐近线方程为y=±x,结合题意一条渐近线方程为y=x,得=,设b=4t,a=3t,则c==5t(t>0)∴该双曲线的离心率是e==.故选A.【点评】本题给出双曲线的一条渐近线方程,求双曲线的离心率,着重考查了双曲线的标准方程、基本概念和简单几何性质等知识,属于基础题.11.【答案】C【解析】解:设过右焦点F的弦为AB,右准线为l,A、B在l上的射影分别为C、D连接AC、BD,设AB的中点为M,作MN⊥l于N根据圆锥曲线的统一定义,可得==e,可得∴|AF|+|BF|<|AC|+|BD|,即|AB|<|AC|+|BD|,∵以AB为直径的圆半径为r=|AB|,|MN|=(|AC|+|BD|)∴圆M到l的距离|MN|>r,可得直线l与以AB为直径的圆相离故选:C【点评】本题给出椭圆的右焦点F,求以经过F的弦AB为直径的圆与右准线的位置关系,着重考查了椭圆的简单几何性质、圆锥曲线的统一定义和直线与圆的位置关系等知识,属于中档题.12.【答案】C 【解析】]试题分析:由p q ∧为真命题得,p q 都是真命题.所以p ⌝是假命题;q ⌝是假命题;p q ∨是真命题;()()p q ⌝∨⌝是假命题.故选C.考点:命题真假判断.二、填空题13.【答案】 ∃x 0∈R ,都有x 03<1 .【解析】解:因为全称命题的否定是特称命题.所以,命题:“∀x ∈R ,都有x 3≥1”的否定形式为:命题:“∃x 0∈R ,都有x 03<1”.故答案为:∃x 0∈R ,都有x 03<1.【点评】本题考查全称命题与特称命题的否定关系,基本知识的考查.14.【答案】:.【解析】解:∵•=cos α﹣sin α=,∴1﹣sin2α=,得sin2α=, ∵α为锐角,cos α﹣sin α=⇒α∈(0,),从而cos2α取正值, ∴cos2α==,∵α为锐角,sin (α+)>0,∴sin (α+)====.故答案为:.15.【答案】26 【解析】试题分析:由题意得,根据等差数列的性质,可得371177362a a a a a ++==⇒=,由等差数列的求和11313713()13262a a S a +===.考点:等差数列的性质和等差数列的和.16.【答案】 4 .【解析】解:由已知可得直线AF 的方程为y=(x ﹣1),联立直线与抛物线方程消元得:3x 2﹣10x+3=0,解之得:x 1=3,x 2=(据题意应舍去),由抛物线定义可得:AF=x 1+=3+1=4.故答案为:4.【点评】本题考查直线与抛物线的位置关系,考查抛物线的定义,考查学生的计算能力,属于中档题.17.【答案】.【解析】解:由题意画出几何体的图形如图由于面SAB ⊥面ABC ,所以点S 在平面ABC 上的射影H 落在AB 上,根据球体的对称性可知,当S 在“最高点”,也就是说H 为AB 中点时,SH 最大,棱锥S ﹣ABC 的体积最大.∵△ABC 是边长为2的正三角形,所以球的半径r=OC=CH=.在RT △SHO 中,OH=OC=OS∴∠HSO=30°,求得SH=OScos30°=1,∴体积V=Sh=××22×1=.故答案是.【点评】本题考查锥体体积计算,根据几何体的结构特征确定出S 位置是关键.考查空间想象能力、计算能力.18.【答案】 ﹣2 .【解析】解:∵曲线y=x n+1(n ∈N *),∴y ′=(n+1)x n,∴f ′(1)=n+1,∴曲线y=xn+1(n ∈N *)在(1,1)处的切线方程为y ﹣1=(n+1)(x ﹣1),该切线与x 轴的交点的横坐标为x n =,∵a n =lgx n ,∴a n =lgn ﹣lg (n+1), ∴a 1+a 2+…+a 99=(lg1﹣lg2)+(lg2﹣lg3)+(lg3﹣lg4)+(lg4﹣lg5)+(lg5﹣lg6)+…+(lg99﹣lg100) =lg1﹣lg100=﹣2. 故答案为:﹣2.三、解答题19.【答案】【解析】解:(Ⅰ)该连锁分店一年的利润L (万元)与售价x 的函数关系式为:L (x )=(x ﹣7)(x ﹣10)2,x ∈[7,9],(Ⅱ)L ′(x )=(x ﹣10)2+2(x ﹣7)(x ﹣10)=3(x ﹣10)(x ﹣8),令L ′(x )=0,得x=8或x=10(舍去),∵x ∈[7,8],L ′(x )>0,x ∈[8,9],L ′(x )<0, ∴L (x )在x ∈[7,8]上单调递增,在x ∈[8,9]上单调递减,∴L (x )max =L (8)=4;答:每件纪念品的售价为8元,该连锁分店一年的利润L 最大,最大值为4万元.【点评】本题考查了函数的解析式问题,考查函数的单调性、最值问题,是一道中档题.20.【答案】(1);(2)01a <<.1111] 【解析】则'()0f x ≥对0x >恒成立,即1()3a x x≥-++对0x >恒成立,而当0x >时,1()3231x x-++≤-+=,∴1a ≥.若函数()f x 在(0,)+∞上递减,则'()0f x ≤对0x >恒成立,即1()3a x x≤-++对0x >恒成立,这是不可能的. 综上,1a ≥. 的最小值为1. 1(2)由21()()(2)2ln 02f x a x a x x =-+-+=, 得21()(2)2ln 2a x a x x -+-=,即2ln x x a x +=,令2ln ()x x r x x +=,2331(1)2(ln )12ln '()x x x x x x x r x x x +-+--==, 得12ln 0x x --=的根为1,考点:1、利用导数研究函数的单调性;2、函数零点问题及不等式恒成立问题.【方法点晴】本题主要考查利用导数研究函数的单调性、函数零点问题及不等式恒成立问题,属于难题.不等式恒成立问题常见方法:①分离参数()a f x ≤恒成立(min ()a f x ≤即可)或()a f x ≥恒成(max ()a f x ≥即可);②数形结合;③讨论最值min ()0f x ≥或max ()0f x ≤恒成立;④讨论参数.本题(2)就是先将问题转化为不等式恒成立问题后再利用①求得的最小值的.请考生在第22、23两题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号.21.【答案】【解析】解:(1)对(+)n,所有二项式系数和为2n=512,解得n=9;设T r+1为常数项,则:T r+1=C9r=C9r2r,由﹣r=0,得r=3,∴常数项为:C9323=672;(2)令x=1,得(1+2)9=39.【点评】本题考查了二项式展开式定理的应用问题,也考查了赋值法求展开式各项系数和的应用问题,是基础题.22.【答案】【解析】解:(1)设等比数列{a n}的公比为q,由a2是a1和a3﹣1的等差中项得:2a2=a1+a3﹣1,∴,∴2q=q2,∵q≠0,∴q=2,∴;(2)n=1时,由b1+2b2+3b3+…+nb n=a n,得b1=a1=1.n≥2时,由b1+2b2+3b3+…+nb n=a n ①b1+2b2+3b3+…+(n﹣1)b n﹣1=a n﹣1②①﹣②得:.,∴.【点评】本题考查等差数列和等比数列的通项公式,考查了数列的递推式,解答的关键是想到错位相减,是基础题.23.【答案】【解析】解:(1)∵A={x|3≤x<10},B={x|2<x≤7},∴A∩B=[3,7];A∪B=(2,10);(C U A)∩(C U B)=(﹣∞,3)∪[10,+∞);(2)∵集合C={x|x>a},∴若A⊆C,则a<3,即a的取值范围是{a|a<3}.24.【答案】【解析】解:(1)设M(x1,y1),N(x2,y2),则x1+x2=8﹣p,|MF|=x1+,|NF|=x2+,∴|MF|+|NF|=x1+x2+p=8;(2)p=2时,y2=4x,若直线MN斜率不存在,则B(3,0);若直线MN斜率存在,设A(3,t)(t≠0),M(x1,y1),N(x2,y2),则代入利用点差法,可得y12﹣y22=4(x1﹣x2)∴k MN=,∴直线MN的方程为y﹣t=(x﹣3),∴B的横坐标为x=3﹣,直线MN代入y2=4x,可得y2﹣2ty+2t2﹣12=0△>0可得0<t2<12,∴x=3﹣∈(﹣3,3),∴点B横坐标的取值范围是(﹣3,3).【点评】本题考查抛物线的定义,考查点差法,考查学生分析解决问题的能力,属于中档题.。

二七区第三中学校2018-2019学年上学期高二数学12月月考试题含解析.doc

二七区第三中学校2018-2019学年上学期高二数学12月月考试题含解析.doc

优选高中模拟试卷二七区第三中学校 2018-2019 学年上学期高二数学 12 月月考试题含分析班级 __________姓名 __________ 分数 __________一、选择题1. 已知向量 =( 1,), =(, x )共线,则实数 x 的值为( )A .1B .C .tan35°D . tan35°2. “x 2﹣ 4x < 0”的一个充分不用要条件为( )A .0< x < 4B . 0< x < 2C . x > 0D .x < 43. 已知抛物线 y28x 与双曲线x 2y 2 1的一个交点为 M , F 为抛物线的焦点,若MF 5 ,则该双曲a 2线的渐近线方程为A 、 5x 3y 0B 、 3x 5y0 C 、 4x 5 y0 D 、 5x 4y 04. 设函数,则有()A .f (x )是奇函数,B . f ( x )是奇函数, y=b xC . f (x )是偶函数D . f ( x )是偶函数,5. 直线 2x+y+7=0 的倾斜角为( )A .锐角B .直角C .钝角D .不存在6. 某校在暑期组织社会实践活动,将 8 名高一年级学生,均匀分派甲、乙两家企业,此中两名英语成绩优异学生不可以分给同一个企业;另三名电脑专长学生也不可以分给同一个企业,则不一样的分派方案有( ) A .36 种B .38 种 C .108 种D . 114 种7. 若圆柱、圆锥的底面直径和高都等于球的直径,则圆柱、圆锥、球的体积的比为( )A .1: 2:3B .2:3:4C .3:2:4D . 3:1: 28. 某几何体的三视图如下图,该几何体的体积是( )A .B .C .D .第1页,共16页9.知足条件 {0 , 1} ∪ A={0 , 1} 的全部会合A 的个数是()A.1 个B.2 个C.3 个D.4 个10.若复数z 知足 iz=2+4i ,则在复平面内,z 对应的点的坐标是()A .( 2, 4)B .( 2,﹣ 4)C.( 4,﹣ 2)D.( 4, 2)11.函数 f( x)=ax2+bx 与 f (x) =logx( ab≠0, |a|≠|b|)在同向来角坐标系中的图象可能是()A.B.C.D.12.为检查某地域老人能否需要志愿者供给帮助,用简单随机抽样方法从该地域检查了500 位老年人,结果如........下:性别男女能否需要志愿者需要40 30不需要160 270由 K 2(an(ad bc)2 算得 K2 500 (40 270 30 160) 2 9.967 b)(c d )(a c)(b d) 200 300 70 430附表:P(K 2 k) 0.050 0.010 0.001k 3.841 6.635 10.828 参照附表,则以下结论正确的选项是()①有 99% 以上的掌握以为“该地域的老年人能否需要志愿者供给帮助与性别无.关”;②有 99% 以上的掌握以为“该地域的老年人能否需要志愿者供给帮助与性别有.关”;③采纳系统抽样方法比采纳简单随机抽样方法更好;④采纳分层抽样方法比采纳简单随机抽样方法更好;第2页,共16页A .①③B .①④C.②③D .②④二、填空题13.设 MP 和 OM 分别是角的正弦线和余弦线,则给出的以下不等式:①MP<OM <0;② OM< 0<MP;③OM <MP<0;④MP<0<OM ,此中正确的选项是(把全部正确的序号都填上).14 .如图,是一回形图,其回形通道的宽和OB1的长均为1,回形线与射线 OA 交于 A 1,A 2,A 3,,若从点O 到点 A3的回形线为第 1 圈(长为 7),从点 A 3到点 A 2 的回形线为第 2 圈,从点 A 2到点 A 3的回形线为第 3 圈依此类推,第 8 圈的长为.15.不等式的解集为.16.如图:直三棱柱ABC ﹣ A ′B′C′的体积为V ,点 P、 Q 分别在侧棱AA ′和 CC′上, AP=C ′Q,则四棱锥B ﹣APQC 的体积为.17.设 S n是数列 {a n} 的前 n 项和,且a1=﹣ 1,=S n.则数列 {a n} 的通项公式a n=.18.将曲线C1:y2sin(x),0 向右平移个单位后获得曲线C2,若 C1与 C2对于 x 轴对称,则的46最小值为 _________.三、解答题19.已知函数f( x)=在(,f())处的切线方程为8x﹣ 9y+t=0 ( m∈N , t∈R)( 1)求 m 和 t 的值;( 2)若对于 x 的不等式f ( x)≤ax+在[,+∞)恒成立,务实数a 的取值范围.第3页,共16页20.(本小题满分13 分)在四棱锥 P ABCD 中,底面 ABCD 是直角梯形, AB / / DC , ABC , AD 2 2,AB 3DC 3.2(Ⅰ)在棱 PB 上确立一点 E ,使得 CE / / 平面 PAD ;(Ⅱ)若 PA PD6 ,PB PC,求直线PA与平面PBC所成角的大小.PDCA B21 . 45方向10海里的 B 处有一艘海.一艘客轮在航海中遇险,发出求救信号在遇险地址A南偏西难搜救艇收到求救信号后立刻侦察,发现遇险客轮的航行方向为南偏东75 ,正以每小时9 海里的速度向一小岛凑近 .已知海难搜救艇的最大速度为每小时21海里.( 1)为了在最短的时间内追上客轮,求海难搜救艇追上客轮所需的时间;( 2)若最短时间内两船在 C 处相遇,如图,在ABC 中,求角 B 的正弦值.第4页,共16页二七区第三中学校2018-2019学年上学期高二数学12月月考试题含分析优选高中模拟试卷22..( 1)求证:(2),若.23.已知函数f( x)=lg ( x2﹣ 5x+6 )和的定义域分别是会合A 、 B,(1)求会合 A , B;(2)求会合 A∪B,A∩B.第5页,共16页二七区第三中学校2018-2019学年上学期高二数学12月月考试题含分析优选高中模拟试卷24.(本题满分15 分):x 2y 2 x 2y 2设点 P 是椭圆 C 12 1(t 1) 交于 A ,1上随意一点, 过点 P 作椭圆的切线, 与椭圆 C 2 :2t44tB 两点.( 1)求证:PA PB ;( 2)OAB 的面积能否为定值?假如,求出这个定值;若不是,请说明原因.【命题企图】 本题考察椭圆的几何性质,直线与椭圆的地点关系等基础知识,意在考察分析几何的基本思想方 法和综合解题能力.第6页,共16页二七区第三中学校 2018-2019 学年上学期高二数学 12 月月考试题含分析(参照答案)一、选择题1.【答案】 B【分析】 解:∵向量=( 1,),=(, x )共线, ∴x====, 应选: B .【评论】本题考察了向量的共线的条件和三角函数的化简,属于基础题. 2.【答案】 B【分析】 解:不等式 x 2﹣ 4x <0 整理,得 x ( x ﹣4)< 0 ∴不等式的解集为 A={x|0 < x < 4} ,所以,不等式x 2﹣ 4x < 0 成立的一个充分不用要条件, 对应的 x 范围应当是会合A 的真子集.写出一个使不等式x 2﹣ 4x < 0 成立的充分不用要条件能够是:0< x <2, 应选: B .3. 【答案】 A 【分析】 :依题意,不如设点 M 在第一象限,且 Mx 0, y 0,p 由抛物线定义, |MF |= x 0+ 2,得 5=x 0+2.∴x 0= 3,则 y 02 =24,所以 M 3, 2 6,又点 M 在双曲线上,32 29 3 , ∴ 2- 24= 1,则 a = 25 , a =a 5 所以渐近线方程为 5x ±3y =0. 4.【答案】 C【分析】 解:函数f ( x )的定义域为R ,对于原点对称. 又 f (﹣ x )===f ( x ),所以f ( x )为偶函数. 而 f () ===﹣=﹣ f ( x ),第7页,共16页应选 C.【评论】本题考察函数的奇偶性,属基础题,定义是解决该类问题的基本方法.5.【答案】 C【分析】【剖析】设直线 2x+y+7=0 的倾斜角为θ,则tanθ=﹣2,即可判断出结论.【解答】解:设直线2x+y+7=0 的倾斜角为θ,则 tanθ=﹣ 2,则θ为钝角.应选:C.6.【答案】 A【分析】解:由题意可得,有 2 种分派方案:①甲部门要 2 个电脑专长学生,则有 3 种状况;英语成绩优异学生的分派有 2 种可能;再从剩下的 3 个人中选一人,有 3 种方法.依据分步计数原理,共有3×2×3=18 种分派方案.②甲部门要 1 个电脑专长学生,则方法有 3 种;英语成绩优异学生的分派方法有 2 种;再从剩下的 3 个人种选 2 个人,方法有 33 种,共 3×2×3=18 种分派方案.由分类计数原理,可得不一样的分派方案共有18+18=36 种,应选 A.【评论】本题考察计数原理的运用,依据题意分步或分类计算每一个事件的方法数,而后用乘法原理和加法原理计算,是解题的常用方法.7.【答案】 D【分析】解:设球的半径为R,则圆柱、圆锥的底面半径也为R,高为 2R,则球的体积 V 球 =圆柱的体积 V3 圆柱 =2 πR圆锥的体积 V 圆锥 =故圆柱、圆锥、球的体积的比为2πR3::=3: 1: 2应选 D【评论】本题考察的知识点是旋转体,球的体积,圆柱的体积和圆锥的体积,此中设出球的半径,并依据圆柱、圆锥的底面直径和高都等于球的直径,挨次求出圆柱、圆锥和球的体积是解答本题的重点.8.【答案】 A第8页,共16页【分析】解:几何体如下图,则V=,应选: A.【评论】本题考察的知识点是由三视图求体积,正确得出直观图是解答的重点.9.【答案】 D【分析】解:由 {0 , 1} ∪ A={0 ,1} 易知:会合 A? {0,1}而会合 {0 , 1} 的子集个数为 22 =4应选 D【评论】本题考察两个会归并集时的包括关系,以及求n 个元素的会合的子集个数为2n个这个知识点,为基础题.10.【答案】 C【分析】解:复数z 知足 iz=2+4i ,则有 z===4﹣ 2i,故在复平面内,z 对应的点的坐标是(4,﹣ 2),应选 C.【评论】本题主要考察两个复数代数形式的乘除法,虚数单位i 的幂运算性质,复数与复平面内对应点之间的关系,属于基础题.11.【答案】 D【分析】解: A 、由图得 f (x) =ax2+bx 的对称轴 x=﹣> 0,则,不切合对数的底数范围, A 不正确;B 、由图得 f ( x) =ax2+bx 的对称轴x= ﹣>0,则,不切合对数的底数范围,B 不正确;C、由 f( x)=ax2+bx=0 得: x=0 或 x=,由图得,则,所以f(x)=logx 在定义域上是增函数, C 不正确;第9页,共16页D、由 f ( x) =ax2+bx=0 得: x=0 或 x=,由图得,则,所以f(x)=logx 在定义域上是减函数,D 正确.【评论】本题考察二次函数的图象和对数函数的图象,考察试图能力.12.【答案】 D【分析】分析:本题考察独立性查验与统计抽样检查方法.因为 9.9676.635 ,所以有99%的掌握以为该地域的老年人能否需要帮助与性别相关,②正确;该地域老年人能否需要帮助与性别相关,而且从样本数据能看出该地域男性老年人与女性老年人中需要帮助的比率有显然差别,所以在检查时,先确立该地域老年人中男、女的比率,再把老年人分红男、女两层并采纳分层抽样方法比采纳简单随机抽样方法更好,④正确,选D .二、填空题13.【答案】②【分析】解:由 MP , OM 分别为角的正弦线、余弦线,如图,∵,∴OM <0<MP.故答案为:② .【评论】本题的考点是三角函数线,考察用作图的方法比较三角函数的大小,本题是直接比较三角函数线的大小,在大部分此种种类的题中都是用三角函数线比较三个函数值的大小.14.【答案】63.【分析】解:∵第一圈长为:1+1+2+2+1=7第10页,共16页第二圈长为:2+3+4+4+2=15第三圈长为:3+5+6+6+3=23第 n 圈长为: n+(2n﹣ 1)+2n+2n+n=8n ﹣ 1故 n=8 时,第 8 圈的长为 63,故答案为: 63.【评论】本题主要考察了概括推理,解答的一般步骤是:先经过察看第1,2, 3,圈的长的状况发现某些相同性质,再从同样性质中推出一个明确表达的一般性结论,最后将一般性结论再用于特别情况.15.【答案】(0,1].【分析】解:不等式,即,求得0<x≤1,故答案为:(0,1] .【评论】本题主要考察分式不等式、一元二次不等式的解法,属于基础题.16.【答案】V【分析】【剖析】四棱锥 B ﹣ APQC 的体积,底面面积是侧面ACC ′A′的一半, B 到侧面的距离是常数,求解即可.【解答】解:因为四棱锥B﹣ APQC 的底面面积是侧面ACC ′A′的一半,不如把P 移到 A ′,Q 移到 C,所求四棱锥B﹣ APQC 的体积,转变为三棱锥A ′﹣ ABC 体积,就是:故答案为:17.【答案】.【分析】解: S n是数列 {a n} 的前 n 项和,且a1=﹣ 1,=S n,∴S n+1﹣ S n=S n+1S n,∴=﹣ 1,=﹣ 1,∴{} 是首项为﹣ 1,公差为﹣ 1 的等差数列,∴=﹣ 1+( n﹣1)×(﹣ 1) =﹣ n.第11页,共16页∴S n=﹣,n=1 时, a1=S1=﹣ 1,n≥2 时, a n=S n﹣ S n﹣1=﹣+=.∴a n= .故答案为:.18.【答案】 6【分析】分析:曲线 C2的分析式为y 2sin[ ( x )] 2sin( x ) ,由C1与C2对于x轴对6 4 4 6称知 sin( x4) sin( x ),即 1 cos( ) sin( x) sin( )cos( ) 0 x 对全部6 4 6 4 6 41 cos( ) 0x R 恒成立,∴ 6 ∴(2 k 1) ,∴6(2 k 1),k Z ,由0 得的最小值为 6.sin( ) 0 66三、解答题19.【答案】【分析】解:(1)函数 f ( x)的导数为 f ′( x)= ,由题意可得, f() = , f′() = ,即= ,且= ,由 m∈N,则 m=1, t=8;( 2)设 h( x) =ax+﹣,x≥ .h()=﹣≥0,即a≥ ,h′ x =a,当a≥时,若x>,h′ x)>,①()﹣(第12页,共16页x ,设 g x ) =a , 若 ≤≤ ( ﹣ g ′( x ) =﹣ < 0, g ( x )在 [ , ]上递减,且 g ( ) ≥0,则 g (x ) ≥0 ,即 h ′(x ) ≥0 在 [ ,] 上恒成立. ②由 ①② 可得, a ≥ 时, h ′( x )> 0, h ( x )在 [ , +∞)上递加, h ( x ) ≥h ( ) = ≥0,则当 a ≥ 时,不等式 f ( x ) ≤ax+ 在 [ , +∞)恒成立;当 a < 时, h ( )< 0,不合题意.综上可得 a ≥ .【评论】 本题考察导数的运用: 求切线方程和求单一区间, 主要考察不等式恒成立问题转变为求函数最值, 正确求导和分类议论是解题的重点.20. 【答案】【分析】 解: (Ⅰ)当 PE1PB 时, CE//平面 PAD .3设 F 为 PA 上一点,且 PF1PA ,连接 EF 、DF 、 EC ,1AB .3那么 EF //AB ,EF3∵DC / /AB , DC1AB ,∴EF / /DC , EF DC ,∴EC //FD .3又∵CE平面 PAD , FD 平面 PAD ,∴CE / /平面 PAD . (5分)(Ⅱ)设 O 、 G 分别为 AD 、 BC 的中点,连接 OP 、 OG 、 PG ,∵PB PC ,∴ PG BC ,易知 OG BC ,∴ BC 平面 POG ,∴ BC OP .又∵ PAPD ,∴OPAD ,∴OP 平面 ABCD . (8分)成立空间直角坐标系 O xyz (如图),此中x 轴 / / BC , y 轴 / / AB ,则有 A(1, 1,0) , B(1,2,0) , C ( 1,2,0) .由 POPA 2 AO 2( 6)2 ( 2) 22 知 P(0,0, 2). (9分)设平面 PBC 的法向量为 n ( x, y, z) , PB (1,2, uur (2,0,0)2), CBn PB0 x 2y2z(0,1,1) . 则即2x,取 nn CB设直线 PA 与平面 PBC 所成角为uuur 1,1,2) ,则 sin | cos| AP n | 3,AP ( AP, n || n |,| AP| 2第13页,共16页∴,∴直线 PB 与平面 PAD 所成角为. (13 分)33zPFED COG yA Bx21.【答案】 (1)2小时;( 2)33.314【分析】试题分析:( 1)设搜救艇追上客轮所需时间为小时,两船在 C 处相遇.在 ABC 中,BAC45 75 120 , AB 10, AC9t , BC 21t .由余弦定理得: BC2AB 2AC 2 2AB AC cosBAC ,所以 (21t)2102(9t)22 10 9t (1) ,2化简得 36t 2 9t 100 ,解得 t2 或 t 5 (舍去) .312所以,海难搜救艇追上客轮所需时间为2小时 .3( 2)由 AC 9 2 6, BC212 14 .33AC sin BAC6 sin1206 33 3 在 ABC 中,由正弦定理得2sin BBC1414.14所以角 B 的正弦值为3 3.14考点:三角形的实质应用.【方法点晴】 本题主要考察认识三角形的实质应用,此中解答中波及到正弦定理、余弦定理的灵巧应用,着重第14页,共16页考察了学生剖析问题和解答问题的能力,以及推理与运算能力,属于中档试题, 本题的解答中, 可先依据题意, 画出图形,由搜救艇和渔船的速度,那么可设时间,并用时间表示AC , BC ,再依据正弦定理和余弦定理,即 可求解此类问题,此中正确画出图形是解答的重点. 22.【答案】【分析】 解:( 1)∵, ∴ a n+1 =f ( a n ) =, 则 , ∴ {} 是首项为 1,公差为 3 的等差数列;( 2)由( 1)得,=3n ﹣ 2,∵ {b n } 的前 n 项和为 ,∴ 当 n ≥2 时, b n =S n n ﹣ 1 n 2n ﹣1n ﹣ 1 ﹣S =2 ﹣ =2 , 而 b 1=S 1=1,也知足上式,则 n1b n =2 ﹣,∴ ==(3n ﹣ 2) 2n﹣1, ∴=20+4?21+7?22++(3n ﹣ 2) 2n ﹣1,①则 2T n =21+4?22+7?23+ +(3n ﹣ 2) 2n ,② ① ﹣ ②得:﹣ T n =1+3?21+3 ?22+3?23++3?2n ﹣1﹣( 3n ﹣ 2) 2n ,∴ T n =( 3n ﹣ 5) 2n +5. 23.【答案】【分析】 解:( 1)由 x 2﹣ 5x+6> 0,即( x ﹣ 2)( x ﹣ 3)> 0, 解得: x > 3 或 x < 2,即 A={x|x > 3 或 x < 2} , 由 g (x ) =,获得﹣ 1≥ 0,当 x >0 时,整理得: 4﹣x ≥ 0,即 x ≤ 4; 当 x <0 时,整理得: 4﹣x ≤ 0,无解,综上,不等式的解集为 0< x ≤ 4,即 B={x|0 < x ≤ 4} ; ( 2)∵A={x|x > 3 或 x < 2} , B={x|0 < x ≤4} ,第15页,共16页∴A ∪ B=R , A ∩ B={x|0 <x< 2 或 3<x≤ 4} .【评论】本题考察了交集及其运算,娴熟掌握交集的定义是解本题的重点.24.【答案】(1)详看法析;(2)详看法析 .∴点 P 为线段 AB 中点, PA PB ;7分( 2)若直线AB斜率不存在,则AB : x 2 ,与椭圆 C2 方程联立可得,A( 2, t 2 1) ,B( 2, t 2 1) ,故S OAB 2 t 2 1 ,9分若直线 AB 斜率存在,由(1)可得x1 x28km ,x1 x24m 2 4t 2 ,AB 1 k 2 x x24 1 k 2 t 2 1 ,分4k 2 1 4k 2 1 1 4k 2 1 11点 O 到直线AB的距离 d m 4k 2 11 k2 1 k 2,13 分∴SOAB 1AB d 2 t 2 1 ,综上,OAB 的面积为定值2 t 2 1 .15分2第16页,共16页。

2018-2019学年上学期高二数学12月月考试题含解析(115)

2018-2019学年上学期高二数学12月月考试题含解析(115)

细河区第二中学校2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 在复平面内,复数(﹣4+5i )i (i 为虚数单位)的共轭复数对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2. 某三棱椎的三视图如图所示,该三棱锥的四个面的面积中,最大的是( )A .B .8C .D .3. 某几何体的三视图如图所示(其中侧视图中的圆弧是半圆),则该几何体的表面积为( )A .20+2πB .20+3πC .24+3πD .24+3π4. 复数2(2)i z i-=(i 为虚数单位),则z 的共轭复数为( )A .43i -+B .43i +C .34i +D .34i -【命题意图】本题考查复数的运算和复数的概念等基础知识,意在考查基本运算能力.5. 在平行四边形ABCD 中,AC 为一条对角线, =(2,4),=(1,3),则等于( )A .(2,4)B .(3,5)C .(﹣3,﹣5)D .(﹣2,﹣4)6. 下列函数在(0,+∞)上是增函数的是( )A .B .y=﹣2x+5C .y=lnxD .y=7. 在正方体1111ABCD A B C D -中,,E F 分别为1,BC BB 的中点,则下列直线中与直线 EF 相交的是( )A .直线1AAB .直线11A B C. 直线11A D D .直线11B C8. 若等边三角形ABC 的边长为2,N 为AB 的中点,且AB 上一点M 满足CM xCA yCB =+,则当14x y+取最小值时,CM CN ⋅=( )A .6B .5C .4D .39. 命题“∀x ∈R ,2x 2+1>0”的否定是( )A .∀x ∈R ,2x 2+1≤0B .C .D .10.若复数z=2﹣i ( i 为虚数单位),则=( )A .4+2iB .20+10iC .4﹣2iD .11.如图,棱长为的正方体1111D ABC A B C D -中,,E F 是侧面对角线11,BC AD 上一点,若 1BED F是菱形,则其在底面ABCD 上投影的四边形面积( )A .12 B .34C. 2D .34-12.已知抛物线28y x =与双曲线2221x y a-=的一个交点为M ,F 为抛物线的焦点,若5MF =,则该双曲线的渐近线方程为A 、530x y ±=B 、350x y ±=C 、450x y ±=D 、540x y ±=二、填空题13.已知椭圆+=1(a >b >0)上一点A 关于原点的对称点为B ,F 为其左焦点,若AF ⊥BF ,设∠ABF=θ,且θ∈[,],则该椭圆离心率e 的取值范围为 .14.已知正方体ABCD ﹣A 1B 1C 1D 1的一个面A 1B 1C 1D 1在半径为的半球底面上,A 、B 、C 、D 四个顶点都在此半球面上,则正方体ABCD ﹣A 1B 1C 1D 1的体积为 . 15.下列四个命题申是真命题的是 (填所有真命题的序号)①“p ∧q 为真”是“p ∨q 为真”的充分不必要条件;②空间中一个角的两边和另一个角的两边分别平行,则这两个角相等; ③在侧棱长为2,底面边长为3的正三棱锥中,侧棱与底面成30°的角;④动圆P 过定点A (﹣2,0),且在定圆B :(x ﹣2)2+y 2=36的内部与其相内切,则动圆圆心P 的轨迹为一个椭圆.16.设实数x ,y 满足,向量=(2x ﹣y ,m ),=(﹣1,1).若∥,则实数m 的最大值为 .17.设x R ∈,记不超过x 的最大整数为[]x ,令{}[]x x x =-.现有下列四个命题: ①对任意的x ,都有1[]x x x -<≤恒成立; ②若(1,3)x ∈,则方程{}22sincos []1x x +=的实数解为6π-;③若3n n a ⎡⎤=⎢⎥⎣⎦(n N *∈),则数列{}n a 的前3n 项之和为23122n n -;④当0100x ≤≤时,函数{}22()sin []sin1f x x x =+-的零点个数为m,函数{}()[]13xg x x x =⋅--的零点个数为n ,则100m n +=.其中的真命题有_____________.(写出所有真命题的编号)【命题意图】本题涉及函数、函数的零点、数列的推导与归纳,同时又是新定义题,应熟悉理解新定义,将问题转化为已知去解决,属于中档题。

2018-2019学年上学期高二数学12月月考试题含解析(401)

2018-2019学年上学期高二数学12月月考试题含解析(401)

雨山区第二中学校2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 已知抛物线C :y x 82=的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若FQ PF 2=,则=QF ( ) A .6B .3C .38 D .34 第Ⅱ卷(非选择题,共100分)2. 若实数x ,y 满足,则(x ﹣3)2+y 2的最小值是( )A .B .8C .20D .23. 如图,在平面直角坐标系中,锐角α、β及角α+β的终边分别与单位圆O 交于A ,B ,C 三点.分别作AA'、BB'、CC'垂直于x 轴,若以|AA'|、|BB'|、|CC'|为三边长构造三角形,则此三角形的外接圆面积为( )A .B .C .D .π4. 函数f (x )=()x2﹣9的单调递减区间为( ) A .(﹣∞,0) B .(0,+∞) C .(﹣9,+∞) D .(﹣∞,﹣9)5. 已知命题p :“∀∈[1,e],a >lnx ”,命题q :“∃x ∈R ,x 2﹣4x+a=0””若“p ∧q ”是真命题,则实数a 的取值范围是( )A .(1,4]B .(0,1]C .[﹣1,1]D .(4,+∞)6. 一个几何体的三视图如图所示,则该几何体的体积是( ) A .64 B .72 C .80 D .112【命题意图】本题考查三视图与空间几何体的体积等基础知识,意在考查空间想象能力与运算求解能力.7. 若当R x ∈时,函数||)(x a x f =(0>a 且1≠a )始终满足1)(≥x f ,则函数3||log x x y a =的图象大致是 ( )【命题意图】本题考查了利用函数的基本性质来判断图象,对识图能力及逻辑推理能力有较高要求,难度中等.8. 如图,△ABC 所在平面上的点P n (n ∈N *)均满足△P n AB 与△P n AC 的面积比为3;1,=﹣(2x n +1)(其中,{x n }是首项为1的正项数列),则x 5等于( )A .65B .63C .33D .319. 若集合M={y|y=2x ,x ≤1},N={x|≤0},则 N ∩M ( )A .(1﹣1,]B .(0,1]C .[﹣1,1]D .(﹣1,2]10.根据《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20﹣80mg/100ml (不含80)之间,属于酒后驾车;血液酒精浓度在80mg/100ml (含80)以上,属于醉酒驾车.据《法制晚报》报道,2011年3月15日至3月28日,全国查处酒后驾车和醉酒驾车共28800人,如下图是对这28800人酒后驾车血液中酒精含量进行检测所得结果的频率分布直方图,则属于醉酒驾车的人数约为( )A .2160B .2880C .4320D .864011.设()f x 是奇函数,且在(0,)+∞内是增函数,又(3)0f -=,则()0x f x ⋅<的解集是( )A .{}|303x x x -<<>或B . {}|3003x x x -<<<<或C .{}|33x x x <->或D . {}|303x x x <-<<或12.等比数列的前n 项,前2n 项,前3n 项的和分别为A ,B ,C ,则( )A .B 2=AC B .A+C=2B C .B (B ﹣A )=A (C ﹣A ) D .B (B ﹣A )=C (C ﹣A )二、填空题13.i 是虚数单位,若复数(1﹣2i )(a+i )是纯虚数,则实数a 的值为 . 14.命题“(0,)2x π∀∈,sin 1x <”的否定是 ▲ .15.在ABC ∆中,角A B C 、、的对边分别为a b c 、、,若1c o s 2c B a b ⋅=+,ABC ∆的面积S =, 则边c 的最小值为_______.【命题意图】本题考查正弦定理、余弦定理、三角形面积公式、基本不等式等基础知识,意在考查基本运算能力.16.在ABC ∆中,有等式:①sin sin a A b B =;②sin sin a B b A =;③cos cos a B b A =;④sin sin sin a b cA B C+=+.其中恒成立的等式序号为_________. 17.甲、乙两个箱子里各装有2个红球和1个白球,现从两个箱子中随机各取一个球,则至少有一个红球的概率为 .18.若函数f (x )=x 2﹣(2a ﹣1)x+a+1是区间(1,2)上的单调函数,则实数a 的取值范围是 .三、解答题19.已知集合A={x|2≤x ≤6},集合B={x|x ≥3}. (1)求C R (A ∩B );(2)若C={x|x ≤a},且A ⊆C ,求实数a 的取值范围.20.某同学用“五点法”画函数f (x )=Asin (ωx+φ)+B (A >0,ω>0,|φ|<)在某一1,x 2,x 3的值,并写出函数f (x )的解析式;(Ⅱ)将f (x )的图象向右平移个单位得到函数g (x )的图象,若函数g (x )在区间[0,m](3<m <4)上的图象的最高点和最低点分别为M ,N ,求向量与夹角θ的大小.21.(本小题12分)在多面体ABCDEFG 中,四边形ABCD 与CDEF 是边长均为a 正方形,CF ⊥平面ABCD ,BG ⊥平面ABCD ,且24AB BG BH ==. (1)求证:平面AGH ⊥平面EFG ; (2)若4a =,求三棱锥G ADE -的体积.【命题意图】本题主要考查空间直线与平面间的垂直关系、空间向量、二面角等基础知识,间在考查空间想象能力、逻辑推理能力,以及转化的思想、方程思想.22.已知函数()f x =121xa +- (1)求()f x 的定义域.(2)是否存在实数a ,使()f x 是奇函数?若存在,求出a 的值;若不存在,请说明理由。

2018-2019学年上学期高二数学12月月考试题含解析(543)

2018-2019学年上学期高二数学12月月考试题含解析(543)

中牟县第二中学校2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 双曲线的焦点与椭圆的焦点重合,则m 的值等于( )A .12B .20C .D .2. 若函数f (x )=﹣a (x ﹣x 3)的递减区间为(,),则a 的取值范围是( )A .a >0B .﹣1<a <0C .a >1D .0<a <13. 定义运算:,,a a ba b b a b≤⎧*=⎨>⎩.例如121*=,则函数()sin cos f x x x =*的值域为( )A .22⎡-⎢⎣⎦B .[]1,1-C .2⎤⎥⎣⎦D .⎡-⎢⎣⎦4. 已知全集U=R ,集合A={1,2,3,4,5},B={x ∈R|x ≥3},图中阴影部分所表示的集合为 ( )A .{1}B .{1,2}C .{1,2,3}D .{0,1,2}5. 己知y=f (x )是定义在R 上的奇函数,当x <0时,f (x )=x+2,那么不等式2f (x )﹣1<0的解集是( )A .B .或C .D .或6. 一个几何体的三视图如图所示,如果该几何体的侧面面积为12π,则该几何体的体积是( )A.4πB.12πC.16πD.48π7.过抛物线y2=4x焦点的直线交抛物线于A,B两点,若|AB|=10,则AB的中点到y轴的距离等于()A.1 B.2 C.3 D.48.抛物线y2=8x的焦点到双曲线的渐近线的距离为()A.1 B.C.D.9.已知集合A={﹣1,0,1,2},集合B={0,2,4},则A∪B等于()A.{﹣1,0,1,2,4} B.{﹣1,0,2,4}C.{0,2,4} D.{0,1,2,4}10.在△ABC中,内角A,B,C的对边分别是a,b,c,若a2﹣b2=bc,sinC=2sinB,则A=()A.30°B.60°C.120°D.150°11.已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围是()A.(1,+∞)B.(2,+∞)C.(﹣∞,﹣1)D.(﹣∞,﹣2)12.下面各组函数中为相同函数的是()A.f(x)=,g(x)=x﹣1 B.f(x)=,g(x)=C.f(x)=ln e x与g(x)=e lnx D.f(x)=(x﹣1)0与g(x)=二、填空题13.设变量x,y满足约束条件,则的最小值为.14.若函数f(x)=x2﹣2x(x∈[2,4]),则f(x)的最小值是.15.过原点的直线l与函数y=的图象交于B,C两点,A为抛物线x2=﹣8y的焦点,则|+|=.16.对于集合M ,定义函数对于两个集合A ,B ,定义集合A △B={x|f A (x )fB (x )=﹣1}.已知A={2,4,6,8,10},B={1,2,4,8,12},则用列举法写出集合A △B 的结果为 .17.【2017-2018第一学期东台安丰中学高三第一次月考】在平面直角坐标系xOy 中,直线l 与函数()()2220f x x ax =+>和()()3220g x x a x =+>均相切(其中a 为常数),切点分别为()11,A x y 和()22,B x y ,则12x x +的值为__________.18.设函数f (x )=则函数y=f (x )与y=的交点个数是 .三、解答题19.计算: (1)8+(﹣)0﹣;(2)lg25+lg2﹣log 29×log 32.20.一艘客轮在航海中遇险,发出求救信号.在遇险地点A 南偏西45方向10海里的B 处有一艘海难搜救艇收到求救信号后立即侦查,发现遇险客轮的航行方向为南偏东75,正以每小时9海里的速度向一小岛靠近.已知海难搜救艇的最大速度为每小时21海里.(1)为了在最短的时间内追上客轮,求海难搜救艇追上客轮所需的时间; (2)若最短时间内两船在C 处相遇,如图,在ABC ∆中,求角B 的正弦值.21.(本题满分15分)如图AB 是圆O 的直径,C 是弧AB 上一点,VC 垂直圆O 所在平面,D ,E 分别为VA ,VC 的中点.(1)求证:DE ⊥平面VBC ;(2)若6VC CA ==,圆O 的半径为5,求BE 与平面BCD 所成角的正弦值.【命题意图】本题考查空间点、线、面位置关系,线面等基础知识,意在考查空间想象能力和运算求解能力.22.已知复数z=m(m﹣1)+(m2+2m﹣3)i(m∈R)(1)若z是实数,求m的值;(2)若z是纯虚数,求m的值;(3)若在复平面C内,z所对应的点在第四象限,求m的取值范围.23.已知函数f(x)=在(,f())处的切线方程为8x﹣9y+t=0(m∈N,t∈R)(1)求m和t的值;(2)若关于x的不等式f(x)≤ax+在[,+∞)恒成立,求实数a的取值范围.24.已知函数f(x)=|x﹣a|.(Ⅰ)若不等式f(x)≤2的解集为[0,4],求实数a的值;(Ⅱ)在(Ⅰ)的条件下,若∃x0∈R,使得f(x0)+f(x0+5)﹣m2<4m,求实数m的取值范围.中牟县第二中学校2019-2020学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】A【解析】解:椭圆的焦点为(±4,0),由双曲线的焦点与椭圆的重合,可得=4,解得m=12.故选:A.2.【答案】A【解析】解:∵函数f(x)=﹣a(x﹣x3)的递减区间为(,)∴f′(x)≤0,x∈(,)恒成立即:﹣a(1﹣3x2)≤0,,x∈(,)恒成立∵1﹣3x2≥0成立∴a>0故选A【点评】本题主要考查函数单调性的应用,一般来讲已知单调性,则往往转化为恒成立问题去解决.3.【答案】D【解析】考点:1、分段函数的解析式;2、三角函数的最值及新定义问题.4.【答案】B【解析】解:图中阴影部分表示的集合中的元素是在集合A中,但不在集合B中.由韦恩图可知阴影部分表示的集合为(C U B)∩A,又A={1,2,3,4,5},B={x∈R|x≥3},∵C U B={x|x<3},∴(C U B)∩A={1,2}.则图中阴影部分表示的集合是:{1,2}.故选B.【点评】本小题主要考查Venn图表达集合的关系及运算、Venn图的应用等基础知识,考查数形结合思想.属于基础题.5.【答案】B【解析】解:因为y=f(x)为奇函数,所以当x>0时,﹣x<0,根据题意得:f(﹣x)=﹣f(x)=﹣x+2,即f(x)=x﹣2,当x<0时,f(x)=x+2,代入所求不等式得:2(x+2)﹣1<0,即2x<﹣3,解得x<﹣,则原不等式的解集为x<﹣;当x≥0时,f(x)=x﹣2,代入所求的不等式得:2(x﹣2)﹣1<0,即2x<5,解得x<,则原不等式的解集为0≤x<,综上,所求不等式的解集为{x|x<﹣或0≤x<}.故选B6.【答案】B【解析】解:由三视图可知几何体是底面半径为2的圆柱,∴几何体的侧面积为2π×2×h=12π,解得h=3,∴几何体的体积V=π×22×3=12π.故选B.【点评】本题考查了圆柱的三视图,结构特征,体积,表面积计算,属于基础题.7.【答案】D【解析】解:抛物线y2=4x焦点(1,0),准线为l:x=﹣1,设AB的中点为E,过A、E、B分别作准线的垂线,垂足分别为C、G、D,EF交纵轴于点H,如图所示:则由EG为直角梯形的中位线知,EG====5,∴EH=EG﹣1=4,则AB的中点到y轴的距离等于4.故选D.【点评】本题考查抛物线的定义、标准方程,以及简单性质的应用,体现了数形结合的数学思想.8.【答案】A【解析】解:因为抛物线y2=8x,由焦点公式求得:抛物线焦点为(2,0)又双曲线.渐近线为y=有点到直线距离公式可得:d==1.故选A.【点评】此题主要考查抛物线焦点的求法和双曲线渐近线的求法.其中应用到点到直线的距离公式,包含知识点多,属于综合性试题.9.【答案】A【解析】解:∵A={﹣1,0,1,2},B={0,2,4},∴A∪B={﹣1,0,1,2}∪{0,2,4}={﹣1,0,1,2,4}.故选:A.【点评】本题考查并集及其运算,是基础的会考题型.10.【答案】A【解析】解:∵sinC=2sinB,∴c=2b,∵a2﹣b2=bc,∴cosA===∵A是三角形的内角∴A=30°故选A.【点评】本题考查正弦、余弦定理的运用,解题的关键是边角互化,属于中档题.11.【答案】D【解析】解:∵f(x)=ax3﹣3x2+1,∴f′(x)=3ax2﹣6x=3x(ax﹣2),f(0)=1;①当a=0时,f(x)=﹣3x2+1有两个零点,不成立;②当a>0时,f(x)=ax3﹣3x2+1在(﹣∞,0)上有零点,故不成立;③当a<0时,f(x)=ax3﹣3x2+1在(0,+∞)上有且只有一个零点;故f(x)=ax3﹣3x2+1在(﹣∞,0)上没有零点;而当x=时,f(x)=ax3﹣3x2+1在(﹣∞,0)上取得最小值;故f()=﹣3•+1>0;故a<﹣2;综上所述,实数a的取值范围是(﹣∞,﹣2);故选:D.12.【答案】D【解析】解:对于A:f(x)=|x﹣1|,g(x)=x﹣1,表达式不同,不是相同函数;对于B:f(x)的定义域是:{x|x≥1或x≤﹣1},g(x)的定义域是{x}x≥1},定义域不同,不是相同函数;对于C:f(x)的定义域是R,g(x)的定义域是{x|x>0},定义域不同,不是相同函数;对于D:f(x)=1,g(x)=1,定义域都是{x|x≠1},是相同函数;故选:D.【点评】本题考查了判断两个函数是否是同一函数问题,考查指数函数、对数函数的性质,是一道基础题.二、填空题13.【答案】4.【解析】解:作出不等式组对应的平面区域,则的几何意义为区域内的点到原点的斜率,由图象可知,OC的斜率最小,由,解得,即C(4,1),此时=4,故的最小值为4,故答案为:4【点评】本题主要考查线性规划的应用,利用直线斜率的定义以及数形结合是解决本题的关键.14.【答案】0.【解析】解:f(x))=x2﹣2x=(x﹣1)2﹣1,其图象开口向上,对称抽为:x=1,所以函数f(x)在[2,4]上单调递增,所以f(x)的最小值为:f(2)=22﹣2×2=0.故答案为:0.【点评】本题考查二次函数在闭区间上的最值问题,一般运用数形结合思想进行处理.15.【答案】4.【解析】解:由题意可得点B和点C关于原点对称,∴|+|=2||,再根据A为抛物线x2=﹣8y的焦点,可得A(0,﹣2),∴2||=4,故答案为:4.【点评】本题主要考查抛物线的方程、简单性质,属于基础题,利用|+|=2||是解题的关键.16.【答案】{1,6,10,12}.【解析】解:要使f A(x)f B(x)=﹣1,必有x∈{x|x∈A且x∉B}∪{x|x∈B且x∉A}={6,10}∪{1,12}={1,6,10,12,},所以A△B={1,6,10,12}.故答案为{1,6,10,12}.【点评】本题是新定义题,考查了交、并、补集的混合运算,解答的关键是对新定义的理解,是基础题.17.【答案】56 27【解析】18.【答案】4.【解析】解:在同一坐标系中作出函数y=f (x )=的图象与函数y=的图象,如下图所示,由图知两函数y=f (x )与y=的交点个数是4. 故答案为:4.三、解答题19.【答案】 【解析】解:(1)8+(﹣)0﹣=2﹣1+1﹣(3﹣e ) =e ﹣.(2)lg25+lg2﹣log 29×log 32 ===1﹣2=﹣1.…(6分)【点评】本题考查指数式、对数式化简求值,是基础题,解题时要认真审题,注意对数、指数性质及运算法则的合理运用.20.【答案】(1)23小时;(2)14.【解析】试题解析:(1)设搜救艇追上客轮所需时间为小时,两船在C 处相遇. 在ABC ∆中,4575120BAC ∠=+=,10AB =,9AC t =,21BC t =. 由余弦定理得:2222cos BC AB AC AB AC BAC =+-∠, 所以2221(21)10(9)2109()2t t t =+-⨯⨯⨯-,化简得2369100t t --=,解得23t =或512t =-(舍去). 所以,海难搜救艇追上客轮所需时间为23小时.(2)由2963AC =⨯=,221143BC =⨯=.在ABC ∆中,由正弦定理得6sin 6sin1202sin 1414AC BAC B BC⨯∠====. 所以角B 的正弦值为14. 考点:三角形的实际应用.【方法点晴】本题主要考查了解三角形的实际应用,其中解答中涉及到正弦定理、余弦定理的灵活应用,注重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档试题,本题的解答中,可先根据题意,画出图形,由搜救艇和渔船的速度,那么可设时间,并用时间表示,AC BC ,再根据正弦定理和余弦定理,即可求解此类问题,其中正确画出图形是解答的关键.21.【答案】(1)详见解析;(2)146. 【解析】(1)∵D ,E 分别为VA ,VC 的中点,∴//DE AC ,…………2分 ∵AB 为圆O 的直径,∴AC BC ⊥,…………4分 又∵VC ⊥圆O ,∴VC AC ⊥,…………6分∴DE BC ⊥,DE VC ⊥,又∵VC BC C =,∴DE VBC ⊥面;…………7分(2)设点E 平面BCD 的距离为d ,由DB C E EB CD V V --=得1133BCE BCD DES d S ∆∆⨯⨯=⨯⨯,解得d =12分 设BE 与平面BCD 所成角为θ,∵8BC =,BE ==sin 146d BE θ==.…………15分 22.【答案】【解析】解:(1)z 为实数⇔m 2+2m ﹣3=0,解得:m=﹣3或m=1;(2)z 为纯虚数⇔,解得:m=0;(3)z 所对应的点在第四象限⇔,解得:﹣3<m <0.23.【答案】【解析】解:(1)函数f (x )的导数为f ′(x )=,由题意可得,f ()=,f ′()=,即=,且=,由m ∈N ,则m=1,t=8;(2)设h (x )=ax+﹣,x ≥.h ()=﹣≥0,即a ≥,h ′(x )=a ﹣,当a ≥时,若x >,h ′(x )>0,①若≤x ≤,设g (x )=a ﹣,g ′(x )=﹣<0,g (x )在[,]上递减,且g ()≥0,则g (x )≥0,即h ′(x )≥0在[,]上恒成立.②由①②可得,a ≥时,h ′(x )>0,h (x )在[,+∞)上递增,h (x )≥h ()=≥0,则当a ≥时,不等式f (x )≤ax+在[,+∞)恒成立;当a <时,h ()<0,不合题意.综上可得a ≥.【点评】本题考查导数的运用:求切线方程和求单调区间,主要考查不等式恒成立问题转化为求函数最值,正确求导和分类讨论是解题的关键.24.【答案】【解析】解:(Ⅰ)∵|x﹣a|≤2,∴a﹣2≤x≤a+2,∵f(x)≤2的解集为[0,4],∴,∴a=2.(Ⅱ)∵f(x)+f(x+5)=|x﹣2|+|x+3|≥|(x﹣2)﹣(x+3)|=5,∵∃x0∈R,使得,即成立,∴4m+m2>[f(x)+f(x+5)]min,即4m+m2>5,解得m<﹣5,或m>1,∴实数m的取值范围是(﹣∞,﹣5)∪(1,+∞).。

二七区三中2018-2019学年上学期高二数学12月月考试题含解析

二七区三中2018-2019学年上学期高二数学12月月考试题含解析

二七区三中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1.已知正方体的不在同一表面的两个顶点A(﹣1,2,﹣1),B(3,﹣2,3),则正方体的棱长等于()A.4 B.2 C.D.22.已知直线x﹣y+a=0与圆心为C的圆x2+y2+2x﹣4y+7=0相交于A,B两点,且•=4,则实数a 的值为()A.或﹣B.或3 C.或5D.3或53.α是第四象限角,,则sinα=()A.B.C.D.4.设函数y=的定义域为M,集合N={y|y=x2,x∈R},则M∩N=()A.∅B.N C.[1,+∞)D.M5.如图所示,网格纸表示边长为1的正方形,粗实线画出的是某几何体的三视图,则该几何体的体积为()A.4 B.8 C.12 D.20【命题意图】本题考查三视图、几何体的体积等基础知识,意在考查空间想象能力和基本运算能力.6.函数y=a x+1(a>0且a≠1)图象恒过定点()A.(0,1)B.(2,1)C.(2,0)D.(0,2)7.将y=cos(2x+φ)的图象沿x轴向右平移个单位后,得到一个奇函数的图象,则φ的一个可能值为()A.B.﹣C.﹣D.8.双曲线:的渐近线方程和离心率分别是()A.B.C.D.9.命题:“∀x>0,都有x2﹣x≥0”的否定是()A.∀x≤0,都有x2﹣x>0 B.∀x>0,都有x2﹣x≤0C.∃x>0,使得x2﹣x<0 D.∃x≤0,使得x2﹣x>010.如图所示,函数y=|2x﹣2|的图象是()A.B.C.D.11.(2014新课标I)如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P做直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x的函数f(x),则y=f(x)在[0,π]的图象大致为()A.B.C.D.12.已知f(x)=x3﹣6x2+9x﹣abc,a<b<c,且f(a)=f(b)=f(c)=0.现给出如下结论:①f(0)f(1)>0;②f(0)f(1)<0;③f(0)f(3)>0;④f(0)f(3)<0.其中正确结论的序号是()A.①③B.①④C.②③D.②④二、填空题13.已知函数()f x 23(2)5x =-+,且12|2||2|x x ->-,则1()f x ,2()f x 的大小关系 是.14.设R m ∈,实数x ,y 满足23603260y m x y x y ≥⎧⎪-+≥⎨⎪--≤⎩,若182≤+y x ,则实数m 的取值范围是___________.【命题意图】本题考查二元不等式(组)表示平面区域以及含参范围等基础知识,意在考查数形结合的数学思想与运算求解能力.15.若函数f (x ),g (x )满足:∀x ∈(0,+∞),均有f (x )>x ,g (x )<x 成立,则称“f (x )与g (x )关于y=x 分离”.已知函数f (x )=a x 与g (x )=log a x (a >0,且a ≠1)关于y=x 分离,则a 的取值范围是 .16.下列关于圆锥曲线的命题:其中真命题的序号 .(写出所有真命题的序号). ①设A ,B 为两个定点,若|PA|﹣|PB|=2,则动点P 的轨迹为双曲线;②设A ,B 为两个定点,若动点P 满足|PA|=10﹣|PB|,且|AB|=6,则|PA|的最大值为8; ③方程2x 2﹣5x+2=0的两根可分别作椭圆和双曲线的离心率; ④双曲线﹣=1与椭圆有相同的焦点.17.在△ABC 中,若角A 为锐角,且=(2,3),=(3,m ),则实数m 的取值范围是 .18.已知关于 的不等式在上恒成立,则实数的取值范围是__________三、解答题19.已知函数f (x )=x 3+ax+2.(Ⅰ)求证:曲线=f (x )在点(1,f (1))处的切线在y 轴上的截距为定值;(Ⅱ)若x ≥0时,不等式xe x +m[f ′(x )﹣a]≥m 2x 恒成立,求实数m 的取值范围.20.(本小题满分12分)已知1()2ln ()f x x a x a R x=--∈. (Ⅰ)当3a =时,求()f x 的单调区间;(Ⅱ)设()()2ln g x f x x a x =-+,且()g x 有两个极值点,其中1[0,1]x ∈,求12()()g x g x -的最小值. 【命题意图】本题考查导数的应用等基础知识,意在考查转化与化归思想和综合分析问题、解决问题的能力.21.如图,已知椭圆C :+y 2=1,点B 坐标为(0,﹣1),过点B 的直线与椭圆C 另外一个交点为A ,且线段AB 的中点E 在直线y=x 上 (Ⅰ)求直线AB 的方程(Ⅱ)若点P 为椭圆C 上异于A ,B 的任意一点,直线AP ,BP 分别交直线y=x 于点M ,N ,证明:OM •ON 为定值.22.已知函数,且. (Ⅰ)求的解析式; (Ⅱ)若对于任意,都有,求的最小值;(Ⅲ)证明:函数的图象在直线的下方.23.(本小题满分12分)某超市销售一种蔬菜,根据以往情况,得到每天销售量的频率分布直方图如下:(Ⅰ)求频率分布直方图中的a 的值,并估计每天销售量的中位数;(Ⅱ)这种蔬菜每天进货当天必须销售,否则只能作为垃圾处理.每售出1千克蔬菜获利4元,未售出的蔬菜,每千克亏损2元.假设同一组中的每个数据可用该组区间的中点值代替,估计当超市每天的进货量为75千克时获利的平均值.24.已知函数,.(Ⅰ)求函数的最大值;0.0050.02频率组距O千克(Ⅱ)若,求函数的单调递增区间.二七区三中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】A【解析】解:∵正方体中不在同一表面上两顶点A(﹣1,2,﹣1),B(3,﹣2,3),∴AB是正方体的体对角线,AB=,设正方体的棱长为x,则,解得x=4.∴正方体的棱长为4,故选:A.【点评】本题主要考查了空间两点的距离公式,以及正方体的体积的有关知识,属于基础题.2.【答案】C【解析】解:圆x2+y2+2x﹣4y+7=0,可化为(x+)2+(y﹣2)2=8.∵•=4,∴2•2cos∠ACB=4∴cos∠ACB=,∴∠ACB=60°∴圆心到直线的距离为,∴=,∴a=或5.故选:C.3.【答案】B【解析】解:∵α是第四象限角,∴sinα=,故选B.【点评】已知某角的一个三角函数值,求该角的其它三角函数值,应用平方关系、倒数关系、商的关系,这是三角函数计算题中较简单的,容易出错的一点是角的范围不确定时,要讨论.4.【答案】B【解析】解:根据题意得:x+1≥0,解得x≥﹣1,∴函数的定义域M={x|x≥﹣1};∵集合N 中的函数y=x 2≥0,∴集合N={y|y ≥0}, 则M ∩N={y|y ≥0}=N . 故选B5. 【答案】C【解析】由三视图可知该几何体是四棱锥,且底面为长6,宽2的矩形,高为3,所以此四棱锥体积为1231231=⨯⨯,故选C. 6. 【答案】D【解析】解:令x=0,则函数f (0)=a 0+3=1+1=2.∴函数f (x )=a x+1的图象必过定点(0,2).故选:D .【点评】本题考查了指数函数的性质和a 0=1(a >0且a ≠1),属于基础题.7. 【答案】D【解析】解:将y=cos (2x+φ)的图象沿x 轴向右平移个单位后,得到一个奇函数y=cos=cos (2x+φ﹣)的图象,∴φ﹣=k π+,即 φ=k π+,k ∈Z ,则φ的一个可能值为,故选:D .8. 【答案】D【解析】解:双曲线:的a=1,b=2,c==∴双曲线的渐近线方程为y=±x=±2x ;离心率e==故选 D9. 【答案】C【解析】解:命题是全称命题,则根据全称命题的否定是特称命题得命题的否定是:∃x >0,使得x 2﹣x <0,故选:C .【点评】本题主要考查含有量词的命题 的否定,比较基础.10.【答案】B【解析】解:∵y=|2x﹣2|=,∴x=1时,y=0,x≠1时,y>0.故选B.【点评】本题考查指数函数的图象和性质,解题时要结合图象进行求解.11.【答案】C【解析】解:在直角三角形OMP中,OP=1,∠POM=x,则OM=|cosx|,∴点M到直线OP的距离表示为x的函数f(x)=OM|sinx|=|cosx||sinx|=|sin2x|,其周期为T=,最大值为,最小值为0,故选C.【点评】本题主要考查三角函数的图象与性质,正确表示函数的表达式是解题的关键,同时考查二倍角公式的运用.12.【答案】C【解析】解:求导函数可得f′(x)=3x2﹣12x+9=3(x﹣1)(x﹣3),∵a<b<c,且f(a)=f(b)=f(c)=0.∴a<1<b<3<c,设f(x)=(x﹣a)(x﹣b)(x﹣c)=x3﹣(a+b+c)x2+(ab+ac+bc)x﹣abc,∵f(x)=x3﹣6x2+9x﹣abc,∴a+b+c=6,ab+ac+bc=9,∴b+c=6﹣a,∴bc=9﹣a(6﹣a)<,∴a2﹣4a<0,∴0<a<4,∴0<a<1<b<3<c,∴f (0)<0,f (1)>0,f (3)<0, ∴f (0)f (1)<0,f (0)f (3)>0. 故选:C .二、填空题13.【答案】12()()f x f x >] 【解析】考点:不等式,比较大小.【思路点晴】本题主要考查二次函数与一元二次方程及一元二次不等式三者的综合应用. 分析二次函数的图象,主要有两个要点:一个是看二次项系数的符号,它确定二次函数图象的开口方向;二是看对称轴和最值,它确定二次函数的具体位置.对于函数图象判断类似题要会根据图象上的一些特殊点进行判断,如函数图象与正半轴的交点,函数图象的最高点与最低点等. 14.【答案】[3,6]-. 【解析】15.【答案】(,+∞).【解析】解:由题意,a>1.故问题等价于a x>x(a>1)在区间(0,+∞)上恒成立.构造函数f(x)=a x﹣x,则f′(x)=a x lna﹣1,由f′(x)=0,得x=log a(log a e),x>log a(log a e)时,f′(x)>0,f(x)递增;0<x<log a(log a e),f′(x)<0,f(x)递减.则x=log a(log a e)时,函数f(x)取到最小值,故有﹣log a(log a e)>0,解得a>.故答案为:(,+∞).【点评】本题考查恒成立问题关键是将问题等价转化,从而利用导数求函数的最值求出参数的范围.16.【答案】②③.【解析】解:①根据双曲线的定义可知,满足|PA|﹣|PB|=2的动点P不一定是双曲线,这与AB的距离有关系,所以①错误.②由|PA|=10﹣|PB|,得|PA|+|PB|=10>|AB|,所以动点P的轨迹为以A,B为焦点的图象,且2a=10,2c=6,所以a=5,c=3,根据椭圆的性质可知,|PA|的最大值为a+c=5+3=8,所以②正确.③方程2x2﹣5x+2=0的两个根为x=2或x=,所以方程2x2﹣5x+2=0的两根可分别作椭圆和双曲线的离心率,所以③正确.④由双曲线的方程可知,双曲线的焦点在x轴上,而椭圆的焦点在y轴上,所以它们的焦点不可能相同,所以④错误.故正确的命题为②③.故答案为:②③.【点评】本题主要考查圆锥曲线的定义和性质,要求熟练掌握圆锥曲线的定义,方程和性质.17.【答案】.【解析】解:由于角A为锐角,∴且不共线,∴6+3m>0且2m≠9,解得m>﹣2且m.∴实数m的取值范围是.故答案为:.【点评】本题考查平面向量的数量积运算,考查了向量共线的条件,是基础题.18.【答案】【解析】因为在上恒成立,所以,解得答案:三、解答题19.【答案】【解析】(Ⅰ)证明:f(x)的导数f′(x)=x2+a,即有f(1)=a+,f′(1)=1+a,则切线方程为y﹣(a+)=(1+a)(x﹣1),令x=0,得y=为定值;(Ⅱ)解:由xe x+m[f′(x)﹣a]≥m2x对x≥0时恒成立,得xe x+mx2﹣m2x≥0对x≥0时恒成立,即e x+mx﹣m2≥0对x≥0时恒成立,则(e x+mx﹣m2)min≥0,记g(x)=e x+mx﹣m2,g ′(x )=e x +m ,由x ≥0,e x ≥1,若m ≥﹣1,g ′(x )≥0,g (x )在[0,+∞)上为增函数,∴,则有﹣1≤m ≤1,若m <﹣1,则当x ∈(0,ln (﹣m ))时,g ′(x )<0,g (x )为减函数, 则当x ∈(ln (﹣m ),+∞)时,g ′(x )>0,g (x )为增函数,∴,∴1﹣ln (﹣m )+m ≥0,令﹣m=t ,则t+lnt ﹣1≤0(t >1), φ(t )=t+lnt ﹣1,显然是增函数,由t >1,φ(t )>φ(1)=0,则t >1即m <﹣1,不合题意. 综上,实数m 的取值范围是﹣1≤m ≤1.【点评】本题为导数与不等式的综合,主要考查导数的应用,考查考生综合运用知识的能力及分类讨论的思想,考查考生的计算能力及分析问题、解决问题的能力、化归与转化思想.20.【答案】【解析】(Ⅰ))(x f 的定义域),0(+∞,当3a =时,1()23ln f x x x x =--,2'2213231()2x x f x x x x -+=+-=令'()0f x >得,102x <<或1x >;令'()0f x <得,112x <<,故()f x 的递增区间是1(0,)2和(1,)+∞;()f x 的递减区间是1(,1)2.(Ⅱ)由已知得x a xx x g ln 1)(+-=,定义域为),0(+∞,222111)(xax x x a x x g ++=++=',令0)(='x g 得012=++ax x ,其两根为21,x x , 且2121240010a x x a x x ⎧->⎪+=->⎨⎪⋅=>⎩,21.【答案】【解析】(Ⅰ)解:设点E(t,t),∵B(0,﹣1),∴A(2t,2t+1),∵点A在椭圆C上,∴,整理得:6t2+4t=0,解得t=﹣或t=0(舍去),∴E(﹣,﹣),A(﹣,﹣),∴直线AB的方程为:x+2y+2=0;(Ⅱ)证明:设P(x0,y0),则,直线AP方程为:y+=(x+),联立直线AP与直线y=x的方程,解得:x M=,直线BP的方程为:y+1=,联立直线BP与直线y=x的方程,解得:x N=,∴OM•ON=|x M||x N|=2•||•||=||=||=||=.【点评】本题是一道直线与圆锥曲线的综合题,考查求直线的方程、线段乘积为定值等问题,考查运算求解能力,注意解题方法的积累,属于中档题.22.【答案】【解析】【知识点】导数的综合运用利用导数研究函数的单调性【试题解析】(Ⅰ)对求导,得,所以,解得,所以.(Ⅱ)由,得,因为,所以对于任意,都有.设,则.令,解得.当x变化时,与的变化情况如下表:所以当时,.因为对于任意,都有成立,所以 . 所以的最小值为.(Ⅲ)证明:“函数的图象在直线的下方”等价于“”,即要证, 所以只要证.由(Ⅱ),得,即(当且仅当时等号成立).所以只要证明当时,即可.设,所以,令,解得.由,得,所以在上为增函数.所以,即.所以.故函数的图象在直线的下方.23.【答案】(本小题满分12分)解:本题考查频率分布直方图,以及根据频率分布直方图估计中位数与平均数. (Ⅰ)由(0.0050.0150.020.025)101a ++++⨯=得0.035a = (3分)每天销售量的中位数为0.15701074.30.35+⨯=千克 (6分) (Ⅱ)若当天的销售量为[50,60),则超市获利554202180⨯-⨯=元;若当天的销售量为[60,70),则超市获利654102240⨯-⨯=元; 若当天的销售量为[70,100),则超市获利754300⨯=元, (10分) ∴获利的平均值为0.151800.22400.65300270⨯+⨯+⨯=元. (12分) 24.【答案】【解析】【知识点】三角函数的图像与性质恒等变换综合【试题解析】(Ⅰ)由已知当,即,时,(Ⅱ)当时,递增即,令,且注意到函数的递增区间为。

二七区实验中学2018-2019学年上学期高二数学12月月考试题含解析

二七区实验中学2018-2019学年上学期高二数学12月月考试题含解析

二七区实验中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 记集合{}22(,)1A x y x y =+?和集合{}(,)1,0,0B x y x y xy =+3?表示的平面区域分别为Ω1,Ω2,若在区域Ω1内任取一点M (x ,y ),则点M 落在区域Ω2内的概率为( ) A .12p B .1p C .2pD .13p【命题意图】本题考查线性规划、古典概型等基础知识,意在考查数形结合思想和基本运算能力.2. 已知函数f (x )=1+x ﹣+﹣+…+,则下列结论正确的是( )A .f (x )在(0,1)上恰有一个零点B .f (x )在(﹣1,0)上恰有一个零点C .f (x )在(0,1)上恰有两个零点D .f (x )在(﹣1,0)上恰有两个零点3. 集合U=R ,A={x|x 2﹣x ﹣2<0},B={x|y=ln (1﹣x )},则图中阴影部分表示的集合是( )A .{x|x ≥1}B .{x|1≤x <2}C .{x|0<x ≤1}D .{x|x ≤1}4. 对“a ,b ,c 是不全相等的正数”,给出两个判断: ①(a ﹣b )2+(b ﹣c )2+(c ﹣a )2≠0;②a ≠b ,b ≠c ,c ≠a 不能同时成立,下列说法正确的是( )A .①对②错B .①错②对C .①对②对D .①错②错5. 已知双曲线的方程为﹣=1,则双曲线的离心率为( )A .B .C .或D .或6. 已知函数f (x )是R 上的奇函数,且当x >0时,f (x )=x 3﹣2x 2,则x <0时,函数f (x )的表达式为f (x )=( ) A .x 3+2x 2B .x 3﹣2x 2C .﹣x 3+2x 2D .﹣x 3﹣2x 27. 设复数1i z =-(i 是虚数单位),则复数22z z+=( ) A.1i - B.1i + C. 2i + D. 2i -【命题意图】本题考查复数的有关概念,复数的四则运算等基础知识,意在考查学生的基本运算能力.8. 已知数列{a n }中,a 1=1,a n+1=a n +n ,若利用如图所示的程序框图计算该数列的第10项,则判断框内的条件是( )A .n ≤8?B .n ≤9?C .n ≤10?D .n ≤11?9. 若a=ln2,b=5,c=xdx ,则a ,b ,c 的大小关系( )A .a <b <cB B .b <a <cC C .b <c <aD .c <b <a10.已知lga+lgb=0,函数f (x )=a x 与函数g (x )=﹣log b x 的图象可能是( )A .B .C .D .11.一个正方体的顶点都在球面上,它的棱长为2cm ,则球的表面积是( ) A .8πcm 2B .12πcm 2C .16πcm 2D .20πcm 212.若命题p :∃x 0∈R ,sinx 0=1;命题q :∀x ∈R ,x 2+1<0,则下列结论正确的是( ) A .¬p 为假命题 B .¬q 为假命题 C .p ∨q 为假命题 D .p ∧q 真命题二、填空题13.【南通中学2018届高三10月月考】已知函数()32f x x x =-,若曲线()f x 在点()()1,1f 处的切线经过圆()22:2C x y a +-=的圆心,则实数a 的值为__________.14.命题“若1x ≥,则2421x x -+≥-”的否命题为 .15.当a >0,a ≠1时,函数f (x )=log a (x ﹣1)+1的图象恒过定点A ,若点A 在直线mx ﹣y+n=0上,则4m +2n 的最小值是 .16.设函数32()(1)f x x a x ax =+++有两个不同的极值点1x ,2x ,且对不等式12()()0f x f x +≤ 恒成立,则实数的取值范围是 .17.阅读如图所示的程序框图,则输出结果S 的值为 .【命题意图】本题考查程序框图功能的识别,并且与数列的前n 项和相互联系,突出对逻辑判断及基本运算能力的综合考查,难度中等.18.若P (1,4)为抛物线C :y 2=mx 上一点,则P 点到该抛物线的焦点F 的距离为|PF|= .三、解答题19.已知椭圆C : +=1(a >b >0)与双曲线﹣y 2=1的离心率互为倒数,且直线x ﹣y ﹣2=0经过椭圆的右顶点.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)设不过原点O 的直线与椭圆C 交于M 、N 两点,且直线OM 、MN 、ON 的斜率依次成等比数列,求△OMN 面积的取值范围.20.已知函数,.(Ⅰ)求函数的最大值;(Ⅱ)若,求函数的单调递增区间.21X(I)求该运动员两次都命中7环的概率;(Ⅱ)求ξ的数学期望Eξ.22.某滨海旅游公司今年年初用49万元购进一艘游艇,并立即投入使用,预计每年的收入为25万元,此外每年都要花费一定的维护费用,计划第一年维护费用4万元,从第二年起,每年的维修费用比上一年多2万元,设使用x年后游艇的盈利为y万元.(1)写出y与x之间的函数关系式;(2)此游艇使用多少年,可使年平均盈利额最大?23.(本小题满分12分)已知12,F F 分别是椭圆C :22221(0)x y a b a b +=>>的两个焦点,P 是椭圆上1122|,||PF F F PF 成等差数列.(1)求椭圆C 的标准方程;、(2)已知动直线l 过点F ,且与椭圆C 交于A B 、两点,试问x 轴上是否存在定点Q ,使得716QA QB ⋅=-恒成立?若存在,求出点Q 的坐标;若不存在,请说明理由.24.(本题满分12分)如图所示,在正方体ABCD —A 1B 1C 1D 1中, E 、F 分别是棱DD 1 、C 1D 1的中点. (1)求直线BE 和平面ABB 1A 1所成角θ的正弦值; (2)证明:B 1F ∥平面A 1BE .A 1B 1C 1DD 1 C BA E F二七区实验中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题1. 【答案】A【解析】画出可行域,如图所示,Ω1表示以原点为圆心, 1为半径的圆及其内部,Ω2表示OAB D及其内部,由几何概型得点M 落在区域Ω2内的概率为112P ==p 2p,故选A.2. 【答案】B【解析】解:∵f ′(x )=1﹣x+x 2﹣x 3+…+x 2014=(1﹣x )(1+x 2+…+x 2012)+x 2014; ∴f ′(x )>0在(﹣1,0)上恒成立; 故f (x )在(﹣1,0)上是增函数;又∵f (0)=1,f (﹣1)=1﹣1﹣﹣﹣…﹣<0;故f (x )在(﹣1,0)上恰有一个零点;故选B .【点评】本题考查了导数的综合应用及函数零点的个数的判断,属于中档题.3. 【答案】B【解析】解:由Venn 图可知,阴影部分的元素为属于A 当不属于B 的元素构成,所以用集合表示为A ∩(∁U B ).A={x|x 2﹣x ﹣2<0}={x|﹣1<x <2},B={x|y=ln (1﹣x )}={x|1﹣x >0}={x|x <1}, 则∁U B={x|x ≥1},则A ∩(∁U B )={x|1≤x <2}. 故选:B .【点评】本题主要考查Venn 图表达 集合的关系和运算,比较基础.4.【答案】A【解析】解:由:“a,b,c是不全相等的正数”得:①(a﹣b)2+(b﹣c)2+(c﹣a)2中至少有一个不为0,其它两个式子大于0,故①正确;但是:若a=1,b=2,c=3,则②中a≠b,b≠c,c≠a能同时成立,故②错.故选A.【点评】本小题主要考查不等关系与不等式等基础知识,考查运算求解能力,考查逻辑思维能力.属于基础题.5.【答案】C【解析】解:双曲线的方程为﹣=1,焦点坐标在x轴时,a2=m,b2=2m,c2=3m,离心率e=.焦点坐标在y轴时,a2=﹣2m,b2=﹣m,c2=﹣3m,离心率e==.故选:C.【点评】本题考查双曲线的离心率的求法,注意实轴所在轴的易错点.6.【答案】A【解析】解:设x<0时,则﹣x>0,因为当x>0时,f(x)=x3﹣2x2所以f(﹣x)=(﹣x)3﹣2(﹣x)2=﹣x3﹣2x2,又因为f(x)是定义在R上的奇函数,所以f(﹣x)=﹣f(x),所以当x<0时,函数f(x)的表达式为f(x)=x3+2x2,故选A.7.【答案】A【解析】8.【答案】B【解析】解:n=1,满足条件,执行循环体,S=1+1=2n=2,满足条件,执行循环体,S=1+1+2=4n=3,满足条件,执行循环体,S=1+1+2+3=7n=10,不满足条件,退出循环体,循环满足的条件为n≤9,故选B.【点评】本题主要考查了当型循环结构,算法和程序框图是新课标新增的内容,在近两年的新课标地区高考都考查到了,这启示我们要给予高度重视,属于基础题.9.【答案】C【解析】解:∵a=ln2<lne即,b=5=,c=xdx=,∴a,b,c的大小关系为:b<c<a.故选:C.【点评】本题考查了不等式大小的比较,关键是求出它们的取值范围,是基础题.10.【答案】B【解析】解:∵lga+lgb=0∴ab=1则b=从而g(x)=﹣log b x=log a x,f(x)=a x与∴函数f(x)与函数g(x)的单调性是在定义域内同增同减结合选项可知选B,故答案为B11.【答案】B【解析】解:正方体的顶点都在球面上,则球为正方体的外接球,则2=2R,R=,S=4πR2=12π故选B12.【答案】A【解析】解:时,sinx0=1;∴∃x0∈R,sinx0=1;∴命题p是真命题;由x 2+1<0得x 2<﹣1,显然不成立;∴命题q 是假命题;∴¬p 为假命题,¬q 为真命题,p ∨q 为真命题,p ∧q 为假命题; ∴A 正确. 故选A .【点评】考查对正弦函数的图象的掌握,弧度数是个实数,对∀∈R 满足x 2≥0,命题¬p ,p ∨q ,p ∧q 的真假和命题p ,q 真假的关系.二、填空题13.【答案】2-【解析】结合函数的解析式可得:()311211f =-⨯=-,对函数求导可得:()2'32f x x =-,故切线的斜率为()2'13121k f ==⨯-=,则切线方程为:()111y x +=⨯-,即2y x =-,圆C :()222x y a +-=的圆心为()0,a ,则:022a =-=-.14.【答案】若1x <,则2421x x -+<- 【解析】试题分析:若1x <,则2421x x -+<-,否命题要求条件和结论都否定. 考点:否命题.15.【答案】 2 .【解析】解:整理函数解析式得f (x )﹣1=log a (x ﹣1),故可知函数f (x )的图象恒过(2,1)即A (2,1), 故2m+n=1.∴4m+2n≥2=2=2.当且仅当4m =2n,即2m=n ,即n=,m=时取等号.∴4m+2n的最小值为2.故答案为:216.【答案】1(,1],22⎡⎤-∞-⎢⎥⎣⎦【解析】试题分析:因为12()()0f x f x +≤,故得不等式()()()332212121210x x a x x a x x ++++++≤,即()()()()()221212121212123120x x x x x x a x x x x a x x ⎡⎤⎡⎤++-+++-++≤⎣⎦⎣⎦,由于()()2'321f x x a x a =+++,令()'0f x =得方程()23210x a x a +++=,因()2410a a ∆=-+> , 故()12122133x x a a x x ⎧+=-+⎪⎪⎨⎪=⎪⎩,代入前面不等式,并化简得()1a +()22520a a -+≥,解不等式得1a ≤-或122a ≤≤,因此, 当1a ≤-或122a ≤≤时, 不等式()()120f x f x +≤成立,故答案为1(,1],22⎡⎤-∞-⎢⎥⎣⎦.考点:1、利用导数研究函数的极值点;2、韦达定理及高次不等式的解法.【思路点晴】本题主要考查利用导数研究函数的极值点、韦达定理及高次不等式的解法,属于难题.要解答本题首先利用求导法则求出函数()f x 的到函数,令()'0f x =考虑判别式大于零,根据韦达定理求出1212,x x x x +的值,代入不等式12()()0f x f x +≤,得到关于的高次不等式,再利用“穿针引线”即可求得实数的取值范围.111] 17.【答案】20172016 【解析】根据程序框图可知,其功能是求数列})12)(12(2{+-n n 的前1008项的和,即 +⨯+⨯=532312S =-++-+-=⨯+)2017120151()5131()311(201720152 20172016. 18.【答案】 5 .【解析】解:P (1,4)为抛物线C :y 2=mx 上一点,即有42=m ,即m=16,抛物线的方程为y 2=16x ,焦点为(4,0), 即有|PF|==5.故答案为:5.【点评】本题考查抛物线的方程和性质,考查两点的距离公式,及运算能力,属于基础题.三、解答题19.【答案】【解析】解:(Ⅰ)∵双曲线的离心率为,所以椭圆的离心率,又∵直线x﹣y ﹣2=0经过椭圆的右顶点, ∴右顶点为(2,0),即a=2,c=,b=1,…∴椭圆方程为:.…(Ⅱ)由题意可设直线的方程为:y=kx+m•(k≠0,m≠0),M(x1,y1)、N(x2,y2)联立消去y并整理得:(1+4k2)x2+8kmx+4(m2﹣1)=0…则,于是…又直线OM、MN、ON的斜率依次成等比数列.∴…由m≠0得:又由△=64k2m2﹣16(1+4k2)(m2﹣1)=16(4k2﹣m2+1)>0,得:0<m2<2显然m2≠1(否则:x1x2=0,则x1,x2中至少有一个为0,直线OM、ON中至少有一个斜率不存在,与已知矛盾)…设原点O到直线的距离为d,则∴故由m的取值范围可得△OMN面积的取值范围为(0,1)…【点评】本题考查直线与圆锥曲线的综合应用,弦长公式以及三角形的面积的表式,考查转化思想以及计算能力.20.【答案】【解析】【知识点】三角函数的图像与性质恒等变换综合【试题解析】(Ⅰ)由已知当,即,时,(Ⅱ)当时,递增即,令,且注意到函数的递增区间为21.【答案】【解析】解:(1)设A=“该运动员两次都命中7环”,则P(A)=0.2×0.2=0.04.(2)依题意ξ在可能取值为:7、8、9、10且P(ξ=7)=0.04,P(ξ=8)=2×0.2×0.3+0.32=0.21,P(ξ=9)=2×0.2×0.3+2×0.3×0.3×0.32=0.39,P(ξ=10)=2×0.2×0.2+2×0.3×0.2+2×0.3×0.2+0.22=0.36,∴ξ的分布列为:ξ7 8 9 10P 0.04 0.21 0.39 0.36ξ的期望为Eξ=7×0.04+8×0.21+9×0.39+10×0.36=9.07.【点评】本题考查概率的求法,考查离散型随机变量的数学期望的求法,是中档题,解题时要认真审题,注意相互独立事件概率乘法公式的合理运用.22.【答案】【解析】解:(1)(x∈N*) (6)(2)盈利额为…当且仅当即x=7时,上式取到等号 (11)答:使用游艇平均7年的盈利额最大. (12)【点评】本题考查函数模型的构建,考查利用基本不等式求函数的最值,属于中档题.23.【答案】【解析】【命题意图】本题考查椭圆的定义及方程、直线与椭圆的位置关系、平面向量数量积等基础知识,意在考查学生逻辑思维能力、运算求解能力、探索能力,以及分类讨论思想、待定系数法、设而不求法的应用.下面证明54m =时,716QA QB ⋅=-恒成立. 当直线l 的斜率为0时,结论成立;当直线l 的斜率不为0时,设直线l 的方程为1x ty =+,()11,A x y ,()22,B x y ,由1x ty =+及2212x y +=,得22(2)210t y ty ++-=, 所以0∆>,∴12122221,22t y y y y t t +=-=-++. 111x ty =+,221x ty =+,∴112212125511(,)(,)()()4444x y x y ty ty y y -⋅-=--+=2(1)t +121211()416y y t y y -++=22222211212217(1)242162(2)1616t t t t t t t t --+-++⋅+=+=-+++.综上所述,在x 轴上存在点5(,0)4Q 使得716QA QB ⋅=-恒成立. 24.【答案】解:(1)设G 是AA 1的中点,连接GE ,BG .∵E 为DD 1的中点,ABCD —A 1B 1C 1D 1为正方体,∴GE ∥AD ,又∵AD ⊥平面ABB 1A 1,∴GE ⊥平面ABB 1A 1,且斜线BE 在平面ABB 1A 1内的射影为BG ,∴Rt △BEG 中的∠EBG 是直线BE 和平面ABB 1A 1所成角,即∠EBG =θ.设正方体的棱长为a ,∴a GE =,a BG 25=,a GE BG BE 2322=+=, ∴直线BE 和平面ABB 1A 1所成角θ的正弦值为:=θsin 32=BE GE ;……6分 (2)证明:连接EF 、AB 1、C 1D ,记AB 1与A 1B 的交点为H ,连接EH . ∵H 为AB 1的中点,且B 1H =21C 1D ,B 1H ∥C 1D ,而EF =21C 1D ,EF ∥C 1D , ∴B 1H ∥EF 且B 1H =EF ,四边形B 1FEH 为平行四边形,即B 1F ∥EH , 又∵B 1F ⊄平面A 1BE 且EH ⊆平面A 1BE ,∴B 1F ∥平面A 1BE . ……12分。

二七区第三中学2018-2019学年上学期高二数学12月月考试题含解析

二七区第三中学2018-2019学年上学期高二数学12月月考试题含解析

二七区第三中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 某三棱椎的三视图如图所示,该三棱锥的四个面的面积中,最大的是( )A .B .8C .D .2. 在ABC ∆中,角A ,B ,C 的对边分别是,,,BH 为AC 边上的高,5BH =,若2015120aBC bCA cAB ++=,则H 到AB 边的距离为( )A .2B .3 C.1 D .43. 设函数f (x )=的最小值为﹣1,则实数a 的取值范围是( )A .a ≥﹣2B .a >﹣2C .a ≥﹣D .a >﹣4. 在三棱柱111ABC A B C -中,已知1AA ⊥平面1=22ABC AA BC BAC π=∠=,,,此三棱柱各个顶点都在一个球面上,则球的体积为( )A .323π B .16π C.253π D .312π5. 已知数列{}n a 为等差数列,n S 为前项和,公差为d ,若201717100201717S S-=,则d 的值为( )A .120B .110C .10D .206. 已知2a =3b =m ,ab ≠0且a ,ab ,b 成等差数列,则m=( )A .B .C .D .67. 已知e 是自然对数的底数,函数f (x )=e x +x ﹣2的零点为a ,函数g (x )=lnx+x ﹣2的零点为b ,则下列不等式中成立的是( )A .a <1<bB .a <b <1C .1<a <bD .b <1<a8. 已知曲线C 1:y=e x 上一点A (x 1,y 1),曲线C 2:y=1+ln (x ﹣m )(m >0)上一点B (x 2,y 2),当y 1=y 2时,对于任意x 1,x 2,都有|AB|≥e 恒成立,则m 的最小值为( )A .1B .C .e ﹣1D .e+19. =( )A .2B .4C .πD .2π10.实数a=0.2,b=log0.2,c=的大小关系正确的是( )A .a <c <bB .a <b <cC .b <a <cD .b <c <a11.设全集U=M ∪N=﹛1,2,3,4,5﹜,M ∩∁U N=﹛2,4﹜,则N=( ) A .{1,2,3}B .{1,3,5}C .{1,4,5}D .{2,3,4}12.函数()2cos()f x x ωϕ=+(0ω>,0ϕ-π<<)的部分图象如图所示,则 f (0)的值为( )A.32-B.1-C.D.【命题意图】本题考查诱导公式,三角函数的图象和性质,数形结合思想的灵活应用.二、填空题13.如图是一个正方体的展开图,在原正方体中直线AB 与CD 的位置关系是 .14.函数()2log f x x =在点()1,2A 处切线的斜率为 ▲ .15.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()ln 4f x x x =+-的零点在区间()1k k +,内,则正整数k 的值为________. 16.曲线C 是平面内到直线l 1:x=﹣1和直线l 2:y=1的距离之积等于常数k 2(k >0)的点的轨迹.给出下列四个结论:①曲线C过点(﹣1,1);②曲线C关于点(﹣1,1)对称;③若点P在曲线C上,点A,B分别在直线l1,l2上,则|PA|+|PB|不小于2k;④设p1为曲线C上任意一点,则点P1关于直线x=﹣1、点(﹣1,1)及直线y=1对称的点分别为P1、P2、P3,则四边形P0P1P2P3的面积为定值4k2.其中,所有正确结论的序号是.17.下列命题:①函数y=sinx和y=tanx在第一象限都是增函数;②若函数f(x)在[a,b]上满足f(a)f(b)<0,函数f(x)在(a,b)上至少有一个零点;③数列{a n}为等差数列,设数列{a n}的前n项和为S n,S10>0,S11<0,S n最大值为S5;④在△ABC中,A>B的充要条件是cos2A<cos2B;⑤在线性回归分析中,线性相关系数越大,说明两个量线性相关性就越强.其中正确命题的序号是(把所有正确命题的序号都写上).18.用描述法表示图中阴影部分的点(含边界)的坐标的集合为.三、解答题19.设函数f(x)=x2e x.(1)求f(x)的单调区间;(2)若当x∈[﹣2,2]时,不等式f(x)>m恒成立,求实数m的取值范围.20.电视传媒公司为了解某地区观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性.(1)根据已知条件完成下面的2×2列联表,并据此资料你是否认为“体育迷”与性别有关?非体育迷体育迷合计男女总计(2)将日均收看该体育节目不低于50分钟的观众称为“超级体育迷”,已知“超级体育迷”中有2名女性,若从“超级体育迷”中任意选取2名,求至少有1名女性观众的概率.附:K2=P(K2≥k0)0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001k00.455 0.708 1.323 2.072 2.706 3.84 5.0246.6357.879 10.8321.已知等差数列{a n},等比数列{b n}满足:a1=b1=1,a2=b2,2a3﹣b3=1.(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)记c n=a n b n,求数列{c n}的前n项和S n.22.在平面直角坐标系xOy中,经过点且斜率为k的直线l与椭圆有两个不同的交点P和Q.(Ⅰ)求k的取值范围;(Ⅱ)设椭圆与x轴正半轴、y轴正半轴的交点分别为A,B,是否存在常数k,使得向量与共线?如果存在,求k值;如果不存在,请说明理由.23.提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.(Ⅰ)当0≤x≤200时,求函数v(x)的表达式;(Ⅱ)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=x•v (x)可以达到最大,并求出最大值.(精确到1辆/小时).24.已知函数f(x)=1+(﹣2<x≤2).(1)用分段函数的形式表示函数;(2)画出该函数的图象;(3)写出该函数的值域.二七区第三中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】C【解析】【分析】通过三视图分析出几何体的图形,利用三视图中的数据求出四个面的面积中的最大值.【解答】解:由题意可知,几何体的底面是边长为4的正三角形,棱锥的高为4,并且高为侧棱垂直底面三角形的一个顶点的三棱锥,两个垂直底面的侧面面积相等为:8,底面面积为:=4,另一个侧面的面积为:=4,四个面中面积的最大值为4;故选C.2.【答案】D【解析】考点:1、向量的几何运算及平面向量基本定理;2、向量相等的性质及勾股定理.【方法点睛】本题主要考查向量的几何运算及平面向量基本定理、向量相等的性质及勾股定理,属于难题,平面向量问题中,向量的线性运算和数量积是高频考点,当出现线性运算问题时,注意两个向量的差OA OB OD+=(D点是AB的中点),另外,要选好基底-=,这是一个易错点,两个向量的和2OA OB BAAB AC,当涉及到向量数量积时,要记熟向量数量积的公式、坐标公式、几向量,如本题就要灵活使用向量,何意义等.3.【答案】C【解析】解:当x≥时,f(x)=4x﹣3≥2﹣3=﹣1,当x=时,取得最小值﹣1;当x<时,f(x)=x2﹣2x+a=(x﹣1)2+a﹣1,即有f(x)在(﹣∞,)递减,则f(x)>f()=a﹣,由题意可得a﹣≥﹣1,解得a≥﹣.故选:C.【点评】本题考查分段函数的运用:求最值,主要考查指数函数的单调性和二次函数的值域的求法,属于中档题.4.【答案】A【解析】考点:组合体的结构特征;球的体积公式.【方法点晴】本题主要考查了球的组合体的结构特征、球的体积的计算,其中解答中涉及到三棱柱的线面位置关系、直三棱柱的结构特征、球的性质和球的体积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力和学生的空间想象能力,试题有一定的难度,属于中档试题. 5. 【答案】B 【解析】试题分析:若{}n a 为等差数列,()()111212nn n na S d a n nn -+==+-⨯,则n S n ⎧⎫⎨⎬⎩⎭为等差数列公差为2d ,2017171100,2000100,201717210S S d d ∴-=⨯==,故选B. 考点:1、等差数列的通项公式;2、等差数列的前项和公式. 6. 【答案】C .【解析】解:∵2a =3b=m ,∴a=log 2m ,b=log 3m , ∵a ,ab ,b 成等差数列, ∴2ab=a+b , ∵ab ≠0, ∴+=2,∴=log m 2, =log m 3, ∴log m 2+log m 3=log m 6=2, 解得m=.故选 C【点评】本题考查了指数与对数的运算的应用及等差数列的性质应用.7. 【答案】A【解析】解:由f (x )=e x +x ﹣2=0得e x =2﹣x ,由g (x )=lnx+x ﹣2=0得lnx=2﹣x ,作出计算y=e x ,y=lnx ,y=2﹣x 的图象如图:∵函数f (x )=e x +x ﹣2的零点为a ,函数g (x )=lnx+x ﹣2的零点为b ,∴y=e x 与y=2﹣x 的交点的横坐标为a ,y=lnx 与y=2﹣x 交点的横坐标为b ,由图象知a <1<b , 故选:A .【点评】本题主要考查函数与方程的应用,利用函数转化为两个图象的交点问题,结合数形结合是解决本题的关键.8.【答案】C【解析】解:当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,可得:=1+ln(x2﹣m),x2﹣x1≥e,∴0<1+ln(x2﹣m)≤,∴.∵lnx≤x﹣1(x≥1),考虑x2﹣m≥1时.∴1+ln(x2﹣m)≤x2﹣m,令x2﹣m≤,化为m≥x﹣e x﹣e,x>m+.令f(x)=x﹣e x﹣e,则f′(x)=1﹣e x﹣e,可得x=e时,f(x)取得最大值.∴m≥e﹣1.故选:C.9.【答案】A【解析】解:∵(﹣cosx﹣sinx)′=sinx﹣cosx,∴==2.故选A.10.【答案】C【解析】解:根据指数函数和对数函数的性质,知log0.2<0,0<0.2<1,,即0<a<1,b<0,c>1,∴b<a<c.故选:C .【点评】本题主要考查函数数值的大小比较,利用指数函数,对数函数和幂函数的性质是解决本题的关键. 11.【答案】B【解析】解:∵全集U=M ∪N=﹛1,2,3,4,5﹜,M ∩C u N=﹛2,4﹜, ∴集合M ,N 对应的韦恩图为 所以N={1,3,5} 故选B12.【答案】D【解析】易知周期112()1212T π5π=-=π,∴22T ωπ==.由52212k ϕπ⨯+=π(k ∈Z ),得526k ϕπ=-+π(k Z ∈),可得56ϕπ=-,所以5()2cos(2)6f x x π=-,则5(0)2cos()6f π=-=,故选D. 二、填空题13.【答案】 异面 .【解析】解:把展开图还原原正方体如图,在原正方体中直线AB 与CD 的位置关系是异面. 故答案为:异面.14.【答案】1ln 2【解析】试题分析:()()111ln 2ln 2f x k f x ''=∴== 考点:导数几何意义【思路点睛】(1)求曲线的切线要注意“过点P 的切线”与“在点P 处的切线”的差异,过点P 的切线中,点P 不一定是切点,点P 也不一定在已知曲线上,而在点P 处的切线,必以点P 为切点.(2)利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解. 15.【答案】2【解析】16.【答案】 ②③④ .【解析】解:由题意设动点坐标为(x ,y ),则利用题意及点到直线间的距离公式的得:|x+1||y ﹣1|=k 2,对于①,将(﹣1,1)代入验证,此方程不过此点,所以①错;对于②,把方程中的x 被﹣2﹣x 代换,y 被2﹣y 代换,方程不变,故此曲线关于(﹣1,1)对称.②正确;对于③,由题意知点P 在曲线C 上,点A ,B 分别在直线l 1,l 2上,则|PA|≥|x+1|,|PB|≥|y ﹣1| ∴|PA|+|PB|≥2=2k ,③正确;对于④,由题意知点P 在曲线C 上,根据对称性,则四边形P 0P 1P 2P 3的面积=2|x+1|×2|y ﹣1|=4|x+1||y ﹣1|=4k 2.所以④正确.故答案为:②③④.【点评】此题重点考查了利用直接法求出动点的轨迹方程,并化简,利用方程判断曲线的对称性,属于基础题.17.【答案】 ②③④⑤【解析】解:①函数y=sinx 和y=tanx 在第一象限都是增函数,不正确,取x=,,但是,,因此不是单调递增函数;②若函数f (x )在[a ,b]上满足f (a )f (b )<0,函数f (x )在(a ,b )上至少有一个零点,正确;③数列{a n}为等差数列,设数列{a n}的前n项和为S n,S10>0,S11<0,∴=5(a6+a5)>0,=11a6<0,∴a5+a6>0,a6<0,∴a5>0.因此S n最大值为S5,正确;④在△ABC中,cos2A﹣cos2B=﹣2sin(A+B)sin(A﹣B)=2sin(A+B)sin(B﹣A)<0⇔A>B,因此正确;⑤在线性回归分析中,线性相关系数越大,说明两个量线性相关性就越强,正确.其中正确命题的序号是②③④⑤.【点评】本题综合考查了三角函数的单调性、函数零点存在判定定理、等差数列的性质、两角和差化积公式、线性回归分析,考查了推理能力与计算能力,属于难题.18.【答案】{(x,y)|xy>0,且﹣1≤x≤2,﹣≤y≤1}.【解析】解:图中的阴影部分的点设为(x,y)则{x,y)|﹣1≤x≤0,﹣≤y≤0或0≤x≤2,0≤y≤1}={(x,y)|xy>0且﹣1≤x≤2,﹣≤y≤1}故答案为:{(x,y)|xy>0,且﹣1≤x≤2,﹣≤y≤1}.三、解答题19.【答案】【解析】解:(1)…令∴f(x)的单增区间为(﹣∞,﹣2)和(0,+∞);单减区间为(﹣2,0).…(2)令∴x=0和x=﹣2,…∴∴f(x)∈[0,2e2]…∴m<0…20.【答案】【解析】解:(1)由频率分布直方图中可知:抽取的100名观众中,“体育迷”共有(0.020+0.005)×10×100=25名.可得2×2列联表:非体育迷体育迷合计男30 15 45女45 10 55总计75 25 100将2×2列联表中的数据代入公式计算可得K2的观测值为:k==≈3.030.∵3.030<3.841,∴我们没有理由认为“体育迷”与性别有关.(2)由频率分布直方图中可知:“超级体育迷”有5名,从而一切可能结果所组成的基本事件空间Ω={(a1,a2),(a1,a3),(a2,a3),(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2)},其中a i(i=1,2,3)表示男性,b j(j=1,2)表示女性.设A表示事件“从“超级体育迷”中任意选取2名,至少有1名女性观众”,则事件A包括7个基本事件:(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2).∴P(A)=.【点评】本题考查了“独立性检验基本原理”、古典概率计算公式、频率分布直方图及其性质,考查了推理能力与计算能力,属于中档题.21.【答案】【解析】解:(I)设等差数列{a n}的公差为d,等比数列{b n}的公比为q:∵a1=b1=1,a2=b2,2a3﹣b3=1.∴1+d=q,2(1+2d)﹣q2=1,解得或.∴a n=1,b n=1;或a n=1+2(n﹣1)=2n﹣1,b n=3n﹣1.(II)当时,c n=a n b n=1,S n=n.当时,c n=a n b n=(2n﹣1)3n﹣1,∴S n=1+3×3+5×32+…+(2n﹣1)3n﹣1,3S n=3+3×32+…+(2n﹣3)3n﹣1+(2n﹣1)3n,∴﹣2S n=1+2(3+32+…+3n﹣1)﹣(2n﹣1)3n=﹣1﹣(2n﹣1)3n=(2﹣2n)3n﹣2,∴S n=(n﹣1)3n+1.【点评】本题考查了等差数列与等比数列的通项公式及其前n项和公式、“错位相减法”,考查了推理能力与计算能力,属于中档题.22.【答案】【解析】解:(Ⅰ)由已知条件,直线l的方程为,代入椭圆方程得.整理得①直线l与椭圆有两个不同的交点P和Q,等价于①的判别式△=,解得或.即k的取值范围为.(Ⅱ)设P(x1,y1),Q(x2,y2),则,由方程①,.②又.③而.所以与共线等价于,将②③代入上式,解得.由(Ⅰ)知或,故没有符合题意的常数k.【点评】本题主要考查直线和椭圆相交的性质,2个向量共线的条件,体现了转化的数学而思想,属于中档题.23.【答案】【解析】解:(Ⅰ)由题意:当0≤x≤20时,v(x)=60;当20<x≤200时,设v(x)=ax+b再由已知得,解得故函数v(x)的表达式为.(Ⅱ)依题并由(Ⅰ)可得当0≤x<20时,f(x)为增函数,故当x=20时,其最大值为60×20=1200当20≤x≤200时,当且仅当x=200﹣x,即x=100时,等号成立.所以,当x=100时,f(x)在区间(20,200]上取得最大值.综上所述,当x=100时,f(x)在区间[0,200]上取得最大值为,即当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时.答:(Ⅰ)函数v(x)的表达式(Ⅱ)当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时.24.【答案】【解析】解:(1)函数f(x)=1+=,(2)函数的图象如图:(3)函数值域为:[1,3).。

二七区第三中学校2018-2019学年上学期高二数学12月月考试题含解析

二七区第三中学校2018-2019学年上学期高二数学12月月考试题含解析

二七区第三中学校2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 如图是一容量为100的样本的重量的频率分布直方图,则由图可估计样本重量的中位数为( )A .11B .11.5C .12D .12.52. 函数f (x )在x=x 0处导数存在,若p :f ′(x 0)=0:q :x=x 0是f (x )的极值点,则( ) A .p 是q 的充分必要条件B .p 是q 的充分条件,但不是q 的必要条件C .p 是q 的必要条件,但不是q 的充分条件D .p 既不是q 的充分条件,也不是q 的必要条件3. 在△ABC 中,,则这个三角形一定是( )A .等腰三角形B .直角三角形C .等腰直角三角D .等腰或直角三角形4. 已知函数()sin f x a x x =关于直线6x π=-对称 , 且12()()4f x f x ⋅=-,则12x x +的最小值为A 、6π B 、3πC 、56π D 、23π 5. 对任意的实数k ,直线y=kx+1与圆x 2+y 2=2的位置关系一定是( )A .相离B .相切C .相交但直线不过圆心D .相交且直线过圆心6. 已知点P 是双曲线C :22221(0,0)x y a b a b-=>>左支上一点,1F ,2F 是双曲线的左、右两个焦点,且12PF PF ⊥,2PF 与两条渐近线相交于M ,N 两点(如图),点N 恰好平分线段2PF ,则双曲线的离心率是( )A.5B.2 D.2【命题意图】本题考查双曲线的标准方程及其性质等基础知识知识,意在考查运算求解能力. 7. 函数f (x )=x 2﹣x ﹣2,x ∈[﹣5,5],在定义域内任取一点x 0,使f (x 0)≤0的概率是( ) A . B .C .D .8. 函数g (x )是偶函数,函数f (x )=g (x ﹣m ),若存在φ∈(,),使f (sin φ)=f (cos φ),则实数m 的取值范围是( )A .()B .(,]C .() D .(]9. 设数集M={x|m ≤x ≤m+},N={x|n ﹣≤x ≤n},P={x|0≤x ≤1},且M ,N 都是集合P 的子集,如果把b ﹣a 叫做集合{x|a ≤x ≤b}的“长度”,那么集合M ∩N 的“长度”的最小值是( )A .B .C .D .10.设向量,满足:||=3,||=4, =0.以,,﹣的模为边长构成三角形,则它的边与半径为1的圆的公共点个数最多为( )A .3B .4C .5D .611.已知等比数列{a n }的前n 项和为S n ,若=4,则=( )A .3B .4C .D .1312.设长方体的长、宽、高分别为2a 、a 、a ,其顶点都在一个球面上,则该球的表面积为( ) A .3πa 2 B .6πa 2 C .12πa 2D .24πa 2二、填空题13.设i 是虚数单位,是复数z 的共轭复数,若复数z=3﹣i ,则z •= .14.【南通中学2018届高三10月月考】已知函数()32f x x x =-,若曲线()f x 在点()()1,1f 处的切线经过圆()22:2C x y a +-=的圆心,则实数a 的值为__________.15.函数f (x )=log a (x ﹣1)+2(a >0且a ≠1)过定点A ,则点A 的坐标为 .16.设某总体是由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取6个个体,选取方 法是从随机数表第1行的第3列数字开始从左到右依次选取两个数字,则选出来的第6个个体编号为 ________.【命题意图】本题考查抽样方法等基础知识,意在考查统计的思想.17.直线20x y t +-=与抛物线216y x =交于A ,B 两点,且与x 轴负半轴相交,若O 为坐标原点,则OAB ∆面积的最大值为 .【命题意图】本题考查抛物线的几何性质,直线与抛物线的位置关系等基础知识,意在考查分析问题以及解决问题的能力.18.已知点A (2,0),点B (0,3),点C 在圆x 2+y 2=1上,当△ABC 的面积最小时,点C 的坐标为 .三、解答题19.已知二次函数f (x )的图象过点(0,4),对任意x 满足f (3﹣x )=f (x),且有最小值是. (1)求f (x )的解析式;(2)求函数h (x )=f (x )﹣(2t ﹣3)x 在区间[0,1]上的最小值,其中t ∈R ;(3)在区间[﹣1,3]上,y=f (x )的图象恒在函数y=2x+m 的图象上方,试确定实数m 的范围.20.(本小题满分10分)选修4—5:不等式选讲 已知函数()f x x a =-,()a R ∈.(Ⅰ)若当04x ≤≤时,()2f x ≤恒成立,求实数a 的取值; (Ⅱ)当03a ≤≤时,求证:()()()()f x a f x a f ax af x ++-≥-.1818 0792 4544 1716 5809 7983 8619 6206 7650 0310 5523 6405 0526 623821.如图,已知AB是圆O的直径,C、D是圆O上的两个点,CE⊥AB于E,BD交AC于G,交CE于F,CF=FG.(Ⅰ)求证:C是劣弧的中点;(Ⅱ)求证:BF=FG.22.函数f(x)是R上的奇函数,且当x>0时,函数的解析式为f(x)=﹣1.(1)用定义证明f(x)在(0,+∞)上是减函数;(2)求函数f(x)的解析式.23.(本题满分15分)如图,已知长方形ABCD 中,2AB =,1AD =,M 为DC 的中点,将ADM ∆沿AM 折起,使得平面⊥ADM 平面ABCM .(1)求证:BM AD ⊥;(2)若)10(<<=λλDB DE ,当二面角D AM E --大小为3π时,求λ的值.【命题意图】本题考查空间点、线、面位置关系,二面角等基础知识,意在考查空间想象能力和运算求解能力.24.(本题满分12分)设向量))cos (sin 23,(sin x x x -=,)cos sin ,(cos x x x +=,R x ∈,记函数 x f ⋅=)(.(1)求函数)(x f 的单调递增区间;(2)在锐角ABC ∆中,角C B A ,,的对边分别为c b a ,,.若21)(=A f ,2=a ,求ABC ∆面积的最大值.二七区第三中学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题1. 【答案】C【解析】解:由题意,0.06×5+x ×0.1=0.5,所以x 为2,所以由图可估计样本重量的中位数是12.故选:C .2. 【答案】C【解析】解:函数f (x )=x 3的导数为f'(x )=3x 2,由f ′(x 0)=0,得x 0=0,但此时函数f (x )单调递增,无极值,充分性不成立.根据极值的定义和性质,若x=x 0是f (x )的极值点,则f ′(x 0)=0成立,即必要性成立, 故p 是q 的必要条件,但不是q 的充分条件, 故选:C【点评】本题主要考查充分条件和必要条件的判断,利用函数单调性和极值之间的关系是解决本题的关键,比较基础.3. 【答案】A 【解析】解:∵, 又∵cosC=,∴=,整理可得:b 2=c 2,∴解得:b=c .即三角形一定为等腰三角形. 故选:A .4. 【答案】D【解析】:()sin )(tan f x a x x x ϕϕ==-=12(),()()463f x x k f x f x ππϕπ=-∴=+⋅=-对称轴为112212min522,2,663x k x k x x πππππ∴=-+=+∴+=5. 【答案】C【解析】解:对任意的实数k,直线y=kx+1恒过点(0,1),且斜率存在∵(0,1)在圆x2+y2=2内∴对任意的实数k,直线y=kx+1与圆x2+y2=2的位置关系一定是相交但直线不过圆心故选C.6.【答案】A.【解析】7.【答案】C【解析】解:∵f(x)≤0⇔x2﹣x﹣2≤0⇔﹣1≤x≤2,∴f(x0)≤0⇔﹣1≤x0≤2,即x0∈[﹣1,2],∵在定义域内任取一点x0,∴x0∈[﹣5,5],∴使f(x0)≤0的概率P==故选C【点评】本题考查了几何概型的意义和求法,将此类概率转化为长度、面积、体积等之比,是解决问题的关键8.【答案】A【解析】解:∵函数g(x)是偶函数,函数f(x)=g(x﹣m),∴函数f(x)关于x=m对称,若φ∈(,),则sinφ>cosφ,则由f(sinφ)=f(cosφ),则=m,即m==(sinφ×+cosαφ)=sin(φ+)当φ∈(,),则φ+∈(,),则<sin(φ+)<,则<m<,故选:A【点评】本题主要考查函数奇偶性和对称性之间的应用以及三角函数的图象和性质,利用辅助角公式是解决本题的关键.9.【答案】C【解析】解:∵集M={x|m≤x≤m+},N={x|n﹣≤x≤n},P={x|0≤x≤1},且M,N都是集合P的子集,∴根据题意,M的长度为,N的长度为,当集合M∩N的长度的最小值时,M与N应分别在区间[0,1]的左右两端,故M∩N的长度的最小值是=.故选:C.10.【答案】B【解析】解:∵向量ab=0,∴此三角形为直角三角形,三边长分别为3,4,5,进而可知其内切圆半径为1,∵对于半径为1的圆有一个位置是正好是三角形的内切圆,此时只有三个交点,对于圆的位置稍一右移或其他的变化,能实现4个交点的情况,但5个以上的交点不能实现.故选B【点评】本题主要考查了直线与圆的位置关系.可采用数形结合结合的方法较为直观.11.【答案】D【解析】解:∵S n为等比数列{a n}的前n项和,=4,∴S4,S8﹣S4,S12﹣S8也成等比数列,且S8=4S4,∴(S8﹣S4)2=S4×(S12﹣S8),即9S42=S4×(S12﹣4S4),解得=13.故选:D .【点评】熟练掌握等比数列的性质是解题的关键.是基础的计算题.12.【答案】B【解析】解:根据题意球的半径R 满足(2R )2=6a 2, 所以S 球=4πR 2=6πa 2.故选B二、填空题13.【答案】 10 .【解析】解:由z=3﹣i ,得z •=.故答案为:10.【点评】本题考查公式,考查了复数模的求法,是基础题.14.【答案】2-【解析】结合函数的解析式可得:()311211f =-⨯=-,对函数求导可得:()2'32f x x =-,故切线的斜率为()2'13121k f ==⨯-=,则切线方程为:()111y x +=⨯-,即2y x =-,圆C :()222x y a +-=的圆心为()0,a ,则:022a =-=-.15.【答案】 (2,2) .【解析】解:∵log a 1=0, ∴当x ﹣1=1,即x=2时,y=2, 则函数y=log a (x ﹣1)+2的图象恒过定点 (2,2).故答案为:(2,2).【点评】本题考查对数函数的性质和特殊点,主要利用log a 1=0,属于基础题.16.【答案】19【解析】由题意可得,选取的这6个个体分别为18,07,17,16,09,19,故选出的第6个个体编号为19.17.【解析】18.【答案】(,).【解析】解:设C(a,b).则a2+b2=1,①∵点A(2,0),点B(0,3),∴直线AB的解析式为:3x+2y﹣6=0.如图,过点C作CF⊥AB于点F,欲使△ABC的面积最小,只需线段CF最短.则CF=≥,当且仅当2a=3b时,取“=”,∴a=,②联立①②求得:a=,b=,故点C的坐标为(,).故答案是:(,).【点评】本题考查了圆的标准方程、点到直线的距离公式、三角形的面积计算公式,考查了推理能力与计算能力,属于中档题.三、解答题19.【答案】【解析】解:(1)二次函数f(x)图象经过点(0,4),任意x满足f(3﹣x)=f(x)则对称轴x=,f(x)存在最小值,则二次项系数a>0设f(x)=a(x﹣)2+.将点(0,4)代入得:f(0)=,解得:a=1∴f(x)=(x﹣)2+=x2﹣3x+4.(2)h(x)=f(x)﹣(2t﹣3)x=x2﹣2tx+4=(x﹣t)2+4﹣t2,x∈[0,1].当对称轴x=t≤0时,h(x)在x=0处取得最小值h(0)=4;当对称轴0<x=t<1时,h(x)在x=t处取得最小值h(t)=4﹣t2;当对称轴x=t≥1时,h(x)在x=1处取得最小值h(1)=1﹣2t+4=﹣2t+5.综上所述:当t≤0时,最小值4;当0<t<1时,最小值4﹣t2;当t ≥1时,最小值﹣2t+5.∴.(3)由已知:f (x )>2x+m 对于x ∈[﹣1,3]恒成立,∴m <x 2﹣5x+4对x ∈[﹣1,3]恒成立,∵g (x )=x 2﹣5x+4在x ∈[﹣1,3]上的最小值为,∴m <.20.【答案】【解析】【解析】(Ⅰ)()2x a f x -=≤得,22a x a -≤≤+ 由题意得2042a a -≤⎧⎨≤+⎩,故22a ≤≤,所以2a = …… 5分(Ⅱ)03a ≤≤,∴112a -≤-≤,∴12a -≤,()()2f ax af x ax a a x a ax a ax a -=---=---()()2212ax a ax a a a a a a ≤---=-=-≤ ()()()2222f x a f x a x a x x a x a a -++=-+≥--==,∴()()()()f x a f x a f ax af x -++≥-.…… 10分21.【答案】【解析】解:(I )∵CF=FG ∴∠CGF=∠FCG ∴AB 圆O 的直径∴∵CE ⊥AB∴∵∴∠CBA=∠ACE ∵∠CGF=∠DGA∴∴∠CAB=∠DAC∴C 为劣弧BD 的中点(II )∵∴∠GBC=∠FCB ∴CF=FB同理可证:CF=GF ∴BF=FG【点评】本题考查的知识点圆周角定理及其推理,同(等)角的余角相等,其中根据AB 是圆O 的直径,CE ⊥AB 于E ,找出要证明相等的角所在的直角三角形,是解答本题的关键.22.【答案】【解析】(1)证明:设x 2>x 1>0,∵f (x 1)﹣f (x 2)=(﹣1)﹣(﹣1)=,由题设可得x 2﹣x 1>0,且x 2•x 1>0,∴f (x 1)﹣f (x 2)>0,即f (x 1)>f (x 2), 故f (x )在(0,+∞)上是减函数.(2)当x <0时,﹣x >0,f (﹣x )=﹣1=﹣f (x ),∴f (x )=+1.又f (0)=0,故函数f (x )的解析式为f (x )=.23.【答案】(1)详见解析;(2)3λ=.【解析】(1)由于2AB =,AM BM ==,则AM BM ⊥,又∵平面⊥ADM 平面ABCM ,平面 ADM 平面ABCM =AM ,⊂BM 平面ABCM , ∴⊥BM 平面ADM ,…………3分又∵⊂AD 平面ADM ,∴有BM AD ⊥;……………6分24.【答案】【解析】【命题意图】本题考查了向量的内积运算,三角函数的化简及性质的探讨,并与解三角形知识相互交汇,对基本运算能力、逻辑推理能力有一定要求,难度为中等.。

二七区高级中学2018-2019学年高二上学期第二次月考试卷数学

二七区高级中学2018-2019学年高二上学期第二次月考试卷数学

二七区高级中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 已知向量与的夹角为60°,||=2,||=6,则2﹣在方向上的投影为( ) A .1B .2C .3D .42. 若圆226260x y x y +--+=上有且仅有三个点到直线10(ax y a -+=是实数)的距离为, 则a =( )A . 1±B . 4±C .D .3. 在《张邱建算经》中有一道题:“今有女子不善织布,逐日所织的布比同数递减,初日织五尺, 末一日织一尺,计织三十日”,由此推断,该女子到第10日时,大约已经完成三十日织布总量的( ) A .33% B .49% C .62% D .88% 4. 给出下列两个结论:①若命题p :∃x 0∈R ,x 02+x 0+1<0,则¬p :∀x ∈R ,x 2+x+1≥0;②命题“若m >0,则方程x 2+x ﹣m=0有实数根”的逆否命题为:“若方程x 2+x ﹣m=0没有实数根,则m ≤0”;则判断正确的是( ) A .①对②错B .①错②对C .①②都对D .①②都错5. 抛物线E :y 2=2px (p >0)的焦点为F ,点A (0,2),若线段AF 的中点B 在抛物线上,则|BF|=( )A .B .C .D .6. 设=(1,2),=(1,1),=+k ,若,则实数k 的值等于( )A .﹣B .﹣C .D .7. 已知d 为常数,p :对于任意n ∈N *,a n+2﹣a n+1=d ;q :数列 {a n }是公差为d 的等差数列,则¬p 是¬q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件8. 已知i 为虚数单位,则复数所对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限9. 已知高为5的四棱锥的俯视图是如图所示的矩形,则该四棱锥的体积为( )A.24B.80C.64D.24010.函数f(x)=cos2x﹣cos4x的最大值和最小正周期分别为()A.,πB.,C.,πD.,11.已知α是△ABC的一个内角,tanα=,则cos(α+)等于()A. B.C.D.12.函数f(x﹣)=x2+,则f(3)=()A.8 B.9 C.11 D.10二、填空题13.甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为.14.曲线y=x2+3x在点(-1,-2)处的切线与曲线y=ax+ln x相切,则a=________.15.在极坐标系中,曲线C1与C2的方程分别为2ρcos2θ=sinθ与ρcosθ=1,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,则曲线C1与C2交点的直角坐标为.16.如图是正方体的平面展开图,则在这个正方体中①BM与ED平行;②CN与BE是异面直线;③CN与BM成60 角;④DM与BN是异面直线.以上四个命题中,正确命题的序号是(写出所有你认为正确的命题).17.直角坐标P(﹣1,1)的极坐标为(ρ>0,0<θ<π).18.已知(1+x+x2)(x)n(n∈N+)的展开式中没有常数项,且2≤n≤8,则n=.三、解答题19.(本小题满分12分)成都市某中学计划举办“国学”经典知识讲座.由于条件限制,按男、女生比例采取分层抽样的方法,从某班选出10人参加活动,在活动前,对所选的10名同学进行了国学素养测试,这10名同学的性别和测试成绩(百分制)的茎叶图如图所示.(1)根据这10名同学的测试成绩,分别估计该班男、女生国学素养测试的平均成绩;(2)若从这10名同学中随机选取一男一女两名同学,求这两名同学的国学素养测试成绩均为优良的概率.(注:成绩大于等于75分为优良)20.设函数,若对于任意x∈[﹣1,2]都有f(x)<m成立,求实数m的取值范围.21.已知正项数列{a n }的前n 项的和为S n ,满足4S n =(a n +1)2. (Ⅰ)求数列{a n }通项公式;(Ⅱ)设数列{b n }满足b n =(n ∈N *),求证:b 1+b 2+…+b n <.22.(本小题满分12分)已知12,F F 分别是椭圆C :22221(0)x y a b a b+=>>的两个焦点,且12||2F F =,点在该椭圆上.(1)求椭圆C 的方程;(2)设直线l 与以原点为圆心,b 为半径的圆上相切于第一象限,切点为M ,且直线l 与椭圆交于P Q 、两点,问22F P F Q PQ ++是否为定值?如果是,求出定值,如不是,说明理由.23.如图在长方形ABCD 中,是CD 的中点,M 是线段AB 上的点,.(1)若M 是AB 的中点,求证:与共线;(2)在线段AB 上是否存在点M ,使得与垂直?若不存在请说明理由,若存在请求出M 点的位置;(3)若动点P 在长方形ABCD 上运动,试求的最大值及取得最大值时P 点的位置.24.已知f(x)=log3(1+x)﹣log3(1﹣x).(1)判断函数f(x)的奇偶性,并加以证明;(2)已知函数g(x)=log,当x∈[,]时,不等式f(x)≥g(x)有解,求k的取值范围.二七区高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】A【解析】解:∵向量与的夹角为60°,||=2,||=6, ∴(2﹣)•=2﹣=2×22﹣6×2×cos60°=2,∴2﹣在方向上的投影为=.故选:A .【点评】本题考查了平面向量数量积的定义与投影的计算问题,是基础题目.2. 【答案】B 【解析】试题分析:由圆226260x y x y +--+=,可得22(3)(1)4x y -+-=,所以圆心坐标为(3,1),半径为2r =,要使得圆上有且仅有三个点到直线10(ax y a -+=是实数)的距离为,则圆心到直线的距离等于12r,即1=,解得4a =±,故选B. 1 考点:直线与圆的位置关系.【方法点晴】本题主要考查了直线与圆的位置关系,其中解答中涉及到圆的标准方程、圆心坐标和圆的半径、点到直线的距离公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力和转化的思想方法,本题的解答中,把圆上有且仅有三个点到直线的距离为,转化为圆心到直线的距离等于12r 是解答的关键.3. 【答案】B 【解析】4. 【答案】C【解析】解:①命题p 是一个特称命题,它的否定是全称命题,¬p 是全称命题,所以①正确.②根据逆否命题的定义可知②正确.故选C.【点评】考查特称命题,全称命题,和逆否命题的概念.5.【答案】D【解析】解:依题意可知F坐标为(,0)∴B的坐标为(,1)代入抛物线方程得=1,解得p=,∴抛物线准线方程为x=﹣,所以点B到抛物线准线的距离为=,则B到该抛物线焦点的距离为.故选D.6.【答案】A【解析】解:∵=(1,2),=(1,1),∴=+k=(1+k,2+k)∵,∴=0,∴1+k+2+k=0,解得k=﹣故选:A【点评】本题考查数量积和向量的垂直关系,属基础题.7.【答案】A【解析】解:p:对于任意n∈N*,a n+2﹣a n+1=d;q:数列{a n}是公差为d的等差数列,则¬p:∃n∈N*,a n+2﹣a n+1≠d;¬q:数列{a n}不是公差为d的等差数列,由¬p⇒¬q,即a n+2﹣a n+1不是常数,则数列{a n}就不是等差数列,若数列{a n}不是公差为d的等差数列,则不存在n∈N*,使得a n+2﹣a n+1≠d,即前者可以推出后者,前者是后者的充分条件,即后者可以推不出前者,故选:A.【点评】本题考查等差数列的定义,是以条件问题为载体的,这种问题注意要从两个方面入手,看是不是都能够成立.8. 【答案】A【解析】解: ==1+i ,其对应的点为(1,1),故选:A .9. 【答案】B 【解析】 试题分析:8058631=⨯⨯⨯=V ,故选B. 考点:1.三视图;2.几何体的体积. 10.【答案】B【解析】解:y=cos 2x ﹣cos 4x=cos 2x (1﹣cos 2x )=cos 2x •sin 2x=sin 22x=,故它的周期为=,最大值为=.故选:B .11.【答案】B【解析】解:由于α是△ABC 的一个内角,tan α=,则=,又sin 2α+cos 2α=1,解得sin α=,cos α=(负值舍去).则cos (α+)=cos cos α﹣sin sin α=×(﹣)=.故选B .【点评】本题考查三角函数的求值,考查同角的平方关系和商数关系,考查两角和的余弦公式,考查运算能力,属于基础题.12.【答案】C【解析】解:∵函数=,∴f (3)=32+2=11.故选C .二、填空题13.【答案】 A .【解析】解:由乙说:我没去过C 城市,则乙可能去过A 城市或B 城市,但甲说:我去过的城市比乙多,但没去过B 城市,则乙只能是去过A ,B 中的任一个,再由丙说:我们三人去过同一城市, 则由此可判断乙去过的城市为A .故答案为:A .【点评】本题主要考查简单的合情推理,要抓住关键,逐步推断,是一道基础题.14.【答案】【解析】由y =x 2+3x 得y ′=2x +3, ∴当x =-1时,y ′=1,则曲线y =x 2+3x 在点(-1,-2)处的切线方程为y +2=x +1, 即y =x -1,设直线y =x -1与曲线y =ax +ln x 相切于点(x 0,y 0),由y =ax +ln x 得y ′=a +1x(x >0),∴⎩⎪⎨⎪⎧a +1x 0=1y 0=x 0-1y 0=ax 0+ln x,解之得x 0=1,y 0=0,a =0. ∴a =0. 答案:015.【答案】 (1,2) .【解析】解:由2ρcos 2θ=sin θ,得:2ρ2cos 2θ=ρsin θ,即y=2x 2.由ρcos θ=1,得x=1.联立,解得:.∴曲线C 1与C 2交点的直角坐标为(1,2).故答案为:(1,2).【点评】本题考查极坐标与直角坐标的互化,考查了方程组的解法,是基础题.16.【答案】③④ 【解析】试题分析:把展开图复原成正方体,如图,由正方体的性质,可知:①BM 与ED 是异面直线,所以是错误的;②DN 与BE 是平行直线,所以是错误的;③从图中连接,AN AC ,由于几何体是正方体,所以三角形ANCAN AC所成的角为60 ,所以是正确的;④DM与BN是异面直线,所以是正确的.为等边三角形,所以,考点:空间中直线与直线的位置关系.17.【答案】.【解析】解:ρ==,tanθ==﹣1,且0<θ<π,∴θ=.∴点P的极坐标为.故答案为:.18.【答案】5.【解析】二项式定理.【专题】计算题.【分析】要想使已知展开式中没有常数项,需(x)n(n∈N+)的展开式中无常数项、x﹣1项、x﹣2项,利用(x)n(n∈N+)的通项公式讨论即可.【解答】解:设(x)n(n∈N+)的展开式的通项为T r+1,则T r+1=x n﹣r x﹣3r=x n﹣4r,2≤n≤8,当n=2时,若r=0,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠2;当n=3时,若r=1,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠3;当n=4时,若r=1,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠4;当n=5时,r=0、1、2、3、4、5时,(1+x+x2)(x)n(n∈N+)的展开式中均没有常数项,故n=5适合题意;当n=6时,若r=1,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠6;当n=7时,若r=2,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠7;当n=8时,若r=2,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠2;综上所述,n=5时,满足题意.故答案为:5.【点评】本题考查二项式定理,考查二项展开式的通项公式,突出考查分类讨论思想的应用,属于难题.三、解答题19.【答案】【解析】【命题意图】本题考查茎叶图的制作与读取,古典概型的概率计算,是概率统计的基本题型,解答的关键是应用相关数据进行准确计算,是中档题.20.【答案】【解析】解:∵,∴f′(x)=3x2﹣x﹣2=(3x+2)(x﹣1),∴当x∈[﹣1,﹣),(1,2]时,f′(x)>0;当x∈(﹣,1)时,f′(x)<0;∴f(x)在[﹣1,﹣),(1,2]上单调递增,在(﹣,1)上单调递减;且f(﹣)=﹣﹣×+2×+5=5+,f(2)=8﹣×4﹣2×2+5=7;故f max(x)=f(2)=7;故对于任意x∈[﹣1,2]都有f(x)<m成立可化为7<m;故实数m的取值范围为(7,+∞).【点评】本题考查了导数的综合应用及恒成立问题的处理方法,属于中档题.21.【答案】【解析】(Ⅰ)解:由4S n=(a n+1)2,令n=1,得,即a1=1,又4S n+1=(a n+1+1)2,∴,整理得:(a n+1+a n)(a n+1﹣a n﹣2)=0.∵a n>0,∴a n+1﹣a n=2,则{a n}是等差数列,∴a n=1+2(n﹣1)=2n﹣1;(Ⅱ)证明:由(Ⅰ)可知,b n==,则b1+b2+…+b n===.22.【答案】【解析】【命题意图】本题考查椭圆方程与几何性质、直线与圆的位置关系等基础知识,意在考查逻辑思维能力、探索性能力、运算求解能力,以及方程思想、转化思想的应用.23.【答案】【解析】(1)证明:如图,以AB所在直线为x轴,AD所在直线为y轴建立平面直角坐标系,当M是AB的中点时,A(0,0),N(1,1),C(2,1),M(1,0),,由,可得与共线;(2)解:假设线段AB上是否存在点M,使得与垂直,设M(t,0)(0≤t≤2),则B(2,0),D(0,1),M(t,0),,由=﹣2(t﹣2)﹣1=0,解得t=,∴线段AB上存在点,使得与垂直;(3)解:由图看出,当P在线段BC上时,在上的投影最大,则有最大值为4.【点评】本题考查平面向量的数量积运算,考查了向量在向量方向上的投影,体现了数形结合的解题思想方法,是中档题.24.【答案】【解析】解:(1)f(x)=log3(1+x)﹣log3(1﹣x)为奇函数.理由:1+x>0且1﹣x>0,得定义域为(﹣1,1),(2分)又f(﹣x)=log3(1﹣x)﹣log3(1+x)=﹣f(x),则f(x)是奇函数.(2)g(x)=log=2log3,(5分)又﹣1<x<1,k>0,(6分)由f(x)≥g(x)得log3≥log3,即≥,(8分)即k2≥1﹣x2,(9分)x∈[,]时,1﹣x2最小值为,(10分)则k2≥,(11分)又k>0,则k≥,即k的取值范围是(﹣∞,].【点评】本题考查函数的奇偶性的判断和证明,考查不等式有解的条件,注意运用对数函数的单调性,考查运算化简能力,属于中档题.。

二七区二中2018-2019学年高二上学期二次月考试数学

二七区二中2018-2019学年高二上学期二次月考试数学

二七区二中2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.口袋内装有一些大小相同的红球、白球和黒球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,那么摸出黒球的概率是()A.0.42 B.0.28 C.0.3 D.0.72.甲、乙两所学校高三年级分别有1 200人,1 000人,为了了解两所学校全体高三年级学生在该地区六校联考的数学成绩情况,采用分层抽样方法从两所学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下:甲校:乙校:则x,yA、12,7B、10,7C、10,8D、11,93.已知实数a,b,c满足不等式0<a<b<c<1,且M=2a,N=5﹣b,P=()c,则M、N、P的大小关系为()A.M>N>P B.P<M<N C.N>P>M4.5名运动员争夺3项比赛冠军(每项比赛无并列冠军),获得冠军的可能种数为()A.35B.C.D.535.定义在[1,+∞)上的函数f(x)满足:①当2≤x≤4时,f(x)=1﹣|x﹣3|;②f(2x)=cf(x)(c为正常数),若函数的所有极大值点都落在同一直线上,则常数c 的值是( )A .1B .±2C .或3D .1或26. 已知定义在R 上的奇函数)(x f ,满足(4)()f x f x +=-,且在区间[0,2]上是增函数,则 A 、(25)(11)(80)f f f -<< B 、(80)(11)(25)f f f <<- C 、(11)(80)(25)f f f <<- D 、(25)(80)(11)f f f -<< 7. 已知函数f (x )=2x ﹣2,则函数y=|f (x )|的图象可能是( )A .B .C .D .8. 如图,网格纸上小正方形的边长为1,粗线画出的是一正方体被截去一部分后所得几何体的三视图,则该几何体的表面积为( )A .54B .162C .54+18D .162+189. 从5名男生、1名女生中,随机抽取3人,检查他们的英语口语水平,在整个抽样过程中,若这名女生第一次、第二次均未被抽到,那么她第三次被抽到的概率是( )A .B .C .D .10.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .已知a=,c=2,cosA=,则b=( )A .B .C .2D .311.如果(m∈R,i表示虚数单位),那么m=()A.1 B.﹣1 C.2 D.012.已知x>0,y>0,+=1,不等式x+y≥2m﹣1恒成立,则m的取值范围()A.(﹣∞,] B.(﹣∞,] C.(﹣∞,] D.(﹣∞,]二、填空题13.已知数列{a n}中,a1=1,a n+1=a n+2n,则数列的通项a n=.14.已知数列{a n}的前n项和为S n,a1=1,2a n+1=a n,若对于任意n∈N*,当t∈[﹣1,1]时,不等式x2+tx+1>S n恒成立,则实数x的取值范围为.15.二面角α﹣l﹣β内一点P到平面α,β和棱l的距离之比为1::2,则这个二面角的平面角是度.16.若直线x﹣y=1与直线(m+3)x+my﹣8=0平行,则m=.17.【徐州市2018届高三上学期期中】已知函数(为自然对数的底数),若,则实数的取值范围为______.18.下列结论正确的是①在某项测量中,测量结果ξ服从正态分布N(1,σ2)(σ>0).若ξ在(0,1)内取值的概率为0.35,则ξ在(0,2)内取值的概率为0.7;②以模型y=ce kx去拟合一组数据时,为了求出回归方程,设z=lny,其变换后得到线性回归方程z=0.3x+4,则c=e4;③已知命题“若函数f(x)=e x﹣mx在(0,+∞)上是增函数,则m≤1”的逆否命题是“若m>1,则函数f(x)=e x﹣mx在(0,+∞)上是减函数”是真命题;④设常数a,b∈R,则不等式ax2﹣(a+b﹣1)x+b>0对∀x>1恒成立的充要条件是a≥b﹣1.三、解答题19.在等比数列{a n}中,a3=﹣12,前3项和S3=﹣9,求公比q.20.已知函数f (x )=|x ﹣a|.(1)若不等式f (x )≤3的解集为{x|﹣1≤x ≤5},求实数a 的值;(2)在(1)的条件下,若f (x )+f (x+5)≥m 对一切实数x 恒成立,求实数m 的取值范围.21.【2017-2018学年度第一学期如皋市高三年级第一次联考】设函数()1ln 1f x a x x=+-. (1)当2a =时,求函数()f x 在点()()11f ,处的切线方程; (2)讨论函数()f x 的单调性;(3)当102a <<时,求证:对任意1+2x ⎛⎫∈∞ ⎪⎝⎭,,都有1e x aa x +⎛⎫+< ⎪⎝⎭.22.(本小题满分13分)设1()1f x x=+,数列{}n a 满足:112a =,1(),n n a f a n N *+=∈.(Ⅰ)若12,λλ为方程()f x x =的两个不相等的实根,证明:数列12n n a a λλ⎧⎫-⎨⎬-⎩⎭为等比数列;(Ⅱ)证明:存在实数m ,使得对n N *∀∈,2121222n n n n a a m a a -++<<<<.)23.已知数列{a n}是各项均为正数的等比数列,满足a3=8,a3﹣a2﹣2a1=0.(Ⅰ)求数列{a n}的通项公式(Ⅱ)记b n=log2a n,求数列{a n•b n}的前n项和S n.24.(选做题)已知f(x)=|x+1|+|x﹣1|,不等式f(x)<4的解集为M.(1)求M;(2)当a,b∈M时,证明:2|a+b|<|4+ab|.二七区二中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】C【解析】解:∵口袋内装有一些大小相同的红球、白球和黑球,从中摸出1个球,在口袋中摸球,摸到红球,摸到黑球,摸到白球这三个事件是互斥的摸出红球的概率是0.42,摸出白球的概率是0.28,∵摸出黑球是摸出红球或摸出白球的对立事件,∴摸出黑球的概率是1﹣0.42﹣0.28=0.3,故选C.【点评】本题考查互斥事件的概率,注意分清互斥事件与对立事件之间的关系,本题是一个简单的数字运算问题,只要细心做,这是一个一定会得分的题目.2.【答案】B【解析】1从甲校抽取110× 1 200=60人,1 200+1 000=50人,故x=10,y=7.从乙校抽取110× 1 0001 200+1 0003.【答案】A【解析】解:∵0<a<b<c<1,∴1<2a<2,<5﹣b<1,<()c<1,5﹣b=()b>()c>()c,即M>N>P,故选:A【点评】本题主要考查函数值的大小比较,根据幂函数和指数函数的单调性的性质是解决本题的关键.4.【答案】D【解析】解:每一项冠军的情况都有5种,故5名学生争夺三项冠军,获得冠军的可能的种数是53,故选:D.【点评】本题主要考查分步计数原理的应用,属于基础题.5.【答案】D【解析】解:∵当2≤x ≤4时,f (x )=1﹣|x ﹣3|. 当1≤x <2时,2≤2x <4,则f (x )=f (2x )=(1﹣|2x ﹣3|),此时当x=时,函数取极大值; 当2≤x ≤4时, f (x )=1﹣|x ﹣3|;此时当x=3时,函数取极大值1;当4<x ≤8时,2<≤4,则f (x )=cf ()=c (1﹣|﹣3|), 此时当x=6时,函数取极大值c .∵函数的所有极大值点均落在同一条直线上,即点(,),(3,1),(6,c )共线,∴=,解得c=1或2. 故选D .【点评】本题考查的知识点是三点共线,函数的极值,其中根据已知分析出分段函数f (x )的解析式,进而求出三个函数的极值点坐标,是解答本题的关键.6. 【答案】D【解析】∵(4)()f x f x +=-,∴(8)(4)f x f x +=-+,∴(8)()f x f x +=, ∴()f x 的周期为8,∴(25)(1)f f -=-,)0()80(f f =,(11)(3)(14)(1)(1)f f f f f ==-+=--=,又∵奇函数)(x f 在区间[0,2]上是增函数,∴)(x f 在区间[2,2]-上是增函数, ∴(25)(80)(11)f f f -<<,故选D.7. 【答案】B【解析】解:先做出y=2x的图象,在向下平移两个单位,得到y=f (x )的图象,再将x 轴下方的部分做关于x 轴的对称图象即得y=|f (x )|的图象.故选B【点评】本题考查含有绝对值的函数的图象问题,先作出y=f(x)的图象,再将x轴下方的部分做关于x轴的对称图象即得y=|f(x)|的图象.8.【答案】D【解析】解:由已知中的三视图可得:该几何体是一个正方体截去一个三棱锥得到的组合体,其表面有三个边长为6的正方形,三个直角边长为6的等腰直角三角形,和一个边长为6的等边三角形组成,故表面积S=3×6×6+3××6×6+×=162+18,故选:D9.【答案】B【解析】解:由题意知,女生第一次、第二次均未被抽到,她第三次被抽到,这三个事件是相互独立的,第一次不被抽到的概率为,第二次不被抽到的概率为,第三次被抽到的概率是,∴女生第一次、第二次均未被抽到,那么她第三次被抽到的概率是=,故选B.10.【答案】D【解析】解:∵a=,c=2,cosA=,∴由余弦定理可得:cosA===,整理可得:3b2﹣8b﹣3=0,∴解得:b=3或﹣(舍去).故选:D.11.【答案】A【解析】解:因为,而(m∈R,i表示虚数单位),所以,m=1.故选A.【点评】本题考查了复数代数形式的乘除运算,考查了复数相等的概念,两个复数相等,当且仅当实部等于实部,虚部等于虚部,此题是基础题.12.【答案】D【解析】解:x>0,y>0,+=1,不等式x+y≥2m﹣1恒成立,所以(x+y)(+)=10+≥10=16,当且仅当时等号成立,所以2m﹣1≤16,解得m;故m的取值范围是(﹣];故选D.二、填空题13.【答案】2n﹣1.【解析】解:∵a1=1,a n+1=a n+2n,∴a2﹣a1=2,a3﹣a2=22,…a n﹣a n﹣1=2n﹣1,相加得:a n﹣a1=2+22+23+2…+2n﹣1,a n=2n﹣1,故答案为:2n﹣1,14.【答案】(﹣∞,]∪[,+∞).【解析】解:数列{a n}的前n项和为S n,a1=1,2a n+1=a n,∴数列{a n}是以1为首项,以为公比的等比数列,S n==2﹣()n﹣1,对于任意n∈N*,当t∈[﹣1,1]时,不等式x2+tx+1>S n恒成立,∴x2+tx+1≥2,x2+tx﹣1≥0,令f(t)=tx+x2﹣1,∴,解得:x≥或x≤,∴实数x的取值范围(﹣∞,]∪[,+∞).15.【答案】75度.【解析】解:点P可能在二面角α﹣l﹣β内部,也可能在外部,应区别处理.当点P在二面角α﹣l﹣β的内部时,如图,A、C、B、P四点共面,∠ACB为二面角的平面角,由题设条件,点P到α,β和棱l的距离之比为1::2可求∠ACP=30°,∠BCP=45°,∴∠ACB=75°.故答案为:75.【点评】本题考查与二面角有关的立体几何综合题,考查分类讨论的数学思想,正确找出二面角的平面角是关键.16.【答案】.【解析】解:直线x﹣y=1的斜率为1,(m+3)x+my﹣8=0斜率为两直线平行,则=1解得m=﹣.故应填﹣.17.【答案】【解析】令,则所以为奇函数且单调递增,因此即点睛:解函数不等式:首先根据函数的性质把不等式转化为的形式,然后根据函数的单调性去掉“”,转化为具体的不等式(组),此时要注意与的取值应在外层函数的定义域内18.【答案】①②④【解析】解:①在某项测量中,测量结果ξ服从正态分布N(1,σ2)(σ>0)则正态曲线关于x=1对称.若ξ在(0,1)内取值的概率为0.35,则ξ在(0,2)内取值的概率P=2×0.35=0.7;故①正确,②∵y=ce kx,∴两边取对数,可得lny=ln(ce kx)=lnc+lne kx=lnc+kx,令z=lny,可得z=lnc+kx,∵z=0.3x+4,∴lnc=4,∴c=e4.故②正确,③已知命题“若函数f(x)=e x﹣mx在(0,+∞)上是增函数,则m≤1”的逆否命题是“若m>1,则函数f(x)=e x﹣mx在(0,+∞)上不是增函数”,若函数f(x)=e x﹣mx在(0,+∞)上是增函数,则f′(x)≥0恒成立,即f′(x)=e x﹣m≥0在(0,+∞)上恒成立,即m≤e x,∵x>0,∴e x>1,则m≤1.故原命题是真命题,则命题的逆否命题也是真命题,故③错误,④设f(x)=ax2﹣(a+b﹣1)x+b,则f(0)=b>0,f(1)=a﹣(a+b﹣1)+b=1>0,∴要使∀x>1恒成立,则对称轴x=,即a+b﹣1≤2a,即a≥b﹣1,即不等式ax2﹣(a+b﹣1)x+b>0对∀x>1恒成立的充要条件是a≥b﹣1.故④正确,故答案为:①②④三、解答题19.【答案】【解析】解:由已知可得方程组,第二式除以第一式得=,整理可得q 2+4q+4=0,解得q=﹣2.20.【答案】【解析】解:(1)由f (x )≤3得|x ﹣a|≤3, 解得a ﹣3≤x ≤a+3.又已知不等式f (x )≤3的解集为{x|﹣1≤x ≤5}, 所以解得a=2.(2)当a=2时,f (x )=|x ﹣2|. 设g (x )=f (x )+f (x+5),于是所以当x <﹣3时,g (x )>5; 当﹣3≤x ≤2时,g (x )=5; 当x >2时,g (x )>5. 综上可得,g (x )的最小值为5. 从而,若f (x )+f (x+5)≥m即g (x )≥m 对一切实数x 恒成立,则m 的取值范围为(﹣∞,5].【点评】本题考查函数恒成立问题,绝对值不等式的解法,考查转化思想,是中档题,21.【答案】(1)10x y --=;(2)见解析;(3)见解析. 【解析】试题分析:(1)当2a =时,求出导数易得()'11f =,即1k =,利用点斜式可得其切线方程;(2)求得可得()21'ax f x x -=,分为0a ≤和0a >两种情形判断其单调性;(3)当102a <<时,根据(2)可得函数()f x 在()12,上单调递减,故()11a f f x ⎛⎫+< ⎪⎝⎭,即ln 1a a a x x a ⎛⎫+<⎪+⎝⎭,化简可得所证结论. 试题解析:(1)当2a =时,()12ln 1f x x x =+-,()112ln1101f =+-=,()221'f x x x =-,()221'1111f =-=,所以函数()f x 在点()10,处的切线方程为()011y x -=⨯-,即10x y --=.(2)()1ln 1f x a x x =+-,定义域为()0+∞,,()2211'a ax f x x x x-=-=. ①当0a ≤时,()'0f x <,故函数()f x 在()0+∞,上单调递减; ②当0a >时,令()'0f x =,得1x= 综上所述,当0a ≤时,()f x 在()0+∞,上单调递减;当0a >时,函数()f x 在10a ⎛⎫ ⎪⎝⎭,上单调递减,在1a ⎛⎫+∞ ⎪⎝⎭,上单调递增. (3)当102a <<时,由(2)可知,函数()f x 在10a ⎛⎫ ⎪⎝⎭,上单调递减,显然,12a >,故()1120a ⎛⎫⊆ ⎪⎝⎭,,,所以函数()f x 在()12,上单调递减,对任意1+2x ⎛⎫∈∞ ⎪⎝⎭,,都有01a x <<,所以112a x <+<.所以()11a f f x ⎛⎫+< ⎪⎝⎭,即1ln 1101a a a x x ⎛⎫++-< ⎪⎝⎭+,所以ln 1a a a x x a ⎛⎫+< ⎪+⎝⎭,即1ln 1a x x a ⎛⎫+< ⎪+⎝⎭,所以()ln 11a x a x ⎛⎫++< ⎪⎝⎭,即ln 11x aa x +⎛⎫+<⎪⎝⎭,所以1e x aa x +⎛⎫+< ⎪⎝⎭.22.【答案】【解析】解:证明:2()10f x x x x =⇔+-=,∴2112221010λλλλ⎧+-=⎪⎨+-=⎪⎩,∴21122211λλλλ⎧-=⎪⎨-=⎪⎩. ∵12111111112122222222111111n n n n n n n n n na a a a a a a a a a λλλλλλλλλλλλλλλλ++--+----====⋅------+, (3分)11120a a λλ-≠-,120λλ≠,∴数列12n n a a λλ⎧⎫-⎨⎬-⎩⎭为等比数列. (4分)(Ⅱ)证明:设m =()f m m =. 由112a =及111n na a +=+得223a =,335a =,∴130a a m <<<.∵()f x 在(0,)+∞上递减,∴13()()()f a f a f m >>,∴24a a m >>.∴1342a a m a a <<<<,(8分) 下面用数学归纳法证明:当n N *∈时,2121222n n n n a a m a a -++<<<<.①当1n =时,命题成立. (9分)②假设当n k =时命题成立,即2121222k k k k a a m a a -++<<<<,那么 由()f x 在(0,)+∞上递减得2121222()()()()()k k k k f a f a f m f a f a -++>>>> ∴2222321k k k k a a m a a +++>>>>由2321k k m a a ++>>得2321()()()k k f m f a f a ++<<,∴2422k k m a a ++<<, ∴当1n k =+时命题也成立, (12分)由①②知,对一切n N *∈命题成立,即存在实数m ,使得对n N *∀∈,2121222n n n n a a m a a -++<<<<.23.【答案】【解析】解:(Ⅰ)设数列{a n }的公比为q , 由a n >0可得q >0,且a 3﹣a 2﹣2a 1=0,化简得q 2﹣q ﹣2=0,解得q=2或q=﹣1(舍),∵a 3=a 1•q 2=4a 1=8,∴a 1=2,∴数列{a n }是以首项和公比均为2的等比数列,∴a n =2n;(Ⅱ)由(I )知b n =log 2a n ==n ,∴a n b n =n •2n,∴S n =1×21+2×22+3×23+…+(n ﹣1)×2n ﹣1+n ×2n,2S n =1×22+2×23+…+(n ﹣2)×2n ﹣1+(n ﹣1)×2n +n ×2n+1,两式相减,得﹣S n =21+22+23+…+2n ﹣1+2n ﹣n ×2n+1,∴﹣S n =﹣n ×2n+1,∴S n =2+(n ﹣1)2n+1.【点评】本题考查等比数列的通项公式,错位相减法求和等基础知识,考查推理论证能力、运算求解能力、数据处理能力,考查函数与方程思想、化归与转化思想,注意解题方法的积累,属于中档题.24.【答案】【解析】(Ⅰ)解:f(x)=|x+1|+|x﹣1|=当x<﹣1时,由﹣2x<4,得﹣2<x<﹣1;当﹣1≤x≤1时,f(x)=2<4;当x>1时,由2x<4,得1<x<2.所以M=(﹣2,2).…(Ⅱ)证明:当a,b∈M,即﹣2<a,b<2,∵4(a+b)2﹣(4+ab)2=4(a2+2ab+b2)﹣(16+8ab+a2b2)=(a2﹣4)(4﹣b2)<0,∴4(a+b)2<(4+ab)2,∴2|a+b|<|4+ab|.…【点评】本题考查绝对值函数,考查解不等式,考查不等式的证明,解题的关键是将不等式写成分段函数,利用作差法证明不等式.。

二七区高中2018-2019学年高二上学期第二次月考试卷数学

二七区高中2018-2019学年高二上学期第二次月考试卷数学

二七区高中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 设m ,n 是正整数,多项式(1﹣2x )m +(1﹣5x )n 中含x 一次项的系数为﹣16,则含x 2项的系数是( ) A .﹣13 B .6 C .79 D .372. 如图,1111D C B A ABCD -为正方体,下面结论:① //BD 平面11D CB ;② BD AC ⊥1;③ ⊥1AC 平面11D CB .其中正确结论的个数是( )A .B .C .D . 3. 计算log 25log 53log 32的值为( )A .1B .2C .4D .84. 已知,其中i 为虚数单位,则a+b=( )A .﹣1B .1C .2D .35. 四棱锥P ﹣ABCD 的底面是一个正方形,PA ⊥平面ABCD ,PA=AB=2,E 是棱PA 的中点,则异面直线BE 与AC 所成角的余弦值是( )A .B .C .D .6. 如果双曲线经过点P (2,),且它的一条渐近线方程为y=x ,那么该双曲线的方程是( )A .x 2﹣=1 B .﹣=1 C .﹣=1 D .﹣=17. 若全集U={﹣1,0,1,2},P={x ∈Z|x 2<2},则∁U P=( ) A .{2} B .{0,2}C .{﹣1,2}D .{﹣1,0,2}8.如图给出的是计算的值的一个流程图,其中判断框内应填入的条件是()A.i≤21 B.i≤11 C.i≥21 D.i≥119.高三(1)班从4名男生和3名女生中推荐4人参加学校组织社会公益活动,若选出的4人中既有男生又有女生,则不同的选法共有()A.34种B.35种C.120种D.140种10.下列图象中,不能作为函数y=f(x)的图象的是()A.B.C.D.11.已知a=21.2,b=(﹣)﹣0.8,c=2log 52,则a ,b ,c 的大小关系为( ) A .c <b <a B .c <a <b C .b <a <c D .b <c <a12.函数y=f ′(x )是函数y=f (x )的导函数,且函数y=f (x )在点p (x 0,f (x 0))处的切线为l :y=g (x )=f ′(x 0)(x ﹣x 0)+f (x 0),F (x )=f (x )﹣g (x ),如果函数y=f (x )在区间[a ,b]上的图象如图所示,且a <x 0<b ,那么( )A .F ′(x 0)=0,x=x 0是F (x )的极大值点B .F ′(x 0)=0,x=x 0是F (x )的极小值点C .F ′(x 0)≠0,x=x 0不是F (x )极值点D .F ′(x 0)≠0,x=x 0是F (x )极值点二、填空题13.已知直线l :ax ﹣by ﹣1=0(a >0,b >0)过点(1,﹣1),则ab 的最大值是 . 14.在等差数列}{n a 中,20161-=a ,其前n 项和为n S ,若2810810=-S S ,则2016S 的值等于 . 【命题意图】本题考查等差数列的通项公式、前n 项和公式,对等差数列性质也有较高要求,属于中等难度. 15.经过A (﹣3,1),且平行于y 轴的直线方程为 .16.【常熟中学2018届高三10月阶段性抽测(一)】已知函数()()ln R xf x x a a x =+-∈,若曲线122e e 1x x y +=+(e 为自然对数的底数)上存在点()00,x y 使得()()00f f y y =,则实数a 的取值范围为__________.17.函数的单调递增区间是 .18.双曲线x 2﹣my 2=1(m >0)的实轴长是虚轴长的2倍,则m 的值为 .三、解答题19.在直角坐标系xOy中,直线l的参数方程为(t为参数).再以原点为极点,以x正半轴为极轴建立极坐标系,并使得它与直角坐标系xOy有相同的长度单位.在该极坐标系中圆C的方程为ρ=4sinθ.(1)求圆C的直角坐标方程;(2)设圆C与直线l交于点A、B,若点M的坐标为(﹣2,1),求|MA|+|MB|的值.20.如图,在平面直角坐标系xOy中,以x为始边作两个锐角α,β,它们的终边分别与单位圆交于A,B两点.已知A,B的横坐标分别为,.(1)求tan(α+β)的值;(2)求2α+β的值.21.命题p:关于x的不等式x2+2ax+4>0对一切x∈R恒成立,q:函数f(x)=(3﹣2a)x是增函数.若p ∨q为真,p∧q为假.求实数a的取值范围.22.已知等差数列{a n}中,a1=1,且a2+2,a3,a4﹣2成等比数列.(1)求数列{a n}的通项公式;(2)若b n=,求数列{b n}的前n项和S n.23.已知双曲线过点P(﹣3,4),它的渐近线方程为y=±x.(1)求双曲线的标准方程;(2)设F1和F2为该双曲线的左、右焦点,点P在此双曲线上,且|PF1||PF2|=41,求∠F1PF2的余弦值.24.根据下列条件求方程.(1)若抛物线y2=2px的焦点与椭圆+=1的右焦点重合,求抛物线的准线方程(2)已知双曲线的离心率等于2,且与椭圆+=1有相同的焦点,求此双曲线标准方程.二七区高中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】D【解析】二项式系数的性质.【专题】二项式定理.【分析】由含x一次项的系数为﹣16利用二项展开式的通项公式求得2m+5n=16 ①.,再根据m、n为正整数,可得m=3、n=2,从而求得含x2项的系数.【解答】解:由于多项式(1﹣2x)m+(1﹣5x)n中含x一次项的系数为(﹣2)+(﹣5)=﹣16,可得2m+5n=16 ①.再根据m、n为正整数,可得m=3、n=2,故含x2项的系数是(﹣2)2+(﹣5)2=37,故选:D.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.2.【答案】D【解析】考点:1.线线,线面,面面平行关系;2.线线,线面,面面垂直关系.【方法点睛】本题考查了立体几何中的命题,属于中档题型,多项选择题是容易出错的一个题,当考察线面平行时,需证明平面外的线与平面内的线平行,则线面平行,一般可构造平行四边形,或是构造三角形的中位线,可证明线线平行,再或是证明面面平行,则线面平行,一般需在选取一点,使直线与直线外一点构成平面证明面面平行,要证明线线垂直,可转化为证明线面垂直,需做辅助线,转化为线面垂直.3.【答案】A【解析】解:log25log53log32==1.故选:A.【点评】本题考查对数的运算法则的应用,考查计算能力.4. 【答案】B【解析】解:由得a+2i=bi ﹣1,所以由复数相等的意义知a=﹣1,b=2,所以a+b=1另解:由得﹣ai+2=b+i (a ,b ∈R ),则﹣a=1,b=2,a+b=1.故选B .【点评】本题考查复数相等的意义、复数的基本运算,是基础题.5. 【答案】B【解析】解:以A 为原点,AB 为x 轴,AD 为y 轴,AP 为z 轴,建立空间直角坐标系,则B (2,0,0),E (0,0,1),A (0,0,0),C (2,2,0),=(﹣2,0,1),=(2,2,0),设异面直线BE 与AC 所成角为θ,则cos θ===.故选:B .6. 【答案】B【解析】解:由双曲线的一条渐近线方程为y=x ,可设双曲线的方程为x 2﹣y 2=λ(λ≠0),代入点P (2,),可得λ=4﹣2=2,可得双曲线的方程为x2﹣y2=2,即为﹣=1.故选:B.7.【答案】A【解析】解:∵x2<2∴﹣<x<∴P={x∈Z|x2<2}={x|﹣<x<,x∈Z|}={﹣1,0,1},又∵全集U={﹣1,0,1,2},∴∁U P={2}故选:A.8.【答案】D【解析】解:∵S=并由流程图中S=S+故循环的初值为1终值为10、步长为1故经过10次循环才能算出S=的值,故i≤10,应不满足条件,继续循环∴当i≥11,应满足条件,退出循环填入“i≥11”.故选D.9.【答案】A【解析】解:从7个人中选4人共种选法,只有男生的选法有种,所以既有男生又有女生的选法有﹣=34种.故选:A.【点评】本题考查了排列组合题,间接法是常用的一种方法,属于基础题10.【答案】B【解析】解:根据函数的定义可知,对应定义域内的任意变量x只能有唯一的y与x对应,选项B中,当x >0时,有两个不同的y和x对应,所以不满足y值的唯一性.所以B不能作为函数图象.故选B.【点评】本题主要考查函数图象的识别,利用函数的定义是解决本题的关键,注意函数的三个条件:非空数集,定义域内x的任意性,x对应y值的唯一性.11.【答案】A【解析】解:∵b=(﹣)﹣0.8=20.8<21.2=a,且b>1,又c=2log52=log54<1,∴c<b<a.故选:A.12.【答案】B【解析】解:∵F(x)=f(x)﹣g(x)=f(x)﹣f′(x0)(x﹣x0)﹣f(x0),∴F'(x)=f'(x)﹣f′(x0)∴F'(x0)=0,又由a<x0<b,得出当a<x<x0时,f'(x)<f′(x0),F'(x)<0,当x0<x<b时,f'(x)<f′(x0),F'(x)>0,∴x=x0是F(x)的极小值点故选B.【点评】本题主要考查函数的极值与其导函数的关系,即当函数取到极值时导函数一定等于0,反之当导函数等于0时还要判断原函数的单调性才能确定是否有极值.二、填空题13.【答案】.【解析】解:∵直线l:ax﹣by﹣1=0(a>0,b>0)过点(1,﹣1),∴a+b﹣1=0,即a+b=1,∴ab≤=当且仅当a=b=时取等号, 故ab的最大值是故答案为:【点评】本题考查基本不等式求最值,属基础题.14.【答案】2016-15.【答案】 x=﹣3 .【解析】解:经过A (﹣3,1),且平行于y 轴的直线方程为:x=﹣3. 故答案为:x=﹣3.16.【答案】1,e⎛⎤-∞ ⎥⎝⎦【解析】结合函数的解析式:122e e 1x x y +=+可得:()()122221'1x x x e e y e +-=+, 令y ′=0,解得:x =0,当x >0时,y ′>0,当x <0,y ′<0,则x ∈(-∞,0),函数单调递增,x ∈(0,+∞)时,函数y 单调递减, 则当x =0时,取最大值,最大值为e , ∴y 0的取值范围(0,e ],结合函数的解析式:()()R lnxf x x a a x =+-∈可得:()22ln 1'x x f x x -+=, x ∈(0,e ),()'0f x >, 则f (x )在(0,e )单调递增, 下面证明f (y 0)=y 0.假设f (y 0)=c >y 0,则f (f (y 0))=f (c )>f (y 0)=c >y 0,不满足f (f (y 0))=y 0. 同理假设f (y 0)=c <y 0,则不满足f (f (y 0))=y 0. 综上可得:f (y 0)=y 0.令函数()ln xf x x a x x =+-=. 设()ln x g x x =,求导()21ln 'xg x x -=,当x ∈(0,e ),g ′(x )>0, g (x )在(0,e )单调递增, 当x =e 时取最大值,最大值为()1g e e=, 当x →0时,a →-∞, ∴a 的取值范围1,e⎛⎤-∞ ⎥⎝⎦.点睛:(1)利用导数研究函数的单调性的关键在于准确判定导数的符号.而解答本题(2)问时,关键是分离参数k ,把所求问题转化为求函数的最小值问题.(2)若可导函数f (x )在指定的区间D 上单调递增(减),求参数范围问题,可转化为f ′(x )≥0(或f ′(x )≤0)恒成立问题,从而构建不等式,要注意“=”是否可以取到. 17.【答案】 [2,3) .【解析】解:令t=﹣3+4x ﹣x 2>0,求得1<x <3,则y=,本题即求函数t 在(1,3)上的减区间.利用二次函数的性质可得函数t 在(1,3)上的减区间为[2,3), 故答案为:[2,3).18.【答案】 4 .【解析】解:双曲线x 2﹣my 2=1化为x 2﹣=1,∴a 2=1,b 2=,∵实轴长是虚轴长的2倍,∴2a=2×2b ,化为a 2=4b 2,即1=,解得m=4. 故答案为:4.【点评】熟练掌握双曲线的标准方程及实轴、虚轴的定义是解题的关键.三、解答题19.【答案】【解析】解:(1)方程ρ=4sinθ的两边同时乘以ρ,得ρ2=4ρsinθ,将极坐标与直角坐标互化公式代入上式,整理得圆C的直角坐标方程为x2+y2﹣4y=0.(2)由消去t,得直线l的普通方程为y=x+3,因为点M(﹣2,1)在直线l上,可设l的标准参数方程为,代入圆C的方程中,得.设A,B对应的参数分别为t1,t2,由韦达定理,得>0,t1t2=1>0,于是|MA|+|MB|=|t1|+|t2|=,即|MA|+|MB|=.【点评】1.极坐标方程化直角坐标方程,一般通过两边同时平方,两边同时乘以ρ等方式,构造或凑配ρ2,ρcosθ,ρsinθ,再利用互化公式转化.常见互化公式有ρ2=x2+y2,ρcosθ=x,ρsinθ=y,(x≠0)等.2.参数方程化普通方程,关键是消参,常见消参方式有:代入法,两式相加、减,两式相乘、除,方程两边同时平方等.3.运用参数方程解题时,应熟练参数方程中各量的含义,即过定点M0(x0,y0),且倾斜角为α的直线的参数方程为,参数t表示以M0为起点,直线上任意一点M为终点的向量的数量,即当沿直线向上时,t=;当沿直线向下时,t=﹣.20.【答案】【解析】解:(1)由已知得:.∵α,β为锐角,∴.∴.∴.(2)∵,∴.∵α,β为锐角,∴,∴.21.【答案】【解析】解:设g(x)=x2+2ax+4,由于关于x的不等式x2+2ax+4>0对一切x∈R恒成立,∴函数g(x)的图象开口向上且与x轴没有交点,故△=4a2﹣16<0,∴﹣2<a<2.又∵函数f(x)=(3﹣2a)x是增函数,∴3﹣2a>1,得a<1.又由于p或q为真,p且q为假,可知p和q一真一假.(1)若p真q假,则,得1≤a<2;(2)若p假q真,则,得a≤﹣2.综上可知,所求实数a的取值范围为1≤a<2,或a≤﹣2.22.【答案】【解析】解:(1)由a2+2,a3,a4﹣2成等比数列,∴=(a2+2)(a4﹣2),(1+2d)2=(3+d)(﹣1+3d),d2﹣4d+4=0,解得:d=2,∴a n=1+2(n﹣1)=2n﹣1,数列{a n}的通项公式a n=2n﹣1;(2)b n===(﹣),S n=[(1﹣)+(﹣)+…+(﹣)],=(1﹣),=,数列{b n}的前n项和S n,S n=.23.【答案】【解析】解:(1)设双曲线的方程为y2﹣x2=λ(λ≠0),代入点P(﹣3,4),可得λ=﹣16,∴所求求双曲线的标准方程为(2)设|PF1|=d1,|PF2|=d2,则d1d2=41,又由双曲线的几何性质知|d1﹣d2|=2a=6,∴d12+d22﹣2d1d2=36即有d12+d22=36+2d1d2=118,又|F1F2|=2c=10,∴|F1F2|2=100=d12+d22﹣2d1d2cos∠F1PF2∴cos∠F1PF2=【点评】本题给出双曲线的渐近线,在双曲线经过定点P的情况下求它的标准方程,并依此求∠F1PF2的余弦值.着重考查了双曲线的标准方程与简单几何性质、利用余弦定理解三角形等知识,属于中档题.24.【答案】【解析】解:(1)易知椭圆+=1的右焦点为(2,0),由抛物线y2=2px的焦点(,0)与椭圆+=1的右焦点重合,可得p=4,可得抛物线y2=8x的准线方程为x=﹣2.(2)椭圆+=1的焦点为(﹣4,0)和(4,0),可设双曲线的方程为﹣=1(a,b>0),由题意可得c=4,即a2+b2=16,又e==2,解得a=2,b=2,则双曲线的标准方程为﹣=1.【点评】本题考查圆锥曲线的方程和性质,主要是抛物线的准线方程和双曲线的方程的求法,注意运用待定系数法,考查运算能力,属于基础题.。

二七区三中2018-2019学年高二上学期第二次月考试卷数学

二七区三中2018-2019学年高二上学期第二次月考试卷数学

二七区三中2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.若命题“p∧q”为假,且“¬q”为假,则()A.“p∨q”为假B.p假C.p真D.不能判断q的真假2.数列1,,,,,,,,,,…的前100项的和等于()A.B.C.D.3.袋内分别有红、白、黑球3,2,1个,从中任取2个,则互斥而不对立的两个事件是()A.至少有一个白球;都是白球B.至少有一个白球;至少有一个红球C.恰有一个白球;一个白球一个黑球D.至少有一个白球;红、黑球各一个4.若集合A={-1,1},B={0,2},则集合{z|z=x+y,x∈A,y∈B}中的元素的个数为( ) A5B4C3D25.定义在R上的奇函数f(x)满足f(x+3)=f(x),当0<x≤1时,f(x)=2x,则f (2015)=()A.2 B.﹣2 C.﹣D.6.如图是某几何体的三视图,则该几何体任意两个顶点间的距离的最大值为()A.4 B.5 C.D.7.如图,从点M(x0,4)发出的光线,沿平行于抛物线y2=8x的对称轴方向射向此抛物线上的点P,经抛物线反射后,穿过焦点射向抛物线上的点Q,再经抛物线反射后射向直线l:x﹣y﹣10=0上的点N,经直线反射后又回到点M,则x0等于()A.5 B.6 C.7 D.88.抛物线y2=2x的焦点到直线x﹣y=0的距离是()A.B.C.D.9.设命题p:函数y=sin(2x+)的图象向左平移个单位长度得到的曲线关于y轴对称;命题q:函数y=|2x﹣1|在[﹣1,+∞)上是增函数.则下列判断错误的是()A.p为假B.¬q为真C.p∨q为真 D.p∧q为假10.如图,直三棱柱ABC﹣A1B1C1中,侧棱AA1⊥平面ABC.若AB=AC=AA1=1,BC=,则异面直线A1C 与B1C1所成的角为()A.30°B.45°C.60°D.90°11.某个几何体的三视图如图所示,其中正(主)视图中的圆弧是半径为2的半圆,则该几何体的表面积为()A .π1492+B .π1482+C .π2492+D .π2482+【命题意图】本题考查三视图的还原以及特殊几何体的面积度量.重点考查空间想象能力及对基本面积公式的运用,难度中等.12.“p q ∨为真”是“p ⌝为假”的( )条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要二、填空题13.设集合A={x|x+m ≥0},B={x|﹣2<x <4},全集U=R ,且(∁U A )∩B=∅,求实数m 的取值范围为 .14.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,sinA ,sinB ,sinC 依次成等比数列,c=2a 且•=24,则△ABC 的面积是 .15.已知函数322()7f x x ax bx a a =++--在1x =处取得极小值10,则ba的值为 ▲ . 16.由曲线y=2x 2,直线y=﹣4x ﹣2,直线x=1围成的封闭图形的面积为 .17.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,AB=AD=3cm ,AA 1=2cm ,则四棱锥A ﹣BB 1D 1D 的体积为cm 3.18.如图所示,正方体ABCD ﹣A ′B ′C ′D ′的棱长为1,E 、F 分别是棱AA ′,CC ′的中点,过直线EF 的平面分别与棱BB ′、DD ′交于M 、N ,设BM=x ,x ∈[0,1],给出以下四个命题: ①平面MENF ⊥平面BDD ′B ′;②当且仅当x=时,四边形MENF 的面积最小;③四边形MENF周长l=f(x),x∈0,1]是单调函数;④四棱锥C′﹣MENF的体积v=h(x)为常函数;以上命题中真命题的序号为.三、解答题19.如图,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=2,AD=2,求四边形ABCD绕AD旋转一周所成几何体的表面积.20.(本小题满分12分)某校为了解高一新生对文理科的选择,对1 000名高一新生发放文理科选择调查表,统计知,有600名学生选择理科,400名学生选择文科.分别从选择理科和文科的学生随机各抽取20名学生的数学成绩得如下累计表:(1率分布直方图.(2)根据你绘制的频率分布直方图,估计意向选择理科的学生的数学成绩的中位数与平均分.21.(本小题满分12分)如图四棱柱ABCD-A1B1C1D1的底面为菱形,AA1⊥底面ABCD,M为A1A的中点,AB=BD=2,且△BMC1为等腰三角形.(1)求证:BD⊥MC1;(2)求四棱柱ABCD-A1B1C1D1的体积.22.已知椭圆+=1(a >b >0)的离心率为,且过点(,).(1)求椭圆方程;(2)设不过原点O 的直线l :y=kx+m (k ≠0),与该椭圆交于P 、Q 两点,直线OP 、OQ 的斜率依次为k 1、k 2,满足4k=k 1+k 2,试问:当k 变化时,m 2是否为定值?若是,求出此定值,并证明你的结论;若不是,请说明理由.23.已知椭圆E :=1(a >b >0)的焦距为2,且该椭圆经过点.(Ⅰ)求椭圆E 的方程; (Ⅱ)经过点P (﹣2,0)分别作斜率为k 1,k 2的两条直线,两直线分别与椭圆E 交于M ,N 两点,当直线MN 与y 轴垂直时,求k 1k 2的值.24.(本小题满分12分)如图所示,已知⊥AB 平面ACD ,⊥DE 平面ACD ,ACD ∆为等边 三角形,AB DE AD 2==,F 为CD 的中点. (1)求证://AF 平面BCE ; (2)平面⊥BCE 平面CDE .二七区三中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】B【解析】解:∵命题“p∧q”为假,且“¬q”为假,∴q为真,p为假;则p∨q为真,故选B.【点评】本题考查了复合命题的真假性的判断,属于基础题.2.【答案】A【解析】解:=1×故选A.3.【答案】D【解析】解:从3个红球,2个白球,1个黑球中任取2个球的取法有:2个红球,2个白球,1红1黑,1红1白,1黑1白共5类情况,所以至少有一个白球,至多有一个白球不互斥;至少有一个白球,至少有一个红球不互斥;至少有一个白球,没有白球互斥且对立;至少有一个白球,红球黑球各一个包括1红1白,1黑1白两类情况,为互斥而不对立事件,故选:D【点评】本题考查了互斥事件和对立事件,是基础的概念题.4.【答案】C【解析】由已知,得{z|z=x+y,x∈A,y∈B}={-1,1,3},所以集合{z|z=x+y,x∈A,y∈B}中的元素的个数为3.5.【答案】B【解析】解:因为f(x+3)=f(x),函数f(x)的周期是3,所以f(2015)=f(3×672﹣1)=f(﹣1);又因为函数f (x )是定义R 上的奇函数,当0<x ≤1时,f (x )=2x ,所以f (﹣1)=﹣f (1)=﹣2,即f (2015)=﹣2. 故选:B .【点评】本题主要考查了函数的周期性、奇偶性的运用,属于基础题,解答此题的关键是分析出f (2015)=f (3×672﹣1)=f (﹣1).6. 【答案】D 【解析】试题分析:因为根据几何体的三视图可得,几何体为下图,,AD AB AG 相互垂直,面AEFG ⊥面,//,3,1ABCDE BC AE AB AD AG DE ====,根据几何体的性质得:2232,3(32)AC GC ==+222733,345GE ===+=,32,4,10,10BG AD EF CE ====,所以最长为33GC =.考点:几何体的三视图及几何体的结构特征.7. 【答案】B【解析】解:由题意可得抛物线的轴为x 轴,F (2,0), ∴MP 所在的直线方程为y=4在抛物线方程y 2=8x 中,令y=4可得x=2,即P (2,4) 从而可得Q (2,﹣4),N (6,﹣4)∵经抛物线反射后射向直线l :x ﹣y ﹣10=0上的点N ,经直线反射后又回到点M , ∴直线MN 的方程为x=6 故选:B .【点评】本题主要考查了抛物线的性质的应用,解决问题的关键是要熟练掌握相关的性质并能灵活应用.8. 【答案】C【解析】解:抛物线y 2=2x 的焦点F (,0),由点到直线的距离公式可知:F到直线x﹣y=0的距离d==,故答案选:C.9.【答案】C【解析】解:函数y=sin(2x+)的图象向左平移个单位长度得到y=sin(2x+)的图象,当x=0时,y=sin=,不是最值,故函数图象不关于y轴对称,故命题p为假命题;函数y=|2x﹣1|在[﹣1,0]上是减函数,在[0,+∞)上是增函数.故命题q为假命题;则¬q为真命题;p∨q为假命题;p∧q为假命题,故只有C判断错误,故选:C10.【答案】C【解析】解:因为几何体是棱柱,BC∥B1C1,则直线A1C与BC所成的角为就是异面直线A1C与B1C1所成的角.直三棱柱ABC﹣AB1C1中,侧棱AA1⊥平面ABC.若AB=AC=AA1=1,BC=,BA1=,1CA1=,三角形BCA1是正三角形,异面直线所成角为60°.故选:C.11.【答案】A12.【答案】B 【解析】试题分析:因为p 假真时,p q ∨真,此时p ⌝为真,所以,“p q ∨ 真”不能得“p ⌝为假”,而“p ⌝为假”时p 为真,必有“p q ∨ 真”,故选B. 考点:1、充分条件与必要条件;2、真值表的应用.二、填空题13.【答案】 m ≥2 .【解析】解:集合A={x|x+m ≥0}={x|x ≥﹣m},全集U=R ,所以C U A={x|x <﹣m}, 又B={x|﹣2<x <4},且(∁U A )∩B=∅,所以有﹣m ≤﹣2,所以m ≥2. 故答案为m ≥2.14.【答案】 4 .【解析】解:∵sinA ,sinB ,sinC 依次成等比数列,∴sin 2B=sinAsinC ,由正弦定理可得:b 2=ac ,∵c=2a ,可得:b=a ,∴cosB===,可得:sinB==,∵•=24,可得:accosB=ac=24,解得:ac=32,∴S△ABC =acsinB==4.故答案为:4.15.【答案】12-考点:函数极值【方法点睛】函数极值问题的常见类型及解题策略(1)知图判断函数极值的情况.先找导数为0的点,再判断导数为0的点的左、右两侧的导数符号.(2)已知函数求极值.求f′(x)―→求方程f′(x)=0的根―→列表检验f′(x)在f′(x)=0的根的附近两侧的符号―→下结论.(3)已知极值求参数.若函数f(x)在点(x0,y0)处取得极值,则f′(x0)=0,且在该点左、右两侧的导数值符号相反.16.【答案】.【解析】解:由方程组解得,x=﹣1,y=2故A(﹣1,2).如图,故所求图形的面积为S=∫﹣11(2x2)dx﹣∫﹣11(﹣4x﹣2)dx=﹣(﹣4)=故答案为:【点评】本题主要考查了定积分在求面积中的应用,以及定积分的计算,属于基础题.17.【答案】6【解析】解:过A作AO⊥BD于O,AO是棱锥的高,所以AO==,所以四棱锥A﹣BB1D1D的体积为V==6.故答案为:6.18.【答案】①②④.【解析】解:①连结BD,B′D′,则由正方体的性质可知,EF⊥平面BDD′B′,所以平面MENF⊥平面BDD′B′,所以①正确.②连结MN,因为EF⊥平面BDD′B′,所以EF⊥MN,四边形MENF的对角线EF是固定的,所以要使面积最小,则只需MN的长度最小即可,此时当M为棱的中点时,即x=时,此时MN长度最小,对应四边形MENF的面积最小.所以②正确.③因为EF⊥MN,所以四边形MENF是菱形.当x∈[0,]时,EM的长度由大变小.当x∈[,1]时,EM的长度由小变大.所以函数L=f(x)不单调.所以③错误.④连结C′E,C′M,C′N,则四棱锥则分割为两个小三棱锥,它们以C′EF为底,以M,N分别为顶点的两个小棱锥.因为三角形C′EF的面积是个常数.M,N到平面C'EF的距离是个常数,所以四棱锥C'﹣MENF的体积V=h(x)为常函数,所以④正确.故答案为:①②④.【点评】本题考查空间立体几何中的面面垂直关系以及空间几何体的体积公式,本题巧妙的把立体几何问题和函数进行的有机的结合,综合性较强,设计巧妙,对学生的解题能力要求较高.三、解答题19.【答案】【解析】解:四边形ABCD绕AD旋转一周所成的几何体,如右图:S表面=S圆台下底面+S圆台侧面+S圆锥侧面=πr22+π(r1+r2)l2+πr1l1===20.【答案】【解析】解:(1)从统计表看出选择理科的学生的数学平均成绩高于选择文科的学生的数学平均成绩,反映了数学成绩对学生选择文理科有一定的影响,频率分布直方图如下.(2)从频率分布直方图知,数学成绩有50%小于或等于80分,50%大于或等于80分,所以中位数为80分.平均分为(55×0.005+65×0.015+75×0.030+85×0.030+95×0.020)×10=79.5,即估计选择理科的学生的平均分为79.5分.21.【答案】【解析】解:(1)证明:如图,连接AC,设AC与BD的交点为E,∵四边形ABCD为菱形,∴BD⊥AC,又AA1⊥平面ABCD,BD⊂平面ABCD,∴A1A⊥BD;又A1A∩AC=A,∴BD⊥平面A1ACC1,又MC1⊂平面A1ACC1,∴BD⊥MC1.(2)∵AB=BD=2,且四边形ABCD是菱形,∴AC=2AE=2AB2-BE2=23,又△BMC1为等腰三角形,且M为A1A的中点,∴BM是最短边,即C1B=C1M.则有BC2+C1C2=AC2+A1M2,即4+C1C2=12+(C1C)2,2,解得C1C=463所以四棱柱ABCD -A 1B 1C 1D 1的体积为V =S 菱形ABCD ×C 1C =12AC ×BD ×C 1C =12×23×2×463=8 2. 即四棱柱ABCD -A 1B 1C 1D 1的体积为8 2. 22.【答案】【解析】解:(1)依题意可得,解得a=2,b=1所以椭圆C 的方程是…(2)当k 变化时,m 2为定值,证明如下:由得,(1+4k 2)x 2+8kmx+4(m 2﹣1)=0.…设P (x 1,y 1),Q (x 2,y 2).则x 1+x 2=,x 1x 2=…(•) …∵直线OP 、OQ 的斜率依次为k 1,k 2,且4k=k 1+k 2,∴4k==,得2kx 1x 2=m (x 1+x 2),…将(•)代入得:m 2=,…经检验满足△>0.…【点评】本题考查椭圆的方程的求法,直线与椭圆方程的综合应用,考查分析问题解决问题的能力以及转化思想的应用.23.【答案】【解析】解:(Ⅰ)由题意得,2c=2,=1;解得,a 2=4,b 2=1;故椭圆E 的方程为+y 2=1;(Ⅱ)由题意知,当k 1=0时,M 点的纵坐标为0,直线MN 与y 轴垂直, 则点N 的纵坐标为0, 故k 2=k 1=0,这与k 2≠k 1矛盾. 当k 1≠0时,直线PM :y=k 1(x+2);由得,(+4)y 2﹣=0;解得,y M =;∴M (,),同理N (,),由直线MN 与y 轴垂直,则=;∴(k 2﹣k 1)(4k 2k 1﹣1)=0,∴k 2k 1=.【点评】本题考查了椭圆方程的求法及椭圆与直线的位置关系的判断与应用,属于中档题.24.【答案】(1)证明见解析;(2)证明见解析. 【解析】试题分析:(1)推导出BC AC ⊥,1CC AC ⊥,从而⊥AC 平面11B BCC ,连接11,NA CA ,则N A B ,,1三点共线,推导出MN CN BA CN ⊥⊥,1,由线面垂直的判定定理得⊥CN 平面BNM ;(2)连接1AC 交1CA 于点H ,推导出1BA AH ⊥,1BA HQ ⊥,则AQH ∠是二面角C BA A --1的平面角.由此能求出二面角1B BN C --的余弦值.试题解析:(1)如图,取CE 的中点G ,连接BG FG ,. ∵F 为CD 的中点,∴DE GF //且DE GF 21=. ∵⊥AB 平面ACD ,⊥DE 平面ACD , ∴DE AB //, ∴AB GF //.又DE AB 21=,∴AB GF =. ∴四边形GFAB 为平行四边形,则BG AF //. (4分) ∵⊄AF 平面BCE ,⊂BG 平面BCE , ∴//AF 平面BCE (6分)考点:直线与平面平行和垂直的判定.。

二七区第一高级中学2018-2019学年高二上学期第二次月考试卷数学

二七区第一高级中学2018-2019学年高二上学期第二次月考试卷数学

二七区第一高级中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 在△ABC 中,若A=2B ,则a 等于( ) A .2bsinA B .2bcosA C .2bsinB D .2bcosB2. 极坐标系中,点P ,Q 分别是曲线C 1:ρ=1与曲线C 2:ρ=2上任意两点,则|PQ|的最小值为( )A .1B .C .D .23. 设f (x )是定义在R 上的恒不为零的函数,对任意实数x ,y ∈R ,都有f (x )•f (y )=f (x+y ),若a 1=,a n =f (n )(n ∈N *),则数列{a n }的前n 项和S n 的取值范围是( )A .[,2)B .[,2]C .[,1)D .[,1]4. 直线l ⊂平面α,直线m ⊄平面α,命题p :“若直线m ⊥α,则m ⊥l ”的逆命题、否命题、逆否命题中真命题的个数为( ) A .0B .1C .2D .35. 在正方体ABCD ﹣A ′B ′C ′D ′中,点P 在线段AD ′上运动,则异面直线CP 与BA ′所成的角θ的取值范围是( )A .0<B .0C .0D .06. 已知集合{2,1,1,2,4}A =--,2{|log ||1,}B y y x x A ==-∈,则A B =( )A .{2,1,1}--B .{1,1,2}-C .{1,1}-D .{2,1}--【命题意图】本题考查集合的交集运算,意在考查计算能力.7. 数列{a n }的通项公式为a n =﹣n+p ,数列{b n }的通项公式为b n =2n ﹣5,设c n =,若在数列{c n }中c 8>c n (n ∈N *,n ≠8),则实数p 的取值范围是( )A .(11,25)B .(12,16]C .(12,17)D .[16,17)8. 在复平面内,复数(﹣4+5i )i (i 为虚数单位)的共轭复数对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限9. 直线: (为参数)与圆:(为参数)的位置关系是( )A .相离B .相切C .相交且过圆心D .相交但不过圆心10.已知,,a b c 为ABC ∆的三个角,,A B C 所对的边,若3cos (13cos )b C c B =-,则sin :sin C A =( )A .2︰3B .4︰3C .3︰1D .3︰2 【命题意图】本题考查正弦定理、余弦定理,意在考查转化能力、运算求解能力. 11.已知一个算法的程序框图如图所示,当输出的结果为21时,则输入的值为( )A .2B .1-C .1-或2D .1-或1012.下列函数中,既是偶函数又在(0,)+∞单调递增的函数是( )A .3y x =B . 21y x =-+C .||1y x =+D .2xy -=二、填空题13.已知直线:043=++m y x (0>m )被圆C :062222=--++y x y x 所截的弦长是圆心C 到直线的距离的2倍,则=m .14.抛物线y 2=8x 上到顶点和准线距离相等的点的坐标为 .15.设全集______.16.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,P 为BD 1的中点,则△PAC 在该正方体各个面上的射影可能是 .17.函数()y f x =的定义域是[]0,2,则函数()1y f x =+的定义域是__________.111] 18.函数f (x )=2a x+1﹣3(a >0,且a ≠1)的图象经过的定点坐标是 .三、解答题19.(本小题满分16分)给出定义在()+∞,0上的两个函数2()ln f x x a x =-,()g x x =- (1)若()f x 在1=x 处取最值.求的值;(2)若函数2()()()h x f x g x =+在区间(]0,1上单调递减,求实数的取值范围; (3)试确定函数()()()6m x f x g x =--的零点个数,并说明理由.20.在平面直角坐标系xOy 中,圆C :x 2+y 2=4,A (,0),A 1(﹣,0),点P 为平面内一动点,以PA 为直径的圆与圆C 相切.(Ⅰ)求证:|PA 1|+|PA|为定值,并求出点P 的轨迹方程C 1;(Ⅱ)若直线PA 与曲线C 1的另一交点为Q ,求△POQ 面积的最大值.21.已知函数f (x )=|x ﹣10|+|x ﹣20|,且满足f (x )<10a+10(a ∈R )的解集不是空集.(Ⅰ)求实数a 的取值集合A(Ⅱ)若b ∈A ,a ≠b ,求证a a b b >a b b a.22.为配合国庆黄金周,促进旅游经济的发展,某火车站在调查中发现:开始售票前,已有a 人在排队等候购票.开始售票后,排队的人数平均每分钟增加b 人.假设每个窗口的售票速度为c 人/min ,且当开放2个窗口时,25min 后恰好不会出现排队现象(即排队的人刚好购完);若同时开放3个窗口,则15min 后恰好不会出现排队现象.若要求售票10min 后不会出现排队现象,则至少需要同时开几个窗口?23.已知函数()21ln ,2f x x ax x a R =-+∈. (1)令()()()1g x f x ax =--,讨论()g x 的单调区间;(2)若2a =-,正实数12,x x 满足()()12120f x f x x x ++=,证明12x x +≥.24.【泰州中学2018届高三10月月考】已知函数()(),,xf x eg x x m m R ==-∈.(1)若曲线()y f x =与直线()y g x =相切,求实数m 的值; (2)记()()()h x f x g x =⋅,求()h x 在[]0,1上的最大值; (3)当0m =时,试比较()2f x e -与()g x 的大小.二七区第一高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】D【解析】解:∵A=2B,∴sinA=sin2B,又sin2B=2sinBcosB,∴sinA=2sinBcosB,根据正弦定理==2R得:sinA=,sinB=,代入sinA=2sinBcosB得:a=2bcosB.故选D2.【答案】A【解析】解:极坐标系中,点P,Q分别是曲线C1:ρ=1与曲线C2:ρ=2上任意两点,可知两条曲线是同心圆,如图,|PQ|的最小值为:1.故选:A.【点评】本题考查极坐标方程的应用,两点距离的求法,基本知识的考查.3.【答案】C【解析】解:∵对任意x,y∈R,都有f(x)•f(y)=f(x+y),∴令x=n,y=1,得f(n)•f(1)=f(n+1),即==f(1)=,∴数列{a n}是以为首项,以为等比的等比数列,∴a n =f (n )=()n,∴S n ==1﹣()n ∈[,1).故选C .【点评】本题主要考查了等比数列的求和问题,解题的关键是根据对任意x ,y ∈R ,都有f (x )•f (y )=f (x+y )得到数列{a n }是等比数列,属中档题.4. 【答案】B【解析】解:∵直线l ⊂平面α,直线m ⊄平面α,命题p :“若直线m ⊥α,则m ⊥l ”, ∴命题P 是真命题,∴命题P 的逆否命题是真命题; ¬P :“若直线m 不垂直于α,则m 不垂直于l ”,∵¬P 是假命题,∴命题p 的逆命题和否命题都是假命题. 故选:B .5. 【答案】D【解析】解:∵A 1B ∥D 1C ,∴CP 与A 1B 成角可化为CP 与D 1C 成角.∵△AD 1C 是正三角形可知当P 与A 重合时成角为,∵P 不能与D 1重合因为此时D 1C 与A 1B 平行而不是异面直线,∴0<θ≤.故选:D .6. 【答案】C【解析】当{2,1,1,2,4}x ∈--时,2log ||1{1,1,0}y x =-∈-,所以A B ={1,1}-,故选C .7. 【答案】C【解析】解:当a n ≤b n 时,c n =a n ,当a n >b n 时,c n =b n ,∴c n 是a n ,b n 中的较小者,∵a n=﹣n+p,∴{a n}是递减数列,∵b n=2n﹣5,∴{b n}是递增数列,∵c8>c n(n≠8),∴c8是c n的最大者,则n=1,2,3,…7,8时,c n递增,n=8,9,10,…时,c n递减,∴n=1,2,3,…7时,2n﹣5<﹣n+p总成立,当n=7时,27﹣5<﹣7+p,∴p>11,n=9,10,11,…时,2n﹣5>﹣n+p总成立,当n=9时,29﹣5>﹣9+p,成立,∴p<25,而c8=a8或c8=b8,若a8≤b8,即23≥p﹣8,∴p≤16,则c8=a8=p﹣8,∴p﹣8>b7=27﹣5,∴p>12,故12<p≤16,若a8>b8,即p﹣8>28﹣5,∴p>16,∴c8=b8=23,那么c8>c9=a9,即8>p﹣9,∴p<17,故16<p<17,综上,12<p<17.故选:C.8.【答案】B【解析】解:∵(﹣4+5i)i=﹣5﹣4i,∴复数(﹣4+5i)i的共轭复数为:﹣5+4i,∴在复平面内,复数(﹣4+5i)i的共轭复数对应的点的坐标为:(﹣5,4),位于第二象限.故选:B.9.【答案】D【解析】【知识点】直线与圆的位置关系参数和普通方程互化【试题解析】将参数方程化普通方程为:直线:圆:圆心(2,1),半径2.圆心到直线的距离为:,所以直线与圆相交。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二七区高级中学2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 设函数f (x )的定义域为A ,若存在非零实数l 使得对于任意x ∈I (I ⊆A ),有x+l ∈A ,且f (x+l )≥f (x ),则称f (x )为I 上的l 高调函数,如果定义域为R 的函数f (x )是奇函数,当x ≥0时,f (x )=|x ﹣a 2|﹣a 2,且函数f (x )为R 上的1高调函数,那么实数a 的取值范围为( )A .0<a <1B .﹣≤a ≤C .﹣1≤a ≤1D .﹣2≤a ≤22. 江岸边有一炮台高30米,江中有两条船,由炮台顶部测得俯角分别为45°和30°,而且两条船与炮台底部连线成30°角,则两条船相距( )A .10米B .100米C .30米D .20米3. 已知平面α∩β=l ,m 是α内不同于l 的直线,那么下列命题中错误 的是( )A .若m ∥β,则m ∥lB .若m ∥l ,则m ∥βC .若m ⊥β,则m ⊥lD .若m ⊥l ,则m ⊥β 4. 设函数()()21xf x ex ax a =--+,其中1a <,若存在唯一的整数,使得()0f t <,则的取值范围是( ) A .3,12e ⎡⎫-⎪⎢⎣⎭ B .33,24e ⎡⎫-⎪⎢⎣⎭ C .33,24e ⎡⎫⎪⎢⎣⎭ D .3,12e ⎡⎫⎪⎢⎣⎭1111]5. 若椭圆和圆为椭圆的半焦距),有四个不同的交点,则椭圆的离心率e 的取值范围是( )A .B .C .D .6. 已知函数()cos()3f x x π=+,则要得到其导函数'()y f x =的图象,只需将函数()y f x =的图象( )A .向右平移2π个单位 B .向左平移2π个单位 C. 向右平移23π个单位 D .左平移23π个单位7. 某三棱锥的三视图如图所示,该三棱锥的体积是( ) A . 2 B .4 C .34 D .38【命题意图】本题考查三视图的还原以及特殊几何体的体积度量,重点考查空间想象能力及对基本体积公式的运用,难度中等.8.已知等差数列{a n}满足2a3﹣a+2a13=0,且数列{b n} 是等比数列,若b8=a8,则b4b12=()A.2 B.4 C.8 D.169.如图,在正四棱锥S﹣ABCD中,E,M,N分别是BC,CD,SC的中点,动点P在线段MN上运动时,下列四个结论:①EP∥BD;②EP⊥AC;③EP⊥面SAC;④EP∥面SBD中恒成立的为()A.②④B.③④C.①②D.①③10.用一平面去截球所得截面的面积为2π,已知球心到该截面的距离为1,则该球的体积是()A.π B.2πC.4πD.π11.执行如图所示程序框图,若使输出的结果不大于50,则输入的整数k的最大值为()A.4 B.5 C.6 D.712.已知命题p :∀x ∈R ,2x <3x ;命题q :∂x ∈R ,x 3=1﹣x 2,则下列命题中为真命题的是( ) A .p ∧q B .¬p ∧qC .p ∧¬qD .¬p ∧¬q二、填空题13.若P (1,4)为抛物线C :y 2=mx 上一点,则P 点到该抛物线的焦点F 的距离为|PF|= . 14.下列命题:①函数y=sinx 和y=tanx 在第一象限都是增函数;②若函数f (x )在[a ,b]上满足f (a )f (b )<0,函数f (x )在(a ,b )上至少有一个零点; ③数列{a n }为等差数列,设数列{a n }的前n 项和为S n ,S 10>0,S 11<0,S n 最大值为S 5; ④在△ABC 中,A >B 的充要条件是cos2A <cos2B ;⑤在线性回归分析中,线性相关系数越大,说明两个量线性相关性就越强.其中正确命题的序号是 (把所有正确命题的序号都写上). 15.设集合A={x|x+m ≥0},B={x|﹣2<x <4},全集U=R ,且(∁U A )∩B=∅,求实数m 的取值范围为 .16.长方体1111ABCD A BC D -中,对角线1AC 与棱CB 、CD 、1CC 所成角分别为α、β、, 则222sinsin sin αβγ++= .17.已知函数为定义在区间[﹣2a ,3a ﹣1]上的奇函数,则a+b= .18.已知椭圆中心在原点,一个焦点为F (﹣2,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是 .三、解答题19.设函数f(x)=x2e x.(1)求f(x)的单调区间;(2)若当x∈[﹣2,2]时,不等式f(x)>m恒成立,求实数m的取值范围.20.已知直线l1:(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立直角坐标系,圆C1:ρ2﹣2ρcosθ﹣4ρsinθ+6=0.(1)求圆C1的直角坐标方程,直线l1的极坐标方程;(2)设l1与C1的交点为M,N,求△C1MN的面积.21.已知等差数列{a n}满足a2=0,a6+a8=10.(1)求数列{a n}的通项公式;(2)求数列{}的前n项和.22.已知椭圆E的长轴的一个端点是抛物线y2=4x的焦点,离心率是.(1)求椭圆E的标准方程;(2)已知动直线y=k(x+1)与椭圆E相交于A、B两点,且在x轴上存在点M,使得与k的取值无关,试求点M的坐标.23.如图,已知椭圆C:+y2=1,点B坐标为(0,﹣1),过点B的直线与椭圆C另外一个交点为A,且线段AB的中点E在直线y=x上(Ⅰ)求直线AB的方程(Ⅱ)若点P为椭圆C上异于A,B的任意一点,直线AP,BP分别交直线y=x于点M,N,证明:OM•ON 为定值.24.已知斜率为1的直线l经过抛物线y2=2px(p>0)的焦点F,且与抛物线相交于A,B两点,|AB|=4.(I)求p的值;(II)若经过点D(﹣2,﹣1),斜率为k的直线m与抛物线有两个不同的公共点,求k的取值范围.二七区高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】B【解析】解:定义域为R的函数f(x)是奇函数,当x≥0时,f(x)=|x﹣a2|﹣a2=图象如图,∵f(x)为R上的1高调函数,当x<0时,函数的最大值为a2,要满足f(x+l)≥f(x),1大于等于区间长度3a2﹣(﹣a2),∴1≥3a2﹣(﹣a2),∴﹣≤a≤故选B【点评】考查学生的阅读能力,应用知识分析解决问题的能力,考查数形结合的能力,用图解决问题的能力,属中档题.2.【答案】C【解析】解:如图,过炮台顶部A作水平面的垂线,垂足为B,设A处观测小船C的俯角为45°,设A处观测小船D的俯角为30°,连接BC、BDRt△ABC中,∠ACB=45°,可得BC=AB=30米Rt△ABD中,∠ADB=30°,可得BD=AB=30米在△BCD 中,BC=30米,BD=30米,∠CBD=30°,由余弦定理可得:CD 2=BC 2+BD 2﹣2BCBDcos30°=900 ∴CD=30米(负值舍去)故选:C【点评】本题给出实际应用问题,求炮台旁边两条小船距的距离.着重考查了余弦定理、空间线面的位置关系等知识,属于中档题.熟练掌握直线与平面所成角的定义与余弦定理解三角形,是解决本题的关键.3. 【答案】D【解析】【分析】由题设条件,平面α∩β=l ,m 是α内不同于l 的直线,结合四个选项中的条件,对结论进行证明,找出不能推出结论的即可【解答】解:A 选项是正确命题,由线面平行的性质定理知,可以证出线线平行;B 选项是正确命题,因为两个平面相交,一个面中平行于它们交线的直线必平行于另一个平面;C 选项是正确命题,因为一个线垂直于一个面,则必垂直于这个面中的直线;D 选项是错误命题,因为一条直线垂直于一个平面中的一条直线,不能推出它垂直于这个平面; 综上D 选项中的命题是错误的 故选D 4. 【答案】D 【解析】考点:函数导数与不等式.1 【思路点晴】本题主要考查导数的运用,涉及划归与转化的数学思想方法.首先令()0f x =将函数变为两个函数()()()21,xg x ex h x ax a =-=-,将题意中的“存在唯一整数,使得()g t 在直线()h x 的下方”,转化为存在唯一的整数,使得()g t 在直线()h x ax a =-的下方.利用导数可求得函数的极值,由此可求得m 的取值范围.5. 【答案】 A【解析】解:∵椭圆和圆为椭圆的半焦距)的中心都在原点,且它们有四个交点,∴圆的半径,由,得2c >b ,再平方,4c 2>b 2,在椭圆中,a 2=b 2+c 2<5c 2,∴;由,得b+2c <2a ,再平方,b 2+4c 2+4bc <4a 2, ∴3c 2+4bc <3a 2, ∴4bc <3b 2,∴4c <3b ,∴16c 2<9b 2, ∴16c 2<9a 2﹣9c 2, ∴9a 2>25c 2,∴,∴.综上所述,.故选A .6. 【答案】B【解析】试题分析:函数()cos ,3f x x π⎛⎫=+∴ ⎪⎝⎭()5'sin cos 36f x x x ππ⎛⎫⎛⎫=-+=+ ⎪ ⎪⎝⎭⎝⎭,所以函数()cos 3f x x π⎛⎫=+ ⎪⎝⎭,所以将函数函数()y f x =的图象上所有的点向左平移2π个单位长度得到5cos cos 326y x x πππ⎛⎫⎛⎫=++=+ ⎪ ⎪⎝⎭⎝⎭,故选B.考点:函数()sin y A x ωϕ=+的图象变换.7. 【答案】B8. 【答案】D【解析】解:由等差数列的性质可得a 3+a 13=2a 8,即有a 82=4a 8,解得a 8=4(0舍去), 即有b 8=a 8=4,由等比数列的性质可得b 4b 12=b 82=16.故选:D .9. 【答案】 A【解析】解:如图所示,连接AC 、BD 相交于点O ,连接EM ,EN . 在①中:由异面直线的定义可知:EP 与BD 是异面直线,不可能EP ∥BD ,因此不正确; 在②中:由正四棱锥S ﹣ABCD ,可得SO ⊥底面ABCD ,AC ⊥BD , ∴SO ⊥AC .∵SO ∩BD=O ,∴AC ⊥平面SBD ,∵E,M,N分别是BC,CD,SC的中点,∴EM∥BD,MN∥SD,而EM∩MN=M,∴平面EMN∥平面SBD,∴AC⊥平面EMN,∴AC⊥EP.故正确.在③中:由①同理可得:EM⊥平面SAC,若EP⊥平面SAC,则EP∥EM,与EP∩EM=E相矛盾,因此当P与M不重合时,EP与平面SAC不垂直.即不正确.在④中:由②可知平面EMN∥平面SBD,∴EP∥平面SBD,因此正确.故选:A.【点评】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间思维能力的培养.10.【答案】C【解析】解:用一平面去截球所得截面的面积为2π,所以小圆的半径为:cm;已知球心到该截面的距离为1,所以球的半径为:,所以球的体积为:=4π故选:C.11.【答案】A解析:模拟执行程序框图,可得S=0,n=0满足条,0≤k,S=3,n=1满足条件1≤k,S=7,n=2满足条件2≤k,S=13,n=3满足条件3≤k,S=23,n=4满足条件4≤k,S=41,n=5满足条件5≤k,S=75,n=6…若使输出的结果S不大于50,则输入的整数k不满足条件5≤k,即k<5,则输入的整数k的最大值为4.故选:12.【答案】B【解析】解:因为x=﹣1时,2﹣1>3﹣1,所以命题p:∀x∈R,2x<3x为假命题,则¬p为真命题.令f(x)=x3+x2﹣1,因为f(0)=﹣1<0,f(1)=1>0.所以函数f(x)=x3+x2﹣1在(0,1)上存在零点,即命题q:∃x∈R,x3=1﹣x2为真命题.则¬p∧q为真命题.故选B.二、填空题13.【答案】5.【解析】解:P(1,4)为抛物线C:y2=mx上一点,即有42=m,即m=16,抛物线的方程为y2=16x,焦点为(4,0),即有|PF|==5.故答案为:5.【点评】本题考查抛物线的方程和性质,考查两点的距离公式,及运算能力,属于基础题.14.【答案】②③④⑤【解析】解:①函数y=sinx和y=tanx在第一象限都是增函数,不正确,取x=,,但是,,因此不是单调递增函数;②若函数f(x)在[a,b]上满足f(a)f(b)<0,函数f(x)在(a,b)上至少有一个零点,正确;③数列{a n}为等差数列,设数列{a n}的前n项和为S n,S10>0,S11<0,∴=5(a6+a5)>0,=11a6<0,∴a5+a6>0,a6<0,∴a5>0.因此S n最大值为S5,正确;④在△ABC 中,cos2A ﹣cos2B=﹣2sin (A+B )sin (A ﹣B )=2sin (A+B )sin (B ﹣A )<0⇔A >B ,因此正确;⑤在线性回归分析中,线性相关系数越大,说明两个量线性相关性就越强,正确. 其中正确命题的序号是 ②③④⑤.【点评】本题综合考查了三角函数的单调性、函数零点存在判定定理、等差数列的性质、两角和差化积公式、线性回归分析,考查了推理能力与计算能力,属于难题.15.【答案】 m ≥2 .【解析】解:集合A={x|x+m ≥0}={x|x ≥﹣m},全集U=R ,所以C U A={x|x <﹣m}, 又B={x|﹣2<x <4},且(∁U A )∩B=∅,所以有﹣m ≤﹣2,所以m ≥2. 故答案为m ≥2.16.【答案】 【解析】试题分析:以1AC 为斜边构成直角三角形:1111,,AC D AC B AC A ∆∆∆,由长方体的对角线定理可得:2222221111222111sin sin sin BC DC AC AC AC AC αβγ++=++2221212()2AB AD AA AC ++==.考点:直线与直线所成的角.【方法点晴】本题主要考查了空间中直线与直线所成的角的计算问题,其中解答中涉及到长方体的结构特征、直角三角形中三角函数的定义、长方体的对角线长公式等知识点的考查,着重考查学生分析问题和解答问题的能力,属于中档试题,本题的解答中熟记直角三角形中三角函数的定义和长方体的对角线长定理是解答的关键. 17.【答案】 2 .【解析】解:∵f (x )是定义在[﹣2a ,3a ﹣1]上奇函数, ∴定义域关于原点对称, 即﹣2a+3a ﹣1=0, ∴a=1,∵函数为奇函数,∴f(﹣x)==﹣,即b•2x﹣1=﹣b+2x,∴b=1.即a+b=2,故答案为:2.18.【答案】.【解析】解:已知∴∴为所求;故答案为:【点评】本题主要考查椭圆的标准方程.属基础题.三、解答题19.【答案】【解析】解:(1)…令∴f(x)的单增区间为(﹣∞,﹣2)和(0,+∞);单减区间为(﹣2,0).…(2)令∴x=0和x=﹣2,…∴∴f(x)∈[0,2e2]…∴m<0…20.【答案】【解析】解:(1)∵,将其代入C1得:,∴圆C1的直角坐标方程为:.由直线l1:(t为参数),消去参数可得:y=x,可得(ρ∈R).∴直线l1的极坐标方程为:(ρ∈R).(2),可得⇒,∴.【点评】本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.21.【答案】【解析】解:(1)设等差数列{a n}的公差为d,∵a2=0,a6+a8=10.∴,解得,∴a n﹣1+(n﹣1)=n﹣2.(2)=.∴数列{}的前n项和S n=﹣1+0+++…+,=+0++…++,∴=﹣1++…+﹣=﹣2+﹣=,∴S n=.22.【答案】【解析】解:(1)由题意,椭圆的焦点在x轴上,且a=,…1分c=e•a=×=,故b===,…4分所以,椭圆E的方程为,即x2+3y2=5…6分(2)将y=k(x+1)代入方程E:x2+3y2=5,得(3k2+1)x2+6k2x+3k2﹣5=0;…7分设A(x1,y1),B(x2,y2),M(m,0),则x1+x2=﹣,x1x2=;…8分∴=(x1﹣m,y1)=(x1﹣m,k(x1+1)),=(x2﹣m,y2)=(x2﹣m,k(x2+1));∴=(k2+1)x1x2+(k2﹣m)(x1+x2)+k2+m2=m2+2m﹣﹣,要使上式与k无关,则有6m+14=0,解得m=﹣;∴存在点M(﹣,0)满足题意…13分【点评】本题考查了直线与圆锥曲线的综合应用问题,也考查了椭圆的标准方程及其几何性质,考查了一定的计算能力,属于中档题.23.【答案】【解析】(Ⅰ)解:设点E(t,t),∵B(0,﹣1),∴A(2t,2t+1),∵点A在椭圆C上,∴,整理得:6t2+4t=0,解得t=﹣或t=0(舍去),∴E(﹣,﹣),A(﹣,﹣),∴直线AB的方程为:x+2y+2=0;(Ⅱ)证明:设P(x0,y0),则,直线AP方程为:y+=(x+),联立直线AP与直线y=x的方程,解得:x M=,直线BP的方程为:y+1=,联立直线BP与直线y=x的方程,解得:x N=,∴OM•ON=|x M||x N|=2•||•||=||=||=||=.【点评】本题是一道直线与圆锥曲线的综合题,考查求直线的方程、线段乘积为定值等问题,考查运算求解能力,注意解题方法的积累,属于中档题.24.【答案】【解析】解:(I)由题意可知,抛物线y2=2px(p>0)的焦点坐标为,准线方程为.所以,直线l的方程为…由消y并整理,得…设A(x1,y1),B(x2,y2)则x1+x2=3p,又|AB|=|AF|+|BF|=x1+x2+p=4,所以,3p+p=4,所以p=1…(II)由(I)可知,抛物线的方程为y2=2x.由题意,直线m的方程为y=kx+(2k﹣1).…由方程组(1)可得ky2﹣2y+4k﹣2=0(2)…当k=0时,由方程(2),得y=﹣1.把y=﹣1代入y2=2x,得.这时.直线m与抛物线只有一个公共点.…当k≠0时,方程(2)得判别式为△=4﹣4k(4k﹣2).由△>0,即4﹣4k(4k﹣2)>0,亦即4k2﹣2k﹣1<0.解得.于是,当且k≠0时,方程(2)有两个不同的实根,从而方程组(1)有两组不同的解,这时,直线m与抛物线有两个不同的公共点,…因此,所求m的取值范围是.…【点评】本题考查抛物线的方程与性质,考查直线与抛物线的位置关系,考查学生分析解决问题的能力,属于中档题.。

相关文档
最新文档