3.3.3简单的线性规划2

合集下载

《3.3.2简单的线性规划问题》教案

《3.3.2简单的线性规划问题》教案

简单的线性规划学习内容总析线性规划位于不等式和直线方程的结合点上,是培养学生转化能力和熟练运用数形结合能力的重要内容。

这一节的知识内容形成了一条结构紧密的知识链条:以二元一次不等式(组)表示的平面区域为基础,根据实际问题中的已知条件,找出约束条件和目标函数,利用图解法解决简单的线性规划问题。

学情总析本节内容是在学习了直线方程、二元一次不等式(组)所表示的平面区域的基础上,强调应用转化思想和数形结合思想来解决线性规划问题。

三维教学目标知识与技能:①了解线性规划的意义以及约束条件、线性目标函数、可行域、最优解等相关的基本概念;②在巩固二元一次不等式(组)所表示的平面区域的基础上,能从实际优化问题中抽象出约束条件和目标函数,并依据目标函数的几何含义直观地运用图解法求出最优解;③掌握对一些实际优化问题建立线性规划数学模型并运用图解法进行求解的基本方法和步骤。

过程与方法:①培养学生的形象思维能力、绘图能力和探究能力;②强化数形结合的数学思想方法;③提高学生构建(不等关系)数学模型、解决简单实际优化问题的能力。

情感、态度与价值观:①在感受现实生产、生活中的各种优化、决策问题中体验应用数学的快乐;②在运用求解线性规划问题的图解方法中,感受动态几何的魅力;③在探究性练习中,感受多角度思考、探究问题并收获探究成果的乐趣。

教学重点及应对策略1、教学重点:根据实际优化问题准确建立目标函数,并依据目标函数的几何含义直观地运用图解法求出最优解;2、应对策略:将求目标函数最值问题转化为经过可行域的直线在y轴上的截距的最值问题,然后借助直线方程的知识进行解决。

教学难点及应对策略1、教学难点:①借助线性目标函数的几何含义准确理解线性目标函数在y轴上的截距与z最值之间的关系;②用数学语言表述运用图解法求解线性规划问题的过程。

2、应对策略:在理论解释的同时,可用动画进行演示辅助理解。

教学过程设计。

(20200524)简单的线性规划2

(20200524)简单的线性规划2
10 件,乙种设备每天能生产 A 类产品 6 件和 B 类产品 20 件.已知设备甲每天的租赁费为 200 元,设备 乙每天的租赁费为 300 元,现该公司至少要生产 A 类产品 50 件, B 类产品 140 件,求所需租赁费最少 为多少元?
y 0
x y 5
【例
2】设变量
x,
y
满足约束条件
2x x
y y
4 1
,
求目标函数
z
3x
5y
的最大值为(

y 0
A.6 B.19 C.21 D.45
【练
1】若
x,
y
满足约束条件
| |
x x
|
y | 2
1 ,则
z
2x
y
的最大值为
(
)
A. 7 B.3 C.5 D.7
(2)非线性目标函数的最值及取值范围 x 1 0
x y 0
【例
ห้องสมุดไป่ตู้8】已知
x,
y
满足约束条件
x
y
2
,

z
ax
y
的最大值为
4,

a


y 0
A.3 B.2 C. 2 D. 3
x y 2 0 【例 9】 x, y 满足约束条件 x 2y 2 0 , 若 z y ax 取得最大值的最优解不唯一,则实数 a 的值为( )
2x y 2 0
二、求解非线性目标函数问题
1.形如 z (x a)2 ( y b)2 型的目标函数
这是一个两点间的距离的模型,也可视为圆的模型,可化归为可行域内的点 (x, y) 与点 (a,b) 间的距离的最值

高中数学 3.3.3 简单的线性规划问题(第1课时)教案 必修5

高中数学 3.3.3 简单的线性规划问题(第1课时)教案 必修5

3.3.3 简单的线性规划问题第1课时简单的线性规划问题(教师用书独具)●三维目标1.知识与技能(1)从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决;(2)了解线性规划的意义以及线性约束条件、线性目标函数、可行解、可行域、最优解等概念,会根据条件建立线性目标函数;(3)了解线性规划的图解法,并会用图解法求线性目标函数的最大(小)值;(4)培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合、等价转化的数学思想.2.过程与方法(1)本节课是以二元一次不等式(组)表示的平面区域的知识为基础,将实际生活问题通过数学中的线性规划问题来解决;(2)考虑到学生的知识水平和消化能力,教师可通过激励学生探究入手,讲练结合,真正体现数学的工具性,同时,借助计算机的直观演示可使教学更富趣味性和生动性.3.情感、态度与价值观(1)结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生创新;(2)渗透集合、数形结合、化归的数学思想,培养学生“数形结合”的应用数学的意识,激发学生的学习兴趣.●重点、难点重点:线性规划问题的图解法,寻求线性规划问题的最优解.难点:利用图解法求最优解.为突出重点,本节教学应指导学生紧紧抓住化归、数形结合的数学思想方法,将实际问题数学化,代数问题几何化.解决难点的方法是精确作图,利用数形结合的思想将代数问题几何化.(教师用书独具)●教学建议从内容上看,简单的线性规划问题是在学习了不等式、直线方程的基础上展开的,它是对二元一次不等式的深化和再认识、再理解.它是用数学知识解决实际问题,属于数学建模,是初等数学中较抽象的,对学生要求较高,又是必须予以掌握的内容.考虑到学生的认知水平和理解能力,建议教师可以通过激励学生探究入手,讲练结合,培养学生对本节内容的学习兴趣,培养学生数形结合的意识,让学生体味数学的工具性作用.另外,教师还可借助计算机直观演示利用图解法求最优解的过程,增强教学的趣味性和生动性.●教学流程创设问题情境,引导学生了解线性约束条件、线性目标函数、可行域、线性规划问题等概念.⇒结合教材让学生掌握线性规划问题的图解法.⇒通过例1及其变式训练使学生巩固掌握利用图解法求最优解的步骤.⇒通过例2及其变式训练使学生掌握利用线性规划研究字母参数的方法.⇒通过例3及其变式训练使学生掌握求非线性目标函数的最值的方法.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双达达标,巩固所学知识,并进行反馈矫正.(对应学生用书第56页)课标解读1.了解目标函数、约束条件、可行域、最优解等基本概念.2.掌握线性规划问题的求解过程,特别是确定最优解的方法.(重点、难点)可行域约束条件所表示的平面区域,称为可行域.线性规划求线性目标函数在线性约束条件下的最大值或最小值问题,通常称为线性规划问题,上述只含两个变量的简单线性规划问题可用图解法解决.(对应学生用书第56页)线性规划问题设z =3x +5y ,式中变量x 、y 满足条件⎩⎪⎨⎪⎧x +2y ≥3,7x +10y ≥17,x ≥0,y ≥0.求z的最小值.【思路探究】【自主解答】 画出约束条件表示的点(x ,y )的可行域, 如图所示的阴影部分(包括边界直线).把z =3x +5y 变形为y =-35x +z 5,得到斜率为-35,在y 轴上的截距为z5,随z 变化的一族平行直线.作直线l :3x +5y =0,把直线向右上方平行移至l 1的位置时,直线经过可行域上的点M ,此时l 1:3x +5y -z =0的纵截距最小,同时z =3x +5y 取最小值.解方程组⎩⎪⎨⎪⎧x +2y =3,7x +10y =17,得M (1,1).故当x =1,y =1时,z min =8.1.由本例可以看出,解线性规划问题时,一定要注意最优解的对应点是最大值点,还是最小值点.对于目标函数z =ax +by ,当b >0时,直线截距最大时,z 有最大值,截距最小时,z 有最小值;当b <0时,则相反.2.图解法是解决线性规划问题的有效方法,其关键是利用z 的几何意义求解.平移直线ax +by =0时,看它经过哪个点(哪些点)时最先接触可行域和最后离开可行域,则这样的点即为最优解,最优解一般是在可行域的边界取得.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,x -5y +10≤0,x +y -8≤0,则目标函数z =3x -4y 的最大值和最小值分别为多少.【解】 作可行域如图所示,解⎩⎪⎨⎪⎧x -y +2=0,x +y -8=0得⎩⎪⎨⎪⎧x =3,y =5,∴A (3,5).解⎩⎪⎨⎪⎧x +y -8=0,x -5y +10=0得⎩⎪⎨⎪⎧x =5,y =3,∴B (5,3).平移直线3x -4y =z 可知,直线过A 点时,z 取最小值,过B 点时,z 取最大值. ∴z min =3×3-4×5=-11,z max =3×5-4×3=3.利用线性规划求字母参数的值(或范围)已知x ,y 满足⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y ≤25,x ≥1,设z =ax +y (a >0),若当z 取最大值时,对应的点有无数多个,求a 的值.【思路探究】【自主解答】 作出可行域如图所示.由⎩⎪⎨⎪⎧3x +5y =25,x -4y +3=0,得⎩⎪⎨⎪⎧x =5,y =2,∴点A 的坐标为(5,2).由⎩⎪⎨⎪⎧x =1,3x +5y =25,得⎩⎪⎨⎪⎧x =1,y =4.4,∴点C 的坐标为C (1,4.4).当直线z =ax +y (a >0)平行于直线AC ,且直线经过线段AC 上任意一点时,z 均取得最大值,此时有无数多点使z 取得最大值,而k AC =-35,∴-a =-35,即a =35.1.本题中,z 取最值时对应的点有无数多个,故这无数多个对应点构成平面区域的一段边界.2.解线性规划问题时一般要结合图形(平面区域)及目标函数的几何意义解题.若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥1,x -y ≥-1,2x -y ≤2,目标函数z =ax +2y 仅在点(1,0)处取得最小值,则a 的取值范围是________.【解析】 作出可行域,让目标函数所表示的直线过定点,观察斜率的范围,构建不等式求参数范围.如图所示,约束条件所表示的平面区域为三角形,目标函数z =ax +2y ,即y =-a 2x +z 2仅在点(1,0)处取得最小值,故其斜率应满足-1<-a 2<2,即-4<a <2.故填(-4,2).【答案】 (-4,2)求非线性目标函数的最值已知x ,y 满足条件⎩⎪⎨⎪⎧7x -5y -23≤0,x +7y -11≤0,4x +y +10≥0.(1)求u =x 2+y 2的最大值和最小值; (2)求z =yx +5的最大值和最小值. 【思路探究】【自主解答】 画出不等式组所表示的平面区域,如图所示.(1)∵u =x 2+y 2,∴u 为点(x ,y )到原点(0,0)的距离,结合不等式组所表示的平面区域可知,点B 到原点的距离最大,而当(x ,y )在原点时,距离为0.由⎩⎪⎨⎪⎧7x -5y -23=0,4x +y +10=0得点B 的坐标为(-1,-6),∴(x 2+y 2)max =(-1)2+(-6)2=37,(x 2+y 2)min =0. (2)z =yx +5=y -0x --5,所以求z 的最大值和最小值,即是求可行域内的点(x ,y )与点(-5,0)连线斜率的最大值和最小值.设点M 的坐标为(-5,0),由⎩⎪⎨⎪⎧x +7y -11=0,4x +y +10=0得点C 的坐标为(-3,2),由(1)知点B 的坐标为(-1,-6),∴k max =k MC =2-0-3--5=1,k min =k MB =-6-0-1--5=-32,∴yx +5的最大值是1,最小值是-32. 1.本题中,(1)x 2+y 2是平面区域内的点(x ,y )到原点的距离的平方;(2)y x +5=y -0x --5可看成平面区域内的点(x ,y )与点(-5,0)连线的斜率.2.解决此类问题,应先准确作出线性约束条件表示的平面区域,然后弄清非线性目标函数的几何意义.已知x ,y 满足⎩⎪⎨⎪⎧x -y +2≥0,x +y -4≥0,2x -y -5≤0.(1)求z =x 2+y 2+2x -2y +2的最小值; (2)求z =|x +2y -4|的最大值. 【解】 (1)作出可行域,如图所示, ∵z =(x +12+y -12)2,∴z 可看作是可行域内任意一点(x ,y )到点M (-1,1)的距离的平方. 由图可知z min 等于原点到直线x +y -4=0的距离的平方, ∴z min =(|-4|2)2=8.(2)∵z =|x +2y -4|=5·|x +2y -4|5, ∴z 可看作是可行域内任意一点(x ,y )到直线x +2y -4=0的距离的5倍. 由图可知点C 到直线x +2y -4=0的距离最大.由⎩⎪⎨⎪⎧x -y +2=0,2x -y -5=0得点C (7,9),∴z max =|7+2×9-4|5×5=21.(对应学生用书第58页) 直线的倾斜程度判断不准致误已知⎩⎪⎨⎪⎧11x +4y ≤44,7x +5y ≤35,6x +7y ≤42,x ≥0,y ≥0,求z =x +y 的最大值.【错解】 作出可行域,如图所示.作出直线l 0:x +y =0,将它移至点B ,则点B 的坐标是可行域中的最优解,它使z 达到最大值.解方程组⎩⎪⎨⎪⎧11x +4y =44,7x +5y =35,得点B 的坐标为(8027,7727).所以z max =8027+7727=15727.【错因分析】 将直线l 0向上移动时,最后离开可行域的点不是点B 而是点A ,这是由于直线倾斜程度不准确引起的,由于三条边界直线的斜率依次是-67,-75,-114,而目标函数z =x +y 的斜率为-1,它夹在-67与-75之间,故经过点B 时,直线x +y =z 必在点A 的下方,即点B 不是向上平移直线时最后离开可行域的点,而是点A .【防范措施】 解决线性规划问题时,可行域一定要准确,关键点的位置不能画错,若数据比较大,不易画图,也可用斜率分析法确定关键点或取得最值点.【正解】 作出二元一次不等式组所表示的平面区域如上图.作出直线l ′0:x +y =0,将它向上平移,当它经过点A 时,z 取得最大值.解方程组⎩⎪⎨⎪⎧7x +5y =35,6x +7y =42,得⎩⎪⎨⎪⎧x =3519,y =8419,故z max =3519+8419=119191.基础知识: (1)可行域; (2)线性规划. 2.基本技能: (1)解线性规划问题;(2)利用线性规划求字母参数的值(或范围); (3)求非线性目标函数的最值. 3.思想方法: (1)数形结合思想; (2)函数思想; (3)转化思想.(对应学生用书第58页)1.已知实数x ,y 满足⎩⎪⎨⎪⎧x -y +5≥0,x ≤3,x +y ≥0,则目标函数z =x +2y 的最小值为________.【解析】 画出不等式组表示的平面区域,由图可知目标函数在点(3,-3)处取得最小值-3.【答案】 -3图3-3-72.给出平面区域(包含边界)如图3-3-7所示,若使目标函数z =ax +y (a >0)取得最大值的最优解有无数多个,则a 的值为________.【解析】 由题意知-a =k AC =-35,∴a =35.【答案】 353.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2<0,x >1,x +y -7<0,则yx的取值范围是________.【解析】 目标函数y x 是可行域上的动点(x ,y )与原点连线的斜率,最小值是k OC =95,最大值是k AO =6,又可行域边界取不到,∴95<yx<6.【答案】 (95,6)4.已知x 、y 满足条件⎩⎪⎨⎪⎧7x -5y -23≤0,x +7y -11≤0,4x +y +10≥0,求z =4x -3y 的最值.【解】 原不等式组表示的平面区域如图所示: 其中A (4,1)、B (-1,-6)、C (-3,2). 作与4x -3y =0平行的直线l :4x -3y =t , 即y =43x -t3,则当l 过C 点时,t 最小; 当l 过B 点时,t 最大.∴z max =4×(-1)-3×(-6)=14,z min =4×(-3)-3×2=-18.(对应学生用书第97页)一、填空题1.(2013·微山高二检测)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤1,y ≤x ,y ≥-2,则z =3x +y 的最大值为________.【解析】 不等式组表示的平面区域如图所示:把z =3x +y 变形为y =-3x +z 得到斜率为-3,在y 轴截距为z 的一族平行直线,由图当直线l :y =-3x +z 过可行域内一点M 时,在y 轴截距最大,z 也最大.由⎩⎪⎨⎪⎧x +y =1,y =-2,∴⎩⎪⎨⎪⎧x =3,y =-2,即M (3,-2).∴当x =3,y =-2时,z max =3×3+(-2)=7. 【答案】 72.(2013·苏州高二检测)变量x ,y 满足⎩⎪⎨⎪⎧2x +y ≥12,2x +9y ≥36,2x +3y ≥24,x ≥0,y ≥0,则使得z =3x +2y 的值最小的(x ,y )是________.【解析】 不等式组表示的平面区域如图所示:把z =3x +2y 变形为y =-32x +z 2,作与直线l 0:y =-32x 平行的直线l ,显然当l 经过可行域内点M 时在y 轴上截距最小,z 也最小.由⎩⎪⎨⎪⎧2x +y =12,2x +3y =24,∴⎩⎪⎨⎪⎧x =3,y =6,即M (3,6)时,z =3x +2y 的值最小. 【答案】 (3,6)3.设z =2y -2x +4,式中的x ,y 满足条件⎩⎪⎨⎪⎧0≤x ≤1,0≤y ≤2,2y -x ≥1,则z 的取值范围是________.【解析】 作出满足不等式组⎩⎪⎨⎪⎧0≤x ≤1,0≤y ≤2,2y -x ≥1的可行域(如图所示),作直线2y -2x =0,并将其平移,由图象可知当直线经过点A (0,2)时,z max =2×2-2×0+4=8; 当直线经过点B (1,1)时,z min =2×1-2×1+4=4.所以z 的取值范围是[4,8]. 【答案】 [4,8]4.(2013·连云港检测)设实数x ,y 满足⎩⎪⎨⎪⎧x -y -2≤0,x +2y -4≥0,2y -3≤0,则yx的最大值是________.【解析】 不等式组表示的平面区域如图所示: 又y x =y -0x -0表示过平面区域内一点(x ,y )与原点(0,0)的直线的斜率,由图知(x ,y )在平面区域内A 点处时直线斜率最大.由⎩⎪⎨⎪⎧x +2y -4=0,2y -3=0得⎩⎪⎨⎪⎧x =1,y =32,∴A (1,32),∴y x 的最大值为32.【答案】 325.(2013·无锡检测)二元一次方程组⎩⎪⎨⎪⎧x <0,y <0,x +y +4>0表示的平面区域内,使得x +2y 取得最小值的整点坐标为________.【解析】 不等式组表示的平面区域如图所示: ∵平面区域不包括边界,∴平面区域内的整点共有(-1,-1),(-1,-2),(-2,-1)三个. 代入检验知,整点为(-1,-2)时x +2y 取得最小值. 【答案】 (-1,-2)6.已知⎩⎪⎨⎪⎧x +y -1≤0,x -y +1≥0,y ≥-1,且u =x 2+y 2-4x -4y +8,则u 的最小值为________.【解析】 不等式组表示的平面区域如图所示,由已知得(x -2)2+(y -2)2=(u )2,则(u )min =|2+2-1|1+1=32,u min =92.【答案】 927.已知变量x ,y 满足约束条件1≤x +y ≤4,-2≤x -y ≤2.若目标函数z =ax +y (其中a >0)仅在点(3,1)处取得最大值,则a 的取值范围为________.【解析】 由题设知可行域为如图所示的矩形,要使目标函数z =ax +y 在点(3,1)处取得最大值,结合图形可知a >1.【答案】 (1,+∞)8.如果点P 在平面区域⎩⎪⎨⎪⎧2x -y +2≥0,x -2y +1≤0,x +y -2≤0内,点Q 在曲线x 2+(y +2)2=1上,那么|PQ |的最小值为________.【解析】 首先作出不等式组表示的平面区域和曲线x 2+(y +2)2=1,如图所示,从而可知点P 到Q 的距离最小值是可行域上的点到(0,-2)的最小值减去圆的半径1,由图可知|PQ |min =12+-22-1=5-1。

26-简单的线性规划问题(2)

26-简单的线性规划问题(2)

3.3.2简单的线性规划问题(2)教材分析线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法,广泛地应用于军事作战、经济分析、经营管理和工程技术等方面.简单的线性规划指的是目标函数含两个自变量的线性规划,其最优解可以用数形结合方法求出.简单的线性规划关心的是两类问题:一是在人力、物力、资金等资源一定的条件下,如何使用它们来完成最多的任务;二是给定一项任务,如何合理规划,能以最少的人力、物力、资金等资源来完成. 教科书利用生产安排的具体实例,介绍了线性规划问题的图解法,引出线性规划等概念,最后举例说明了简单的二元线性规划在饮食营养搭配中的应用.本节内容蕴含了丰富的数学思想方法,突出体现了优化思想、数形结合思想和化归思想.课时分配本课时是简单的线性规划问题的第二课时,主要解决的是线性规划的应用问题.教学目标重点: 掌握约束条件、目标函数、可行解、可行域、最优解等基本概念.难点:理解实际问题的能力,渗透化归、数形结合的数学思想.知识点:图解法求线性目标函数的最大值、最小值.能力点:函数与方程、数形结合、等价转化、分类讨论的数学思想的运用.教育点:结合教学内容培养学生学习数学的兴趣和“用数学”的意识.自主探究点:培养学生观察、联想、作图和理解实际问题的能力.考试点:线性规划问题的图解法;寻求有实际背景的线性规划问题的最优解.易错易混点:线性规划问题和非线性规划问题的区分于解决.拓展点:非线性规划问题.教具准备实物投影机和粉笔课堂模式诱思探究一、复习引入简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域作出可行域;(3)在可行域内求目标函数的最优解.【设计意图】通过复习进一步熟悉解决简单线性规划问题的具体操作程序.二、探究新知请同学们通过完成练习来掌握图解法解决简单的线性规划问题.(1)求2z x y =+的最大值,使式中的x y 、满足约束条件,1,1.y x x y y ≤⎧⎪+≤⎨⎪≥-⎩(2)求35z x y =+的最大值和最小值,使式中的x y 、满足约束条件5315,1,5 3.x y y x x y +≤⎧⎪≤+⎨⎪-≥⎩解:不等式组表示的平面区域如右图所示: 当0,0x y ==时,20z x y =+=, 点(0,0)在直线020l x y +=:上.作一组与直线0l 平行的直线2,l x y t t R +=∈:.可知在经过不等式组所表示的公共区域内的点且平行于l 的直线中,以经过点(2,1)A -的直线所对应的t 最大.所以max 2213z =⨯-=.(2)求35z x y =+的最大值和最小值,使式中的x y 、满足约束条件5315,1,5 3.x y y x x y +≤⎧⎪≤+⎨⎪-≥⎩解:不等式组所表示的平面区域如右图所示.从图示可知直线35x y t +=在经过不等式组所表示的公共区域内的点时,以经过点(2,1)--的直线所对应的t 最小,以经过点917(,)88的直线所对应的t 最大.所以min 3(2)5(1)11z =⨯-+⨯-=-, max 917351488z =⨯+⨯=. 【设计意图】通过反思总结,加强对“数形结合”数学思想的认识,形成学生良好的认知结构.三、运用新知【例1】某工厂生产甲、乙两种产品.已知生产甲种产品1t ,需耗A 种矿石10t 、B 种矿石5t 、煤4t ;生产乙种产品需耗A 种矿石4t 、B 种矿石4t 、煤9t.每1t 甲种产品的利润是600元,每1t 乙种产品的利润是1000元.工厂在生产这两种产品的计划中要求消耗A 种矿石不超过360t 、B 种矿石不超过200t 、煤不超过300t ,甲、乙两种产品应各生产多少(精确到0.1t ),能使利润总额达到最大?解:设生产甲、乙两种产品分别为xt yt 、,利润总额为z 元,那么104300,54200,49360,0,0;x y x y x y x y +≤⎧⎪+≤⎪⎪+≤⎨⎪≥⎪≥⎪⎩目标函数为6001000z x y =+.作出以上不等式组所表示的平面区域,即可行域. 作直线6001000=0l x y +:, 即直线5=0l x y +:3,把直线l 向右上方平移至1l 的位置时,直线经过可行域上的点M ,且与原点距离最大,此时6001000z x y =+取最大值.解方程组54200,49360,x y x y +=⎧⎨+=⎩得M 的坐标为3601000(,)2929. 答:应生产甲产品约12.4t ,乙产品34.4t ,能使利润总额达到最大.【设计意图】通过此题检测学生对已学知识的掌握情况,进一步培养学生的运算能力和准确作图的能力.【例2】在上一节例4中(课本85页例4),若生产1车皮甲种肥料,产生的利润为10000元,若生产1车皮乙种肥料,产生的利润为5000元,那么分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?生:若设生产x 车皮甲种肥料,y 车皮乙种肥料,能够产生的利润z 万元.目标函数0.5z x y =+,可行域如右图:把0.5z x y =+变形为22y x z =-+,得到斜率为2-,在y 轴上截距为2z ,随z 变化的一组平行直线.由图可以看出,当直线22y x z =-+经过可行域上的点M 时,截距2z 最大,即z 最大. 解方程组⎩⎨⎧=+=+104,661518y x y x 得点(2,2)M ,因此当2,2x y ==时,0.5z x y =+取最大值,最大值为3.由此可见,生产甲、乙两种肥料各2车皮,能够产生最大的利润,最大利润为3万元.【设计意图】利用学生感兴趣的例子激发学习动机,通过一道完整的简单线性规划问题,让学生掌握解决简单线性规划问题的基本步骤,培养学生的数学建模意识.同时进一步加深对图解法的认识.四、课堂小结用图解法解决简单的线性规划问题的基本步骤:(1)首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域). (2)设0t ,画出直线0l .(3)观察、分析,平移直线0l ,从而找到最优解.(4)最后求得目标函数的最大值及最小值.以实际问题为背景的线性规划问题其求解的格式与步骤: (1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域作出可行域; (3)在可行域内求目标函数的最优解. 当然也要注意问题的实际意义【设计意图】通过总结,培养学生数学交流和表达的能力,养成及时总结的良好习惯,并将所学知识纳入已有的认知结构.五、布置作业课本第93页习题3.3 B 组1、2、3.拓展作业:某工厂用A 、B 两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A 配件耗时1h ,每生产一件乙产品使用4个B 配件耗时2h ,该厂每天最多可从配件厂获得16个A 配件和12个B 配件,按每天工作8h 计算,该厂所有可能的日生产安排是多少?【设计意图】检测题主要考查学生对本节课重点知识的掌握情况,检查学生能否运用所学知识解决问题的能力;拓展作业的设置是为了教会学生怎样利用资料进行数学学习,同时让学生了解网络是自主学习和拓展知识面的一个重要平台,这是本节内容的一个提高与拓展.六、反思提升1. 让学生参与教学的全过程,成为课堂教学的主体和学习的主人,而教师时刻关注学生的活动过程,不时给予引导,及时纠偏的做法是明显的亮点.2.本节课的不足之处是由于整堂课课堂运算量较大,画图用时较多,后续的内容未能完成.七、板书设计。

第一部分 第三章 3.3 第二课时 简单的线性规划问题

第一部分  第三章  3.3  第二课时 简单的线性规划问题
返回
5.某公司租赁甲、乙两种设备生产A、B两类产品,甲种设 备每天能生产A类产品5件和B类产品10件,乙种设备每 天能生产A类产品6件和B类产品20件.已知设备甲每天 的租赁费为200元,设备乙每天的租赁费为300元,现该 公司至少要生产A类产品50件,B类产品140件,所需租 赁费最少为__________元.
3.3
第 三 章
二元 一次 不等 式组
第二 课时
简单
不 等 式
与简 单的 线性 规划
的线 性规 划问 题
问题
理解教材新知 把握热点考向 应用创新演练
考点一 考点二 考点三
返回
返回
第二课时 简单的线性规划问题 返回
返回
现在是信息时代,广告可以给公司带来效益.某公 司计划在甲、乙两个电视台做总时间不超过300分钟的 广告,广告总费用不超过9万元,甲、乙两个电视台的 收费标准分别为500元/分钟和200元/分钟. 问题1:设在甲、乙两个电视台做广告的时间分别为x分 钟,y分钟,试ห้องสมุดไป่ตู้出满足条件的不等关系.
答案:9
返回
2.在如下图所示的可行域内(阴影部分且包括边界), 目标函数z=x-y,则使z取得最小值的点的坐标 为____________.
解析:对直线y=x+b进行平移,注意b越大,z越 小故,四个点中,过点A(1,1)时 z取最小值0. 答案:(1,1)
返回
返回
[例 2]
0≤x≤1 (2011·苏 北 四 市 三 调 )在 约 束 条 件 0≤y≤2 2y-x≥1
返回
[一点通] 解答线性规划应用题的一般步骤: (1)审题——仔细阅读,对关键部分进行“精读”,准 确理解题意,明确有哪些限制条件,起关键作用的变量 有哪些,由于线性规划应用题中的量较多,为了理顺题 目中量与量之间的关系,有时可借助表格来理顺. (2)转化——设元.写出约束条件和目标函数,从而 将实际问题转化为数学上的线性规划问题. (3)求解——解这个纯数学的线性规划问题. (4)作答——就应用题提出的问题作出回答.

人教版高中数学必修五第3章 3.3 3.3.3 简单的线性规划问题(二) 课件

人教版高中数学必修五第3章 3.3 3.3.3 简单的线性规划问题(二) 课件

(x+2)2+y2=1 上,那么|PQ|的最小值是( A )
A.1
B.2
2 C.
310-1
2 10 D. 3
2x+5y≥10, 4.已知 x,y 满足约束条件2x-3y≥-6, 则 z=x2+y2
2x+y≤10,
100 的最小值为______2_9_____.
题型3 非线性目标函数(面积)
|3x+4y+5| (3)
表示点
P(x,y)与_直__线__3_x+__4_y_+__5_=__0_的距离.
5
题型1 非线性目标函数(斜率) 例1:求 z= yx++11的最大值,其中 x,y 满足约束条件
思维突破:把所求问题看成区域上的点与点(-1,-1)连 线的斜率.
自主解答:作出不等式组表示的可行域如图 D18.
图D23
例 4:若不等式组xx≥ +03, y≥4, 3x+y≤4
所表示的平面区域被直线
y=kx+43分为面积相等的两部分,则 k 的值是( )
欢迎来到二)
1.进一步了解线性规划的意义,了解线性约束条件、线性 目标函数、可行解、可行域、最优解等基本概念.
2.掌握线性规划问题的图解法,会用图解法求目标函数的 最大值、最小值.
3.训练数形结合、化归等常用思想,培养和发展数学应用 意识.
非线性目标函数.
当把 z 看作常数时,它表示点(x,y)与点(-1,-1)所在直
线的斜率,点(x,y)在可行域内.因此当点(x,y)是点 A 时,斜
率 z 最大.
∵点 A 为直线 y=11 与 y 轴的交点,
∴点 A 的坐标为(0,11).
∴zmax=101++11=12.
图 D18
对形如 z=acxy++db(ac≠0)型的目标函数,可先变 形为 z=ac·yx- -- -badc的形式,将问题化为可行域内的点(x,y)与 -dc,-ba连线斜率的ac倍的范围、最值等.

江苏省靖江市第一高级中学高中数学必修五苏教版课件:3.3.3 简单的线性规划问题(2)

江苏省靖江市第一高级中学高中数学必修五苏教版课件:3.3.3 简单的线性规划问题(2)
高中数学 必修5
一、问题情景
某校办工厂有方木料90m3,五合板600m2,正准备为外校新生加工 新桌椅和书橱出售.已知生产每张书桌需要方木料0.1m3,五合板2m2 ,生产每个书橱需要方木料0.2m3,五合板1m2,出售一张书桌可获 利润80元,出售一张书橱可获利润120元.
(1)假设你是工厂的生产科长,请你按要求设计出工厂的生产方案。 方案一:若只生产书桌,用完五合板,可生产书桌300张,可获得利 润80×300=24000元,但方木料没有用完. 方案二:若只生产书橱,用完方木料,可生产450张书橱,可获得利 润120×450=54000元,但五合板没有用完.
学段
初中 高中
班级学生数 配备教师数
45
2
40
3
硬件建设 (万元)
26/班 54/班
教师年薪 (万元)
2/人 2/人
分别用数学关系式和图形表示上述限制条件.若根据有关部门的规 定,初中每人每年可收学费1600元,高中每人每年可收学费2700元.因 生源和环境等条件限制,办学规模以20至30个班为宜(含20个与30个) 那么开设初中班和高中班多少个?每年收费的学费总额最多?
xN
y N
目标函数为: z 80x 120y
(3)如果你是厂长,为使工厂原料充分利用,问怎么安排能 够使资源最大限度的利用,且可获得最大利润? 方案三、生产书桌100张,书橱400张,有最大利润为56000元.
二、线性规划在实际中的应用
线性规划的理论和方法主要在两类问题中得到应用,
一是在人力、物力、资金等资源一定的条件下,如何使用它们来完 成最多的任务;
二是给定一项任务,如何合理安排和规划,能以最少的人力、 物力、资金等资源来完成该项任务.

3.3.2简单线性规划(1_2)--上课用

3.3.2简单线性规划(1_2)--上课用
2、画出Z=2x+y对应的 方程0=2x+y的图像
y-x=0
5
4、 根据0=2x+y平移到 区域的最后一个点时有 最大(小)值
3、根据b的正负值判断向上向下 平移时Z的增减性, 1 O
1 A(2,-1)
5
x
y+1=0
B(-1,-1)
-1
x+y-1=0
x - y 0 1 、 画出x y - 1 0区域 y y 1 0
使 式中,的x、y满足约束条件:
3 z z y x , 为直线3x 5 y z 0 5 5 5 的纵截距
5 x 3 y 15 y x 1 x 5 y 3
5x+3y=15 y y=x+1
5
B(3/2,5/2)
1
X-5y=3 x
O
-1
1
5
A(-2,-1)
B.z=5x+3y D.z=3x+5y
答案:A
第31页
高考题练习:
x y≥2, 1.(2009 浙江)若实数x, y满足不等式组 2 x y≤4, x y≥0, 则2x 3y的最小值是 ________ .
答案:4
第32页
解析:作出可行域如下图. 作直线l:2x+3y=0,平移l,当l过点A(2,0)时,2x+3y有最小值4.
D.5
z=5×1+0=5.
答案:D
第34页
则z x 2y的最大值为
A.4 答案:B B.3 C.2
y≤1, 3.(2010 全国Ⅰ若变量 ) x、y满足约束条件 x y≥0, x y 2≤0,

高中数学 同步教学 简单的线性规划问题

高中数学 同步教学 简单的线性规划问题

x (1)
2
率的 2 倍,
因为 kQA= 7 ,kQB= 3 ,所以 z 的取值范围是[ 3 , 7 ].
48
42
方法技巧 与二元一次不等式(组)表示的平面区域有关的非线性目标函数 的最值问题的求解,一般要结合给定代数式的几何意义来完成.
常 见 代 数 式 的 几 何 意 义 :(1) x2 y2 表 示 点 (x,y) 与 原 点 (0,0) 的 距
4.给定下列命题:在线性规划中,
①最优解指的是使目标函数取得最大值的变量x或y的值;
②最优解指的是目标函数的最大值或最小值;
③最优解指的是使目标函数取得最大值或最小值的可行域;
④最优解指的是使目标函数取得最大值或最小值的可行解.
其中正确命题的序号是
.
解析:因为最优解是使目标函数取得最大值或最小值的可行解,即满足 线性约束条件的解(x,y),它是一个有序实数对,所以①②③均错,④正确. 故填④. 答案:④
变式探究:在本例的约束条件下,求z=x2+y2+2x的最大值与最小值.
解:z=x2+y2+2x=(x+1)2+y2-1 表示可行域内任意一点(x,y)与点 D(-1,0)距离的平方减去 1,
如图所示,过 D 作 AB 的垂线 DP,垂足为 P,所以|DP|= | 1 0 4 | = 5 = 5 2 ,
(2)简单线性规划问题的解法 在确定线性约束条件和线性目标函数的前提下,用图解法求最优解的步骤 可概括为“画、移、求、答”,即: ① 画 : 在 平 面 直 角 坐 标 系 中 , 画 出 可 行 域 和 直 线 ax+by=0( 目 标 函 数 为 z=ax+by); ②移:平行移动直线ax+by=0,确定使z=ax+by取得最大值或最小值的点; ③求:求出使z取得最大值或最小值的点的坐标(解方程组)及z的最大值或 最小值; ④答:给出正确答案.

高中数学必修五第三章:3.2简单的线性规划(2)教案

高中数学必修五第三章:3.2简单的线性规划(2)教案

课题: 3.3.2 简单的线性规划(2)第课时总序第个教课设计课型:新讲课编写不时间:年月日履行时间:年月日教课目的:批1.知识与技术:掌握线性规划问题的图解法,并能应用它解决一些简单的实质注问题;2.过程与方法:经历从实质情境中抽象出简单的线性规划问题的过程,提升数学建模能力;3.神态与价值:引起学生学习和使用数学知识的兴趣,发展创新精神,培育实事求是、理论与实质相联合的科学态度和科学道德。

教课要点:利用图解法求得线性规划问题的最优解教课难点:把实质问题转变成线性规划问题,并给出解答,解决难点的要点是依据实质问题中的已知条件,找出拘束条件和目标函数,利用图解法求得最优解。

教课器具:三角板,投影仪教课方法:经历从实质情境中抽象出简单的线性规划问题的过程,提升数学建模能力教课过程:1. 课题导入[复习引入 ]:1、二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧全部点构成的平面地区(虚线表示地区不包含界限直线)2、目标函数 ,线性目标函数,线性规划问题, 可行解,可行域,最优解:2. 解说新课线性规划在实质中的应用:线性规划的理论和方法主要在两类问题中获得应用,一是在人力、物力、资本等资源必定的条件下,怎样使用它们来达成最多的任务;二是给定一项任务,怎样合理安排和规划,能以最少的人力、物力、资本等资源来达成该项任务下边我们就来看看线性规划在实质中的一些应用:[ 典范解说 ]例 5 营养学家指出,成人优秀的平时饮食应当起码供给0.075kg 的碳水化合物, 0.06kg 的蛋白质,0.06kg 的脂肪,1kg 食品 A 含有 0.105kg 碳水化合物, 0.07kg蛋白质,0.14kg脂肪,花销28元;而1kg 食品 B 含有 0.105kg碳水化合物,0.14kg 蛋白质, 0.07kg 脂肪,花销 21 元。

为了知足营养专家指出的平时饮食要求,同时使花销最低,需要同时食用食品 A 和食品 B 多少 kg ?指出 : 要达成一项确立的任务 , 怎样兼顾安排 , 尽量做到用最少的资源去达成它 , 这是线性规划中最常有的问题之一 .例 6在上一节例 3 中,若依据相关部门的规定,初中每人每年可收取学费 1 600 元,高中每人每年可收取学费 2 700 元。

高中数学人教A版必修5第三章3.3.2简单的线性规划问题(二)课件

高中数学人教A版必修5第三章3.3.2简单的线性规划问题(二)课件

学段 初中 高中
硬件建设 班级学生数 配备教师数 万元
45
2
26/班
40
3
54/班
教师年薪 万元
2/人 2/人
分别用数学关系式和图形表示上述限制条件。若 根据有关部门的规定,初中每人每年可收学费1600 元,高中每人每年可收学费2700元。那么开设初中 班和高中班多少个?每年收费的学费总额最多?
解:设开设初中班x个,高中班y个。因办学规模以 20~30个班为宜,所以, 20≤x+y≤30
2x+y=15 x+y=12 x+2y=18
x 27
x+3y=27
当直线经过点A时z=x+y=11.4, 但它不是最优整数解. 作直线x+y=12
B(3,9)和C(4,8)在直线上,且在可行域内, 整点是B(3,9)和C(4,8),它们是最优解. 答(略)
{2x+y≥15, x+2y≥18, x+3y≥27, x≥0, x∈N* y≥0 y∈N*
目标函数t = x+y
y 15
B(3,9)
9
C(4,8)
A(18/5,39/5)
打网格线法
x+y =0
2 1 0 12 78
x
18
27
作出直线 x+y=0,
2x+y=15
x+2y=18 x+3y=27
当直线经过点A时t=x+y=11.4,但它不是最优整数解,
在可行域内打出网格线, 将直线x+y=11.4继续向上平移,
7 x 7 y 5
14x 7 y 6
x
1 7
得M点的坐标为:

人教A版高中数学必修五课件3.3.2简单的线性规划问题2.pptx

人教A版高中数学必修五课件3.3.2简单的线性规划问题2.pptx

5.已知线性目标函数 z=3x+2y,在线性约束条件
x+y-3≥0 2x-y≤0 y≤a
下取得最大值时的最优解只有一个,则实数 a
的取值范围是________.
x+y-3≥0
解析: 作出线性约束条件2x-y≤0
y≤a
表示的平面
区域,
如图中阴影部分所示.
• 因为取得最大值时的最优解只有一个,所以目 标函数对应的直线与平面区域的边界线不平行, 根据图形及直线的斜率,可得实数a的取值范 围是[2,+∞).
元.该企业在一个生产周期内消耗A原料不超过 13吨、B原料不超过18吨,那么该企业可获得最 大利润是( )
• A.12万元
B.20万元
• C.25万元D.27万元
解析: 设该企业在一个生产周期内各生产甲、乙产品
x、y 吨,获得利润 z 万元,根据题意,得
3x+y≤13
2x+3y≤18 x≥0
• (3)求:解方程组求最优解,进而求出目标函数的 最大值和最小值.
• [注意] 画可行域时,要特别注意可行域各边 的斜率与目标函数直线的斜率的大小关系,以 便准确判断最优解.
• 2.最优解的确定
• 最优解的确定可有两种方法:
• (1)将目标函数的直线平行移动,最先通过或 最后通过的顶点便是最优解.
交点 A(4,5)时,目标函数 z=200x+300y 取到最小值为 2 300
元,故所需租赁费最少为 2 300 元.
• 答案: 2300
• 2.某企业生产甲、乙两种产品,已知生产每吨 甲产品要用A原料3吨、B原料2吨;生产每吨乙产
品要用A原料1吨、B原料3吨.销售每吨甲产品可 获得利润5万元、每吨乙产品可获得利润3万
规格类型 钢板类型

332简单的线性规划

332简单的线性规划
可行解 可行域 最优解
线性规划问题
定义 由变量x,y组成的不等式组 由变量x,y组成的一次不等式组
关于x,y的函数解析式 关于x,y的一次函数解析式 满足线性约束条件的解(x,y)
所有可行解组成的集合
使目标函数取得最大值或最小值的可行解 在线性约束条件下求线性目标函数的最大值或最小值 问题统称线性规划问题
探究点2 简单线性规划问题的图解方法
例 1.设 x, y 满足约束条件 x 3, y 4, 4x 3y 12, 4x 3y 36.
求目标函数 z 2x 3y 的最小值与最大值.
【解析】作出可行域(如图阴影部 y
分).
4
l :2x 3y 0
A
2
o
y 4 B
4x 3y 12
经过直线x 4与x 2 y 8
的交点M(4, 2)时,截距的值最大,最大值为 8.
即 z的最大值为 z 34 2 2 16.
所以,每天生产甲产品4件,乙产品2件时,工 厂获得最大利润16万元.
【规律总结】
在确定约束条件和线性目标函数的前提下,用 图解法求最优解的步骤为:
(1)在平面直角坐标系内画出可行域;
解方程组
4x 3y 12, 4x 3y 36.
可以求得顶点 D 的坐标为 3,8 .
y D4 x 3 y 12
4
l :2x 3y 0
A
2
o
y 4 B
x
C
4x 3y 36
x 3
此时,顶点B 3, 4 和顶点 D 3,8 为最优解.
所以
zmin 2 (3) 3 (4) 18, zmax 2 3 3 8 30.
则m-n=3-(-3)=6,
故选B.

3.3.3简单的线性规划问题(2)

3.3.3简单的线性规划问题(2)

3.3.3简单的线性规划问题(2)
一、学习目标
1.通过本节学习,能解决与线性规划相关的实际问题,学会从实际情境中抽象出二元线性规划的模型;
2.培养学生观察、联想以及作图能力,渗透集合以及数形结合的数学思想。

教学重点、难点 :从实际问题中抽象出线性规划问题的模型。

二、课前自学
在约束条件⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+0
921432y x y x y x 下,求目标函数的S =3x +2y 的最大值,
并求出此时的x ,y 的取值.
三、问题探究
例1.投资生产A 产品时,每生产100吨需要资金200万元,需场地200平方米,可获利润300万元;投资生产B 产品时,每生产100米需要资金300万元,需场地100平方米,可获利润200万元.现某单位可使用资金1400万元,场地900平方米,问:应作怎样的组合投资,可获利最大?
例2.某运输公司向某地区运送物资,每天至少运送180t. 该公司有8辆载重为6t的A型卡车与4辆载重为10t的B型卡车,有10名驾驶员。

每辆卡车每天往返次数为A型车4次,B型车3次。

每辆卡车每天往返的成本费A型车320元,B型车为504元。

试为该公司设计调配车辆方案,使公司花费的成本最低。

四、反馈小结
反馈:必修五P86 练习4
1.某人承揽一项业务,需做文字标牌4个,绘画标牌6个。

现有两种规格原料,甲规格每张3平方米,可做文字标牌1个,绘画标牌2个;乙种规格每张2平方米,可做文字标牌2个,绘画标牌1 个。

求两种规格的原料各用多少张,才能使总的用料面积最小?
小结。

3.3[简单的线性规划(2)]课件(新人教a版必修5)

3.3[简单的线性规划(2)]课件(新人教a版必修5)

y
1
x+y-1>0
1
O
x+y-1<0 x+y-1=0
x
复习二元一次不等式表示平面区域的范例
例1 画出不等式2x+y-6<0表示的平面区域。 y
6
注意:把直
线画成虚线以 表示区域不包 括边界
O
2x+y-6=0
3
x
复习二元一次不等式表示平面区域的范例
例2 画出不等式组 x+y=0
x y 5 0 x y 0 x 3
修Ⅱ甘肃青海宁夏贵州新疆等地区)第16题)
解下列线性规划问题:求z=2x+y的最大值, 使式中x、y满足下列条件: x y 1, y x, y 0, 答案:当x=1,y=0时,z=2x+y有最大值2。
探索结论
线性规划
练习2 解下列线性规划问题: 求z=3x+y的最大值,使式中 y 8 x、y满足下列条件:
探索结论
复习判断二元一次不等式表示哪 一侧平面区域的方法
由于对在直线ax+by+c=0同 一侧所有点(x,y),把它的坐标 (x,y)代入ax+by+c,所得的实 数的符号都相同,故只需在这条 直线的某一侧取一特殊点(x0,y0) 以ax0+by0+c的正负的情况便可 判断ax+by+c>0表示这一直线 哪一侧的平面区域,特殊地,当 c≠0时常把原点作为此特殊点
y
5
x-y+5=0
O
3
x
表示的平面区域。 x=3

复习二元一次不等式表示平面区域的范例
例3 画出不等式组

人教版高中数学必修5-3.3《简单的线性规划(第1课时)》教学设计

人教版高中数学必修5-3.3《简单的线性规划(第1课时)》教学设计

3.3.2 简单的线性规划问题(第1课时)(名师:陈庚生)【核心素养】通过学习简单的线性规划问题,提升学生的数学抽象、数学建模与数据处理的能力.【学习目标】理解什么是线性规划,并能够解决一些简单的线性规划问题.【学习重点】简单的二元线性规划问题.【学习难点】准确而快速的画出线性规划可行域,并进行最优解的求解.二、教学设计(一)课前设计1.预习任务任务 1 阅读教材P1-P4,思考:线性规划是如何形成的?它的主要功能是什么?利用线性规划解决一些简单问题.2.预习自测1.不等式组36020.x yx y≥⎧⎨<⎩-+,-+表示的平面区域是()【知识点:简单的线性规划;数学思想:数形结合】解:B2.不等式组210.y xy xy≤⎧⎪≤⎨⎪≥⎩-+,-,所表示的平面区域的面积为( )A.1B.12C.13D.14【知识点:简单的线性规划;数学思想:数形结合】解:D3.若满足条件20x yx yy a-≥⎧⎪+-≤⎨⎪≥⎩的整点(,)x y恰有9个,其中整点是指横、纵坐标都是整数的点,则整数a的值为()A.3-B.2-C.1-D.0【知识点:简单的线性规划;数学思想:数形结合】解:C(二)课堂设计1.知识回顾在平面直角坐标系中,直线:0l Ax By C++=将平面分成两部分,平面内的点分为三类:(1)直线上的点(x,y)的坐标满足:0=++CByAx;(2)直线一侧的平面区域内的点(x,y)的坐标满足:0>++CByAx;(3)直线另一侧的平面区域内的点(x,y)的坐标满足:0Ax By C++<.即二元一次不等式0Ax By C++>或0Ax By C++<在平面直角坐标系中表示直线0Ax By C++=的某一侧所有点组成的平面区域,直线0Ax By C++=叫做这两个区域的边界,(虚线表示区域不包括边界直线,实线表示区域包括边界直线).由几个不等式组成的不等式组所表示的平面区域,是各个不等式所表示的平面区域的公共部分.2.问题探究问题探究一线性规划的含义观察与思考:某工厂用A、B两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A产品耗时1小时,每生产一件乙产品使用4个B产品耗时2小时,该厂每天最多可从配件厂获得16个A配件和12个B配件,按每天工作8小时计算,该厂所有可能的日生产安排是什么?想一想:怎样将题目条件转化为我们熟悉的不等式组?。

3.3.3简单的线性规划问题(2)(2015年人教A版数学必修五导学案)

3.3.3简单的线性规划问题(2)(2015年人教A版数学必修五导学案)

2、若点 P 满足 ( x 2 y 1)(x y 3 0) ,求 P 到原点的最小距离.
【课后巩固】
1.一家饮料厂生产甲、乙两种果汁饮料,甲种饮料主要西方是每 3 份李子汁加1 份苹 果汁,乙种饮料的西方是李子汁和苹果汁各一半.该厂每天能获得的原料是 2000 L 李子汁和 1000 L 苹果汁, 又厂方的利润是生产 1L 甲种饮料得 3 元, 生产 1L
课题:3.3.3 简单的线性规划问题(2)导学案
班级: 姓名: 学号: 第 学习小组 【学习目标】 1、 能够将实际问题抽象概括为线性问题; 2、 能用线性规划的知识知识解决实际问题的能力. 【课前预习】 x y 2 2 2 1.已知 x, y 满足 x 2 ,则 x y 的最小值是__________. y 2
4.设实数 x, y 满足不等式组
1 x y 4 . y 2 2 x 3 y 2
(1)求作此不等式组表示的平面区域; (2)设 a 1 ,求函数 f ( x,y) y ax 的最大值和最小值.
例 2、某运输公司向某地区运送物资,每天至少运送 180t .该公司有 8 辆载重为 6t 的 A 型卡车与 4 辆载重为 10t 的 B 型卡车,有 10 名驾驶员.每辆卡车每天往返次 数为 A 型车 4 次,B 型车 3 次. 每辆卡车每天往返的成本费 A 型车为 320 元,B 型车为 504 元.试为该公司设计调配车辆方案,使公司花费的成本最低.
x y 2 0 y 2.设实数 x, y 满足 y 1 ,则 的最大值是__________. x x 4 x y 3 y 1 3.已知 x, y 满足约束条件 x 1 ,则 的最大值是__________. x 1 y 1

3.3.2 简单的线性规划(3)教师版

3.3.2 简单的线性规划(3)教师版

3.3.2简单的线性规划(二)教学目标分析:知识目标:掌握线性规划问题的图解法,并能应用它解决一些简单的实际问题;过程与方法:经历从实际情境中抽象出简单的线性规划问题的过程,提高数学建模能力; 情感目标:引发学生学习和使用数学知识的兴趣,发展创新精神,培养实事求是、理论与实际相结合的科学态度和科学道德。

重难点分析:重点:利用图解法求得线性规划问题的最优解;难点:把实际问题转化成线性规划问题,并给出解答,解决难点的关键是根据实际问题中的已知条件,找出约束条件和目标函数,利用图解法求得最优解。

互动探究:一、课堂探究:复习巩固:(1)二元一次不等式0Ax By c ++>在平面直角坐标系中表示直线0Ax By c ++=某一侧所有点组成的平面区域(虚线表示区域不包括边界直线)(2)目标函数, 线性目标函数,线性规划问题,可行解,可行域, 最优解:例1、营养学家指出,成人良好的日常饮食应该至少提供0.075kg 的碳水化合物,0.06kg 的蛋白质,0.06kg 的脂肪,1kg 食物A 含有0.105kg 碳水化合物,0.07kg 蛋白质,0.14kg 脂肪,花费28元;而1kg 食物B 含有0.105kg 碳水化合物,0.14kg 蛋白质,0.07kg 脂肪,花费21元。

为了满足营养专家指出的日常饮食要求,同时使花费最低,需要同时食用食物A 和食物B 多少kg ?例2、一个化肥厂生产甲乙两种混合肥料,生产1车皮甲肥料的主要原料是磷酸盐4t ,硝酸盐18t ;生产1车皮乙种肥料的主要原料是磷酸盐1t ,硝酸盐15t .现库存磷酸盐10t ,硝酸盐66t ,若生产1车皮甲种肥料,产生的利润为10 000元;生产1车皮乙种肥料,产生的利润为5 000元,那么分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?例3、要将两种大小不同的钢板截成A ,B ,C 三种规格,每个钢板可同时截得三种规格的小钢板的块数如下表所示:今需要A ,B ,C 三种规格的成品分别15,18,27块,各截这两种钢板多少张可得所需A ,B ,C 三种规格的成品,且使得所有钢板的张数最少?思考:结合上述两例子总结归纳一下解决这类问题的思路和方法?简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解二、课堂练习:教材第91页练习第2题1、某厂拟生产甲、乙两种适销产品,每件销售收入分别为3000元,2000元.甲、乙产品都需要在A 、B 两种设备上加工,在每台A 、B 设备上加工1件甲设备所需工时分别为12h h ,,加工1件乙设备所需工时分别为2,1h h ,A 、B 两种设备每月有效使用台时数分别为400,500h h ,如何安排生产可使收入最大?反思总结:1、 本节课你学到了哪些知识点?2、 本节课你学到了哪些思想方法?3、 本节课有哪些注意事项?课外作业:(一)教材第93页习题3.3A组第3、4题,B组第3题1、电视台应某企业之约播放两套连续剧.其中,连续剧甲每次播放时间为80min,其中广告时间为1min,收视观众为60万;连续剧乙每次播放时间为40min,其中广告时间为1min,收视观众为20万.已知此企业与电视台达成协议,要求电视台每周至少播放6min广告,而电视台每周只能为该企业提供不多于320min的节目时间.如果你是电视台的制片人,电视台每周播映两套连续剧各多少次,才能获得最高的收视率?2、某家电生产企业根据市场调查分析,决定调整产品生产方案,准备每周(按40个工时计算)生产空调器、彩电、冰箱共120台,且冰箱至少生20台.已知生产这些家电产品每台所需工时和每台产问每周应生产空调器、彩电、冰箱共多少台,才能使产值最高?最高产值是多少?(以千元为单位)3、甲、乙两个粮库要向A、B两镇运送大米,已知甲库可调出100t大米,乙库可调出80t大米,A 镇需70t大米,B镇需110(1)这两个粮库各运往A、?(2)最不合理的调运方案是什么?它使国家造成的损失是多少?(二)补充4、有一批钢管,长度都是4000mm,要截成500mm和600mm两种毛坯,且这两种毛坯数量之比按大于13配套,怎样截最合理?答案:(2,5),(3,4),(4,3),(5,2),(6,1). 课后反思:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

资源 一级子棉( 一级子棉(吨) 二级子棉( 二级子棉(吨) 利润( 利润(元)
产品 甲种棉纱 乙种棉纱 资源限额 (吨) (吨) (吨) 2 1 600 1 2 900 300 250
解:设生产甲、乙两种棉纱分别为x吨、y吨,利润总额 设生产甲、乙两种棉纱分别为 吨 吨 y 为z元,则目标函数为: 元 则目标函数为:
Z = 600 x + 900 y
约束条件为: 约束条件为: 2 x + y ≤ 300 x + 2 y ≤ 250 x ≥ 0 y ≥ 0
2 Z 由Z = 600 x + 900 y得:y = − x + 3 900
2 x + y = 300
M
x + 2 y = 250
o
2 y=− x 3
x − 4 y ≤ −3 例5、已知x、y满足 3 x + 5 y ≤ 25 ,求 z 、已知 满足 x ≥ 1
解析:本题属于目标函数非线性的 解析: 非线性规划问题。 非线性规划问题。
z = x 2 + y 2 = ( x − 0) 2 + ( y − 0) 2
=x +y
2
2
的最大值。 的最大值。
o
x
Z的几何意义 的几何意义
由图可知,当直线过 点时 点时, 最小 当直线过D点时 最小; 点时, 最大 最大。 由图可知,当直线过C点时,k最小;当直线过 点时,k最大。
1 ∴ ≤k ≤3 4
1、线性规划的应用 、 注意整数解的求解方法。 注意整数解的求解方法。 2、非线性规划 、 (1)目标函数非线性 目标函数非线性 (2)约束条件非线性 约束条件非线性 (3)目标函数和约束条件都非线性 目标函数和约束条件都非线性 3、简单规划问题的三种类型: 、简单规划问题的三种类型: 几 目 (1)截距型 截距型 何 标 意 的 (2)斜率型 斜率型 义 (3)距离型 距离型
y
5 4 3 2 1
x +4y=11
1.课本 页第 题 课本91页第 课本 页第2题
0
1
2
3
4
5
3x +2y=10
x
x − 4 y ≤ −3 例4、已知 、y满足 3 x + 5 y ≤ 25 ,设z=ax+y (a>0), 若z 、已知x 满足 , x ≥ 1
取得最大值时,对应点有无数个, 的值。 取得最大值时,对应点有无数个,求a 的值。
∴ A(5,) 2
2 例6、函数 y = x 与直线 y = x + 2 围成一个封闭区域D。若 、 围成一个封闭区域 。
( x,y ) ∈ D 求 z = − x + 2 y 的最大值。 的最大值。
解析: 解析:本题属于约束条件非线性的 非线性规划问题。 非线性规划问题。
y
y = x2
B
y = x+2
除了线性规划,我们还会遇到非线性规划。包含: 除了线性规划,我们还会遇到非线性规划。包含: 1.目标函数非线性 目标函数非线性 2.约束条件非线性 约束条件非线性 3.目标函数和约束条件都非线性 目标函数和约束条件都非线性 简单的非线性问题,可以采用线性规划的方法做。 简单的非线性问题,可以采用线性规划的方法做。
生活中的规划欣赏
科学配餐 资源调配 道路交通规划 生产安排规划
给定一定量的 人力.物力 物力, 人力 物力 资金等资源
精打细算 最优方案
完成的任务量最大 经济效益最高
统筹安排
给定一项任务
最佳方案
所耗的人力. 所耗的人力 物力资源最小 获取最大的利润
降低成本
例1、 某纺纱厂生产甲、乙两种棉纱,已知生产甲种棉纱1吨 某纺纱厂生产甲、乙两种棉纱,已知生产甲种棉纱1 需耗一级子棉2 二级子棉1 需耗一级子棉2吨、二级子棉1吨;生产乙种棉纱需耗一级子棉 二级子棉2 吨甲种棉纱的利润是600 600元 1吨、二级子棉2吨。每1吨甲种棉纱的利润是600元,每1吨乙 种棉纱的利润是900 900元 种棉纱的利润是900元。工厂在生产这两种棉纱的计划中要求 消耗一级子棉不超过300 300吨 二级子棉不超过250 250吨 消耗一级子棉不超过300吨、二级子棉不超过250吨.甲、乙两 种棉纱应各生产多少,能使利润总额最大? 种棉纱应各生产多少,能使利润总额最大?
x1 l
2 作出约束条件表示的区 域,及直线 y = − x。 3
由平移可以看到,当直线经过点 时 最大。 由平移可以看到,当直线经过点M时,Z最大。 最大
2 x + y = 300 由 得: x + 2 y = 250
350 200 M( , ) 3 3
350 200 答:应生产甲、乙两种 棉纱分别 吨、 吨能使利润总额最大。 3 3
A
1 Z可以看成是直线 y = x 的纵截距 可以看成是直线 2 的2倍 。 倍
的 倍。 显然,经过 点时 最大。 显然,经过A点时Z最大。
1 1 y = x+ z 2 2
o
x
Z的几何意义 的几何意义
可解得A(2,) 4
∴ Z max = −2 + 2 × 4 = 6
y 满足右图所示阴影部分区域, 例7、若x,y满足右图所示阴影部分区域,求 k = 、 满足右图所示阴影部分区域 x
{
作业:
习题3.3 课本 P93 习题3.3 A组 第 4题; B组 第 3题。
通过平移,可以 经过可行域内的整点 看到当直线经过 B(3,9)和 且和原 点 M时和 C(4,8)且和原 时 z=x+y=11.4, 点距离最近的直线是 但它不是最优整 x+y=12, 数解。 , 它们是最优 数解。 解.
9 M (18 , 39 ) C (4,8)
5
Hale Waihona Puke 5x + 2 y = 18
x + 3 y = 27
课题
第三章
不 等 式
第七课时:
简单的线性规划(二) 简单的线性规划(
鞠光炳 2012.1.20
1、求解线性规划的四个步骤: 、求解线性规划的四个步骤:




2、求解线性规划的两个结论: 、求解线性规划的两个结论: 最优解——顶点或者边界 顶点或者边界 最优解 几何意义——纵截距或者相反数 纵截距或者相反数 几何意义 线性规划的在现实生活中的用途广泛。 线性规划的在现实生活中的用途广泛。
y
C

Z可以看成是可行域内一动点与原 可以看成是可行域内一动点与原 的距离的平方 的平方。 点的距离的平方。 显然, 最长 最长。 显然,AO最长。
o
B
x
x=1
x − 4 y = −3 Q 3 x + 5 y = 25
Z的几何意 的几何意 义很重要
∴ Z max = 5 2 + 2 2 = 29
解:设需截第一种钢板x张,第二种钢板y张,一共使 设需截第一种钢板 张 第二种钢板 张 用z张。则目标函数为: 张 则目标函数为: z=x+y
约束条件为: 约束条件为:
作出可行域,并作直线 作出可行域,并作直线y=-x+z y
15
B(3,9)
2x + y ≥ 15, x + 2 y ≥ 18, x + 3y ≥ 27, x ≥ 0, y ≥ 0.
3 ∴a = 5
线性规划是运筹学中研究较早、发展较快、应用广泛、 方法较成熟的一个重要分支,它是辅助人们进行科学管理的 一种数学方法.研究线性约束条件下线性目标函数的极值问 题的数学理论和方法,英文缩写LP。它是运筹学的一个重 要分支,广泛应用于军事作战、经济分析、经营管理和工 程技术等方面。为合理地利用有限的人力、物力、财力等 资源作出的最优决策,提供科学的依据。
例2、要将两种大小不同规格的钢板截成A、B、C三种规格,每 要将两种大小不同规格的钢板截成A 三种规格, 张钢板可同时截得三种规格的小钢板的块数如下表所示 :
规格类型 钢板类型
A规格 规格 2 1
B规格 规格 1 2
C规格 规格 1 3
第一种钢板 第二种钢板
今需A,B,C三种规格的成品分别为15,18,27块 今需A,B,C三种规格的成品分别为15,18,27块,问各截这两种 A,B,C三种规格的成品分别为15 钢板多少张可得所需三种规格成品,且使所用钢板张数最少。 钢板多少张可得所需三种规格成品,且使所用钢板张数最少。
3 x + 2 y ≤ 10 x + 4 y ≤ 11 例3、满足线性约束条件 的整数解有多少个? x > 0 y > 0
由题意得可行域如图: 解:由题意得可行域如图 由图知满足约束条件的可行 域中的整点为(1,1)、(1,2)、 域中的整点为 、 、 (2,1)、(2,2) 。故有四个整点 、 可行解. 可行解
的范围。 的范围。
y
D(1 3) , A(1 2) , C (4, 1) B (2, 1)
解析:本题属于目标函数和约束条 解析: 件都非线性的非线性规划问题。 件都非线性的非线性规划问题。
y k = ⇒ y = kx x
K可以看成是过原点的一条直 可以看成是过原点的一条直 可以看成是过 线的斜率。 线的斜率。 (斜率表示直线的倾斜程度 斜率表示直线的倾斜程度) 斜率表示直线的倾斜程度
分析: + 分析: l:y=-ax+z (a>0)
y
C
z取得最大值时,对应点有无数 取得最大值时,
个,也就是最优解有无数个。 也就是最优解有无数个。 这就意味着最优解应在边界 上取得(在顶点取得最优解只 上取得 在顶点取得最优解只 有一个)。 有一个 。
相关文档
最新文档