冀教版八年级数学下册第二十章测试题

合集下载

八年级数学下册第二十章函数20、2函数20、2、2自变量的取值范围授课新版冀教版

八年级数学下册第二十章函数20、2函数20、2、2自变量的取值范围授课新版冀教版
C.y=0.12x,0≤x≤500
D.y=60-0.12x,0≤x≤500
感悟新知
知2-练
4. 等腰三角形的周长是40 cm,底边长y(cm)是腰长 x(cm)的函数,此函数表达式和自变量取值范围正确 的是( C ) A.y=-2x+40(0<x<20) B.y=-0.5x+20(10<x<20) C.y=-2x+40(10<x<20) D.y=-0.5x+20(0<x<20)
x-2 0, 解:要使函数关系式有意义,需满足 x+3 0.
解得x≥2. 故自变量的取值范围是x≥2.
感悟新知
4. 【中考·赤峰】能使式子 2 x x 1 成立的
x的取值范围是( C )
A.x≥1
B.x≥2
C.1≤x≤2
D.x≤2
知1-练
感悟新知
5. 【中考·娄底】在函数y= x 中,自变量x的取 知1-练 x2
课时导入
探究新知 你坐过摩天轮吗?想一想,如果你坐在摩天轮上,
随着时间的变化,你离开地面的高度是如何变化的?
感悟新知
知1-讲
知识点 1 函数表达式的自变量的取值范围
1. 前面讲到的“欣欣报亭1月〜6月的每月纯收入S(元) 是月份T的函数”.其中自变量T可取哪些值?当T=1.5 或T=7时,原问题有意义吗?
为0; (3)当关系式是二次根式时,其自变量的取值范围须
使被开方数为非负实数;
知1-讲
感悟新知
归纳
知1-讲
(4)当关系式有零指数幂(或负整数指数幂)时,其自 变量应使相应的底数不为0;
(5)当关系式是实际问题的关系式时,其自变量必须 有实际意义;
(6)当关系式是复合形式时,则需列不等式组,使所 有式子同时有意义.

冀教版八年级数学下册《二十章 函数 20.2 函数 函数的自变量取值范围》教案_0

冀教版八年级数学下册《二十章 函数  20.2 函数  函数的自变量取值范围》教案_0

函数自变量的取值范围设计思路:《函数自变量的取值范围》是八年级数学下册20章第二节的内容。

函数是研究运动变化的重要数学模型,它源自生活,又服务于生活。

函数有着广泛的应用,初中阶段对函数的认识也是逐步加深的,因此,本节课的学习效果如何将直接影响学生的后续学习。

《函数自变量的取值范围》是本节课的重点内容之一,我把它单独安排一个课时来学习。

在教学设计上,我主要是以四个活动为载体:1.情境活动:使学生感到容易---我能学2.探究归纳:提出问题,引起学生求知欲---我要学利用导学案中的“填一填”提出“自变量的取值有限制吗?”这一问题,从而勾起学生求知的欲望-----我想学,调动学生的主动性。

3.实践应用:结合所学知识应用到实践中---我学会这一活动中我设计了两个例题,其中例1是针对单纯解析式中的函数自变量取值范围,例2是在实际应用中的自变量取值范围。

每个题目都让学生分组完成,尽量照顾到每位同学的态度,使每个人都参与其中,都能发表自己的见解。

4.交流反思:引导学生回顾在活动中的得失,以提高自己---我会学根据实践活动的应用,引导学生反省自己在活动中的得失,以弥补不足之处,同时锻炼归纳总结的能力,以便更好的形成知识体系。

在活动的设计上,我注重了活动的目的性、活动的层次性、活动的思维性以及活动的可操作性,和学生的所有交流都是在自然进行的。

在整个教学过程中,始终注重的是学生的参与意识;注重学生对待学习的态度是否积极;注重引导学生从数学的角度去思考问题,让学生主动暴露思维过程,及时得到信息的反馈。

我在课堂上,尽量留给学生更多的空间,让学生有更多的展示自己的机会,让学生在充满情感的、和谐的课堂氛围中,充分调动他们的非智力因素,特别是内在动机,让他们以强烈的求知欲和饱满的热情来学习新知识,在老师和同学的鼓励与欣赏中认识自我,找到自信,体验成功的乐趣,从而树立起学好数学的信心。

教学目标1.知识与技能(1)能根据函数关系式直观得到自变量取值范围。

冀教版八年级数学下册第二十章函数单元综合测试卷

冀教版八年级数学下册第二十章函数单元综合测试卷
(1)服药后几小时血液中含药量最高?达到每毫升血液中含药多少微克?
(2)在服药几个小时后,血液中的含药量逐渐升高?在几小时后,血液中的含药量逐渐衰减?
A. B. C. D.
10.有一段导线,在0 ℃时电阻为2 Ω,温度每增加1 ℃,电阻增加0.008 Ω,那么电阻R(Ω)表示为温度t(℃)的函数关系式为( )
A.R=2+0.008 tB.R=2-0.008 t
C.t=2+0.008 RD.t=2-0.008 R
11.周末小石去博物馆参加综合实践活动,乘坐公共汽车0.5 h后想换乘另一辆公共汽车,他等候一段时间后改为利用手机扫码骑行摩拜单车前往.已知小石离家的路程s(单位:km)与时间t(单位:h)的函数关系的图像大致如图,则小石骑行摩拜单车的平均速度为( )
冀教版八年级数学下册第二十章函数单元综合测_________考号:___________
一、单选题
1.某人要在规定的时间内加工100个零件,则工作效率 与时间 之间的关系中,下列说法正确的是( ).
A.数100和 , 都是变量B.数100和 都是常量
21.分析图中反映的变量之间的关系图像,想象一个适合它的实际情境.
22.小明在银行存入一笔零花钱,已知这种储蓄的年利率为n%,若设到期后的本息和(本金+利息)为y元,存入的时间为x(年).
(1)下列图中,哪个图像更能反映y与x之间的函数关系?从图中你能看出存入的本金是多少元?一年后的本息和是多少元?
C. 和 是变量D.数100和 都是常量
2.如图,分别给出了变量y与x之间的相应关系,y不是x的函数的是( )
A. B. C. D.
3.函数 中的自变量x的取值范围是()
A. B. C. D. 且
4.下列说法正确的是()

2022年冀教版八年级数学下册第二十一章一次函数章节测试试题(含解析)

2022年冀教版八年级数学下册第二十一章一次函数章节测试试题(含解析)

八年级数学下册第二十一章一次函数章节测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分) 1、已知()231m y m x -=-+是一次函数,则m 的值是( )A .-3B .3C .±3D .±22、如图,平面直角坐标系中,直线:l y =+x 轴、y 轴于点B 、A ,以AB 为一边向右作等边ABC ,以AO 为一边向左作等边ADO △,连接DC 交直线l 于点E .则点E 的坐标为( )A .14⎛ ⎝⎭B .13⎛ ⎝⎭C .12⎛ ⎝⎭D .12⎛ ⎝⎭3、已知()1,1A -、()2,3B 两点,在y 轴上存在点P 使得AP BP +的值最小,则点P 的坐标为( )A .10,4⎛⎫ ⎪⎝⎭B .10,3⎛⎫ ⎪⎝⎭C .10,4⎛⎫- ⎪⎝⎭D .10,3⎛⎫- ⎪⎝⎭4、一次函数21y x =-+的图象不经过的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限5、某种摩托车的油箱最多可以储油10升,李师傅记录了他的摩托车加满油后,油箱中的剩余油量y (升)与摩托车行驶路程x (千米)的关系,则当0≤x ≤500时,y 与x 的函数关系是( ).A .正比例函数关系B .一次函数关系C .二次函数关系D .反比例函数关系6、若一次函数y kx b =+(k ,b 为常数,0k ≠)的图象不经过第三象限,那么k ,b 应满足的条件是( ) A .0k <且0b > B .0k >且0b > C .0k >且0b ≥D .0k <且0b ≥7、下列图形中,表示一次函数y =mx +n 与正比例函数y =﹣mnx (m ,n 为常数,且mn ≠0)的图象不正确的是( )A .B .C .D .8、已知点(﹣1,y 1),(4,y 2)在一次函数y =3x +a 的图象上,则y 1,y 2的大小关系是( ) A .y 1<y 2B .y 1=y 2C .y 1>y 2D .不能确定9、关于函数y =-2x +1,下列结论正确的是( ) A .图像经过点()2,1- B .y 随x 的增大而增大 C .图像不经过第四象限D .图像与直线y =-2x 平行10、如图,点()1,1A ,()2,3B -,若点P 为x 轴上一点,当PA PB -最大时,点P 的坐标为( )A .1,02⎛⎫ ⎪⎝⎭B .5,04⎛⎫ ⎪⎝⎭C .1,02⎛⎫- ⎪⎝⎭D .()1,0第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若正比例函数y =kx (k 是常数,k ≠0)的图象经过第一、三象限,请写出一个满足上述要求的k 的值______.2、如图,直线y =kx +b 交坐标轴于A ,B 两点,则关于x 的不等式kx +b <0的解集是_____.3、已知一次函数的图象过点(3,5)与(-4,-9),求一次函数的解析式.分析:求一次函数y =kx +b 的解析式,关键是求出k ,b 的值.从已知条件可以列出关于k ,b 的二元一次方程组,并求出k ,b .解:设这个一次函数的解析为:y =kx +b因为y =kx +b 的图象过点(3,5)与(-4,-9),所以3549k b k b +=⎧⎨-+=-⎩, 解方程组得:21k b =⎧⎨=-⎩,这个一次函数的解析式为:___4、正比例函数(1)y k x =+图像经过点(1,-1),那么k =__________.5、一次函y =kx +b (k ≠0)的图象可以由直线y =kx 平移______个单位长度得到(当b >0时,向______平移;当b <0时,向______平移). 三、解答题(5小题,每小题10分,共计50分) 1、已知一次函数24y x =-+,完成下列问题: (1)求此函数图像与x 轴、y 轴的交点坐标;(2)画出此函数的图像:观察图像,当04y ≤≤时,x 的取值范围是______.2、已知一次函数 y =-x +2.(1)求这个函数的图像与两条坐标轴的交点坐标; (2)在平面直角坐标系中画出这个函数的图像; (3)结合函数图像回答问题:①当 x >0 时,y 的取值范围是 ; ②当 y <0 时,x 的取值范围是 .3、已知点0(P x ,0)y 和直线y kx b =+,则点p 到直线y kx b =+的距离d 可用公式d =例如:求点(1,2)P -到直线37y x =+的距离. 解:因为直线37y x =+,其中3k =,7b =.所以点P 到直线的距离:d ===. 根据以上材料,解答下列问题: (1)求点(2,2)P 到直线2y x =-的距离.(2)已知C 的圆心C 的坐标为(2,1),半径r C 与直线1y x =-+的位置关系并说明理由.(3)已知互相平行的直线1y x =-与y x b =+b 的值.4、如图,在平面直角坐标系xOy 中,点(0,)A a ,(,0)B b ,(0,)C c ,且a ,b ,c 满足关于x ,y 的二元一次方程25235a b a b x y --+-=,直线l 经过点C ,且直线l x ∥轴,点(,2)D m 为直线l 上的一个动点,连接AB ,AD ,BD .(1)求a ,b ,c 的值;(2)在点D 运动的过程中,当三角形ABD 的面积等于三角形AOB 的面积的16时,求m 的值;(3)在点D 运动的过程中,当AD BD +取得最小值时,直接写出m 的值.5、我国是一个严重缺水的国家.为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过8吨时,水价为每吨1.5元,超过8吨时,超过的部分按每吨2.2元收费.该市某户居民10月份用水x 吨,应交水费y 元. (1)若08x <≤,请写出y 与x 的函数关系式. (2)若8x >,请写出y 与x 的函数关系式.(3)如果该户居民这个月交水费23元,那么这个月该户用了多少吨水?-参考答案-一、单选题 1、A 【解析】 略2、C 【解析】 【分析】由题意求出C 和D 点坐标,求出直线CD 的解析式,再与直线AB 解析式联立方程组即可求出交点E 的坐标. 【详解】解:令直线:l y =+0x =,得到y =(0,A ,令直线:l y =+0y =,得到2x =,故(2,0)B ,由勾股定理可知:4===AB ,∵12OB AB =,且AOB 90∠=, ∴30OAB ∠=,60ABO ∠=,过C 点作CH ⊥x 轴于H 点,过D 点作DF ⊥x 轴于F ,如下图所示:∵ABC 为等边三角形, ∴60ABC ∠=,4BC AB ==∴18060∠=-∠-∠=CBH ABO ABC , ∴30BCH =∠,∴1=22,===BH BC CH∴(4,C ,同理,∵ADO △为等边三角形,∴==DO AO 60AOD ∠=, ∴30DOF ∠=,∴132====DF DO OF ,∴(D -,设直线CD 的解析式为:y=kx+b,代入(4,C和(D -,得到:43⎧=+⎪=-+k b k b,解得⎧=⎪⎪⎨⎪=⎪⎩k b∴CD的解析式为:=y与直线:l y =+解得12⎧=⎪⎪⎨⎪=⎪⎩x y E点坐标为1(2,故选:C . 【点睛】本题考查的是一次函数图象上点的坐标特征,本题的关键是求出点C 、D 的坐标,进而求解. 3、B【分析】解:作点A 关于y 轴的对称点C ,得C (-1,-1),直线AC 与y 轴交点即为点P ,此时AP BP +的值最小,求出直线BC 的函数解析式,令x =0时得y 的值即为点P 的坐标. 【详解】解:作点A 关于y 轴的对称点C ,得C (-1,-1),直线AC 与y 轴交点即为点P ,此时AP BP +的值最小,设直线BC 的函数解析式为y=kx+b ,将()2,3B 、C (-1,-1)代入,得123k b k b -+=-⎧⎨+=⎩,解得4313k b ⎧=⎪⎪⎨⎪=⎪⎩, ∴直线BC 的函数解析式为y=43x+13,当x =0时,得y =13,∴P (0,13). 故选:B . 【点睛】此题考查了轴对称求最短路径,求一次函数解析式,一次函数图象与坐标轴交点坐标,正确掌握利用轴对称知识解决最短路径问题是解题的关键. 4、C 【解析】 【分析】根据一次函数的解析式,利用一次函数图象与系数的关系可得出一次函数21y x =-+的图象经过第一、二、四象限,此题得解.解:∵k=-2<0,b=1>0,∴一次函数y=-2x+1的图象经过第一、二、四象限,∴一次函数y=-2x+1的图象不经过第三象限.故选:C.【点睛】本题考查了一次函数图象与系数的关系,牢记“k<0,b>0⇔y=kx+b的图象在一、二、四象限”是解题的关键.5、B【解析】【分析】根据表格数据,描点、连线画出函数的图象,根据函数图象进行判断即可【详解】根据表格数据,描点、连线画出函数的图象如图:故y与x的函数关系是一次函数.故选B.【点睛】本题考查了画一次函数图象,掌握一次函数图象的性质是解题的关键.6、D【解析】【分析】根据一次函数图象与系数的关系解答即可.【详解】 解:一次函数(y kx b k =+、b 是常数,0)k ≠的图象不经过第三象限,0k ∴<且0b ≥,故选:D .【点睛】本题主要考查了一次函数图象与系数的关系,直线y =kx +b 所在的位置与k 、b 的符号有直接的关系为:k >0时,直线必经过一、三象限.k <0时,直线必经过二、四象限.b >0时,直线与y 轴正半轴相交.b =0时,直线过原点;b <0时,直线与y 轴负半轴相交.7、B【解析】【分析】利用一次函数的性质逐项进行判断即可解答.【详解】解:A 、由一次函数的图象可知,0m <,0n >故0mn <;由正比例函数的图象可知0mn <,两结论一致,故本选项不符合题意;B 、由一次函数的图象可知,0m <,0n >故0mn <;由正比例函数的图象可知0mn >,两结论不一致,故本选项符合题意;C. 由一次函数的图象可知,0m >,0n >故0mn >;由正比例函数的图象可知0mn >,两结论一致,故本选项不符合题意;D. 由一次函数的图象可知,0m >,0n <故0mn <;由正比例函数的图象可知0mn <,两结论一致,故本选项不符合题意;故选B .【点睛】本题考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y kx b =+的图象有四种情况:当0k >,0b >函数y kx b =+的图象经过第一、二、三象限;当0k >,0b <函数y kx b =+的图象经过第一、三、四象限;当0k <,0b >函数y kx b =+的图象经过第一、二、四象限;当0k <,0b <函数y kx b =+的图象经过第二、三、四象限.8、A【解析】【分析】根据一次函数y =3x +a 的一次项系数k >0时,函数值随自变量的增大而增大的性质来求解即可.【详解】解:∵一次函数y =3x +a 的一次项系数为3>0,∴y 随x 的增大而增大,∵点(﹣1,y 1),(4,y 2)在一次函数y =3x +a 的图象上,﹣1<4,∴y 1<y 2,故选:A .【点睛】本题考查了一次函数的性质,掌握y kx b =+,0k >时,y 随x 的增大而增大是解题的关键.9、D【解析】【分析】根据一次函数的性质对各选项进行逐一判断即可.【详解】解:A、当x=−2,y=−2x+1=−2×(−2)+1=5,则点(−2,1)不在函数y=−2x+1图象上,故本选项错误;B、由于k=−2<0,则y随x增大而减小,故本选项错误;C、由于k=−2<0,则函数y=−2x+1的图象必过第二、四象限,b=1>0,图象与y轴的交点在x 的上方,则图象还过第一象限,故本选项错误;D、由于直线y=−2x+1与直线y=−2x的倾斜角相等且与y轴交于不同的点,所以它们相互平行,故本选项正确;故选:D.【点睛】本题考查了一次函数y=kx+b(k≠0)的性质:当k>0,图象经过第一、三象限,y随x增大而增大;当k<0,图象经过第二、四象限,y随x增大而减小;当b>0,图象与y轴的交点在x的上方;当b=0,图象经过原点;当b<0,图象与y轴的交点在x的下方.10、A【解析】【分析】作点A关于x轴的对称点A',连接BA'并延长交x轴于P,根据三角形任意两边之差小于第三边可-最大,利用待定系数法求出直线BA'的函数表达式并求出与x轴的交点坐标即知,此时的PA PB可.【详解】解:如图,作点A关于x轴的对称点A',则PA=PA',-≤BA'(当P、A'、B共线时取等号),∴PA PB-最大,且点A'的坐标为(1,-1),连接BA'并延长交x轴于P,此时的PA PB设直线BA'的函数表达式为y=kx+b,将A '(1,-1)、B (2,-3)代入,得:132k b k b -=+⎧⎨-=+⎩,解得:21k b =-⎧⎨=⎩, ∴y =-2x +1,当y =0时,由0=-2x +1得:x =12,∴点P 坐标为(12,0),故选:A【点睛】本题考查坐标与图形变换=轴对称、三角形的三边关系、待定系数法求一次函数的解析式、一次函数与x 轴的交点问题,熟练掌握用三角形三边关系解决最值问题是解答的关键.二、填空题1、2(满足k >0即可)【解析】【分析】根据函数图象经过第一、三象限,可判断k >0,任取一个正值即可.【详解】解:∵正比例函数y =kx (k 是常数,k ≠0)的图象经过第一、三象限,∴k>0.故答案为:2(满足k>0即可).【点睛】本题考查了正比例函数的性质,解题关键是明确正比例函数y=kx(k是常数,k≠0)的图象经过第一、三象限时,k>0.2、x<-2【解析】【分析】根据图象,找出在x轴下方的函数图象所对应的自变量的取值即可得答案.【详解】∵点A坐标为(-2,0),∴关于x的不等式kx+b<0的解集是x<-2,故答案为:x<-2【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合;熟练掌握函数图象法是解题关键.3、y=2x-1【解析】略4、-2【解析】【分析】由正比例函数的图象经过点的坐标,利用一次函数图象上点的坐标特征可得出-1=k +1,即可得出k 值.【详解】解:∵正比例函数(1)y k x =+的图象经过点(1,-1),∴-1=k +1,∴k =-2.故答案为:-2.【点睛】本题考查了正比例函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y =kx 是解题的关键.5、 b 上 下【解析】略三、解答题1、 (1)()2,0;()0,4(2)作图见解析;02x ≤≤【解析】【分析】(1)分别令,x y 0=,进而即可求得此函数图象与坐标轴的交点坐标;(2)根据(1)所求得的点的坐标,画出一次函数图象即可,根据图象写出当04y ≤≤时,自变量的取值范围即可.(1)令0x =,解得4y =,令0y =,解得2x =则此函数图像与x 轴的交点坐标为()2,0、与y 轴的交点坐标为()0,4(2)过点()2,0;()0,4作直线,如图,根据函数图象可得当04y ≤≤时,x 的取值范围是:02x ≤≤故答案为:02x ≤≤【点睛】本题考查了画一次函数图象,一次函数与坐标轴的交点,根据函数图象求自变量的范围,掌握一次函数的图象的性质是解题的关键.2、 (1)这个函数的图像与坐标轴的交点为(0,2),(2,0);(2)见解析(3)①y <2;②x >2【解析】【分析】(1)令x =0,求函数与y 轴的交点,令y =0,求函数与x 轴的交点;(2)两点法画出函数图象;(3)通过观察函数图象求解即可.(1)解:令x=0,则y=2,令y=0,则x=2,∴这个函数的图像与坐标轴的交点为(0,2),(2,0);(2)解:这个函数的图像如图所示:,(3)解:①观察图像可知:当x>0时,y<2,故答案为:y<2;②观察图像可知:当y<0时,x>2,故答案为:x>2.【点睛】本题考查了一次函数的图象及性质,熟练掌握一次函数的图象及性质,数形结合解题是关键.3、(2)相切,理由见解析(3)1b =或3b =-【解析】【分析】(1)将P 点直接代入距离公式计算.(2)计算圆心到直线的距离,将距离与半径比较,判断圆与直线之间的关系,(3)在直线1y x =-上任取一点,计算该点到y x b =+的距离,可求得b .(1)因为直线2y x =-,其中1k =,2b =-,所以点P 到直线的距离:d ===(2)因为直线1y x =-+,其中1k =-,1b =,所以圆心C 到直线的距离::d ===圆心到直线的距离d r ==, C 与直线1y x =-+相切.(3)在直线1y x =-上取一点(0,1)A -,根据题意得,点A 到直线y x b =+因为直线y x b =+,其中1k =,b b =,所以点A 到直线的距离:d ==即:|1|2b +=,解得:1b =或3b =-.【点睛】本题属于一次函数的综合题,主要考查了点到直线的距离公式应用,解题关键是能够理解题目中距离的计算公式,并能结合圆、另一条直线进行计算.根据各数量之间的关系,正确列出一元一次不等式.4、 (1)6a =,5b =,2c = (2)256m =或52 (3)103 【解析】【分析】(1)根据二次根式有意义的条件求出c ,根据二元一次方程的定义列出方程组,解方程组求出a 、b ;(2)根据三角形的面积公式求出△AOB 的面积,根据S △ABD =16×S △AOB 求出S △ABD ,根据三角形的面积公式计算,得到答案;(3)利用待定系数法求出直线AB 的解析式,进而求出m .(1)20c -,20c -,2c ∴=,由二元一次方程的定义,得1251a b a b -=⎧⎨-+=⎩, 解得:65a b =⎧⎨=⎩, 6a ∴=,5b =,2c =;(2)设AB 与直线l 交于E ,连接OE ,由(1)可知:5OB =,6OA =,2OC =,11651522AOB S OA OB ∆∴=⨯⨯=⨯⨯=, 1562ABD AOB S S ∆∆∴=⨯=, 12552BOE S ∆=⨯⨯=, 15510AOE S ∆∴=-=,即16102CE ⨯⨯=, 解得:103CE =, 103DE CD CE m ∴=-=-, ∴11056232m ⨯-⨯=,解得:256m =或52; (3) 当AD BD +取得最小值时,点D 在AB 上,设直线AB 的解析式为:y kx b =+,则506k b b +=⎧⎨=⎩, 解得:656k b ⎧=-⎪⎨⎪=⎩, ∴直线AB 的解析式为:665y x =-+, 当2y =时,103x =, m ∴的值为103. 【点睛】本题考查的是二次根式有意义的条件、二元一次方程的定义、三角形的面积计算、函数解析式的确定,掌握待定系数法求一次函数解析式的一般步骤是解题的关键.5、 (1) 1.5y x =(2) 2.2 5.6y x =-(3)13吨【解析】【分析】(1)当0<x ≤8时,根据水费=用水量×1.5,即可求出y 与x 的函数关系式;(2)当x >8时,根据“每户每月的用水不超过8吨时,水价为每吨1.5元,超过8吨时,超过的部分按每吨2.2元收费”,得出水费=8×1.5+(用水量-8)×2.2,即可求出y 与x 的函数关系式;(3)当0<x ≤8时,y ≤12,由此可知这个月该户用水量超过8吨,将y =23代入(2)中所求的关系式,求出x 的值即可.(1)根据题意可知:当08x <时, 1.5y x =;(2)根据题意可知:当8x >时, 1.58 2.2(8) 2.2 5.6y x x =⨯+⨯-=-; (3)当08x <时, 1.5y x =,y 的最大值为1.5812⨯=(元),1223<,∴该户当月用水超过8吨.令 2.2 5.6y x =-中23y =,则23 2.2 5.6x =-,解得:13x =.答:这个月该户用了13吨水.【点睛】本题考查了一次函数的应用,根据数量关系找出函数关系式是解题关键.。

肥西县第三中学八年级数学下册 第二十章 函数 20.3 函数的表示补充例题 冀教版

肥西县第三中学八年级数学下册 第二十章 函数 20.3 函数的表示补充例题 冀教版

补充例题1.求下列函数自变量的取值范围:(1)321-=x y ;(2)x y -=21; (3)3-=x y ;(4)325-=x y ; (5)31--=x x y ;(6)4212++=x x y . 解:(1)自变量x 的取值范围是一切实数 (函数表达式为整式,x 取一切实数) (2)02≠-x ,2≠∴x(函数表达式为分式,取分母不为0的一切实数) (3)03≥-x3≤∴x(函数表达式为二次根式取被开方数不小于0的实数) (4)x 取一切实数(函数表达式为三次根式,x 为任意实数) (5)⎩⎨⎧≠-≥-0301x x (这里不能用“或”应用“且”) 解得⎩⎨⎧≠≥31x x ∴自变量的取值范围是1≥x ,且3≠x 的一切实数(6)03)1(4222≠++=++x x x(配方是关键)∴x 为任意实数时,y 均有意义即自变量x 的取值范围为一切实数.2.下列函数中与x y 5=表示同一函数的是一个函数?(1)x y =与x x y 2)(=; (2)x y 2=与332x y =;(3)x y 3=与2)3(x y =;(4)x y 1=与2x xy =.解:(1)它们不是同一函数。

(x 的取值范围不同) (2)它们不是同一函数。

(函灵敏的对应关系不同) (3)它们不是同一函数 (函数值的取值范围不同) (4)它们是同一函数(对应关系相同,自变量,函数值的取值范围均相同) 3.已知函数x a a y 4162+-=,当2=x 时,1-=y ,(1)确定此函数(2)求当21=x 时,y 的值解: (1)当2=x ,1-=y (要理解函数值的定义)时,有241612⨯+-=-a a 即0962=+-a a(实际是解方程) 解出:3=a把3=a ,代入x a a y 4162+-=得(求出的a 值代回函数中)x y 2-=∴自变量的取值范围是0≠x 的全体实数(这一步要注明) (2)x y 2-= 当21=x 时,4212=-=y(实际是求代数式的值)∴当21=x 时,函数值y 是4-.4.一盛满10吨水的水箱,每小时流出5.0吨水。

冀教版八年级数学下册第二十一章一次函数测试题含答案

冀教版八年级数学下册第二十一章一次函数测试题含答案
y=2(x+1)﹣1,即y=2x+1,
故选B.
考点:一次函数图象与几何变换
8.B
【解析】
【分析】
根据正比例函数的定义,知1-m=0,即可求出m的值.
【详解】
依题意得1-m=0,2m+6 0,求得m=1,故选B.
【点睛】
此题主要考察正比例函数的定义.
9.A
【解析】
由题意可得: ,即: .
故选A.
10.C
(1)求甲在休息前到侧门的路程y(km)与出发时间x(h)之间的函数关系式.
(2)求甲、乙第一次相遇的时间.
(3)直接写出乙回到侧门时,甲到侧门的路程.
参考答案
1.C
【解析】
【分析】
根据一次函数的定义即可判断.
【详解】
①y=x;②y=2x-1是一次函数;;③y= ;④y=x2-1不是一次函数,
故选C.
∴它是递增的一次函数,与x、y轴的交点分别是(1,0)、(0,1)
∴它的图象经过第一、二、四象限
5.D
【解析】
试题分析:根据正比例函数图象的特点可直接解答.
解:∵正比例函数y=(k+5)x中若y随x的增大而减小,
∴k+5<0.
∴k<﹣5,
故选D.
6.B
【解析】
【分析】
把(-2,-6),(0,4)代入一次函数解析式,求出k、b的值,即可知解析式,再令y=0,求得x即可.
【详解】
把(-2,-6),(0,4)代入y=kx+b,得 ,
解得 ,∴y=5x+4,
当y=0时,即5x+4=0,解得x=- ,故选B.
【点睛】
此题主要考察待定系数法确定函数关系式,熟练利用二元一次方程组是解题的关键.

2014年冀教版八年级数学(下)全册单元试题(含18、19、20、21、22章)

2014年冀教版八年级数学(下)全册单元试题(含18、19、20、21、22章)

第十八章数据的收集与整理单元试题一、填空题1.从1000发炮弹中抽出10发试验,检测其杀伤半径,这个问题中的样本容量是____。

2.从某市不同职业居民中抽取200户调查各自的年消费额,在这个问题中,样本是____。

3.某校初三年级共有500名学生,现抽取部分学生进行达标测试,以下是引体向上的测试成绩:根据表中数据,这次抽取的样本容量有____个,如果做20次以上(含20次)为及格,那么这次抽试的及格率为___,如果用样本的及格率估计总体,那么初三年级会有____人不及格。

4.一家电脑生产厂家在某城市三个经销本厂产品的大商场进行调查,产品的销量占这三个大商场同类产品销量的40%,由此在广告中宣传,他们的产品占国内同类产品的销量40%,请你根据所学的统计知识,判断该宣传中的数据是否可靠______,理由是_____。

5.某校七年级(1)班共有50名学生,一次数学考试成绩统计结果是:90分8人,83分11人,74分10人,65分16人,56分3人,49分2人.则全班同学数学平均分为_____,及格率(60分以上)为____,优秀人数为(80分以上为优秀)_____。

6.在一个不透明的口袋中装有红、白、蓝三色小球,其中红色小球5个,白色小球3个,蓝色小球8个,则红、白、蓝三色小球的数量之比为____,其中红色小球的数量占全部小球数量的_____。

7.某学习小组10名同学成绩如下:3人得92分,2人得90分,4人得88分,1人得97分.那么该学习小组10名同学的平均成绩是____分。

8.数据-3、-1、1、3、5的标准差为____。

(保留2个有效数字)二、选择题9.某新品种葡萄试验基地种植了10亩新品种葡萄,为了解这些新品种葡萄的单株产量,从中随机抽查了4株葡萄,在这个统计工作中,4株葡萄的产量是()A.总体B.总体中的一个样本C.样本容量D.个体10.为了了解本校三个年级学生身高的分布情况,四位同学做了不同的调查:甲、乙、丙三个同学分别向七年级、八年级、九年级的全体同学进行了调查,丁分别向七年级、八年级、九年级的1班进行了调查.你认为调查较科学的是()A.甲B.丙C.丁D.乙11.开学初,某商店为调查邻近学校里学生的零用钱数额(单位:元),按学生总人数的12.5%抽样,数据分成了五组进行统计.因意外,丢失了一些信息,剩余部分信息为:①第一组的频数、频率分别为2和0.04;②第二、三、五组的频率分别为0.24、0.20、0.36;③计算出样品中同学的零花钱平均数是30元,则全体学生的零用钱大约是()A.9800元B.10000元C.12000元D.15630元12.在一次统考中,从甲、乙两所中学初三学生中各抽取50名学生进行成绩分析,甲校的平均分和方差分别是82分和245分,乙校的平均分和方差分别是82分和190分,根据抽样可以粗略估计成绩较为整齐的学校是()A.甲校B.乙校C.两校一样整齐D.不好确定哪校更整齐13.已知一组数据含有20个数据:68,69,70,66,68,65,64,65,69,62,67,66,65,67,63,65,64,61,65,66,如果分成5组,那么64.5~66.5这一小组的频率为()A.0.04B.0.5C.0.45D.0.414.某人对莫干山旅游的游客人数进行了统计:10天中,有3天每天的游客人数为400人,有2天游客人数为600人,有5天游客人数为350人,那么10天中平均每天的游客人数为()A.415人B.425人C.450人D.400人三、解答题15.对某班学生一次数学测验成绩进行统计分析,各分数段的人数如图所示(分数取正整数),请认真观察图形,并回答下列问题。

最新冀教版八年级数学下册第20章《函数》同步测试题(附答案)

最新冀教版八年级数学下册第20章《函数》同步测试题(附答案)

函数的初步应用一、选择题1.下列命题中错误的是()A.在等速运动公式s=vt中,v是常量B.在用公式C=2πR计算不同的半径所对应的周长C时,C,R是变量,2π是常量C.练习本定价0.5元/个,买x个本子付款y元,它们的关系可以表示成y=0.5x,这里的x为自然数D.今有360本图书借给学生阅读,每人9本,则余下书数y(本)与学生数x(个)间的关系为y=360-9x,其自变量x的取值范围是0≤x<402.在下列等式中,y是x的函数的有( )3x-2y=0,x2-y2=1,y=x,x=yA.1个B.2个C.3个D.4个3.下面函数关系式中分别注明了自变量的取值范围:①圆的面积公式A=πr2 (r为正实数)②多边形对角线条数l=()32n n-,(n为整数)③y=35x-(x为不等于5的实数)④=y(x为任意实数)这些说明中正确的是( )A.①和②B.①和③C.①和④D.②和③4.一根蜡烛长20cm,点燃后每小时燃烧5cm,燃烧时剩下的高度h(cm)与燃烧时间t(h)之间的函数关系式用图像表示为( )5.弹簧的长度与所挂物体的质量的关系为一次函数,如图所示,y为弹簧的长度,x 为所挂物体的质量,由图可知,每挂lkg物体时,弹簧伸长 ( )A.0.5cm B.7.5cmC.lcm D.不能确定二、填空题6.全国每年都有大量土地被沙漠吞没,改造沙漠、保护土地资源已经成为一项十分紧迫的任务.某地区现有土地面积100万平方千米,沙漠面积200万平方千米,土地沙漠化的变化情况如图所示.(1)如果不采取任何措施,那么到第5年底,该地区沙漠面积将新增加万平方千米.(2)如果该地区沙漠的面积继续按此趋势扩大,那么从现在开始,第年底后,该地区将丧失土地资源。

(3)如果从现在开始采取植树造林等措施,每年改造4万平方千米沙漠,那么到第年底,该地区的沙漠面积能减少到176万平方千米。

7.一物体从高空落下,其速度v(米/秒)与下落时间t(秒)的关系如图所示,若它用了6秒落到地面,则落地时的速度为_______________米/秒8.已知一种小树苗的高度h(米)是其生长年数t(年)的一次函数,h与t的关系如图所示,那么要使小树长到4.5米要经过的年数为___________三、解答题9.小明晚饭以后外出散步,碰见同学,交谈了一会,返回途中在读报栏前看了一会报.下图是据此情境画出的图像,请你回答下列问题:(1)小明是在什么地方碰到同学的,交谈了多少时间?(2)读报栏大约离家多少路程?(3)小明在哪一段路程中走得最快?10.甲、乙两辆汽车在同一条公路上行驶,为了确定汽车的位置,我们规定,将两辆汽车在公路上行驶的情况(s与时间t的函数关系)画在同一直角坐标系中,如图(1)根据图像判断汽车在这条公路上行驶的状况,并填在下表中.(2)甲、乙两车能否相遇?如能相遇,说出相遇时刻及在公路上的位置;如不能相遇,请说明理由.能力提高11.一根弹簧原长12cm,每挂1kg物体弹簧伸长12+cm,弹簧挂物重最多不超过15kg.(1)写出弹簧长度ycm与物重xkg的函数关系式.(2)写出自变量的取值范围.(3)求出挂l0kg重物时,弹簧的长度.12.如图,在矩形ABCD中,AB=4,BC=7,P是BC边上与B点不重合的动点,过点P的直线交CD的延长线于R,交AD于Q(Q与D不重合),且∠RPC=45°,设BP=x,梯形AB-PQ的面积为y,求y与x之间的函数关系,并求出自变量x的取值范围.13.某市自来水公司为了鼓励市民节约用水,采用了分段收费标准.若每户居民每月应交水费y(元)是用水量x(t)的函数,其图像如图所示.(1)分别写出x≤5和x>5时,y与x的函数关系式.(2)观察函数图像,回答自来水公司采取的收费标准.(3)若某户居民该月用水3.5t,则应交水费多少元?若该月交水费9元,则用水多少t?答案l. A 2.D 3.C 4.B 5.C6.(1)离家800米处交谈了10分钟(2)读报栏大约离家400米(3)从读报栏回到家那段路程。

冀教版八年级数学下册第二十章《函数》同步练习题

冀教版八年级数学下册第二十章《函数》同步练习题

冀教版八年级数学下册第二十章《函数》同步练习题20.1 常量和变量一、选择题1.半径是R 的圆的周长C=2πR ,下列说法正确的是 ( )A .C ,π,R 是变量B .C 是变量,2,π,R 是常量 C .R 是变量,2,π,C 是常量D .C ,R 是变量,2,π是常量 2.在△ABC 中,它的底边为a ,底边上的高为h ,则三角形的面积S=21ah ,若h 为定值,则式子中的变量为 ( )A .S ,a ,hB .a ,hC .S ,aD .以上答案均不对 3上表中的变量情况是 ( )A .仅有一个变量,是所售水果数量B .仅有一个变量,是总售价C .有两个变量,一个是所售水果数量,另一个是总售价D .均为常量,无变量 二、填空题4.长方形的长和宽分别是a 与b ,周长C=2(a+b),其中常量是 ,变量是 。

5.正多边形的内角和公式a=(n-2)×180°(a 是多边形的内角和,n 是正多边形的边数),则其中的变量是 ,常量是 。

6.圆锥体积V 与圆锥底面半径r 、圆锥高h 之间存在关系式V=31πr 2h ,当底面半径r 一定时,变量为 . 三、解答题7.某市出租车起步价为5元,2公里以后每公里收费为1.2元,如果出租车行驶里程为x 千米(x ≥2),乘客所付车费为y 元,则怎样用含有行驶里程数x 的代数式表示乘客所付车费y ?其中常量是什么?变量是什么?8.如图,射线BD ⊥线段AB ,点C 为射线BD 上一个动点,点C 在射线BD 上运动过程中,F EP CB A哪些量是常量?哪些量是变量?9.如图,△ABC中,AB=AC=13,BC=10,点P为线段BC上一动点,PE⊥AB于点E,PF⊥AC于点F,请说明PE+PF的值是常量.20.2 函数一、填空题1、小明用30元钱去购买价格为每件5元的某种商品,求他剩余的钱y(元)与购买这种商品x件之间的关系是。

当x=5时,函数值是,这一函数值的实际意义是。

精品试题冀教版八年级数学下册第二十章函数专题测试试题(含详细解析)

精品试题冀教版八年级数学下册第二十章函数专题测试试题(含详细解析)

冀教版八年级数学下册第二十章函数专题测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下图中表示y是x函数的图象是()A.B.C.D.2、下列图像中表示y是x的函数的有几个()A .1个B .2个C .3个D .4个3、函数y =x 的取值范围是( ) A .2x > B .2x ≥且3x ≠ C .2x ≥ D .2x >且3x ≠4、小刚以400米/分的速度匀速骑车5分,在原地休息了6分,然后以500米/分的速度骑回出发地.设小刚离家路程为s (千米),速度为v (千米/分),时间为t (分)下列函数图象能表达这一过程的是( )A .B .C .D .5、下列所描述的四个变化过程中,变量之间的关系不能看成函数关系的是( )A .小车在下滑过程中下滑时间t 和支撑物的高度h 之间的关系B .三角形一边上的高一定时,三角形的面积s 与这边的长度x 之间的关系C .骆驼某日的体温T 随着这天时间t 的变化曲线所确定的温度T 与时间t 的关系D .一个正数x 的平方根是y ,y 随着这个数x 的变化而变化,y 与x 之间的关系6、下面关于函数的三种表示方法叙述错误的是( )A .用图象法表示函数关系,可以直观地看出因变量如何随着自变量而变化B .用列表法表示函数关系,可以很清楚地看出自变量取的值与因变量的对应值C .用解析式法表示函数关系,可以方便地计算函数值D .任何函数关系都可以用上述三种方法来表示7、某天,小南和小开两兄弟一起从家出发到某景区旅游,开始大家一起乘坐时速为50千米的旅游大巴,出发2小时后,小南有急事需回家,于是立即下车换乘出租车,一个小时后返回家中,办事用了30分钟后自己驾车沿同一路线以返回时的速度赶往景区,结果小南比小开早30分钟到达景区(三车的速度近似匀速,上下车的时间忽略不计,两地之间为直线路程),两人离家的距离y (千米)与出发时间x (小时)的关系如图所示,则以下说法错误的是( )A .出租车的速度为100千米/小时B .小南追上小开时距离家300千米C .小南到达景区时共用时7.5小时D .家距离景区共400千米8、在函数23y x =-x 的取值范围是( ) A .x ≥﹣1 B .x ≠3 C .x >﹣1 D .x ≥﹣1且x ≠39、某商场降价销售一批名牌球鞋,已知所获利润y (元)与降价金额x (元)之间满定函数关系式y =﹣x 2+50x +600,若降价10元,则获利为( )A .800元B .600元C .1200元D .1000元10、甲、乙两人分别从A 、B 两地同时出发,相向而行,匀速前往B 地、A 地,两人相遇时停留了4min ,又各自按原速前往目的地,到达目的地后停止. 甲、乙两人之间的距离y (m )与甲所用时间x (min )之间的函数关系如图所示,给出下列结论:①A ,B 之间的距离为1200m ;②乙行走的速度是甲的1.5倍;③b =800;④a =34,其中正确的结论个数为( )A .4个B .3个C .2个D .1个第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、函数2yx的定义域是 _____.2、如图是汽车加油站在加油过程中,加油器仪表某一瞬间的显示,加油过程中的常量是________.3、一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是__________,y是x的__________.如果当x=a时,y=b,那么b叫做当自变量的值为a时的__________.4、小亮从学校步行回家,图中的折线反映了小亮离家的距离S(米)与时间t(分钟)的函数关系,根据图象提供的信息,给出以下结论:①他在前12分钟的平均速度是70米/分钟;②他在第19分钟到家;③他在第15分钟离家的距离和第24分钟离家的距离相等;④他在第33分钟离家的距离是720米.其中正确的序号为 ___.5、长方形的周长为20,则面积y与一条边长x之间的函数关系式是___.三、解答题(5小题,每小题10分,共计50分)1、如图反映的过程是小明从家去菜地浇水,又去玉米地锄草,然后回家,其中x表示时间,y表示小明离他家的距离,根据图象回答问题:(1)菜地离小明家km;(2)小明走到菜地用了min;(3)小明给菜地浇水用了min;(4)小明从菜地到玉米地走了km;(5)小明从玉米地走回家平均速度是km/min.2、已知动点P以2cm/s的速度沿图1所示的边框从B-C-D-E-F-A的路径运动,记△ABP的面积为S (cm2),S与运动时间t(s)的关系如图2所示,若AB=6cm,请回答下列问题:(1)图1中BC=________ cm,CD=________ cm,DE=________ cm;(2)求图2中m、n的值.3、A,B两地相距60km,甲乙两人沿同一条路从A地前往B地,甲先出发.图中l1,l2表示甲乙两人离A地的距离y(km)与乙所用时间x(h)之间的关系,请结合图象回答下列问题:(1)图中表示甲离A地的距离y(km)与乙所用时间x(h)之间关系的是(填l1或l2);(2)当其中一人到达B地时,另一人距B地km;(3)乙出发多长时间时,甲乙两人刚好相距10km?4、购买一些铅笔,单价为0.2元/支,总价y元随铅笔支数x变化.指出其中的常量与变量,自变量与函教,并写出表示函数与自变量关系的式子.5、图中的折线表示一骑车人离家的距离y与时间x的关系.骑车人9:00离开家,15:00回家.请你根据这个折线图回答下列问题:(1)这个人何时离家最远?这时他家多远?(2)何时他开始第一次休息?休息多长时间?这时他离家多远?(3)11:00~12:30他骑了多少千米?(4)他在9:00~10:30和10:30~12:30的平均速度各是多少?(5)他返家时的平均速度是多少?(6)14:00时他离家多远?何时他距家9km?-参考答案-一、单选题1、C【解析】【分析】函数就是在一个变化过程中有两个变量x,y,当给x一个值时,y有唯一的值与其对应,就说y是x 的函数,x是自变量.注意“y有唯一的值与其对应”对图象的影响.【详解】解:根据函数的定义,表示y是x函数的图象是C.故选:C.【点睛】理解函数的定义,是解决本题的关键.2、A【解析】【分析】函数就是在一个变化过程中有两个变量x,y,当给定一个x的值时,y由唯一的值与之对应,则称y 是x的函数,x是自变量,注意“y有唯一性”是判断函数的关键.【详解】解:根据函数的定义,每给定自变量x 一个值都有唯一的函数值y 与之相对应,故第2个图符合题意,其它均不符合,故选:A .【点睛】本题考查函数图象的识别,判断方法:做垂直x 轴的直线在左右平移的过程中,与函数图象只会有一个交点.3、B【解析】【分析】根据被开方数大于等于0,分母不等于0列式进行计算即可得解.【详解】解:根据题意得,x -2≥0且x −3≠0,解得2x ≥且3x ≠.故选:B .【点睛】本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.4、C【解析】【分析】因为小刚以400米/分的速度匀速骑车5分,可求其行驶的路程对照各选除错误选项,“在原地休息”对应在图象上表示时间在增加,而距离不变,即这一线段与x轴平行,“回到原出发地”表示终点的纵坐标为0,综合分析选出正确答案.【详解】解:∵400×5=2000(米)=2(千米),∴小刚以400米/分的速度匀速骑车5分行驶的路程为2千米,而选项A与B中纵轴表示速度,且速度为变量,这与事实不符,故排除选项A与B;又∵回到原出发地”表示终点的纵坐标为0,∴排除选项D,故选:C.【点睛】本题考查了函数的图象,解题的关键是理解函数图象的意义.5、D【解析】【分析】根据函数的定义:在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一的值与之对应,则称x是自变量,y是x的函数,由此进行逐一判断即可【详解】解:A、小车在下滑过程中下滑时间t和支撑物的高度h之间的关系,对于每一个确定的高度h,下滑时间t都有唯一值与之对应,满足函数的关系,故不符合题意;B、三角形一边上的高一定时,三角形的面积s与这边的长度x之间的关系,由面积s=边长×高,可知,对于每一个确定的边长,面积s都有唯一值与之对应,满足函数的关系,故不符合题意;C、骆驼某日的体温T随着这天时间t的变化曲线所确定的温度T与时间t的关系,对于每一个确定的时间,温度T都有唯一值与之对应,满足函数的关系,故不符合题意;D 、∵一个正数x 的平方根是y ,∴()2x y =±,对于每一个确定的x ,y 都有两个值与之对应,不满足函数的关系,故符合题意; 故选D .【点睛】本题主要考查了函数的定义,解题的关键在于能够熟练掌握函数的定义.6、D【解析】【分析】根据函数三种表示方法的特点即可作出判断.【详解】前三个选项的叙述均正确,只有选项D 的叙述是错误的,例如一天中的气温随时间的变化是一个函数关系,但此函数关系是无法用函数解析式表示的.故选:D【点睛】本题考查了函数的三种表示方法,知道三种表示方法的特点是本题的关键.7、B【解析】【分析】先根据旅游大巴2小时行2×50=100千米,出租车1小时行驶100千米,出租车速度可判断A 正确;设小南t 小时追上小开,利用两者距离相等列方程 50(2+1+0.5+t )=100t ,解得t =3.5,可判断B 不正确;利用到旅游区两者距离相等列方程50(2+1+0.5+t +0.5)=100t ,解得t =4,可判断C 正确;利用自驾车行驶速度×时间=100×4=400千米,可求出家距离景区共400千米,可判断D 正确.【详解】解:旅游大巴2小时行2×50=100千米,出租车1小时行驶100千米,出租车速度为100÷1=100千米/时,故选项A正确;设小南t小时追上小开,50(2+1+0.5+t)=100t,解得t=3.5,∴100×3.5=350千米,故选项B不正确;50(2+1+0.5+t+0.5)=100t,解得t=4,∴小南到达景区时共用2+1+0.5+4=7.5小时,故选项C正确;∵100×4=400千米,∴家距离景区共400千米,故选项D正确.故选B.【点睛】本题考查函数图像信息获取与处理,掌握函数图像信息获取与处理方法是解题关键.8、D【解析】【分析】根据分式的分母不为零,二次根式被开方数非负即可得到不等式组,解不等式组即可.【详解】由题意得:3010x x -≠⎧⎨+≥⎩ 解得:1x ≥-且3x ≠故选:D【点睛】本题考查了函数有意义的自变量的取值范围,一般地:若解析式中有分式,则分母不为零,若有二次根式,则被开方数非负,其余情况下自变量取值无限制,实际问题要具体情况具体分析.9、D【解析】【分析】将10x =代入函数关系式即可得.【详解】解:将10x =代入250600y x x -++=得:21050106001000y =-⨯=++,即获利为1000元,故选:D .【点睛】本题考查了求函数的函数值,熟练掌握函数值的求法是解题关键.10、A【解析】【分析】由图象所给信息对结论判断即可.【详解】由图象可知当x =0时,甲、乙两人在A 、B 两地还未出发故A ,B 之间的距离为1200m故①正确前12min 为甲、乙的速度和行走了1200m故100V V m /min +=甲乙由图象可知乙用了24-4=20min 走完了1200m则60V m /min =乙则1001006040V V m /min =-=-=甲乙601540V .V ==乙甲 故②正确又∵两人相遇时停留了4min∴两人相遇后从16min 开始继续行走,由图象x =24时的拐点可知,到24min 乙到达目的地 则两人相遇后行走了24-16=8min ,两人之间的距离为8×100=800米则b =800故③正确从24min 开始为甲独自行走1200-800=400m则t =4004001040V ==甲min故a =24+10=34故④正确综上所述①②③④均正确,共有四个结论正确.故选:A.【点睛】本题考查了从函数图象获取信息,运用数形结合的思想是解题的关键.二、填空题1、x≠0【解析】【分析】由题意直接根据分式有意义的条件即分式的分母不能为0进行分析计算即可.【详解】解:函数2yx的定义域是:x≠0.故答案为:x≠0.【点睛】本题考查求函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.2、单价【解析】【分析】常量是指在变化过程中,数值始终不变的量【详解】解:加油过程中,单价×数量=总价,此时,单价是常量,数量和金额是变量.故答案为:单价【点睛】本题考查常量的定义,牢记相关的知识点是解题关键.3、自变量函数函数值【解析】略4、①④【解析】【分析】由图象可以直接得出前12分钟小亮的平均速度,从而得出①正确;由图象可知从12分到19分小亮又返回学校,可以判断②错误;分别求出小亮第15分和第24分离家距离可以判断③错误;求出小亮33分离家距离,可以判断④正确.【详解】解:由图象知,前12分中的平均速度为:(1800−960)÷12=70(米/分),故①正确;由图象知,小亮第19分中又返回学校,故②错误;小亮在返回学校时的速度为:(1800−960)÷(19−12)=840÷7=120(米/分),∴第15分离家距离:960+(15−12)×120=1320,从21分到41分小亮的速度为:1800÷(41−21)=1800÷20=90(米/分),∴第24分离家距离:1800−(24−21)×90=1800−270=1530(米),∵1320≠1530,故③错误;小亮在33分离家距离:1800−(33−21)×90=1800−1080=720(米),故④正确,故答案为:①④.【点睛】本题考查函数图像,关键是利用已知信息和图象所给的数据分析题意,依次解答.5、()210010y x x x =-+<<【解析】【详解】解:∵长方形的周长为20,一条边为x , ∴长方形的另一条边为120102x x ⨯-=-,∴()()21010010y x x x x x =-=-+<< . 故答案为:()210010y x x x =-+<<.【点睛】本题主要考查了列函数关系式,解题的关键在于能够熟练掌握长方形周长公式和面积公式.三、解答题1、 (1)1.1(2)15(3)10(4)0.9(5)0.08【解析】【分析】结合已知、图象逐一进行分析即可解题.(1)解:由图象可知:菜地离小明家1.1千米故答案为:1.1;(2)由图象可知:小明从家到菜地用了15分钟故答案为:15;(3)由图象可知:小明给菜地浇水用了251510-=(分钟)故答案为:10;(4)由图象可知:小明从菜地到玉米地走了2 1.10.9-=(千米)故答案为:0.9;(5)由图象可知:玉米地离小明家2千米,小明从玉米地走回家的平均速度为:()()280550.08km/min ÷-=.2、(1)8,4,6;(2)m =24,n =17.【解析】【分析】(1)因为点P速度为2cm/s,所以根据右侧的时间可以求出线段BC,CD和DE的长度;(2)m代表的是点P在C时对应图形面积,n代表的是点P运动到A时对应的时间,由图象都可以求出.【详解】解:(1)∵点P速度为2cm/s,由右侧图象可知,点P在BC线段运动了4秒,∴BC=4⨯2=8(cm),点P在CD线段运动了6-4=2秒,∴CD=2⨯2=4(cm),点P在DE线段运动9-6=3秒,∴DE=3⨯2=6(cm),故答案为:8,4,6;(3)当点P到C时,△ABP的面积为12AB⨯BC=12⨯6⨯8=24(cm2),∴m=24,∵BC+CD+DE+EF+AF=8+4+6+(6-4)+(8+6)=34(cm),∴n=34×12=17.【点睛】本题考查了动点问题的函数图象,数形结合的数学思维,通过图象找出对应图形的线段长度,很好的考查了学生分析问题和看图的能力.3、(1)2l;(2)10;(3)乙出发1小时或3小时时,甲乙两人刚好相距10km【解析】【分析】(1)根据甲比乙先出发,则当乙出发时,甲离A地已经有一段的距离,即在函数图像上表现为当0x =时,0y >甲,由此求解即可;(2)先求出甲的速度为10千米/小时,乙的速度为20千米/小时,即可求出乙到达B 地需要的时间=60÷20=3小时,则此时甲所走的距离=20+10×3=50千米,由此即可得到答案;(3)分乙追上甲前和乙追上甲后两种情况讨论求解即可.【详解】解:(1)∵甲比乙先出发,∴当乙出发时,甲离A 地已经有一段的距离,即在函数图像上表现为当0x =时,0y >甲, ∴表示甲离A 地的距离y (km )与乙所用时间x (h )之间关系的是2l ,故答案为:2l ;(2)由函数图像可知,乙两小时行驶了40千米,甲2小时行驶了20千米,∴甲的速度为10千米/小时,乙的速度为20千米/小时,∴乙到底B 地需要的时间=60÷20=3小时,∴此时甲所走的距离=20+10×3=50千米,∴此时甲距离B 地的距离=60-50=10千米,故答案为:10;(3)设乙出发t 小时时,甲乙两人刚好相距10km ,当乙未追上甲时:20102010t t +=+,解得1t =,当乙追上甲后:20101020t t ++=,解得3t =,∴乙出发1小时或3小时时,甲乙两人刚好相距10km .【点睛】本题主要考查了从函数图像获取信息,解题的关键在于能够准确读懂函数图像.4、常量0.2,变量x ,y ,自变量x ,函数y ,0.2y x =.【解析】【分析】根据总价=单价×数量,可得函数关系式.再根据函数的有关定义解答即可.【详解】解:由题意得:0.2y x =(x 是正整数),y 是x 的函数,∴常量0.2,变量x ,y ,自变量x ,函数y .【点睛】主要考查了常量与变量.函数的定义:在一个变化过程中,有两个变量x ,y ,对于x 的每一个取值,y 都有唯一确定的值与之对应,则y 是x 的函数,x 叫自变量.5、(1)12:30~13:30,45km ;(2)10:30,30min ,30km ;(3)15km ;(4)20km /h ,7.5km /h ;(5)30km /h ;(6)18km ,14:30【解析】【分析】(1)直接观察图象,即可求解;(2)直接观察图象,即可求解;(3)用12:30时对应的距离减去11:00对应的距离,即可求解;(4)根据平均速度等于该时间段的路程除以时间,即可求解;(5)根据平均速度等于该时间段的路程除以时间,即可求解;(6)可先求出14:00到15:00的1小时内的平均速度,可得他距家9km 时,从14:00所骑的路程,即可求解.【详解】解:(1)由图可知,这个人12:30-13:30时,离家最远,这时他离家45km;(2)由图可知,10:30时他开始第一次休息,从10:30到11:00,共休息了0.5h,这时他离家30km;(3)11:00~12:30他骑了45-30=15km;(4)他在9:00-10:30的1.5小时内的平均速度为:30÷1.5=20km/h,10:30~12:30的2小时内的平均速度为:(45-30)÷2=7.5km/h;(5)由图象可得:他返家时间为从13:30到15:00,共1.5h,45÷1.5=30km/h,即他返家时的平均速度是30km/h;(6)由图可知,14:00时他离家18km14:00到15:00的1小时内的平均速度为:18÷1=18km/h,(18-9)÷18=0.5h,即回家路上,14:30时他离家9km.【点睛】本题主要考查了函数图象的意义,能准确从函数图象获取信息是解题的关键.。

(新版)冀教版2020年八年级数学下册第二十章函数评估测试卷

(新版)冀教版2020年八年级数学下册第二十章函数评估测试卷

第二十章评估测试卷(时间:90分钟 分值:100分)一、选择题(每小题3分,共36分)1.(2017·无锡)函数y =x 2-x 中自变量x 的取值范围是( A ) A .x ≠2 B.x ≥2 C.x ≤2 D.x >2解析:根据题意得:2-x ≠0,解得:x ≠2.故函数y =x2-x中自变量x 的取值范围是x ≠2.故选A.2.下列函数自变量x 的取值范围错误的是( D )A .y =-2x 2+1中,x 取全体实数B .y =1x +1中,x 取不等于-1的实数C .y =x -2中,x 取大于或等于2的实数D .y =1x +3中,x 取大于或等于-3的实数解析:由⎩⎨⎧ x +3≥0,x +3≠0,得x >-3.故选D.3.一辆汽车由北京驶往相距120 km 的天津,平均速度是30 km/h ,则汽车距天津的路程s (km)与行驶时间t (h)的函数关系式及自变量t 的取值范围是( A )A .s =120-30t (0≤t ≤4)B .s =30t (0≤t ≤4)C .s =120-30t (t >0)D .s =30t (t =4)解析:s 表示剩余距离,剩余距离=总的距离-已经行驶的距离.故选A.4.已知y 关于x 的函数图像如图所示,则当y <0时,自变量x 的取值范围是( D )A .x <-1B .-1<x <1C .1<x <2D .-1<x <1或x >2解析:观察图像可以看出,当函数图像位于x轴的下方,即y<0时,对应的x的值为-1<x<1或x>2.故选D.5.向高为h的圆柱形空水杯内注水,已知水杯底面半径为2,那么表示水深y与注水量x之间关系的图像是图中的( A )解析:h从0开始随x的增大而增大.故选A.6.当实数x的取值使得x-2有意义时,函数y=4x+1中y的取值范围是( B ) A.y≥-7 B.y≥9 C.y>9 D.y≤9解析:由x-2≥0,得x≥2.∴4x+1≥9,∴y≥9.故选B.7.如图,乌鸦口渴到处找水喝,它看到了一个装有水的瓶子,但水位较低,且瓶口又小,乌鸦喝不着水,沉思一会儿后,聪明的乌鸦衔来一个个小石子放入瓶中,水位上升后,乌鸦喝到了水.在这则乌鸦喝水的故事中,从乌鸦看到瓶的那刻起开始计时并设时间为x,瓶中水位的高度为y,下列图像中最符合故事情景的是( D )解析:因为乌鸦在沉思的这段时间内水位没有变化,所以排除C,因为乌鸦衔来一个个小石子放入瓶中,水位将会上升,所以排除A,因为乌鸦喝水后的水位应不低于一开始的水位,所以排除B,所以D正确.故选D.8.小明根据邻居家的故事写了一首小诗:“儿子学成今日返,老父早早到车站,儿子到后细端详,父子高兴把家还.”如果用纵轴表示父亲与儿子行进中离家的距离,用横轴表示父亲离家的时间,那么下面的图像与上述诗的含义大致吻合的是( C )解析:题目中的四句诗反映了四个运动过程.“儿子学成今日返”指儿子离家的距离越来越近,反映在图像上,是一条具有向下趋势的线段;“老父早早到车站”指父亲离家的距离越来越大,且父亲比儿子先到达车站,反映在图像上,是一条过原点的有向上趋势的线段;“儿子到后细端详”反映在图像上,是一条平行于x轴的线段;“父子高兴把家还”反映在图像上,是一条有向下趋势的线段.故选C.9.均匀地向一个容器内注水,最后把容器注满.在注水过程中,水面高度h随时间t 的变化规律如图所示,则这个容器的形状是( B )解析:由函数图像可知:水面高度h由缓慢上升到快速上升,故可选B.10.货车和小汽车同时从甲地出发,以各自的速度匀速向乙地行驶,小汽车到达乙地后,立即以相同的速度沿原路返回甲地,已知甲、乙两地相距180 km,货车的速度为60 km/h,小汽车的速度为90 km/h,则下图中能分别反映货车、小汽车离乙地的距离y(km)与各自行驶时间t(h)之间的函数图像是( C )解析:由题意得出发前货车和小汽车距离乙地180 km,出发2 h小汽车到达乙地距离变为0,再经过2 h小汽车又返回甲地距离又为180 km,经过3 h,货车到达乙地距离变为0,故C 符合题意.故选C.11.三峡水库水位由106 m 升至135 m 时,高峡平湖初现人间.假设水库水位是匀速上升的,那么下列图像中,能正确反映这10天水位h (m)随时间t (天)变化的是( B )解析:根据题意,得图像过(0,106),(10,135),且h 随t 的增大而增大.故选B.12.(2017·凉山州)小明和哥哥从家里出发去买书,从家出发走了20分钟到一个离家1 000米的书店.小明买了书后随即按原路返回;哥哥看了20分钟书后,用15分钟返家.下面的图像中哪一个表示哥哥离家时间与距离之间的关系( D )解析:根据题意,从20分钟到40分钟哥哥在书店里看书,离家距离没有变化,是一条平行于x 轴的线段.故选D.二、填空题(每小题3分,共18分)13.当x =-4时,函数y =2x +1和y =kx -2的值相等,则k =54. 解析:由2×(-4)+1=-4k -2,得k =54. 14.根据如图所示的运算程序,当输入的自变量的值为x =2时,输出的函数值为y =2.解析:因为x =2>1,所以把x =2代入y =-x +4,得y =-2+4=2.15.小明的家距离学校5 km ,他骑车的速度为13 km/h.设他骑车从家出发x h 后与学校的距离为y km ,则y 与x 之间的关系式为y =5-13x .解析:y =总路程-行驶路程=5-13x .16.在百米跑道上,小亮正以8 m/s 的速度向前奔跑,则他距终点的路程s (米)与他起跑时间t (秒)之间的函数关系式为s =100-8t ,自变量t 的取值范围是0≤t ≤12.5.解析:自变量的取值范围除了受式子本身的限制外,还受实际问题的限制.17.(2017·锦州)已知A ,B 两地相距10千米,上午9:00甲骑电动车从A 地出发到B 地,9:10乙开车从B 地出发到A 地,甲、乙两人距A 地的距离y (千米)与甲所用的时间x (分)之间的关系如图所示,则乙到达A 地的时间为9:20.解析:因为甲30分走完全程10千米,所以甲的速度是13千米/分,由图中看出两人在走了5千米时相遇,那么甲此时用了15分钟,则乙用了(15-10)分钟,所以乙的速度为:5÷5=1(千米/分),所以乙走完全程需要时间为:10÷1=10(分),此时的时间应加上乙先前迟出发的10分,现在的时间为9点20分.18.一辆货车从甲地匀速驶往乙地,到达乙地后用了半小时卸货,随即匀速返回,已知货车返回时的速度是它从甲地驶往乙地的速度的1.5倍,货车离甲地的距离y (千米)关于时间x (小时)的函数图像如图所示,则a =5小时.解析:由题意可知,货车从甲地到乙地所用的时间为 3.2-0.5=2.7(小时),所以货车从乙地返回到甲地所用的时间为2.71.5=1.8(小时),所以a =3.2+1.8=5(小时). 三、解答题(共46分)19.(6分)商场购进一批衬衣,定价200元/件,每天可出售50件,根据销售规律知,价格每上调10元,每天销售数量减少5件.请写出日销售量y (件)与定价x (元/件)的函数关系式,并指出如果日销售量不低于30件,定价不能超过多少元?解:y =50-x -20010×5=50-12(x -200)=-12x +150.-12x +150≥30,-12x ≥-120,x ≤240. 答:定价不能超过240元.20.(6分)汽车由北京驶往相距840千米的沈阳,汽车的速度是每小时70千米,t 小时后,汽车距沈阳s 千米.(1)求s 与t 的函数关系式,并写出自变量t 的取值范围;(2)经过2小时后,汽车离沈阳多少千米?(3)经过多少小时后,汽车离沈阳还有140千米?解:(1)s =840-70t .当s =0时,t =12,所以0≤t ≤12.(2)当t =2时,s =840-70×2=700.答:经过2小时后,汽车离沈阳700千米.(3)当s =140时,140=840-70t ,解得t =10.答:经过10小时后,汽车离沈阳还有140千米.21.(6分)一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图像解答下列问题.(1)农民自带的零钱是多少?(2)降价前他每千克土豆出售价格是多少?(3)降价后他按每千克0.4 元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问:他一共带了多少千克土豆?解:(1)农民自带的零钱为5元.(2)设降价前每千克售价的价格为k 元,根据题意,得k =20-530=0.5(元/kg). (3)设他一共带了x kg 土豆,根据题意,得x -30=26-200.4,解得x =45. 答:他一共带了45 kg 的土豆.22.(9分)圆柱的底面半径为10 cm ,当圆柱的高变化时,圆柱的体积也随之变化.(1)在这个变化过程中,常量是哪个?变量是哪个?自变量是哪个?(2)设圆柱的体积为V cm3,圆柱的高为h cm,请写出V与h之间的函数关系式,并说明自变量的取值范围;(3)当圆柱的高每增加2 cm时,圆柱的体积如何变化?解:(1)常量是圆柱的底面半径,变量是圆柱的高和圆柱的体积,自变量是圆柱的高.(2)V=π·102·h=100πh(h>0).(3)当圆柱的高每增加2 cm时,V变化=100(h+2)π-100hπ=200π,即圆柱的体积增加200π cm3.23.(10分)某天早晨,王老师从家出发,骑摩托车前往学校,途中在路旁一家饭店吃早餐,如图所示的是王老师从家到学校这一过程行驶路程s(千米)与时间t(分)之间的关系.(1)学校离他家多远?从出发到学校,用了多长时间?(2)王老师吃早餐用了多长时间?(3)王老师吃早餐以前的速度快还是吃完早餐以后的速度快?最快时速达到多少?解:(1)依题意得:学校离王老师家有10千米,从出发到学校王老师用了25分钟.(2)依题意得:王老师吃早餐用了10分钟.(3)吃早餐以前的速度为:5÷10=0.5(千米/分钟),吃完早餐以后的速度为:(10-5)÷(25-20)=1(千米/分钟)=60(千米/小时),∴王老师吃完早餐以后速度快,最快时速达到60千米/小时.24.(9分)苏州市于2012年7月1日开始实行阶梯电价.居民月用电量分为三个档次,第一档为230千瓦时及以内的部分,第二档为超过230千瓦时但不超过400千瓦时的部分,第三档为高于400千瓦时的部分.第一档维持现行电价标准,即每千瓦时按0.53元收取;第二档每千瓦时加价0.05元,即每个月用电量超出230千瓦时不超过400千瓦时的部分,按照每千瓦时0.58元收取;第三档每千瓦时加价0.3元,即超出400千瓦时的部分,按照每千瓦时0.83元收取,请完成下列问题:(1)如果该地区某户居民2012年8月用电310千瓦时,则该居民8月应付电费为168.3元;(2)实行阶梯电价后,如果月用电量用x (千瓦时)表示,月支出电费用y (元)表示,小红、小明和小丽三人绘制了如图所示的大致图像,你认为正确的是小丽绘制的图像;(3)小明同学家2012年11月份和12月份两个月共用电460千瓦时,且11月份用电量少于12月份,他通过计算发现,这两个月的电费比实行阶梯电价前多出了2.5元.你能求出他家11月份和12月份的月用电量分别是多少吗?解:设小明家11月份和12月份的月用电量分别为m 千瓦时和n 千瓦时.由题意得m <230,n >230,当230<n <400时,有⎩⎪⎨⎪⎧ m +n =460,0.53m +0.53×230+0.58n -230-0.53×460=2.5, 解得⎩⎪⎨⎪⎧ m =180,n =280.当n >400时,⎩⎪⎨⎪⎧ m +n =460,0.53m +0.53×230+0.58×170+0.83n -400-0.53×460=2.5, 解得⎩⎪⎨⎪⎧ m =80,n =380.n =380与n >400矛盾,故舍去.答:小明家11月份和12月份的月用电量分别为180千瓦时和280千瓦时.。

难点详解冀教版八年级数学下册第二十一章一次函数专项练习试题(名师精选)

难点详解冀教版八年级数学下册第二十一章一次函数专项练习试题(名师精选)

八年级数学下册第二十一章一次函数专项练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在平面直角坐标系中,若函数2y x b =+的图象经过第一、二、三象限,则b 的取值( )A .小于0B .等于0C .大于0D .非负数2、下列函数中,属于正比例函数的是( )A .22y x =+B .21y x =-+C .1y x = D .5x y = 3、甲、乙两人在笔直的公路上同起点、同终点、同方向匀速步行1200米,先到终点的人原地休息、已知甲先出发3分钟,在整个步行过程中,甲、乙两人之间的距离y (米)与甲出发的时间t (分)之间的关系如图所示,下列结论:①乙用6分钟追上甲;②乙步行的速度为60米/分;③乙到达终点时,甲离终点还有400米;④整个过程中,甲乙两人相聚180米有2个时刻,分别是t =18和t =24.其中正确的结论有( )A .①②B .①③C .②④D .①②④4、在平面直角坐标系中,正比例函数y =kx (k <0)的图象的大致位置只可能是( )A.B.C.D.5、把函数y=x的图象向上平移2个单位,下列各点在平移后的函数图象上的是()A.(2,2)B.(2,3)C.(2,4)D.(2,5)6、一次函数y1=kx+b与y2=mx+n的部分自变量和对应函数值如表:则关于x的不等式kx+b>mx+n的解集是()A.x>0 B.x<0 C.x<﹣1 D.x>﹣17、下列问题中,两个变量成正比例的是()A.圆的面积S与它的半径rB.三角形面积一定时,某一边a和该边上的高hC.正方形的周长C与它的边长aD .周长不变的长方形的长a 与宽b8、在平面直角坐标系中,已知点()1,2A -,点()5,6B -,在x 轴上确定点C ,使得ABC 的周长最小,则点C 的坐标是( )A .()4,0-B .()3,0-C .()2,0-D .()2.5,0-9、平面直角坐标系xOy 中,点P 的坐标为()3,44m m -+,一次函数4123y x =+的图像与x 轴、y 轴分别相交于点A 、B ,若点P 在AOB 的内部,则m 的取值范围为( )A .1m >-或0m <B .31m -<<C .10m -<<D .11m -≤≤10、对于正比例函数y =kx ,当x 增大时,y 随x 的增大而增大,则k 的取值范围( )A .k <0B .k ≤0C .k >0D .k ≥0第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、当k >0时,直线y =kx 经过第一、第三象限,从左向右______,即随着x 的增大y 也增大;当k <0时,直线y =kx 经过第二、第四象限,从左向右______,即随着x 的增大y 反而减小.2、(1)如果1k y kx -=是y 关于x 的正比例函数,则k =_________.(2)若()232m y m x -=-是关于x 的正比例函数,m =_________.(3)如果y =3x +k -4是y 关于x 的正比例函数,则k =_____.3、关于正比例函数y =2x ,有下列结论:①函数图象都经过点(2,1);②函数图象经过第二、第四象限;③y 随x 的增大而增大;④不论x 取何值,总有y >0,其中,错误的结论是______.4、如图,直线()11110y k x b k =+≠与()22220y k x b k =+≠的交点C 的横坐标为2,则不等式21y y ≤的自变量x 的取值范围是________.5、如图,一次函数y kx b =+与3y x 的图象相交于点(,5)P m ,则方程组3y x y kx b=+⎧⎨=+⎩的解是________.三、解答题(5小题,每小题10分,共计50分)1、已知y 与x ﹣2成正比例,且当x =1时,y =﹣2(1)求变量y与x的函数关系式;(2)请在给出的平面直角坐标系中画出此函数的图象;(3)已知点A在函数y=ax+b的图象上,请直接写出关于x的不等式ax+b>2x﹣4的解集.2、甲、乙两车匀速从同一地点到距离出发地480千米处的景点,甲车出发半小时后,乙车以每小时80千米的速度沿同一路线行驶,两车分别到达目的地后停止,甲、乙两车之间的距离(千米)与甲车行驶的时间x(小时)之间的函数关系如图所示.(1)甲车行驶的速度是千米/小时.(2)求乙车追上甲车后,y与x之间的函数关系式,并写出自变量x的取值范围.(3)直接写出两车相距85千米时x的值.3、如图,在平面角坐标系中,点B 在y 轴的负半轴上(0,﹣,过原点的直线OC 与直线AB 交于C ,∠COA =∠OCA =∠OBA =30°(1)点C 坐标为 ,OC = ,△BOC 的面积为 ,OAC OABS S ∆∆= ; (2)点C 关于x 轴的对称点C ′的坐标为 ; (3)过O 点作OE ⊥OC 交AB 于E 点,则△OAE 的形状为 ,请说明理由;(4)在坐标平面内是否存在点F 使△AOF 和△AOB 全等,若存在,请直接写出F 坐标,请说明理由.4、直线()10l y kx b k =+≠:,与直线2:l y ax =相交于点(1,2)B .(1)求直线2l 的解析式;(2)横、纵坐标都是整数的点叫做整点.记直线1l 与直线2l 和x 轴围成的区域内(不含边界)为W .①当1k =-时,直接写出区域W 内的整点个数;②若区域W 内的整点恰好为2个,结合函数图象,求k 的取值范围.5、为了贯彻落实市委市政府提出的“精准扶贫”精神.某校特制定了一系列关于帮扶A ,B 两贫困村的计划.现决定从某地运送168箱小鸡到A ,B 两村养殖,若用大、小货车共18辆,则恰好能一次性运完这批小鸡,已知这两种大、小货车的载货能力分别为10箱/辆和8箱/辆,其运往A 、B 两村的运费如下表:(1)试求这18辆车中大、小货车各多少辆?(2)现安排其中10辆货车前往A 村,其余货车前往B 村,设前往4村的大货车为x 辆,前往A 、B 两村总费用为y 元,试求出y 与x 的函数表达式,并直接写出自变量取值范围;(3)在(2)的条件下,若运往A 村的小鸡不少于96箱,请你写出使总费用最少的货车调配方案,并求出最少费用.-参考答案-一、单选题1、C【解析】【分析】一次函数y kx b =+过第一、二、三象限,则0,0k b >>,根据图象结合性质可得答案.【详解】解:如图,函数2y x b =+的图象经过第一、二、三象限,则函数2y x b =+的图象与y 轴交于正半轴,0,b故选C【点睛】本题考查的是一次函数的图象与性质,掌握“一次函数y kx b =+过第一、二、三象限,则0,0k b >>”是解本题的关键.2、D【解析】【分析】根据正比例函数的定义逐个判断即可.【详解】解:A .是二次函数,不是正比例函数,故本选项不符合题意;B .是一次函数,但不是正比例函数,故本选项不符合题意;C .是反比例函数,不是正比例函数,故本选项不符合题意;D .是正比例函数,故本选项符合题意;故选:D .【点睛】本题考查了正比例函数的定义,能熟记正比例函数的定义是解此题的关键,注意:形如y =kx +b(k 、b 为常数,k ≠0)的函数,叫一次函数,当b =0时,函数也叫正比例函数.3、A【解析】【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】 解:由题意可得:甲步行的速度为120403=(米/分); 由图可得,甲出发9分钟时,乙追上甲,故乙用6分钟追上甲,故①结论正确; ∴乙步行的速度为409606⨯=米/分, 故②结论正确;∴乙走完全程的时间12002060==(分), 乙到达终点时,甲离终点距离是:1200(320)40280-+⨯=(米),故③结论错误;设9分到23分钟这个时刻的函数关系式为1y kt b =+,则把点()()9,0,23,1200代入得:90231200k b k b +=⎧⎨+=⎩,解得:600754007k b ⎧=⎪⎪⎨⎪=-⎪⎩, ∴1600540077y t =-, 设23分钟到30分钟这个时间的函数解析式为2y mt n =+,把点()()23,1200,30,0代入得:300231200m n m n +=⎧⎨+=⎩,解得:12007360007m n ⎧=-⎪⎪⎨⎪=⎪⎩, ∴212003600077y t =-+, 把12180y y ==分别代入可得:11.1t =或28.95t =,故④错误;故正确的结论有①②.故选:A .【点睛】本题主要考查一次函数的应用,解题的关键是从图象中找准等量关系.4、A【解析】略5、C【解析】【分析】由函数“上加下减”的原则解题.【详解】解:由“上加下减”的原则可知,将直线y =x 的图象向上平移2个单位所得直线的解析式为:y =x +2,当x =2时,y =2+2=4,所以在平移后的函数图象上的是(2,4),故选:C .【点睛】本题考查函数图象的平移,一次函数图象的性质等知识,是基础考点,掌握相关知识是解题关键.6、D【解析】【分析】根据统计表确定两个函数的增减性以及函数的交点,然后根据增减性判断.【详解】解:根据表可得y 1=kx +b 中y 随x 的增大而增大;y 2=mx +n 中y 随x 的增大而减小,且两个函数的交点坐标是(﹣1,2).则当x >﹣1时,kx +b >mx +n .故选:D .【点睛】本题考查了一次函数与一元一次不等式,一次函数的性质,正确确定增减性以及交点坐标是关键.7、C【解析】【分析】分别列出每个选项两个变量的函数关系式,再根据函数关系式逐一判断即可.【详解】解:2,S r 所以圆的面积S 与它的半径r 不成正比例,故A 不符合题意; 1,2S ah 2,S a h所以三角形面积一定时,某一边a 和该边上的高h 不成正比例,故B 不符合题意;=4,C a 所以正方形的周长C 与它的边长a 成正比例,故C 符合题意;22,C a b 长方形 2,2C b a 长方形 所以周长不变的长方形的长a 与宽b 不成正比例,故D 不符合题意;故选C【点睛】本题考查的是两个变量成正比例,掌握“正比例函数的特点”是解本题的关键.8、C【解析】【分析】因为AB 的长度是确定的,故△CAB 的周长最小就是CA +CB 的值最小,作点A 关于x 轴的对称点A ′,连接A ′B 交x 轴于点C ,求出C 点坐标即可.【详解】解:如图,作点A 关于x 轴的对称点A ′,连接A ′B 交x 轴于点C ,此时,AC +BC =A′C +BC =AC ,长度最小,∵A (-1,2),∴A ′(-1,﹣2),设直线A ′B 的解析式为y =kx +b (k ≠0),把A ′(-1,﹣2),()5,6B -代入得,∴562k b k b -+=⎧⎨-+=-⎩,解得24k b =-⎧⎨=-⎩, ∴直线A ′B 的解析式为y =-2x ﹣4,当y =0时,x =-2,∴C (-2,0).故选:C【点睛】本题考查了轴对称-最短路径问题,一次函数与坐标轴交点问题,解题关键是确定点C 的位置,利用一次函数解析式求坐标.9、C【解析】【分析】 由4123y x =+求出A ,B 的坐标,根据点P 的坐标得到点P 在直线443y x =-+上,求出直线与y 轴交点C 的坐标,解方程组求出交点E 的坐标,即可得到关于m 的不等式组,解之求出答案.【详解】 解:当4123y x =+中y =0时,得x =-9;x =0时,得y =12, ∴A (-9,0),B (0,12),∵点P 的坐标为()3,44m m -+,当m =1时,P (3,0);当m =2时,P (6,-4),设点P 所在的直线解析式为y=kx+b ,将(3,0),(6,-4)代入,∴4,43k b =-=,∴点P 在直线443y x =-+上, 当x =0时,y =4,∴C (0,4),4123443y x y x ⎧=+⎪⎪⎨⎪=-+⎪⎩,解得38x y =-⎧⎨=⎩,∴E (-3,8), ∵点P 在AOB 的内部,∴3304448m m -<<⎧⎨<-+<⎩, ∴-1<m <0,故选:C ..【点睛】此题考查了一次函数与坐标轴的交点,两个一次函数图象的交点,解一元一次不等式组,确定点P 在直线443y x =-+上是解题的关键. 10、C【解析】略二、填空题1、上升下降【解析】略2、 2 -2 4【解析】略3、①②④【解析】略4、2x≥【解析】【分析】利用函数图象得出直线y=k1x+b1在直线y=k2x+b2上方和交点的x的取值范围,即得出结论.【详解】解:∵直线y1=k1x+b1在直线y2=k2x+b2在同一平面直角坐标系中的交点C的横坐标为2,∴x≥2时,直线y1=k1x+b1与直线y2=k2x+b2在上方交于同一点,故答案为x≥2.【点睛】本题考查了一次函数与一元一次不等式,根据函数图象在上方的函数值比函数图象在下方的函数值大,利用数形结合求解是解题的关键.5、25xy=⎧⎨=⎩##52yx=⎧⎨=⎩【分析】先利用y=x+3确定P点坐标,然后根据方程组的解就是两个相应的一次函数图象的交点坐标求得结论.【详解】解:把P(m,5)代入y=x+3得m+3=5,解得m=2,所以P点坐标为(2,5),所以方程组3y xy kx b=+⎧⎨=+⎩的解是25xy=⎧⎨=⎩,故答案为:25xy=⎧⎨=⎩.【点睛】本题考查了一次函数与二元一次方程(组):方程组的解就是两个相应的一次函数图象的交点坐标.三、解答题1、 (1)y=2x﹣4(2)见解析(3)x<3【解析】【分析】(1)设y=k(x﹣2)(k为常数,k≠0),把x=1,y=﹣2代入得:﹣2=k(1﹣2),求出k=2即可;(2)列表描点连线即可;(3)先确定A点的坐标是(3,2),把A点的横坐标代入y=2x﹣4求出函数值=2,即点A也在函数y=2x﹣4的图象上,点A是函数y=ax+b和函数y=2x﹣4的交点,然后利用图像法求不等式的解集(1)解:∵y与x﹣2成正比例,∴设y=k(x﹣2)(k为常数,k≠0),把x=1,y=﹣2代入得:﹣2=k(1﹣2),解得:k=2,即y=k(x﹣2)=2(x﹣2)=2x﹣4,所以变量y与x的函数关系式是y=2x﹣4;(2)列表描点(0,-4),(2,0),连线得y=2x﹣4的图象;从图象可知:A 点的坐标是(3,2),把A 点的横坐标x =3代入y =2x ﹣4时,y=2,即点A 也在函数y =2x ﹣4的图象上,即点A 是函数y =ax +b 和函数y =2x ﹣4的交点,∴关于x 的不等式ax +b >2x ﹣4反应在函数图像函数y =ax +b 在函数y =2x ﹣4图像上方,交点A 的左侧,所以关于x 的不等式ax +b >2x ﹣4的解集是x <3,故答案为:x <3.【点睛】本题考查待定系数法求函数解析式,描点法画函数图像,用图像法求不等式的解集,掌握待定系数法求函数解析式,描点法画函数图像,用图像法求不等式的解集是解题关键.2、 (1)60(2)y=20x-40(2 6.5x ≤≤); (3)254或7912【解析】【分析】(1)用甲车行驶0.5小时的路程30除以时间即可得到速度;(2)分别求出相应线段的两个端点的坐标,再利用待定系数法求函数解析式;(3)分两种情况讨论:将x =85代入AB 的解析式,求出一个值;另一种情况是乙停止运动,两车还相距85千米.(1)解:甲车行驶的速度是300.560÷=(千米/小时),故答案为:60;解:设甲出发x 小时后被乙追上,根据题意:60x =80(x -0.5),解得x =2,∴甲出发2小时后被乙追上,∴点A 的坐标为(2,0),∵480800.5 6.5÷+=,∴B (6.5,90),设AB 的解析式为y=kx+b ,∴206.590k b k b ,解得2040k b ,∴AB 的解析式为y=20x-40(2 6.5x ≤≤);(3)解:根据题意得:20x-40=85或60x =480-85,解得x =254或7912. ∴两车相距85千米时x 为254或7912. 【点睛】此题考查了一次函数的图象,一次函数的实际应用,利用待定系数法求函数解析式,并与行程问题的路程、时间、速度相结合,读出图形中的已知信息是关键,是一道综合性较强的函数题,有难度,同时也运用了数形结合的思想解决问题.3、 (1)(3,12(2)(3,(3)等边三角形,见解析(4)存在,(0,0,﹣2,2,﹣.【解析】【分析】(1)先根据等角对等边,确定OB=OC=在象限,确定点的坐标;根据面积公式,选择适当的底边计算即可;利用同底的两个三角形面积之比等于对应高之比计算即可;(2)根据点关于x轴对称的特点,直接写出坐标即可;(3)根据三个角是60°的三角形是等边三角形判定即可;(4)利用全等三角形的判定定理,综合运用分类思想求解.(1)解:(1)∵点B(0,﹣,∴OB=∵∠COA=∠OCA=∠OBA=30°,∴OB=OC=过点C作CD⊥x轴于点D,∴CD=12OCDO,∵点C在第一象限;∴C(3,∴11322BOCSOB OD==⨯△=∴112122OACOABOA CDS CDS OBOA OB====△△,故答案为:(3,12.(2)∵C(3,点C与点C'关于x轴对称,∴C'(3.故答案为:(3.(3)∵OE⊥OC,∴∠COE=90°,∵∠COA=30°,∴∠AOE=60°,∵∠OAE=60°,∴∠AOE=∠OAB=60°,∴△OAE是等边三角形,故答案为:等边三角形.(4)解:①如图1,当△AOB ≌△AOF 时,∵OB =∴OF =∴1F (0,,2F (0,﹣,②如图2,当△AOB ≌OAF 时,设直线AB 的解析式为y =kx +b ,∴3k b b ⎧+=⎪⎨=-⎪⎩,解得k b ⎧=⎪⎨=-⎪⎩∴直线AB 的解析式为y -令y =0,得x =2,∴点A 的坐标为(2,0),∵△AOB ≌OAF ,∴OB =AF =∴F 3(2,,F 4(2,﹣,综上所述,存在点F ,且点F 的坐标是(0,0,﹣2,2,﹣.【点睛】本题考查了等角对等边,坐标与象限,勾股定理,点的对称,函数解析式,等边三角形的判定,三角形全等的判定,分类思想,熟练掌握待定系数法,灵活运用三角形全等的判定是解题的关键.4、 (1)直线2l 为2y x =;(2)①当1k =-时,整点个数为1个,为(1,1);②k 的取值范围为112k -<-或1132k < 【解析】【分析】(1)根据待定系数法求得即可;(2)①当k =1时代入点A 坐标即可求出直线解析式,进而分析出整点个数;②当k <0时分别以(1,2),(2,1);(1,2),(3,1)为边界点代入确定k 的值;当k >0时分别以(1,2),(−1,1);(1,2),(−2,1)为边界点代入确定k 的值,根据图形即可求得k 的取值范围.(1) 解:直线2:l y ax =过点(1,2)B .2a ∴=,∴直线2l 为2y x =.(2)解:①当1k =-时,y x b =-+,把(1,2)B 代入得21b =-+,解得:3b =,3y x ∴=-+,如图1,区域W 内的整点个数为1个,为(1,1).②如图2,若0k <,当直线过(1,2),(2,1)时,1k =-.当直线过(1,2),(3,1)时,12k =-. 112k ∴-<-, 如图3,若0k >,当直线过(1,2),(1,1)-时,12k =.当直线过(1,2),(2,1)-时,13k =. ∴1132k <. 综上,若区域W 内的整点恰好为2个,k 的取值范围为112k -<-或1132k <. 【点睛】此题主要考查待定系数法求一次函数的解析式,会运用边界点分析问题是解题的关键.5、 (1)大货车用12辆,小货车用6辆(2)101240y x =+(4≤x ≤12,且x 为整数)(3)8辆大货车、2辆小货车前往A 村;4辆大货车、4辆小货车前往B 村.最少运费为1320元【解析】【分析】(1)设大货车用a 辆,小货车用b 辆,根据大、小两种货车共18辆,运输168箱小鸡,列方程组求解;(2)设前往A 村的大货车为x 辆,则前往B 村的大货车为(12- x )辆,前往A 村的小货车为(10- x )辆,前往B 村的小货车为[6-(10-x )]辆,根据表格所给运费,求出y 与x 的函数关系式;(3)结合已知条件,求x 的取值范围,由(2)的函数关系式求使总运费最少的货车调配方案.(1)设大货车用a 辆,小货车用b 辆,根据题意得:18108168a b a b +=⎧⎨+=⎩ 解得:126a b =⎧⎨=⎩. ∴大货车用12辆,小货车用6辆.(2)设前往A 村的大货车为x 辆,则前往B 村的大货车为(12- x )辆,前往A 村的小货车为(10- x )辆,前往B 村的小货车为[6-(10-x )]辆,y =80x +90(12-x )+40(10-x )+60[6-(10-x )]=10x +1240.()1206100x x -≥⎧⎨--≥⎩ ∴4≤x ≤12,且x 为整数.101240y x ∴=+(4≤x ≤12,且x 为整数)(3)由题意得:10x +8(10-x )≥96,解得:x ≥8,又∵4≤x ≤12,∴8≤x ≤12且为整数,∵y =10x +1240,k =10>0,y 随x 的增大而增大,∴当x =8时,y 最小,最小值为y =10×8+1240=1320(元).答:使总运费最少的调配方案是:8辆大货车、2辆小货车前往A 村;4辆大货车、4辆小货车前往B 村.最少运费为1320元.【点睛】本题考查了二元一次方程组的应用,一次函数的应用,一元一次不等式组的应用,理解题意列出方程组、关系式、不等式是解题的关键.。

难点详解冀教版八年级数学下册第二十章函数章节测评试卷(含答案详解)

难点详解冀教版八年级数学下册第二十章函数章节测评试卷(含答案详解)

冀教版八年级数学下册第二十章函数章节测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列曲线中,表示y是x的函数的是()A.B.C.D.2、小江和小北两兄弟步行从家里去公园,小江先出发一段时间后小北再出发,途中小北追上了小江最终先到达公园,两人所走路程s(米)与小北出发后的时间t(分钟)的函数关系如图所示.下列说法正确的是()A .1l 表示的是小江步行的情况,2l 表示的是小北步行的情况B .小江的速度是45米/分钟,小北的速度是60米/分钟C .小江比小北先出发16分钟.D .小北出发后8分钟追上小江3、下列各表达式不是表示y 是x 的函数的是( )A .18=y xB .1y x= C .(0)y x x =≥ D .23y x =4、甲、乙二人约好同时出发,沿同一路线去某博物馆参加科普活动,如图,x 表示的是行走时间(单位:分),y 表示的是甲到出发地的距离(单位:米),最后两人都到达了目的地.根据图中提供的信息,下面有四个结论:①甲、乙二人第一次相遇后,停留了10分钟;②甲先到达目的地;③甲停留10分钟之后提高了行走速度;④甲行走的平均速度要比乙行走的平均速度快.其中正确的是( )A .①②④B .①②③C .①③④D .②③④5、下列关于变量x ,y 的关系,其中y 不是x 的函数的是( )A .B .C .D .6、函数y =2211x x -+的自变量x 的取值范围是( ) A .x ≠0B .x ≠1C .x ≠±1D .全体实数7、函数y x 的取值范围是( ) A .x >0 B .x ≥﹣1 C .x >0且x ≠﹣1 D .x ≥﹣1且x ≠08、当3x =时,函数2y x =-的值是( )A .2-B .1-C .2D .19、如图,已知在ABC 中,AB =AC ,点D 沿BC 自B 向C 运动,作BE ⊥AD 于E ,CF ⊥AD 于F ,则BE +CF 的值y 与BD 的长x 之间的函数图象大致是( )A .B .C .D .10、下列图像中表示y 是x 的函数的有几个( )A .1个B .2个C .3个D .4个第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在数学综合实践课中,小明和同学对类似八下教科书25页例2的问题进行拓展探索: 如图1,一根长为5米的木棍AB 斜靠在一竖直的墙上,AO 为4米,如果木棍的顶端A 沿墙下滑x 米,底端向外移动y 米,下滑后的木棍记为CD ,则x 与y 满足的等式()()224325x y -++=,即y 关于x 的函数解析式为3y =,小明利用画图软件画出了该函数图象如图2,(1)请写出图象上点P的坐标(1,______)△的周长大于AOB的周长.(2)根据图象,当x的取值范围为______时,COD2、山西近期遭遇严重洪涝灾害,1.7万余间房屋倒塌.下图是汾河沿线某个村庄的受灾情况和蓝天救援队的排涝现场.某地需排水约350m,打开排水泵开始排水,排走的水量与排水时间的关系如下表所示.排水12分钟后,剩下水量为________3m.3、河北给武汉运送抗疫物资,某汽车油箱内剩余油量Q(升)与汽车行驶路程s(千米)有如下关系:则该汽车每行驶100千米的耗油量为 _____升.y=_________.4、函数5、一个用电器的电阻是可调节的,其调节范围为:110~220Ω.已知电压为220ᴠ,这个用电器的功率P的范围是:___________ w.(P表示功率,R表示电阻,U表示电压,三者关系式为:P·R=U²)三、解答题(5小题,每小题10分,共计50分)1、购买一些铅笔,单价为0.2元/支,总价y元随铅笔支数x变化.指出其中的常量与变量,自变量与函教,并写出表示函数与自变量关系的式子.2、一列动车从甲地开往乙地,一列普通列车从乙地开往甲地,两车同时出发,设普通列车行驶的时间为x(小时),两车之间的距离为y(千米),如图中的折线表示)与x之间的函数关系.根据图象进行以下探究:[信息读取](1)甲,乙两地相距______千米,两车出发后______小时相遇;(2)普通列车到达终点共需______小时,普通列车的速度是______千米/小时:[解决问题](3)求动车的速度:(4)求点C的坐标.3、如图反映的过程是:小明从家出发去菜地浇水,又去玉米地锄草,然后回家.其中x表示时间,y 表示小明离他家的距离,小明家,菜地,玉米地在同一直线上.根据图象回答下列问题:(1)菜地离小明家多远?小明走到菜地用了多长时间?小明给菜地浇水用了多长时间?(2)菜地离玉米地多远?小明从菜地到玉米地用了多长时间?(3)小明给玉米地锄草用了多长时间?(4)玉米地离小明家多远?小明从玉米地走回家的平均速度是多少?4、如图,这是反映爷爷一天晚饭后从家中出发去红旗河体育公园锻炼的时间与离家距离之间关系的一幅图.(1)爷爷这一天从公园返回到家用多长时间?(2)爷爷散步时最远离家多少米?(3)爷爷在公园锻炼多长时间?(4)直接写出爷爷在出发后多长时间离家450m.5、求出下列函数中自变量x的取值范围(1)1x yx=+(2)y(3)y=-参考答案-一、单选题1、C【解析】【分析】根据函数的定义可知,满足对于x 的每一个取值,y 都有唯一确定的值与之对应关系,据此即可确定答案.【详解】解:A 、对于x 的每一个取值,y 可能有两个值与之对应,不符合题意;B 、对于x 的每一个取值,y 可能有两个值与之对应,不符合题意;C 、对于x 的每一个取值,y 都有唯一确定的值与之对应,符合题意;D 、对于x 的每一个取值,y 可能有两个值与之对应,不符合题意;故选:C【点睛】本题主要考查了函数概念,关键是掌握在一个变化过程中有两个变量x 与y ,对于x 的每一个确定的值,y 都有唯一的值与其对应,那么就说y 是x 的函数,x 是自变量.2、C【解析】【分析】观察图象,可得:1l 表示的是小北步行的情况,2l 表示的是小江步行的情况,可得A 错误;小江32分钟步行(1440-480)米,小北24分钟步行1440米,再根据该时间段内的速度等于路程除以时间,可得B 错误;因为小江比小北先走480米,所以用480除以小江的速度30,可得C 正确;设小北出发后x 分钟追上小江,则6030480x x -= ,解出可得D 错误,即可求解.【详解】解:根据题意得:A 、因为小江先出发一段时间后小北再出发,所以1l 表示的是小北步行的情况,2l 表示的是小江步行的情况,故本选项不符合题意;B 、小江的速度是14404803032-=米/分钟,小北的速度是14406024=米/分钟,故本选项不符合题意; C 、观察图象,得:小江比小北先出发4801630= 分钟,故本选项符合题意; D 、设小北出发后x 分钟追上小江,则6030480x x -= ,解得:16x = ,即小北出发后16分钟追上小江,故本选项不符合题意;故选:C【点睛】本题主要考查了函数图象的应用,准确从函数图象获取信息是解题的关键.3、C【解析】略4、A【解析】【分析】由图象可得:10分钟到20分钟之间,路程没有变化,可判断①,由甲35分钟时到达目的地,乙40分钟到达,可判断②,分别求解前后两段时间内甲的速度可判断③,由前后两段时间内甲的速度都比乙快,可判断④,从而可得答案.【详解】解:①由图象可得:甲、乙二人第一次相遇后,停留了20﹣10=10(分钟),故①符合题意; ②甲在35分时到达,乙在40分时到达,所以甲先到达的目的地,故②符合题意;③甲前面10分钟的速度为:每分钟7507510=米,甲在停留10分钟之后的速度为:每分钟1500750503520-=-米,所以减慢了行走速度,故③不符合题意; ④由图象可得:两段路程甲的速度都比乙快,所以甲行走的平均速度要比乙行走的平均速度快,故④符合题意;所以正确的是①②④.故选:A .【点睛】本题考查的是从函数图象中获取信息,理解题意,弄懂图象上点的坐标含义是解本题的关键.5、D【解析】【详解】解:A 、对于x 的每一个确定的值,y 都有唯一确定的值与其对应,所以y 是x 的函数,此项不符题意;B 、对于x 的每一个确定的值,y 都有唯一确定的值与其对应,所以y 是x 的函数,此项不符题意;C 、对于x 的每一个确定的值,y 都有唯一确定的值与其对应,所以y 是x 的函数,此项不符题意;D 、当3x =时,有两个y 的值与其对应,所以y 不是x 的函数,此项符合题意;故选:D .【点睛】本题考查了函数,熟记函数的定义(一般地,在一个变化过程中,如果有两个变量x 与y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说x 是自变量,y 是x 的函数)是解题关键.6、D【解析】【分析】由题意直接依据分母不等于0进行分析计算即可.【详解】解:由题意可得220,110x x ≥+≥≠,所以自变量x 的取值范围是全体实数.故选:D.【点睛】本题考查求函数自变量x 的取值范围以及分式有意义的条件,注意掌握分式有意义的条件即分母不等于0是解题的关键.7、D【解析】【分析】根据二次根式被开方数大于或等于0和分母不为0列不等式组即可.【详解】解:由题意得:x +1≥0且x ≠0,解得:x ≥-1且x ≠0,故选:D .【点睛】本题考查的是函数自变量的取值范围的确定,掌握二次根式的被开方数是非负数、分母不为0是解题的关键.8、D【解析】【分析】把3x =代入2y x =-计算即可.解:把3x =代入2y x =-,得32=1y =-,故选D .【点睛】本题考查的是函数值的求法,函数值是指自变量在取值范围内取某个值时,函数与之对应唯一确定的值.9、D【解析】【分析】根据题意过点A 作AD ′⊥BC 于点D ′,由题可知,当点D 从点B 运动到点C ,即x 从小变大时,AD 也是由大变小再变大,而△ABC 的面积不变,又S =y 2AD ,即y 是由小变大再变小,结合选项可得结论.【详解】解:过点A 作AD ′⊥BC 于点D ′,如图,由题可知,当点D 从点B 运动到点C ,即x 从小变大中,AD 也是由大变小再变大,而△ABC 的面积不变,又S =y 2AD ,即y 是由小变大再变小,结合选项可知,D 选项是正确的;故选:D .本题主要考查动点问题的函数图象,题中没有给任何的数据,需要通过变化趋势进行判断.10、A【解析】【分析】函数就是在一个变化过程中有两个变量x ,y ,当给定一个x 的值时,y 由唯一的值与之对应,则称y 是x 的函数,x 是自变量,注意“y 有唯一性”是判断函数的关键.【详解】解:根据函数的定义,每给定自变量x 一个值都有唯一的函数值y 与之相对应,故第2个图符合题意,其它均不符合,故选:A .【点睛】本题考查函数图象的识别,判断方法:做垂直x 轴的直线在左右平移的过程中,与函数图象只会有一个交点.二、填空题1、 1 01x <<【解析】【分析】(1)把P 的横坐标代入3y =,求解点的纵坐标即可;(2)先分别求解COD ∆的周长,AOB ∆的周长,可得:当COD ∆的周长AOB -∆的周长0y x =->时,即y x >,再画出直线y x =的图象,直线y x =过点O 、P ,观察函数图象可得答案. 【详解】解:(1)当1x =时,331y =,故点P 的坐标为(1,1),故答案为1;(2)由5AB =,4OA =得:3OB =,由题意得:3DO OB BD y =+=+,4CO OA AC x =-=-,则COD ∆的周长53412CD DO CO y x y x =++=+++-=+-,而AOB ∆的周长12=,则当COD ∆的周长AOB -∆的周长12120y x y x =+--=->时,即y x >,由(1)知,当0x =时,0y =,当1x =时,1y =,则在原图象的基础上,画出直线y x =的图象如下,直线y x =过点O 、P ,从图象看,当01x <<时,y x >,即COD ∆的周长大于AOB ∆的周长,故答案为:01x <<.【点睛】本题考查的是动态问题的函数图象,二次根式的化简,理解图象上点的横坐标与纵坐标的含义,利用两个函数图象的交点坐标解决有关不等关系问题是解题的关键.2、26【解析】【分析】根据题意可得剩下的水量y =50−2t ,故可求出放水12分钟后的水量.解:设剩下的水量为y,时间为t,则可得y=50−2t,∴放水12分钟后,水池中剩下的水量为:y=50−2×12=26m3,故答案为:26.【点睛】本题考查了函数关系式的知识,解答本题的关键是根据题意确定函数关系式.3、10【解析】【分析】根据表格中两个变量的变化关系得出函数关系式即可.【详解】解:根据表格中两个变量的变化关系可知,行驶路程每增加50千米,剩余油量就减少5升,所以行驶路程每增加100千米,剩余油量就减少10升,故答案为:10.【点睛】本题考查函数的表示方法,理解表格中两个变量的变化规律是正确解答的前提.4、2x>-【解析】【分析】根据分式和二次根式成立的条件求出函数的定义域即可.解:根据题意得,20x +>解得,2x >-故答案为:2x >-【点睛】本题考查了求函数定义域问题,学报二次根式以及分式成立的条件是解答本题的关键.5、220≤P ≤440【解析】【分析】由题意根据题目所给的公式分析可知,电阻越大则功率越小,当电阻为110Ω时,功率最大,当电阻为220Ω时,功率最小,从而求出功率P 的取值范围.【详解】解:三者关系式为:P ·R =U ²,可得2U P R=, 把电阻的最小值R =110代入2U P R =得,得到输出功率的最大值2220440110P ==, 把电阻的最大值R =220代入2U P R =得,得到输处功率的最小值2220220220P ==, 即用电器输出功率P 的取值范围是220≤P ≤440.故答案为:220≤P ≤440.【点睛】本题考查一元一次不等式组与函数的应用,解答本题的关键是读懂题意,弄清楚公式的含义,代入数据,求出功率P 的范围.三、解答题1、常量0.2,变量x ,y ,自变量x ,函数y ,0.2y x =.【分析】根据总价=单价×数量,可得函数关系式.再根据函数的有关定义解答即可.【详解】解:由题意得:0.2y x =(x 是正整数),y 是x 的函数,∴常量0.2,变量x ,y ,自变量x ,函数y .【点睛】主要考查了常量与变量.函数的定义:在一个变化过程中,有两个变量x ,y ,对于x 的每一个取值,y 都有唯一确定的值与之对应,则y 是x 的函数,x 叫自变量.2、(1)1800;4;(2)12;150;(3)300km/h ;(4)()6,900【解析】【分析】(1)初始时刻y =1800,即为两地距离,相遇时两车距离为0,由图像得到相遇时刻;(2)最后到达的为普通列车,根据路程除以时间可得速度;(3)根据动车4小时到达,利用速度=路程÷时间求解即可;(4)由函数图像可知m 时刻是动车到达乙地的时刻,用路程除以速度即可.【详解】(1)由图像可知,甲地与乙地相距1800千米,两车出发后4小时相遇;故答案为:1800,4;(2)由函数图像可知,普通列车12小时到达,则速度为1800÷12=150千米/小时故答案为:12;150;.(3)由题意得:动车的速度为:180********÷-= (km/h );(4)18003006÷=,∴6m=,1506900n=⨯=,∴点C的坐标为()6,900.【点睛】本题主要考查了从函数图像获取信息,解题的关键在于能够准确读懂函数图像.3、(1)菜地离小明家1.1千米,小明从家到菜地用了15分钟,小明给菜地浇水用了10分钟;(2)0.9千米,12分钟;(3)18分钟;(4)2千米,4.8千米/小时【解析】【分析】观察函数图象得到小明用15分钟从家去菜地,浇水用了10分钟,又去离家2千米的玉米地,锄草用了18分钟,然后用了25分钟回家.【详解】解:由图象得:(1)菜地离小明家1.1千米,小明从家到菜地用了15分钟,小明给菜地浇水用了25﹣15=10(分钟);(2)菜地离玉米地 2﹣1.1=0.9(千米),小明从菜地到地用了37﹣25=12(分钟);(3)小明给玉米地锄草用了55﹣37=18(分钟);(4)玉米地离小明家2千米,小明从玉米地走回家的平均速度=2÷805560-=4.8(千米/小时).【点睛】本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.4、(1)15;(2)900;(3)10;(4)10分钟或1372分钟【解析】【分析】(1)根据图中表示可得结果;(2)根据图象可知最远就是到公园的距离;(3)根据图象可得平行的部分就是在公园的时间;(4)求出相应直线的函数解析式,即可得解;【详解】(1)由图可知,时间为453015-=(分);(2)由图可知,最远离家900米;(3)爷爷在公园锻炼的时间302010(分);(4)如图,设直线AB 所在解析式为y kx =,把点()20,900代入可得:45k =,∴解析式为45y x =,当450y =时,4501045x ==; 设直线CD 所在解析式为y mx n =+,把点()30,900,()45,0代入得,90030045m n m n =+⎧⎨=+⎩,解得602700m n =-⎧⎨=⎩, ∴解析式为602700y x =-+,当450y =时,1372x =; ∴爷爷在出发后10分钟或1372分钟离家450m .【点睛】本题主要考查了函数图像的应用,准确分析计算是解题的关键.5、(1)0x ≠且1x ≠-;(2)23x ≥-且2x ≠;(3)32x =【解析】【分析】(1)根据分式有意义的条件和零指数幂底数不为0进行求解即可;(2)根据分式有意义的条件和二次根式有意义的条件进行求解即可;(3)根据二次根式有意义的条件进行求解即可.【详解】解:(1)要使01x y x =+有意义,需010x x ≠⎧⎨+≠⎩,解得0x ≠且1x ≠-;(2)要使y 有意义,需32020x x +≥⎧⎨-≠⎩,解得23x ≥-且2x ≠;(3)要使y 230320x x -≥⎧⎨-≥⎩,解得32x =. 【点睛】本题主要考查了分式有意义的条件,二次根式有意义的条件,零指数幂底数不为0,解题的关键在于能够熟练掌握相关知识进行求解.。

冀教版数学八年级下册第二十章小测验及答案.docx

冀教版数学八年级下册第二十章小测验及答案.docx

第二十章函数复习测试题一、填空题。

(3 分×7=21分)1.图 21- 20 是某市一天的温度随时间变化的图象,经过察看可知,以下说法错误的是()。

A.这日 15 点时温度最高B.这日 3 点时温度最低C.这日最高温度与最低温度的差是13℃D.这日 21 点的温度是30℃2. 6 月 1 日至 6 月 10 日,三峡工程下闸蓄水时期,水库水位由106m 升至 135m,高峡出平湖,初现人间,假定水库水位匀速上涨,那么,图21- 21 中,能正确反应这10天水位 h( m)随时间t (天)变化是()。

3.葡萄熟了,从葡萄架上落下来,下边图象能够大概反应葡萄在着落过程中的速度v 随时间 t 变化状况的是()。

图 21- 223 3 xy24.函数x自变量 x 的取值范围是 ______________________ 。

x1yx ,当x 2 1时,y=___________________。

5.已知函数16.有一面积为60 的梯形,其上底长是下底长的3 ,若下底长为x,高为y,则y与x 的函数关系式是____________。

7.以下每个图形都是若干个棋子围成的正方形图案,图案的每条边(包含两个极点)上都有 n( n≥2)个棋子,每个图案的棋子总数为S,按如图21- 23 的规律摆列,S与 n 之间的关系能够用式子来表示。

二、选择题( 3 分×10=30分)8.某人骑车出门,所行行程 s( km)与时间 t( h)的函数关系如图 21- 24 所示,现有四种说法:第 3h 时的速度比第 1h 的速度快;第3h 时的速度比第 1h 中的速度慢;第3h 后已停止行进;第 3h 后保持匀速行进。

此中正确的说法有()。

A.②③B.①③C.①④D.②④9.开发区某消毒液厂家自2003 年以来,在库存为m(m> 0)的状况下,日销售量与产量持平,自 4 月抵挡“非典”以来,消毒液需求量猛增,在生产能力不变的状况下,消毒液一度畅销。

冀教版八年级数学下册第二十章达标检测卷附答案

冀教版八年级数学下册第二十章达标检测卷附答案

冀教版八年级数学下册第二十章达标检测卷一、选择题(1~10题每题3分,11~16题每题2分,共42分) 1.在圆的周长公式C =2πr 中,变量是( )A .C ,2,π,rB .π,rC .C ,rD .r2.一本笔记本3元,买x 本需要y 元,在这一问题中,自变量是( )A .笔记本B .3C .xD .y3.下列变量之间的关系中,具有函数关系的有( )①三角形的面积与底边长;②圆的面积与半径; ③y =2x -1中的y 与x ⎝ ⎛⎭⎪⎫x ≥12.A .1个B .2个C .3个D .0个 4.下面各图中表示y 是x 的函数的图像的是( )5.下列各点中,不在函数y =3x -5图像上的点是( ) A .(-3,-14) B .⎝ ⎛⎭⎪⎫12,14C .⎝ ⎛⎭⎪⎫14,-174 D .(2,1) 6.函数y =1x -2+x -2的自变量x 的取值范围是( ) A .x ≥2 B .x >2 C .x ≠2 D .x ≤27.向高为h 的圆柱形空水杯内注水,那么表示水深y 与注水量x 之间关系的图像是( )8.根据如图所示的程序计算y的值,若输入的x的值为-3,则输出的结果为()A.5 B.-1 C.-5 D.19.已知变量x,y满足下面的关系:x…-3 -2 -1 1 2 3 …y… 1 1.5 3 -3 -1.5 -1 …则x,y之间的关系用函数表达式表示为()A.y=3x B.y=-x3C.y=-3x D.y=x310.在长10 cm,宽6 cm的长方形纸片中,剪去一个边长为a cm的正方形,则剩余纸片的面积S与a之间的函数表达式及a的取值范围是()A.S=4a(a>0) B.S=60-4a(0<a≤10)C.S=60-a2(0<a≤6) D.S=60-a2(6<a≤10)11.已知函数y=2x-1x+2,当x=a时,函数值等于1,则a的值为()A.-1 B.1 C.-3 D.312.一个学习小组利用同一块木板,测量了小车从不同高度下滑的时间,他们得到如下数据:支撑物高10 20 30 40 50 60 70 80度h/cm小车下滑4.23 3.00 2.45 2.13 1.89 1.71 1.59 1.50 时间t/s在表格数据范围内,下列说法错误的是()A.当h=50 cm时,t=1.89 sB.随着h逐渐升高,t逐渐变小C.h每增加10 cm,t减小1.23 sD.随着h逐渐升高,小车的平均速度逐渐加快13.如图,四幅图像分别表示变量之间的关系,请按图像的顺序,将下面的四种情境与之对应排序.a.运动员推出去的铅球(铅球的高度与时间的关系);b.静止的小车从光滑的斜面滑下(小车的速度与时间的关系);c.一个弹簧由不挂重物到所挂重物的质量逐渐增加(弹簧的长度与所挂重物的质量的关系);d.小明从A地到B地后,停留一段时间,然后按原来的速度原路返回(小明离A地的距离与时间的关系).正确的顺序是()A.abcd B.abdc C.acbd D.acdb14.小高从家门口骑车去单位上班,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达工作单位,所用的时间与路程之间的关系如图所示,下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位回到家门口需要的时间是()A.12分钟B.15分钟C.25分钟D.27分钟15.如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图像大致为()16.甲骑摩托车从A地去B地,乙开汽车从B地去A地,同时出发,匀速行驶,各自到达终点后停止,设甲、乙两人的距离为s(单位:千米),甲行驶的时间为t(单位:时),s与t之间的函数关系如图所示,有下列结论:①出发1小时时,甲、乙在途中相遇;②②出发1.5小时时,乙比甲多行驶了60千米;③出发3小时时,甲、乙同时到达终点;④甲的速度是乙的速度的一半.其中正确结论的个数是()A.4 B.3 C.2 D.1二、填空题(17,18题每题4分,19题3分,共11分)17.面积是36的三角形,其底边长a及高线长h之间的关系为72=ah,其中常量是________,变量是________.18.已知A,B两地相距20千米,某同学步行由A地到B地,速度为每小时4千米,设该同学与B地的距离为y千米,步行的时间为x小时,则y与x之间的函数关系式为____________.自变量x的取值范围是________.19.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为t(分钟),所走的路程为s(米),s与t 之间的函数关系如图所示.则下列说法中,正确的序号为________.①小明中途休息用了20分钟.②小明休息前爬山的平均速度为每分钟70米.③小明在上述过程中所走的路程为6 600米.④小明休息前爬山的平均速度大于休息后爬山的平均速度.三、解答题(20题8分,21~23题每题9分,24,25题每题10分,26题12分,共67分)20.小红帮弟弟荡秋千,秋千离地面的高度h(m)与摆动时间t(s)之间的关系如图所示.(1)根据函数的定义,请判断变量h是否为关于t的函数?(2)结合图像回答:①当t=0.7 s时,h的值是多少?并说明它的实际意义.②秋千摆动第一个来回需多少时间?21.如图中的图像反映的是小明从家跑步去图书馆,在那里看了一会儿书后又走到文具店去买本,然后散步回家.图中x表示时间,y表示小明离家的距离.(1)图书馆离小明家有多远?小明从家到图书馆用了多少时间?(2)小明在文具店停留了多少时间?(3)小明从文具店回到家的平均速度是多少?22.甲车速度为20米/秒,乙车速度为25米/秒.现甲车在乙车前面500米,设x秒后两车之间的距离为y米.求y随x(0≤x≤100)变化的函数表达式,并画出函数图像.23.弹簧挂上适当的重物后会按一定的规律伸长,已知一弹簧的长度y(cm)与所挂物体的质量x(kg)之间的关系如表:(1)上表反映了哪两个变量之间的关系?哪个是自变量?(2)在弹性限度范围内写出x与y之间的关系式;(3)在弹性限度范围内当所挂物体的质量逐渐增加时,弹簧的长度怎样变化?(4)当所挂物体的质量为11.5 kg时(在弹性限度范围内),求弹簧的长度.24.如图,在长方形ABCD中,AB=4,BC=7,点P是BC边上与点B不重合的动点,过点P的直线交CD的延长线于点R,交AD于点Q(点Q与点D 不重合),且∠RPC=45°.设BP=x,梯形ABPQ的面积为y,求y与x之间的函数关系式,并求出自变量x的取值范围.25.某礼堂共有25排座位,第一排有20个座位,后面每一排都比前一排多1个座位,写出每排的座位个数m与这排的排数n的函数表达式,并写出自变量n的取值范围.在其他条件不变的情况下,请探究下列问题:(1)当后面每一排都比前一排多2个座位时,每排的座位个数m与这排的排数n的函数表达式是________;(1≤n≤25,且n是正整数)(2)当后面每一排都比前一排多3个座位、4个座位时,每排的座位个数m与这排的排数n的函数表达式分别是______________,______________;(1≤n≤25,且n是正整数)(3)某礼堂共有p排座位,第一排有a个座位,后面每一排都比前一排多b个座位,试写出每排的座位个数m与这排的排数n的函数表达式,并写出自变量n的取值范围.26.某仓库有甲、乙、丙三辆运货车,每辆车只负责进货或出货,其中丙车每小时的运输量最多,乙车每小时的运输量最少,且乙车每小时的运输量为6吨.如图是从早晨上班开始库存量y(吨)与时间x(时)的函数图像,OA段只有甲、丙车工作,AB段只有乙、丙车工作,BC段只有甲、乙车工作.(1)你能确定甲、乙、丙三辆车哪辆是出货车吗?并说明理由.(2)若甲、乙、丙三辆车一起工作,一天工作8小时,则仓库的库存量增加多少?答案一、1.C 2.C 3.B 4.C 5.B6.B7.A8.B点拨:∵x=-3<1,∴y=x+2=-3+2=-1.9.C点拨:根据对应值是否符合函数表达式来判断.10.C点拨:剩余纸片的面积=长方形的面积-正方形的面积,剪去的正方形的边长为正数且不能大于长方形的宽.11.D12.C13.D14.B点拨:由题图知小高走平路、上坡路和下坡路的速度分别为13千米/分钟、15千米/分钟和12千米/分钟,所以他从单位到家门口需要的时间是2÷15+1÷12+1÷13=15(分钟).15.B16.B点拨:由题图可得,出发1小时时,甲、乙在途中相遇,故①正确,甲骑摩托车的速度为120÷3=40(千米/时),设乙开汽车的速度为a千米/时,则40+a=120÷1,解得a=80,∴乙开汽车的速度为80千米/时,∴甲的速度是乙的速度的一半,故④正确;出发1.5小时时,乙比甲多行驶了1.5×(80-40)=60(千米),故②正确;乙到达终点所用的时间为1.5小时,甲到达终点所用的时间为3小时,故③错误,∴正确的有3个,故选B.二、17.72;a,h18.y=-4x+20;0≤x≤519.①②④三、20.解:(1)由图像可知,对于每一个摆动时间t,h都有唯一确定的值与其对应,∴变量h是关于t的函数.(2)①由函数图像可知,当t=0.7 s时,h=0.5 m,它的实际意义是秋千摆动0.7 s时,离地面的高度是0.5 m.②由图像可知,秋千摆动第一个来回需2.8 s.21.解:(1)图书馆离小明家2 km ,小明从家到图书馆用了10 m i n .(2)小明到文具店的时间是离家后60 m i n ,离开文具店的时间是离家后70 m i n ,故小明在文具店停留了70-60=10(m i n ).(3)由题图知,文具店离小明家1 km ,小明从文具店回家用了90-70=20(m i n )=13(h),小明从文具店回到家的平均速度是1÷13=3(km/h).22.解:由题意可知,x 秒后甲、乙两车行驶路程分别为20x 米、25x 米,两车行驶路程差为25x -20x =5x (米),两车之间的距离为(500-5x )米,所以y 随x 变化的函数表达式为y =500-5x (0≤x ≤100).列表:x10 20 30 40 50 60 70 80 y 450 400 350 300 250 200 150 100画出函数的图像如图所示.23.解:(1)反映了弹簧的长度与所挂的物体质量之间的关系,所挂物体的质量是自变量.(2)在弹性限度范围内x 与y 之间的关系式为y =0.6x +15.(3)在弹性限度范围内当所挂物体的质量逐渐增加时,弹簧的长度逐渐增加.(4)当所挂物体的质量为11.5 kg 时(在弹性限度范围内),弹簧长度为0.6×11.5+15=21.9(cm).24.解:如图,过点D 作DP ′∥PQ ,交BC 于点P ′,则∠DP ′C =∠RPC =45°,易得P ′C =CD =4,∴BP ′=3.∴BP <3.∵BP =x ,∴PC =7-x .在Rt △PCR 中,∠C =90°,∠RPC =45°,∴CR =PC =7-x .由题易知△RQD 是等腰直角三角形,∴QD =RD =CR -CD=7-x -4=3-x ,∴AQ =AD -QD=7-(3-x )=4+x .∴y =12(BP +AQ )·AB=12(x +4+x )×4=4x +8(0<x <3).25.解:由题意易知第n 排的座位个数为20+(n -1),∴每排的座位个数m 与这排的排数n 的函数表达式为m =n +19,自变量n 的取值范围是1≤n ≤25,且n 为正整数.(1)m =2n +18(2)m =3n +17;m =4n +16(3)易知第n 排的座位个数为a +b ×(n -1),∴m =bn +a -b ,自变量n 的取值范围是1≤n ≤p ,且n 是正整数.26.解:(1)甲是出货车.理由略.(2)根据OA段的工作情况,可知甲、丙车一起工作时,每小时的库存量增加4÷2=2(吨),而乙车每小时的运输量为6吨,所以甲、乙、丙三辆车一起工作8小时,仓库的库存量增加(2+6)×8=64(吨).。

2021-2022学年冀教版八年级数学下册第二十一章一次函数同步训练试题(含详细解析)

2021-2022学年冀教版八年级数学下册第二十一章一次函数同步训练试题(含详细解析)

八年级数学下册第二十一章一次函数同步训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,一个小球由静止开始沿一个斜坡滚下,其速度每秒增加的值相同.用t表示小球滚动的时间,v表示小球的速度.下列能表示小球在斜坡上滚下时v与t的函数关系的图象大致是()A.B.C .D .2、已知点A 的坐标为()1,3a a +-,点A 关于x 轴的对称点A '落在一次函数21y x =+的图象上,则a 的值可以是( )A .4-B .5-C .6-D .7-3、若直线y =kx +b 经过一、二、四象限,则直线y =bx ﹣k 的图象只能是图中的( )A .B .C .D .4、某种摩托车的油箱最多可以储油10升,李师傅记录了他的摩托车加满油后,油箱中的剩余油量y (升)与摩托车行驶路程x (千米)的关系,则当0≤x ≤500时,y 与x 的函数关系是( ).A .正比例函数关系B .一次函数关系C .二次函数关系D .反比例函数关系5、A 、B 两地相距350km ,甲骑摩托车从A 地匀速驶向B 地.当甲行驶1小时途径C 地时,一辆货车刚好从C 地出发匀速驶向B 地,当货车到达B 地后立即掉头以原速匀速驶向A 地.如图表示两车与B 地的距离(km)y 和甲出发的时间(h)x 的函数关系.则下列说法错误的是( )A.甲行驶的速度为80km/h B.货车返回途中与甲相遇后又经过3h8甲到B地C.甲行驶2.7小时时货车到达B地D.甲行驶到B地需要35h 86、AB两地相距20km,甲从A地出发向B地前进,乙从B地出发向A地前进,两人沿同一直线同时出发,甲先以8km/h的速度前进1小时,然后减慢速度继续匀速前进,甲乙两人离A地的距离s(km)与时间t(h)的关系如图所示,则甲出发()小时后与乙相遇.A.1.5 B.2 C.2.5 D.37、一次函数y1=kx+b与y2=mx+n的部分自变量和对应函数值如表:则关于x 的不等式kx +b >mx +n 的解集是( )A .x >0B .x <0C .x <﹣1D .x >﹣18、甲、乙两地相距120千米,A 车从甲地到乙地,B 车从乙地到甲地,A 车的速度为60千米/小时,B 车的速度为90千米/小时,A ,B 两车同时出发.设A 车的行驶时间为x (小时),两车之间的路程为y (千米),则能大致表示y 与x 之间函数关系的图象是( )A .B .C .D .9、点A (3,1y )和点B (-2,2y )都在直线y =-2x +3上,则1y 和2y 的大小关系是( )A .12y y =B .12y y >C .12y y <D .不能确定10、如图,在Rt △ABO 中,∠OBA =90°,A (4,4),且13AC CB =,点D 为OB 的中点,点P 为边OA 上的动点,使四边形PDBC 周长最小的点P 的坐标为( )A .(2,2)B .(52,52) C .(83,83) D .(163,163) 第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、 “GGB ”是一款数学应用软件,用“GGB ”绘制的函数()24y x x =--和4y x =-+的图像如图所示.若x a =,x b =分别为方程()241x x --=-和41x -+=-的一个解,则根据图像可知a ____b .(填“>”、“=”或“<”).2、若一次函数y =2x +b 的图象经过A (-1,1)则b =____,该函数图象经过点B (1,__)和点C (___,0).3、将直线2y x =向上平移1个单位后的直线的表达式为______.4、在平面直角坐标系中,一次函数y kx =和y x b =-+的图象如图所示,则不等式kx x b >-+的解集为______5、像y =x +1,s =-3t +1这些函数解析式都是常数k 与自变量的______与常数b 的______的形式.一般地,形如y =kx +b (k ,b 是常数,k ≠0)的函数,叫做______函数.当b =0时,y =kx +b 即y =kx ,所以说正比例函数是一种特殊的一次函数.三、解答题(5小题,每小题10分,共计50分)1、如图,长方形AOBC 在直角坐标系中,点A 在y 轴上,点B 在x 轴上,已知点C 的坐标是(8,4).(1)求对角线AB 所在直线的函数关系式;(2)对角线AB 的垂直平分线MN 交x 轴于点M ,连接AM ,求线段AM 的长;(3)若点P 是直线AB 上的一个动点,当△PAM 的面积与长方形OACB 的面积相等时,求点P 的坐标.2、已知一次函数22y x =+的图象与x 轴交于点A ,与y 轴交于点B(1)求A 、B 两点的坐标;(2)画出函数22y x =+的图象3、请用已学过的方法研究一类新函数y =k |x ﹣b |(k ,b 为常数,且k ≠0)的图象和性质:(1)完成表格,并在给出的平面直角坐标系中画出函数y =|x ﹣2|的图象;(2)点(m ,y 1),(m +2,y 2)在函数y =|x ﹣2|的图象上.①若y 1=y 2,则m 的值为 ;②若y 1<y 2,则m 的取值范围是 ;(3)结合函数图像,写出该函数的一条性质.4、对于平面直角坐标系xOy 中的图形M 和点P ,给出如下定义:如果图形M 上存在点Q ,使得0≤PQ ≤2,那么称点P 为图形M 的和谐点.已知点A (﹣4,3),B (4,3).(1)在点P1(﹣2,1),P2(﹣1,0),P3(5,4)中,直线AB的和谐点是;(2)点P为直线y=x+1上一点,若点P为直线AB的和谐点,求点P的横坐标t的取值范围;(3)已知点C(4,﹣3),D(﹣4,﹣3),如果直线y=x+b上存在矩形ABCD的和谐点E,F,使得线段EF上的所有点都是矩形ABCD的和谐点,且EF>,请直接写出b的取值范围.5、在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象经过点A(﹣1,1),B(0,3).(1)求这个一次函数的解析式;(2)若这个一次函数的图象与x轴的交点为C,求△BOC的面积.-参考答案-一、单选题1、C【解析】【分析】静止开始沿一个斜坡滚下,其速度每秒增加的值相同即可判断.【详解】解:由题意得,小球从静止开始,设速度每秒增加的值相同为a .00v v at a t ∴=+=+⨯,即v at =.故是正比例函数图象的一部分.故选:C .【点睛】本题考查了函数关系式,这是一个跨学科的题目,实际上是利用“即时速度=初始速度+加速度⨯时间”,解题的关键是列出函数关系式.2、C【解析】【分析】由点A 和点'A 关于x 轴对称,可求出点'A 的坐标,再利用一次函数图象上点的坐标特征可得出关于a 的方程,解之即可得出结论.【详解】 解:点()1,3A a a +-和点A '关于x 轴对称,∴点A '的坐标为(1,3)a a +-. 又点A '在直线21y x =+上,32(1)1a a ∴-=⨯++,6a ∴=-.故选:C .【点睛】本题考查了一次函数图象上点的坐标特征以及关于x 轴、y 轴对称的点的坐标,解题的关键是牢记直线上任意一点的坐标都满足函数关系式y kx b =+.3、B【解析】【分析】根据直线y=kx+b经过一、二、四象限,可得k<0,b>0,从而得到直线y=bx﹣k过一、二、三象限,即可求解.【详解】解:∵直线y=kx+b经过一、二、四象限,∴k<0,b>0,∴﹣k>0,∴直线y=bx﹣k过一、二、三象限,∴选项B中图象符合题意.故选:B【点睛】本题主要考查了一次函数的图象和性质,熟练掌握一次函数的图象和性质是解题的关键.4、B【解析】【分析】根据表格数据,描点、连线画出函数的图象,根据函数图象进行判断即可【详解】根据表格数据,描点、连线画出函数的图象如图:故y 与x 的函数关系是一次函数.故选B .【点睛】本题考查了画一次函数图象,掌握一次函数图象的性质是解题的关键.5、C【解析】【分析】根据函数图象结合题意,可知AC 两地的距离为350270-80km =,此时甲行驶了1小时,进而求得甲的速度,即可判断A 、D 选项,根据总路程除以速度即可求得甲行驶到B 地所需要的时间,根据货车行驶的时间和路程结合图像可得第4小时时货车与甲相遇,据此判断B 选项,求得相遇时,甲距离B 地的距离,进而根据货车行驶的路程除以时间即可求得货车的速度,进而求得货车到达B 地所需要的时间.【详解】解:AC 两地的距离为350270-80km =,80180km /h ÷=故A 选项正确,不符合题意;35350808÷=h 故D 选项正确,不符合题意;根据货车行驶的时间和路程结合图像可得第4小时时货车与甲相遇, 则353488-= 即货车返回途中与甲相遇后又经过3h 8甲到B 地 故B 选项正确,相遇时为第4小时,此时甲行驶了480320km ⨯=,货车行驶了()270350320300+-=km则货车的速度为300(41)100km/h ÷-=则货车到达B 地所需的时间为270100 2.7h ÷=即第2.71+ 3.7=小时故甲行驶3.7小时时货车到达B 地故C 选项不正确故选C【点睛】本题考查了一次函数的应用,弄清楚函数图象中各拐点的意义是解题的关键.6、B【解析】【分析】根据题意结合图象分别求出甲减速后的速度已经乙的速度,再列方程解答即可.【详解】解:甲减速后的速度为:(20﹣8)÷(4﹣1)=4(km /h ),乙的速度为:20÷5=4(km /h ), 设甲出发x 小时后与乙相遇,根据题意得8+4(x﹣1)+4x=20,解得x=2.即甲出发2小时后与乙相遇.故选:B.【点睛】本题考查了一次函数的应用,解题的关键是读懂图象信息,灵活应用速度、路程、时间之间的关系解决问题.7、D【解析】【分析】根据统计表确定两个函数的增减性以及函数的交点,然后根据增减性判断.【详解】解:根据表可得y1=kx+b中y随x的增大而增大;y2=mx+n中y随x的增大而减小,且两个函数的交点坐标是(﹣1,2).则当x>﹣1时,kx+b>mx+n.故选:D.【点睛】本题考查了一次函数与一元一次不等式,一次函数的性质,正确确定增减性以及交点坐标是关键.8、C【解析】【分析】分别求出两车相遇、B车到达甲地、A车到达乙地时间,分0≤x≤45、45<x≤43、43<x≤2三段求出函数关系式,进而得到当x=43时,y=80,结合函数图象即可求解.【详解】解:当两车相遇时,所用时间为120÷(60+90)=45小时,B车到达甲地时间为120÷90=43小时,A车到达乙地时间为120÷60=2小时,∴当0≤x≤45时,y=120-60x-90x=-150x+120;当45<x≤43时,y=60(x-45)+90(x-45)=150x-120;当43<x≤2是,y=60x;由函数解析式的当x=43时,y=150×43-120=80.故选:C【点睛】本题考查了一次函数的应用,理解题意,确定分段函数的解析式,并根据函数解析式确定函数图象是解题关键.9、C【解析】【分析】利用一次函数的增减性性质判定即可.【详解】∵直线y=-2x+3的k=-2<0,∴y随x的增大而减小,∵-2<3,∴12y y <,故选C .【点睛】本题考查了一次函数的增减性,熟练掌握性质是解题的关键.10、C【解析】【分析】先确定点D 关于直线AO 的对称点E (0,2),确定直线CE 的解析式,直线AO 的解析式,两个解析式的交点就是所求.【详解】∵∠OBA =90°,A (4,4),且13AC CB =,点D 为OB 的中点, ∴点D (2,0),AC =1,BC =3,点C (4,3),设直线AO 的解析式为y =kx ,∴4=4k ,解得k =1,∴直线AO 的解析式为y =x ,过点D 作DE ⊥AO ,交y 轴于点E ,交AO 于点F ,∵∠OBA =90°,A (4,4),∴∠AOE =∠AOB =45°,∴∠OED =∠ODE =45°,OE =OD ,∴DF =FE ,∴点E是点D关于直线AO的对称点,∴点E(0,2),连接CE,交AO于点P,此时,点P是四边形PCBD周长最小的位置,设CE的解析式为y=mx+n,∴432k nn+=⎧⎨=⎩,解得142kn⎧=⎪⎨⎪=⎩,∴直线CE的解析式为y=14x+2,∴{y=14y+2y=y,解得8383xy⎧=⎪⎪⎨⎪=⎪⎩,∴使四边形PDBC周长最小的点P的坐标为(83,83),故选C.【点睛】本题考查了一次函数的解析式,将军饮马河原理,熟练掌握待定系数法和将军饮马河原理是解题的关键.二、填空题1、<【解析】【分析】根据方程的解是函数图象交点的横坐标,结合图象得出结论.【详解】解:∵方程-x2(x-4)=-1的解为函数图象与直线y=-1的交点的横坐标,-x+4=-1的一个解为一次函数y=-x+4与直线y=-1交点的横坐标,如图所示:由图象可知:a<b.故答案为:<.【点睛】本题考查了函数图象与方程的解之间的关系,关键是利用数形结合,把方程的解转化为函数图象之间的关系.2、 3 5 32- 【解析】略3、21y x =+【解析】【分析】直线向上平移1个单位,将表达式中x 保持不变,等号右面加1即可.【详解】解:由题意知平移后的表达式为:21y x =+故答案为21y x =+.【点睛】本题考查了一次函数的平移.解题的关键在于明确一次函数图象平移时左加右减,上加下减. 4、1x >【解析】【分析】根据函数图象写出一次函数y kx =在y x b =-+上方部分的x 的取值范围即可.【详解】解:一次函数y kx =和y x b =-+的图象交于点()1,2所以,不等式kx x b >-+的解集为1x >.故答案为:1x >【点睛】本题考查了一次函数的交点问题及不等式,数形结合是解决此题的关键.5、积和一次【解析】略三、解答题1、(1)142y x=-+;(2)5;(3)点P的坐标为(1285,-445)或(-1285,845)【解析】【分析】(1)由坐标系中点的意义结合图形可得出A、B点的坐标,设出对角线AB所在直线的函数关系式,由待定系数法即可求得结论;(2)由勾股定理求出AB的长,再结合线段垂直平分线的性质,可得AM=BM,OM=OB−BM,再次利用勾股定理得出AM的长;(3)(方法一)先求出直线AM的解析式,设出P点坐标,由点到直线的距离求出AM边上的高h,再结合三角形面积公式与长方形面积公式即可求出P点坐标;(方法二)由△PAM的面积与长方形OACB的面积相等可得出S△PAM的值,设点P的坐标为(x,−12x +4),分点P在AM的右侧及左侧两种情况,找出关于x的一元一次方程,解之即可得出点P的坐标,此题得解.【详解】解:(1)∵四边形AOBC为长方形,且点C的坐标是(8,4),∴AO=CB=4,OB=AC=8,∴A点坐标为(0,4),B点坐标为(8,0).设对角线AB所在直线的函数关系式为y=kx+b,则有408bk b=⎧⎨=+⎩,解得:124kb⎧=-⎪⎨⎪=⎩,∴对角线AB所在直线的函数关系式为y=-12x+4.(2)∵∠AOB=90°,∴勾股定理得:AB=∵MN垂直平分AB,∴BN=AN=12AB=∵MN为线段AB的垂直平分线,∴AM=BM设AM=a,则BM=a,OM=8-a,由勾股定理得,a2=42+(8-a)2,解得a=5,即AM=5.(3)(方法一)∵OM=3,∴点M坐标为(3,0).又∵点A坐标为(0,4),∴直线AM的解析式为y=-43x+4.∵点P在直线AB:y=-12x+4上,∴设P点坐标为(m,-12m+4),点P到直线AM:43x+y-4=0的距离h2m.△PAM的面积S△PAM=12AM•h=54|m|=SOABC=AO•OB=32,解得m=±1285,故点P的坐标为(1285,-445)或(-1285,845).(方法二)∵S长方形OACB=8×4=32,∴S△PAM=32.设点P的坐标为(x,-12x+4).当点P在AM右侧时,S△PAM=12MB•(yA-yP)=12×5×(4+12x-4)=32,解得:x=1285,∴点P的坐标为(1285,-445);当点P在AM左侧时,S△PAM=S△PMB-S△ABM=12MB•yP-10=12×5(-12x+4)-10=32,解得:x =-1285, ∴点P 的坐标为(-1285,845). 综上所述,点P 的坐标为(1285,-445)或(-1285,845). 【点睛】 本题考查了坐标系中点的意、勾股定理、点到直线的距离、三角形和长方形的面积公式,解题的关键:(1)根据坐标系中点的意义,找到A 、B 点的坐标;(2)由线段垂直平分线的性质和勾股定理找出BM 的长度;(3)(方法一)结合点到直线的距离、三角形和长方形的面积公式找到关于m 的一元一次方程;(方法二)利用分割图形求面积法找出关于x 的一元一次方程.本题属于中等题,难度不大,运算量不小,这里尤其要注意点P 有两个.2、 (1)()1,0A -,()0,2B(2)见解析【解析】【分析】(1)分别令,0x y =,即可求得点,A B 的坐标;(2)根据,A B 两点,作出一次函数的图象即可(1)令0x =,则2y =,即()0,2B ,令0y =,则1x =-,即()1,0A -(2)过()1,0A -,()0,2B 作直线22y x =+的图象,如图所示,【点睛】本题考查了一次函数与坐标轴的交点问题,画一次函数图象,掌握一次函数的性质是解题的关键.3、 (1)3,3,画函数图象见解析;(2)①1;②m>1;(3)见解析【解析】【分析】(1)列表、描点,连线画出函数图象即可;(2)观察图形,根据图象的性质即可得到结论;(3)结合(2)中图象的性质,即可得到结论.(1)解:列表:描点、连线,画出函数y=|x﹣2|图象如图:(2)解:点(m,y1),(m+2,y2)在函数y=|x﹣2|的图象上,观察图象:y=|x﹣2|图象关于直线x=2对称,且当x>2时,y随x增大而增大,当x<2时,y随x增大而减小,而m+2>m,①若y1=y2,则m+2-2=2-m,解得m=1;②若y1<y2,则m>1,故答案为:1,m>1;(3)解:对于函数y=k|x−b|,当k>0时,函数值y先随x的增大而减小,函数值为0后,再随x的增大而增大.【点睛】本题考查一次函数的图象及性质;熟练掌握一次函数的图象及性质,数形结合解题是关键.4、 (1)P1,P3(2)0≤t≤4(3)3≤b<5或﹣5<b≤﹣3【解析】【分析】(1)作出直线AB图象,根据到直线的距离即可得出结论;(2)设出点P的坐标,根据和谐点的定义找出临界值即可求出t的取值范围;(3)根据图象找出临界值,再根据对称性写全取值范围即可.(1)解:作AB图象如图,P2到AB的距离为3不符合和谐点条件,P1、P3点到直线AB的距离在0~2之间,符合和谐点的条件,故直线AB的和谐点为P1,P3;故答案为:P1,P3;(2)解:∵点P为直线y=x+1上一点,∴设P点坐标为(t,t+1),寻找直线上的点,使该点到AB垂线段的距离为2,∴|t+1-3|=2,解得t=0或t'=4,∴0≤t≤4;(3)解:如图当b=5时,图中线段EF上的点都是矩形ABCD的和谐点,且EF当b=3时,线段E'F'上的点都是矩形ABCD的和谐点,E'F'>∴3≤b<5,由对称性同法可知﹣5<b≤﹣3也满足条件,故3≤b<5或﹣5<b≤﹣3..【点睛】本题主要考查一次函数的知识,弄清新定义是解题的关键.5、 (1)y=2x+3(2)S△BOC=9 4【解析】【分析】(1)根据点A、B的坐标利用待定系数法即可求出一次函数的解析式;(2)利用直线解析式求得C的坐标,然后根据三角形面积公式即可求得△BOC的面积.(1)解:∵一次函数y=kx+b(k≠0)的图象经过点A(﹣1,1),B(0,3).∴13k bb-+=⎧⎨=⎩,解得:23kb=⎧⎨=⎩,∴这个一次函数的解析式为:y=2x+3.(2)解:令y=0,则2x+3=0,解得x=﹣32,∴C(﹣32,0),∵B(0,3).∴S△BOC=13322⨯⨯=94.【点睛】本题考查了待定系数法求一次函数解析式,一次函数图象上点的坐标特征,三角形的面积,熟练掌握利用待定系数法求一次函数解析式的方法是解题的关键.。

2021-2022学年最新冀教版八年级数学下册第二十一章一次函数同步训练试题(精选)

2021-2022学年最新冀教版八年级数学下册第二十一章一次函数同步训练试题(精选)

八年级数学下册第二十一章一次函数同步训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知点()14,y -,()22,y 都在直线21y x =-+上,则1y 、2y 大小关系是( )A .12y y <B .12y y =C .12y y >D .不能计较2、已知一次函数y =(1﹣3k )x +k 的函数值y 随x 的增大而增大,且图象经过第一、二、三象限,则k 的值( )A .k >0B .k <0C .0<k <13 D .k <133、已知点()1,3x -,()2,4x 都在直线21y x =-+上,则1x 与2x 的大小关系为( )A .12x x >B .12x x =C .12x x <D .无法比较4、已知点)Am ,3,2B n ⎛⎫ ⎪⎝⎭在一次函数21y x =-+的图像上,则m 与n 的大小关系是( ) A .m n > B .m n = C .m n < D .无法确定5、下列各点在函数y =﹣3x +2图象上的是( )A .(0,﹣2)B .(1,﹣1)C .(﹣1,﹣1)D .(﹣13,1)6、已知正比例函数y =3x 的图象上有两点M (x 1,y 1)、N (x 2,y 2),如果x 1>x 2,那么y 1与y 2的大小关系是( )A .y 1>y 2B .y 1=y 2C .y 1<y 2D .不能确定7、一次函数21y x =-+的图象不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限8、下列不能表示y 是x 的函数的是( )A .B .C .D .21y x =+9、如图,点P 是▱ABCD 边上一动点,沿A →D →C →B 的路径移动,设P 点经过的路径长为x ,△BAP 的面积是y ,则下列能大致反映y 与x 的函数关系的图象是( )A.B.C.D.10、小豪骑自行车去位于家正东方向的书店买资料用于自主复习.小豪离家5min后自行车出现故障,小豪立即打电话给爸爸,让爸爸带上工具箱从家里来帮忙维修(小豪和爸爸通话以及爸爸找工具箱的时间忽略不计),同时小豪以原来速度的一半推着自行车继续向书店走去,爸爸接到电话后,立刻出发追赶小豪,追上小豪后,爸爸用2min的时间修好了自行车,并立刻以原速到位于家正西方500m的公司上班,小豪则以原来的骑车速度继续向书店前进,爸爸到达公司时,小豪还没有到达书店.如图是小豪与爸爸的距离y(m)与小豪的出发时间x(min)之向的函数图象,请根据图象判断下列哪一个选项是正确的()A.小豪爸爸出发后12min追上小豪B.小李爸爸的速度为300m/minC.小豪骑自行车的速度为250m/min D.爸爸到达公司时,小豪距离书店500m第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、己知y是关于x的一次函数,下表给出的4组自变量x的值及其对应的函数y的值,其中只有一个y的值计算有误,则它的正确值是_______.2、函数y=(m﹣2)x|m﹣1|+2是一次函数,那么m的值为___.3、直线y=2x-4与两坐标轴围成的三角形面积为___________________.4、某手工作坊生产并销售某种食品,假设销售量与产量相等,如图中的线段AB、OC分别表示每天生产成本1y(单位:元)、收入2y(单位:元)与产量x(单位:千克)之间的函数关系.若该手工作坊某一天既不盈利也不亏损,则这天的产量是______千克.5、某工厂有甲、乙、丙、丁四个不同的车间生产电子元件,由于生产设备不同,工人在不同车间日生产量也不一定相同,但皆为整数.某日,该工厂接到一批生产订单,工厂老板想将工人合理分配到不同车间,已知甲车间的工人数与乙车间相同,丙车间的工人数是丁车间的3倍且比甲车间工人数多,甲车间与丁车间的工人数之和不少于40人且不超过50人;甲车间与丁车间每个工人的日生产量相同,乙车间每个工人的日生产量为丙车间每个工人日生产量的3倍,甲车间与丙车间每个工人的日生产量之和为450件,且甲车间每个工人的日生产量不低于丙车间每个工人日生产量的23且不超过230件;甲车间、丙车间的日生产之和比乙车间、丁车间的日生产之和少1100件.则当甲、丙两车间当日生产量之和最多时,该工厂调配前往甲车间的人数为__________人.三、解答题(5小题,每小题10分,共计50分)1、如图1,一次函数y=43x+4的图象与x轴、y轴分别交于点A、B.(1)则点A的坐标为_______,点B的坐标为______;(2)如图2,点P为y轴上的动点,以点P为圆心,PB长为半径画弧,与BA的延长线交于点E,连接PE,已知PB=PE,求证:∠BPE=2∠OAB;(3)在(2)的条件下,如图3,连接PA,以PA为腰作等腰三角形PAQ,其中PA=PQ,∠APQ=2∠OAB.连接OQ.①则图中(不添加其他辅助线)与∠EPA相等的角有______;(都写出来)②试求线段OQ长的最小值.2、某单位要制作一批宣传材料,甲公司提出:每份材料收费25元,另收2000元的设计费;乙公司提出:每份材料收费35元,不收设计费.(1)请用含x代数式分别表示甲乙两家公司制作宣传材料的费用;(2)试比较哪家公司更优惠?说明理由.3、如图,长方形AOBC在直角坐标系中,点A在y轴上,点B在x轴上,已知点C的坐标是(8,4).(1)求对角线AB所在直线的函数关系式;(2)对角线AB的垂直平分线MN交x轴于点M,连接AM,求线段AM的长;(3)若点P是直线AB上的一个动点,当△PAM的面积与长方形OACB的面积相等时,求点P的坐标.4、如图,直线l :22y x =-与y 轴交于点G ,直线l 上有一动点P ,过点P 作y 轴的平行线PE ,过点G 作x 轴的平行线GE ,它们相交于点E .将△PGE 沿直线l 翻折得到△PGE′,点E 的对应点为E′.(1)如图1,请利用无刻度的直尺和圆规在图1中作出点E 的对应点E′;(2)如图2,当点E 的对应点E′落在x 轴上时,求点P 的坐标;(3)如图3,直线l 上有A ,B 两点,坐标分别为(-2,-6),(4,6),当点P 从点A 运动到点B 的过程中,点E′也随之运动,请直接写出点E′的运动路径长为____________.5、某厂计划生产A ,B 两种产品若干件,已知两种产品的成本价和销售价如下表:(1)第一次工厂用220000元资金生产了A ,B 两种产品共600件,求两种产品各生产多少件?(2)第二次工厂生产时,工厂规定A 种产品生产数量不得超过B 种产品生产数量的一半.工厂计划生产两种产品共3000件,应如何设计生产方案才能获得最大利润,最大利润是多少?-参考答案-一、单选题1、C【解析】【分析】根据一次函数的增减性解答.【详解】解:∵直线21y x =-+,k =-2<0,∴y 随着x 的增大而减小,∵点()14,y -,()22,y 都在直线21y x =-+上,-4<2,∴12y y >,故选:C .【点睛】此题考查了一次函数的增减性:当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小,熟记性质是解题的关键.2、C【解析】【分析】根据一次函数的性质得1﹣3k >0,解得k <13,再由图象经过一、二、三象限,根据一次函数与系数的关系得到k >0,于是可确定k 的取值范围.【详解】解:∵一次函数y =(1﹣3k )x +k ,y 随x 的增大而增大,∴1﹣3k >0,解得k <13,图象经过第一、三象限,∵图象经过一、二、三象限,∴k >0,∴k 的取值范围为0<k <13.故选:C .【点睛】本题考查了一次函数y =kx +b (k ≠0,k ,b 为常数)的性质.它的图象为一条直线,当k >0,图象经过第一,三象限,y 随x 的增大而增大;当k <0,图象经过第二,四象限,y 随x 的增大而减小;当b >0,图象与y 轴的交点在x 轴的上方;当b =0,图象过坐标原点;当b <0,图象与y 轴的交点在x 轴的下方.3、A【解析】【分析】根据一次函数的增减性分析,即可得到答案.【详解】∵直线21y x =-+上,y 随着x 的增大而减小又∵34-<∴12x x >故选:A .【点睛】本题考查了一次函数的增减性;解题的关键是熟练掌握一次函数图像的性质,从而完成求解.4、A【解析】【分析】根据一次函数21y x =-+的性质,y 随x 增大而减小判断即可.【详解】解:知点)Am ,3,2B n ⎛⎫ ⎪⎝⎭在一次函数21y x =-+的图像上, ∵-2<0,∴y 随x 增大而减小,32<,∴m n >,故选:A .【点睛】本题考查了一次函数的增减性,解题关键是明确一次函数21y x =-+y 随x 增大而减小的性质.5、B【解析】【分析】根据一次函数图象上点的坐标满足函数解析式,逐一判断,即可得到答案.【详解】∵2302-≠-⨯+,∴A不符合题意,∵1312-=-⨯+,∴B符合题意,∵13(1)2-≠-⨯-+,∴C不符合题意,∵11(3)()23≠-⨯-+,∴D不符合题意,故选B.【点睛】本题主要考查一次函数图象上点的坐标,掌握一次函数图象上点的坐标满足函数解析式,是解题的关键.6、A【解析】【分析】先根据一次函数的解析式判断出函数的增减性,再根据x1>x2即可得出结论.【详解】∵正比例函数y=3x中,k=3>0,∴y随x的增大而增大,∵x1>x2,∴y1>y2.故选:A.【点睛】本题考查的是一次函数图象上点的坐标特征,熟练掌握正比例函数的增减性与x 的系数的关系是解题的关键.7、C【解析】【分析】根据一次函数的解析式,利用一次函数图象与系数的关系可得出一次函数21y x =-+的图象经过第一、二、四象限,此题得解.【详解】解:∵k =-2<0,b =1>0,∴一次函数y =-2x +1的图象经过第一、二、四象限,∴一次函数y =-2x +1的图象不经过第三象限.故选:C .【点睛】本题考查了一次函数图象与系数的关系,牢记“k <0,b >0⇔y=kx+b 的图象在一、二、四象限”是解题的关键.8、B【解析】【分析】根据函数的定义(如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,我们就把x 称为自变量,把y 称为因变量,y 是x 的函数)及利用待定系数法确定一次函数解析式依次进行判断即可得.【详解】解:A 、根据图表进行分析为一次函数,设函数解析式为:(0)y kx b k =+≠,将0x =,3y =,5x =, 3.5y =分别代入解析式为:33.55b k b=⎧⎨=+⎩, 解得:0.1k =,3b =,所以函数解析式为:0.13y x =+,∴y 是x 的函数;B 、从图象上看,一个x 值,对应两个y 值,不符合函数定义,y 不是x 的函数;C 、D 选项从图象及解析式看可得y 是x 的函数.故选:B .【点睛】题目主要考查函数的定义及利用待定系数法确定一次函数解析式,深刻理解函数定义是解题关键.9、A【解析】【分析】分三段来考虑点P 沿A →D 运动,BAP △的面积逐渐变大;点P 沿D →C 移动,BAP △的面积不变;点P 沿C →B 的路径移动,BAP △的面积逐渐减小,同时考虑各段的函数解析式,据此选择即可得.【详解】解:如图,过点B 作BH ⊥DA 交DA 的延长线于H ,设BH =h ,则当点P 在线段AD 上时,12y hx =,h 是定值,y 是x 的一次函数,点P 沿A →D 运动,BAP 的面积逐渐变大,且y 是x 的一次函数,点P沿D→C移动,BAP的面积不变,点P沿C→B的路径移动,BAP的面积逐渐减小,同法可知y是x的一次函数,故选:A.【点睛】本题以动点问题为背景,考查了分类讨论的数学思想以及函数图象的变化规律,理解题意,作出辅助线是解题关键.10、B【解析】【分析】根据函数图象可知,小豪出发10分钟后,爸爸追上了小豪,根据此时爸爸的5分钟的行程等于小豪前5分钟的行程与后5分钟的行程和,得到出爸爸的速度与小豪骑自行车的速度的关系,设小豪的速度为x米/分,根据点(563,0)列方程可得小豪与爸爸的速度,进而得出爸爸到达公司时,小豪距离书店路程.【详解】解:设小豪骑自行车的速度为xm/min,则爸爸的速度为:(5x+5×12x)÷5=32x(m/min),∵公司位于家正西方500米,∴(563−10−2)×32x=500+(5+2.5)x,解得x=200,∴小豪骑自行车的速度为200m/min,爸爸的速度为:200×32=300m/min,爸爸到达公司时,丁丁距离商店路程为:3500-(563−12)×(300+200)=5003m.综上,正确的选项为B .故选:B .【点睛】本题考查了一次函数的应用,学会正确利用图象信息,把问题转化为方程解决是本题的关键,属于中考常考题型.二、填空题1、11【解析】【分析】经过观察4组自变量和相应的函数值(0,20),(1,17),(2,14)符合解析式320y x =-+,(3,10)不符合,即可判定.【详解】解:(0,20),(1,17),(2,14)符合解析式320y x =-+,(3,10)不符合,∴这个计算有误的函数值是10,则它的正确值是11,故答案为:11.【点睛】本题考查了一次函数图象上点的坐标特征,解题的关键是掌握图象上点的坐标符合解析式. 2、0【解析】【分析】根据一次函数的定义,列出关于m 的方程和不等式进行求解即可.【详解】解:由题意得,|m -1|=1且m -2≠0,解得:m =2或m =0且m ≠2,∴m =0.故答案为:0.【点睛】本题主要考查了一次函数,一次函数y =kx +b 的条件是:k 、b 为常数,k ≠0,自变量次数为1. 3、4【解析】【分析】画出一次函数的图象,再求解一次函数与坐标轴的交点,A B 的坐标,再利用三角形的面积公式进行计算即可.【详解】解:如图,令0,x = 则4,y =-令0,y = 则240,x -= 解得2,x =2,0,0,4,A B 1244,2AOB S故答案为:4【点睛】本题考查的是一次函数与坐标轴的交点坐标,一次函数与坐标轴围成的三角形的面积,利用数形结合的方法解题是解本题的关键.4、30【解析】【分析】根据题意可设AB 段的解析式为11y k x b =+,OC 段的解析式为22y k x =,再结合图象利用待定系数法求出解析式,最后根据该手工作坊某一天既不盈利也不亏损时,即12y y =,可列出关于x 的等式,解出x 即可.【详解】根据题意可设AB 段的解析式为:11y k x b =+,且经过点A (0,240),B (60,480),∴ 124048060b k b=⎧⎨=+⎩, 解得:14240k b =⎧⎨=⎩, ∴AB 段的解析式为:14240y x =+;设OC 段的解析式为:22y k x =,且经过点C (60,720),∴272060k =,解得:212k =,∴OC 段的解析式为:212y x =.当该手工作坊某一天既不盈利也不亏损时,即12y y =,∴424012x x +=,解得:30x =.所以这天的产量是30千克.故答案为:30.【点睛】本题考查一次函数的实际应用.掌握利用待定系数法求函数解析式是解答本题的关键.5、21【解析】【分析】根据题意设甲、乙、丙、丁车间的人数分别为a b c d ,,,人,甲、乙、丙、丁车间的日生产量分别为,,,x y z w ,则根据甲车间、丙车间的日生产之和比乙车间、丁车间的日生产之和少1100件,转化为只含有,,,a d x z 的方程,进而根据因式分解化简得()()2225550a d z --=,根据不等式求得2225z -的范围,根据a d -是整数,即可求得2225z -的值,进而求得2a d -=,根据题意列出代数式,并根据一次函数的性质求得当19d =时,3a d -取得最大值,即可求得a 的值,即可解决问题.【详解】根据题意设甲、乙、丙、丁车间的人数分别为a b c d ,,,人,甲、乙、丙、丁车间的日生产量分别为,,,x y z w ,则34050a b c d a d =⎧⎪=⎨⎪≤+≤⎩,345022303x w y z x z z x =⎧⎪=⎪⎪+=⎨⎪⎪≤≤⎪⎩,1100ax cz by dw +=+- ,3,3,b a c d y z w x ∴====,450x z =-∴1100ax cz by dw +=+-331100ax dz az dx +=+-即331100az ax dx dz -+-=3()()1100z a d x a d ---=()(3)1100a d z x --=又450x z =-∴()()34501100a d z z --+=即()()2225550a d z --=5502225a d z ∴-=-45022303x z z x +=⎧⎪⎨≤≤⎪⎩ 即24502303z z ≤-≤解得220270z ≤≤2152225315z ∴≤-≤ a d -是整数,即5502225z -是整数 ∴2225225z -=2,225a d z ∴-==设甲、丙两车间当日生产量之和为f :则f =ax cz +=()3(450)3144031350ax d x ax dx d a d x d +-=-+=-+(3)1350f a d x d ∴=-+0x ,则当3a d -最大时,f 取得最大值2a d -=2a d ∴=+32322a d d d d ∴-=+-=-4050a d ≤+≤即402250d ≤+≤1924d ∴≤≤19d ∴=时,3a d -取得最大值此时219221a d =+=+=故答案为:21【点睛】本题考查了方程组的应用,一元一次不等式的应用,一次函数的性质求最值问题,理清题中各关系量是解题的关键.三、解答题1、 (1)(-3,0);(0,4)(2)证明见解析(3)①∠QPO ,∠BAQ ;②线段OQ 长的最小值为125【解析】【分析】(1)根据题意令x =0,y =0求一次函数与坐标轴的交点;(2)由题意可知与∠EPA 相等的角有∠QPO ,∠BAQ .利用三角形内角和定理解决问题;(3)根据题意可知如图3中,连接BQ 交x 轴于T .证明△APE ≌△QPB (SAS ),推出∠AEP =∠QBP ,再证明OA =OT ,推出直线BT 的解析式为为:443y x =+,推出点Q 在直线y =﹣43x +4上运动,再根据垂线段最短,即可解决问题.(1)解:在y =43x +4中,令y =0,得0=43x +4,解得x=﹣3,∴A(﹣3,0),在y=43x+4中,令x=0,得y=4,∴B(0,4);故答案为:(﹣3,0),(0,4).(2)证明:如图2中,设∠ABO=α,则∠OAB=90°﹣α,∵PB=PE,∴∠PBE=∠PEB=α,∴∠BPE=180°﹣∠PBE﹣∠PEB=180°﹣2α=2(90°﹣α),∴∠BPE=2∠OAB.(3)解:①结论:∠QPO,∠BAQ理由:如图3中,∵∠APQ=∠BPE=2∠OAB,∵∠BPE=2∠OAB,∴∠APQ=∠BPE.∴∠APQ﹣∠APB=∠BPE﹣∠APB.∴∠QPO=∠EPA.又∵PE=PB,AP=PQ∴∠PEB=∠PBE=∠PAQ=∠AQP.∴∠BAQ=180°﹣∠EAQ=180°﹣∠APQ=∠EPA.∴与∠EPA相等的角有∠QPO,∠BAQ.故答案为:∠QPO,∠BAQ.②如图3中,连接BQ交x轴于T.∵AP=PQ,PE=PB,∠APQ=∠BPE,∴∠APE=∠QPB,在△APE和△QPB中,PA PQAPE QPBPE PB=⎧⎪∠=∠⎨⎪=⎩,∴△APE≌△QPB(SAS),∴∠AEP=∠QBP,∵∠AEP=∠EBP,∴∠ABO=∠QBP,∵∠ABO+∠BAO=90°,∠OBT+∠OTB=90°,∴∠BAO=∠BTO,∴BA=BT,∵BO⊥AT,∴OA=OT,∴直线BT的解析式为为:443y x=+,∴点Q在直线y=﹣43x+4上运动,∵B(0,4),T(3,0).∴BT=5.当OQ⊥BT时,OQ最小.∵S△BOT=12×3×4=12×5×OQ.∴OQ=125.∴线段OQ长的最小值为125.【点睛】本题属于一次函数综合题,考查一次函数图象与坐标轴的交点问题、全等三角形的判定和性质、等腰三角形的性质、锐角三角函数及最短距离等知识,正确寻找全等三角形是解题的关键.2、 (1)y甲=25x+2 000;y乙=35x(2)当0<x<200时,选择乙公司更优惠;当x=200时,选择两公司费用一样多;当x>200时,选择甲公司更优惠.理由见解析【解析】【分析】(1)设甲公司制作宣传材料的费用为y甲(元),乙公司制作宣传材料的费用为y乙(元),份数乘以单价加上设计费可得甲公司的费用;份数乘以单价可得乙公司的费用;(2)分三种情况讨论,当y甲>y乙时,当y甲=y乙时,当y甲<y乙时,分别计算可得(1)解:设甲公司制作宣传材料的费用为y甲(元),乙公司制作宣传材料的费用为y乙(元),制作宣传材料的份数为x(份),依题意得y甲=25x+2 000;y乙=35x;(2)解:当y甲>y乙时,即25x+2 000>35x,解得:x<200;当y甲=y乙时,即25x+2 000=35x,解得:x=200;当y甲<y乙时,即25x+2 000<35x,解得:x>200.∴当0<x<200时,选择乙公司更优惠;当x=200时,选择两公司费用一样多;当x>200时,选择甲公司更优惠.【点睛】此题考查了一元一次方程的方案选择问题,一元一次不等式类的方案选择问题,列代数式,正确理解题意是解题的关键.3、(1)142y x=-+;(2)5;(3)点P的坐标为(1285,-445)或(-1285,845)【解析】【分析】(1)由坐标系中点的意义结合图形可得出A、B点的坐标,设出对角线AB所在直线的函数关系式,由待定系数法即可求得结论;(2)由勾股定理求出AB的长,再结合线段垂直平分线的性质,可得AM=BM,OM=OB−BM,再次利用勾股定理得出AM的长;(3)(方法一)先求出直线AM的解析式,设出P点坐标,由点到直线的距离求出AM边上的高h,再结合三角形面积公式与长方形面积公式即可求出P点坐标;(方法二)由△PAM的面积与长方形OACB的面积相等可得出S△PAM的值,设点P的坐标为(x,−12x +4),分点P在AM的右侧及左侧两种情况,找出关于x的一元一次方程,解之即可得出点P的坐标,此题得解.【详解】解:(1)∵四边形AOBC为长方形,且点C的坐标是(8,4),∴AO=CB=4,OB=AC=8,∴A点坐标为(0,4),B点坐标为(8,0).设对角线AB所在直线的函数关系式为y=kx+b,则有408bk b=⎧⎨=+⎩,解得:124kb⎧=-⎪⎨⎪=⎩,∴对角线AB所在直线的函数关系式为y=-12x+4.(2)∵∠AOB=90°,∴勾股定理得:AB=∵MN垂直平分AB,∴BN=AN=12AB=∵MN为线段AB的垂直平分线,∴AM=BM设AM=a,则BM=a,OM=8-a,由勾股定理得,a2=42+(8-a)2,解得a=5,即AM=5.(3)(方法一)∵OM=3,∴点M坐标为(3,0).又∵点A坐标为(0,4),∴直线AM的解析式为y=-43x+4.∵点P在直线AB:y=-12x+4上,∴设P点坐标为(m,-12m+4),点P到直线AM:43x+y-4=0的距离h2m.△PAM的面积S△PAM=12AM•h=54|m|=SOABC=AO•OB=32,解得m=±1285,故点P的坐标为(1285,-445)或(-1285,845).(方法二)∵S长方形OACB=8×4=32,∴S△PAM=32.设点P的坐标为(x,-12x+4).当点P在AM右侧时,S△PAM=12MB•(yA-yP)=12×5×(4+12x-4)=32,解得:x=1285,∴点P 的坐标为(1285,-445); 当点P 在AM 左侧时,S △PAM =S △PMB -S △ABM =12MB •yP -10=12×5(-12x +4)-10=32,解得:x =-1285, ∴点P 的坐标为(-1285,845). 综上所述,点P 的坐标为(1285,-445)或(-1285,845). 【点睛】 本题考查了坐标系中点的意、勾股定理、点到直线的距离、三角形和长方形的面积公式,解题的关键:(1)根据坐标系中点的意义,找到A 、B 点的坐标;(2)由线段垂直平分线的性质和勾股定理找出BM 的长度;(3)(方法一)结合点到直线的距离、三角形和长方形的面积公式找到关于m 的一元一次方程;(方法二)利用分割图形求面积法找出关于x 的一元一次方程.本题属于中等题,难度不大,运算量不小,这里尤其要注意点P 有两个.4、 (1)见解析 (2)5,32⎛⎫ ⎪⎝⎭(3)6【解析】【分析】(1)作出过点E 的l 的垂线即可解决;(2)设直线l 交x 轴于点D ,则由直线解析式可求得点D 、点G 的坐标,从而可得OD 的长.由对称性及平行可得E D E G ''=,设点P 的坐标为(a ,2a -2),则可得点E 的坐标,由E G EG '=及勾股定理可求得点E '的坐标;(3)分别过点A 、B 作y 轴的平行线,与过点G 的垂直于y 轴的直线分别交于点C 、M ,则点E 在线段CM 上运动,根据对称性知,点E '运动路径的长度等于CM 的长,故只要求得CM 的长即可,由A 、B 两点的坐标即可求得CM 的长.(1)所作出点E 的对应点E′如下图所示:(2)设直线l 交x 轴于点D在y =2x -2中,令y =0,得x =1;令x =0,得y =-2则点D 、点G 的坐标分别为(1,0)、(0,-2)∴OD =1,OG =2由对称性的性质得:E G EG '=,EGD E GD '∠=∠∵GE ∥x 轴∴EGD E DG '∠=∠∴E GD E DG ''∠=∠∴E D E G ''=∴E D EG '=设点P 的坐标为(a ,2a -2),其中a >0,则可得点E 的坐标为(a ,-2)∴EG =a∴E D a '=∴1OE E D OD a ''=-=-在Rt △OGE '中,由勾股定理得:2222(1)a a +-= 解得:52a =当52a =时,5232232a -=⨯-= 所以点P 的坐标为5,32⎛⎫ ⎪⎝⎭(3)分别过点A 、B 作y 轴的平行线,与过点G 的垂直于y 轴的直线分别交于点C 、M ,则点E 在线段CM 上运动,根据对称性知,点E '运动路径的长度等于CM 的长∵A ,B 两点的坐标分别为(-2,-6),(4,6)∴CM =4-(-2)=6则点E '运动路径的长为6故答案为:6【点睛】本题主要考查了一次函数的图象与性质、折叠的性质、尺规作图等知识,一次函数的性质及折叠的性质的应用是本题的关键.5、 (1)A 种产品生产400件,B 种产品生产200件(2)A 种产品生产1000件时,利润最大为460000元【解析】【分析】(1)设A 种产品生产x 件,则B 种产品生产(600-x )件,根据600件产品用220000元资金,即可列方程求解;(2)设A 种产品生产x 件,总利润为w 元,得出利润w 与A 产品数量x 的函数关系式,根据增减性可得,A 产品生产越多,获利越大,因而x 取最大值时,获利最大,据此即可求解.(1)解:设A 种产品生产x 件,则B 种产品生产(600-x )件,由题意得:400(600)300220000x x +-⨯=,解得:x =400,600-x =200,答:A 种产品生产400件,B 种产品生产200件.(2)解:设A种产品生产x件,总利润为w元,由题意得:(560400)(450300)(3000)10450000w x x x=-+--=+由30002xx-≤,得:1000x≤,因为10>0,w随x的增大而增大,所以当x=1000时,w最大=460000元.【点睛】本题考查一元一次方程、一元一次不等式以及一次函数的实际应用. 解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.。

2021-2022学年度冀教版八年级数学下册第二十一章一次函数同步测评试题(含答案解析)

2021-2022学年度冀教版八年级数学下册第二十一章一次函数同步测评试题(含答案解析)

八年级数学下册第二十一章一次函数同步测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知点)Am ,3,2B n ⎛⎫ ⎪⎝⎭在一次函数21y x =-+的图像上,则m 与n 的大小关系是( ) A .m n > B .m n = C .m n < D .无法确定2、已知()1,1A -、()2,3B 两点,在y 轴上存在点P 使得AP BP +的值最小,则点P 的坐标为( )A .10,4⎛⎫ ⎪⎝⎭B .10,3⎛⎫ ⎪⎝⎭C .10,4⎛⎫- ⎪⎝⎭D .10,3⎛⎫- ⎪⎝⎭ 3、已知点A 的坐标为()1,3a a +-,点A 关于x 轴的对称点A '落在一次函数21y x =+的图象上,则a 的值可以是( )A .4-B .5-C .6-D .7-4、如图,一个小球由静止开始沿一个斜坡滚下,其速度每秒增加的值相同.用t 表示小球滚动的时间,v 表示小球的速度.下列能表示小球在斜坡上滚下时v 与t 的函数关系的图象大致是( )A .B .C .D .5、已知点)Am ,3,2B n ⎛⎫ ⎪⎝⎭在一次函数y =-2x -b 的图像上,则m 与n 的大小关系是( ) A .m >n B .m =n C .m <n D .无法确定6、甲、乙两地之间是一条直路,在全民健身活动中,王明跑步从甲地往乙地,陈启浩骑自行车从乙地往甲地,两人同时出发,陈启浩先到达目的地,两人之间的距离s (km )与运动时间t (h )的函数关系大致如图所示,下列说法中错误的是( )A .两人出发1小时后相遇B.王明跑步的速度为8km/hC.陈启浩到达目的地时两人相距10kmD.陈启浩比王明提前1.5h到目的地7、甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,54t 或154.其中正确的结论有()A.1个B.2个C.3个D.4个8、一辆货车从甲地到乙地,一辆轿车从乙地到甲地,两车沿同一条笔直的公路分别从甲、乙两地同时出发,匀速行驶.两车离乙地的距离y(单位:km)和两车行驶时间x(单位:h)之间的关系如图所示.下列说法错误的是().A .两车出发2h 时相遇B .甲、乙两地之间的距离是360kmC .货车的速度是80km/hD .3h 时,两车之间的距离是160km9、如图,直线y =kx +b 与x 轴的交点的坐标是(﹣3,0),那么关于x 的不等式kx +b >0的解集是( )A .x >﹣3B .x <﹣3C .x >0D .x <010、一次函数21y x =-+的图象不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、解决含有多个变量的问题时,可以分析这些变量之间的关系,从中选取一个取值能影响其他变量的值的变量作为_______,然后根据问题的条件寻求可以反映实际问题的函数,以此作为解决问题的数学模型.2、如图,一次函数y kx b =+和y mx n =+的图象交于点()1,2p ,则不等式kx b mx n +≥+的解集是______.3、像y =x +1,s =-3t +1这些函数解析式都是常数k 与自变量的______与常数b 的______的形式.一般地,形如y =kx +b (k ,b 是常数,k ≠0)的函数,叫做______函数.当b =0时,y =kx +b 即y =kx ,所以说正比例函数是一种特殊的一次函数.4、一次函数 y =2x +3 的图象经过第____________象限,y 随x 的增大而______ ,与y 轴交点坐标为_________.5、若点()5,A m 是直线2y x =上一点,则m =______.三、解答题(5小题,每小题10分,共计50分)1、如图,在平面直角坐标系中,直线AB 为y =﹣34x +b 交y 轴于点A (0,3),交x 轴于点B ,直线x =1交AB 于点D ,交x 轴于点E ,P 是直线x =1上一动点,且在点D 的上方,设P (1,n ).(1)求点B 的坐标及点O 到直线AB 的距离;(2)求△ABP 的面积(用含n 的代数式表示);(3)当S △ABP =72时,在第一象限找点C ,使△PBC 为等腰直角三角形,直接写出点C 的坐标.2、某单位要制作一批宣传材料,甲公司提出:每份材料收费25元,另收2000元的设计费;乙公司提出:每份材料收费35元,不收设计费.(1)请用含x 代数式分别表示甲乙两家公司制作宣传材料的费用;(2)试比较哪家公司更优惠?说明理由.3、已知一次函数y 1=ax +b ,y 2=bx +a (ab ≠0,且a ≠b ).(1)若y 1过点(1,2)与点(2,b ﹣a ﹣3)求y 1的函数表达式;(2)y 1与y 2的图象交于点A (m ,n ),用含a ,b 的代数式表示n ;(3)设y 3=y 1﹣y 2,y 4=y 2﹣y 1,当y 3>y 4时,求x 的取值范围.4、平面直角坐标系中,已知直线l 1经过原点与点P (m ,2m ),直线l 2:y =mx +2m ﹣3(m ≠0).(1)求证:点(﹣2,﹣3)在直线l 2上;(2)当m =2时,请判断直线l 1与l 2是否相交?5、如图,在平面直角坐标系中,ABC ∆三个顶点的坐标分别为(5,1)A -,(4,4)B -,(1,1)C --,将ABC ∆进行平移,使点A 移动到点()'0,2A ,得到△A B C ''',其中点A '、B '、C '分别为点A 、B 、C 的对应点(1)请在所给坐标系中画出△A B C ''',并直接写出点C '的坐标;(2)求ABC ∆的面积;(3)直线l 过点(0,3)-且平行于x 轴,在直线l 上求一点使ABC ∆与ABQ ∆的面积相等,请写出点Q 的坐标.-参考答案-一、单选题1、A【解析】【分析】根据一次函数21y x =-+的性质,y 随x 增大而减小判断即可.【详解】解:知点)Am ,3,2B n ⎛⎫ ⎪⎝⎭在一次函数21y x =-+的图像上, ∵-2<0,∴y 随x 增大而减小,32<,∴m n>,故选:A.【点睛】本题考查了一次函数的增减性,解题关键是明确一次函数21y x=-+y随x增大而减小的性质.2、B【解析】【分析】解:作点A关于y轴的对称点C,得C(-1,-1),直线AC与y轴交点即为点P,此时AP BP+的值最小,求出直线BC的函数解析式,令x=0时得y的值即为点P的坐标.【详解】解:作点A关于y轴的对称点C,得C(-1,-1),直线AC与y轴交点即为点P,此时AP BP+的值最小,设直线BC的函数解析式为y=kx+b,将()2,3B、C(-1,-1)代入,得123k bk b-+=-⎧⎨+=⎩,解得4313kb⎧=⎪⎪⎨⎪=⎪⎩,∴直线BC的函数解析式为y=43x+13,当x=0时,得y=13,∴P(0,13).故选:B.【点睛】此题考查了轴对称求最短路径,求一次函数解析式,一次函数图象与坐标轴交点坐标,正确掌握利用轴对称知识解决最短路径问题是解题的关键.3、C【解析】【分析】由点A 和点'A 关于x 轴对称,可求出点'A 的坐标,再利用一次函数图象上点的坐标特征可得出关于a 的方程,解之即可得出结论.【详解】 解:点()1,3A a a +-和点A '关于x 轴对称,∴点A '的坐标为(1,3)a a +-. 又点A '在直线21y x =+上,32(1)1a a ∴-=⨯++,6a ∴=-.故选:C .【点睛】本题考查了一次函数图象上点的坐标特征以及关于x 轴、y 轴对称的点的坐标,解题的关键是牢记直线上任意一点的坐标都满足函数关系式y kx b =+.4、C【解析】【分析】静止开始沿一个斜坡滚下,其速度每秒增加的值相同即可判断.【详解】解:由题意得,小球从静止开始,设速度每秒增加的值相同为a .00v v at a t ∴=+=+⨯,即v at =.故是正比例函数图象的一部分.故选:C .【点睛】本题考查了函数关系式,这是一个跨学科的题目,实际上是利用“即时速度=初始速度+加速度⨯时间”,解题的关键是列出函数关系式.5、A【解析】【分析】由k =−2<0,利用一次函数的性质可得出y 随x <32可得出m >n . 【详解】解:∵k =−2<0,∴y 随x 的增大而减小,又∵点A m ),B (32,n )在一次函数y =−2x +1<32, ∴m >n .故选:A .【点睛】本题考查了一次函数的性质,牢记“k >0,y 随x 的增大而增大;k <0,y 随x 的增大而减小”是解题的关键.6、C【分析】根据函数图象中的数据,可以分别计算出两人的速度,从而可以判断各个选项中的说法是否正确,从而可以解答本题.【详解】解:由图象可知,两人出发1小时后相遇,故选项A正确;王明跑步的速度为24÷3=8(km/h),故选项B正确;陈启浩的速度为:24÷1-8=16(km/h),陈启浩从开始到到达目的地用的时间为:24÷16=1.5(h),故陈启浩到达目的地时两人相距8×1.5=12(km),故选项C错误;陈启浩比王提前3-1.5=1.5h到目的地,故选项D正确;故选:C.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.7、B【解析】【分析】当不动时,距离300千米,就是A,B两地的距离;甲匀速运动,走完全程用时5小时,乙走完全程用时3小时,确定甲,乙的函数解析式,求交点坐标;分甲出发,乙未动,距离为50千米,甲出发,乙出发,且甲在前50距离50千米,甲在后距离50千米,乙到大时距离为50千米四种情形计算即可.【详解】∵(0,300)表示不动时,距离300千米,就是A,B两地的距离,∵甲匀速运动,走完全程用时5小时,乙走完全程用时3小时,∴乙车比甲车晚出发1小时,却早到1小时;∴②正确;设y =mt 甲,∴300=5m ,解得m =60,∴y =60t 甲;设y =kt b +乙,∴4300=0k b k b +=⎧⎨+⎩解得100=-100k b =⎧⎨⎩, ∴y =100100t -乙;∴10010060t t -=解得t =2.5,∴2.5-1=1.5,∴乙车出发后1.5小时追上甲车;∴③错误;当乙未出发时,y =60=50t 甲,解得t =56;当乙出发,且在甲后面时,60(100100)=50t t --,解得t =54;当乙出发,且在甲前面时,10010060=50t t --,解得t =154; 当乙到大目的地,甲自己行走时,y =60=250t 甲,解得t =256; ∴④错误;故选B .【点睛】本题考查了函数的图像,一次函数的解析式确定,交点的意义,熟练掌握待定系数法,准确捕获图像信息是解题的关键.8、D【解析】【分析】根据函数图象分析,当2x =时,函数图象有交点,即可判断A 选项;根据最大距离为360即可判断B 选项,根据A 选项可得两车的速度进而判断C ,根据时间乘以速度求得两车的路程,进而求得两车的距离即可判断D 选项.【详解】解:根据函数图象可知,当2x =时,200y =,总路程为360km ,所以,轿车的速度为2002100km/h ÷=,货车的速度为:()360200280km/h -÷=故A,B,C正确3h时,轿车的路程为3100300⨯=km,⨯=km,货车的路程为380240⨯--=km则两车的距离为3602300240180故D选项不正确故选D【点睛】本题考查了一次函数的应用,从图象上获取信息是解题的关键.9、A【解析】【分析】根据图象直接解答即可.【详解】∵直线y=kx+b与x轴交点坐标为(﹣3,0),∴由图象可知,当x>﹣3时,y>0,∴不等式kx+b>0的解集是x>﹣3.故选:A.【点睛】此题考查了一次函数图象与不等式的关系,不等式的解集即为一次函数的函数值大于零、等于零或小于零,正确理解二者之间的关系是解题的关键.10、C【解析】【分析】根据一次函数的解析式,利用一次函数图象与系数的关系可得出一次函数21y x =-+的图象经过第一、二、四象限,此题得解.【详解】解:∵k =-2<0,b =1>0,∴一次函数y =-2x +1的图象经过第一、二、四象限,∴一次函数y =-2x +1的图象不经过第三象限.故选:C .【点睛】本题考查了一次函数图象与系数的关系,牢记“k <0,b >0⇔y=kx+b 的图象在一、二、四象限”是解题的关键.二、填空题1、自变量【解析】略2、x ≥1【解析】【分析】结合图象,写出直线y =mx +n 在直线y =kx +b 下方所对应的自变量的范围即可.【详解】解:∵函数y =mx +n 的图象与y =kx +b 的图象交于点P (1,2),∴当x ≥1时,kx +b ≥mx +n ,∴不等式kx b mx n +≥+的解集为x ≥1.故答案为:x ≥1.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y =kx +b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y =kx +b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.3、 积 和 一次【解析】略4、 一,二,三 增大 (0,3)【解析】略5、10【解析】【分析】把点()5,A m 代入解析式,即可求解.【详解】解:∵点()5,A m 是直线2y x =上一点,∴2510m =⨯= .故答案为:10【点睛】本题主要考查了一次函数的性质,熟练掌握一次函数的性质是解题的关键.三、解答题1、 (1)B (4,0),125(2)922n-(3)(5,7)或(8,3)或(92,72)【解析】【分析】(1)求出直线AB的解析式,可求点B坐标,由面积法可求解;(2)求出点D坐标,由三角形的面积公式可求解;(3)先计算当S△ABP=72时,P的坐标,以PB为边在第一象限作等腰直角三角形BPC,分三种情况讨论:分别以三个顶点为直角顶点画三角形,根据图形可得C的坐标.(1)解:∵直线AB为y=34-x+b交y轴于点A(0,3),∴b=3,AO=3,∴直线AB解析式为:y=34-x+3,令y=0,则0=34-x+3,x=4,∴B(4,0),∴OB=4,∴AB,∴S△AOB=12×OA×OB=12×AB×点O到直线AB的距离,∴点O到直线AB的距离=345⨯=125;(2)∵点D在直线AB上,∴当x=1时,y=94,即点D(1,94),∴PD=n-94,∵OB=4,∴S△ABP=19424n⎛⎫-⨯⎪⎝⎭=922n-;(3)当S△ABP=72时,97222n-=,解得n=4,∴点P(1,4),∵E(1,0),∴PE=4,BE=3,第1种情况,如图,当∠CPB=90°,BP=PC时,过点C作CN⊥直线x=1于点N.∵∠CPB=90°,∴∠CPN+∠BPE=90°,又∠CPN+∠PCN=90°,∴∠BPE=∠PCN,又∵∠CNP=∠PEB=90°,BP=PC,∴△CNP≌△PEB(AAS),∴PN=EB=3,PE=CN=4,∴NE=NP+PE=3+4=7,∴C(5,7);第2种情况,如图,当∠PBC=90°,BP=BC时,过点C作CF⊥x轴于点F.同理可证:△CBF≌△BPE(AAS),∴CF=BE=3,BF=PE=4,∴OF=OB+BF=4+4=8,∴C(8,3);第3种情况,如图3,当∠PCB=90°,CP=CB时,过点C作CH⊥BE,垂足为H,过点P作PG⊥CH,垂足为G,同理可证:△PCG≌△CBH(AAS),∴CG=BH,PG=CH,∵PE=4,BE=3,设CG=BH=x,PG=CH=y,则PE=GH=x+y=4,BE=PG-BH=y-x=3,解得:x=12,y=72,∴C(92,72),∴以PB为边在第一象限作等腰直角三角形BPC,点C的坐标是(5,7)或(3,8)或(92,72).【点睛】本题是一次函数综合题,考查了待定系数法,三角形面积公式,全等三角形的判定和性质,利用分类讨论思想解决问题是解题的关键.2、 (1)y甲=25x+2 000;y乙=35x(2)当0<x<200时,选择乙公司更优惠;当x=200时,选择两公司费用一样多;当x>200时,选择甲公司更优惠.理由见解析【解析】【分析】(1)设甲公司制作宣传材料的费用为y甲(元),乙公司制作宣传材料的费用为y乙(元),份数乘以单价加上设计费可得甲公司的费用;份数乘以单价可得乙公司的费用;(2)分三种情况讨论,当y甲>y乙时,当y甲=y乙时,当y甲<y乙时,分别计算可得(1)解:设甲公司制作宣传材料的费用为y甲(元),乙公司制作宣传材料的费用为y乙(元),制作宣传材料的份数为x(份),依题意得y甲=25x+2 000;y乙=35x;(2)解:当y甲>y乙时,即25x+2 000>35x,解得:x<200;当y甲=y乙时,即25x+2 000=35x,解得:x=200;当y甲<y乙时,即25x+2 000<35x,解得:x >200.∴当0<x <200时,选择乙公司更优惠;当x =200时,选择两公司费用一样多;当x >200时,选择甲公司更优惠.【点睛】此题考查了一元一次方程的方案选择问题,一元一次不等式类的方案选择问题,列代数式,正确理解题意是解题的关键.3、 (1)y 1=﹣x +3(2)n =a +b(3)当a >b 时,x >1;当a <b 时,x <1【解析】【分析】(1)把(1,2)、(2,b -a -3)分别代入y 1=ax +b 得到a 、b 的方程组,然后解方程组得到y 1的函数表达式;(2)把A (m ,n )分别代入y 1=ax +b 和y 2=bx +a 中得到{aa +a =a aa +a =a,先利用加减消元法求出m ,然后得到n 与a 、b 的关系式;(3)先用a 、b 表示y 3和y 4,利用y 3>y 4得到(a -b )x +b -a >(b -a )x +a -b ,然后解不等式即可.(1)解:把(1,2)、(2,b ﹣a ﹣3)分别代入y 1=ax +b 得223a b a b b a +=⎧⎨+=--⎩, 解得13a b =-⎧⎨=⎩,∴y 1的函数表达式为y 1=﹣x +3;(2)解:∵y 1与y 2的图象交于点A (m ,n ),∴{aa +a =a aa +a =a, ∴m =1,n =a +b ;(3)解:y 3=y 1﹣y 2=ax +b ﹣(bx +a )=(a ﹣b )x +b ﹣a ,y 4=y 2﹣y 1=bx +a ﹣(ax +b )=(b ﹣a )x +a ﹣b ,∵y 3>y 4,∴(a ﹣b )x +b ﹣a >(b ﹣a )x +a ﹣b ,整理得(a ﹣b )x >a ﹣b ,当a >b 时,x >1;当a <b 时,x <1.【点睛】本题考查了待定系数法求一次函数解析式:设一次函数解析式为y =kx +b (k ≠0),再把两组对应量代入,然后解关于k ,b 的二元一次方程组.从而得到一次函数解析式.也考查了一次函数的性质.4、 (1)见解析(2)直线l 1与l 2不相交【解析】【分析】(1)将所给点代入直线2l 中,看等式是否成立,再判断该点是否在直线上;(2)求出1l 解析式与2l 比较,发现系数相同,故不可能相交.【详解】(1)把x =﹣2代入y =mx +2m ﹣3得,y =﹣2m +2m ﹣3=﹣3,∴点(﹣2,﹣3)在直线l 2上;(2)∵直线l 1经过原点与点P (m ,2m ),∴直线l 1为y =2x ,当m =2时,则直线l 2:y =2x +1,∵x 的系数相同,∴直线l 1与l 2不相交.【点睛】本题考查平面直角坐标系中的直线解析式求法、点是否在直线上的判断、两直线是否相交,掌握这些是解题关键.5、 (1)见解析,(4,0)(2)7 (3)5(3-,3)-【解析】【分析】(1)根据将ABC ∆进行平移,使点()5,1A -移动到A ()'0,2,得出平移方式为向右移动5个单位向上移动1个单位,据此平移,B C 得到,B C '',顺次连接,,A B C ''',则△A B C '''即为所求;(2)根据网格的特点用长方形减去三个三角形的面积即可;(3)根据题意可知Q 点在过点C 且平行于AB 的直线上,先求得直线AB 解析式为316y x =+,根据平行,设直线QC 解析式为3y x m =+,将点(1,1)C --代入,求得m ,联立QC 与3y =-即可求得Q 点的坐标.(1)如图所示,△A B C '''即为所求,由图知,点C '的坐标为(4,0);故答案为:(4,0);(2)ABC ∆的面积为111451324357222, 故答案为:7;(3)如图,过点C 作AB 的平行线,与直线3y =-的交点即为所求点Q ,由(5,1)A -、(4,4)B -,设直线AB 解析式为y kx b =+则4415k b k b =-+⎧⎨=-+⎩解得316k b =⎧⎨=⎩ 即直线AB 的解析式为316y x =+,设直线QC 解析式为3y x m =+,将点(1,1)C --代入,得:31m -+=-,解得2m =,∴直线QC 的解析式为32y x =+,当3y =-时,323x +=-, 解得53x =-, ∴点Q 的坐标为5(3-,3)-, 故答案为:5(3-,3)-.【点睛】本题考查了坐标与图形,平移作图,求一次函数解析式,一次函数的平移,两直线交点问题,掌握平移的性质是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十章函数
复习测试题
一、填空题。

(3分×7=21分)
1.图21-20是某市一天的温度随时间变化的图象,通过观察可知,下列说法错误的是()。

A.这天15点时温度最高B.这天3点时温度最低
C.这天最高温度与最低温度的差是13℃D.这天21点的温度是30℃
2.6月1日至6月10日,三峡工程下闸蓄水期间,水库水位由106m升至135m,高峡出平湖,初现人间,假设水库水位匀速上升,那么,图21-21中,能正确反映这10天水位h(m)随时间t(天)变化是()。

3.葡萄熟了,从葡萄架上落下来,下面图象可以大致反映葡萄在下落过程中的速度v随时间t变化情况的是()。

图21-22
4.函数
自变量x 的取值范围是______________________。

5.已知函数
,当时,y=___________________。

6.有一面积为60的梯形,其上底长是下底长的,若下底长为x ,高为y ,则y 与
x 的函数关系式是____________。

7.下列每个图形都是若干个棋子围成的正方形图案,图案的每条边(包括两个顶点)上都有n (n≥2)个棋子,每个图案的棋子总数为S ,按如图21-23的规律排列,S 与n 之间的关系可以用式子 来表示。

二、选择题(3分×10=30分)
8.某人骑车外出,所行路程s (km )与时间t (h )的函数关系如图21-24所示,现有四种说法:
32y x -=
-1
x y x +
=
1x =1
3
第3h时的速度比第1h的速度快;
第3h时的速度比第1h中的速度慢;
第3h后已停止前进;
第3h后保持匀速前进。

其中正确的说法有()。

A.②③B.①③C.①④D.②④
9.开发区某消毒液厂家自2003年以来,在库存为m(m>0)的情况下,日销售量与产量持平,自4月抵抗“非典”以来,消毒液需求量猛增,在生产能力不变的情况下,消毒液一度脱销。

图21-25表示2003年初至脱销期间,时间t与库存量y之间函数关系的图象是______。

10.有一游泳池注满水,现按一定的速度将水排尽,然后进行清洗,再按相同的速度注满清水。

使用一段时间后,又按相同的速度将水排尽。

则游泳池的存水量V(m3)随时间t(h)变化的大致图象可以是()。

11.如图21-27,射线l甲、l乙分别表示分别表示甲、乙两名运动员在自行车比赛中所走路程s与时间t的函数关系,则他们行进的速度关系是()。

A .甲比乙快
B .乙比甲快
C .甲、乙同速
D .不一定
12.如图21-28向放在水槽底部的烧杯注水(流量一定),注满烧杯后,继续注水,直至注满水槽,水槽中水面上升高度h 与注水时间t 之间的函数关系,大致是图21-29图象中的( )。

13.如图21-30是某蓄水池的横断面示意图,分深水区和浅水区,如果该蓄水池以固定流量注水,则图21-31中哪个图象表示水的最大深度h 和时间t 之间的关系( )。

图21-30 图21-31
14.我们知道,溶液的酸碱度由pH 值确定,当pH >7时,溶液呈碱性;当pH <7时,溶液呈酸性,若将给定的HCl 溶液加水稀释,那么在如图21-32所示图象中,能反映HCI 溶液的pH 值与所加水的体积V 的变化关系的是( )。

15.函数
中,自变量x 的取值范围是( )。

A .x≥-1
B .x >-1且x≠2
C .x≠2
D .x≥-1且x≠2
16.根据如图21-33所示的程序计算函数值,若输入的x 的值为,则输出的结果
为( )。

A .
B .
C .
D .
17.如果等边三角形的边长为x ,那么它的面积y 与x 之间的函数关系式是( )。

A .
B .
C .
D .
三、解答题。

(8分+8分+9分+9分+15分=49分)
18.阅读下面材料,再回答问题:
一般地,如果函数y =f (x ),对于自变量取值范围内的任意x ,都有

2
2y x =-3
27294129
2212y x =
2
1
4y x
=2y x
=2
4y x =
()()f x f x -=-
那么y =f (x )就叫做奇函数;如果函数y =f (x )对于自变量取值范围内的任意x ,都有
,那么y (-x )=f (x )
,那么y =f (x )就叫做偶函数。

例如
,当x 取任意实数时,,即,所以
为奇函数。

又如,
,即
,所以是偶
函数。

问题(1):下列函数中,①②
③④

是奇函数的为 ,是偶函数的为
(只填序号);
问题(2):请你分别写出一个奇函数、一个偶函数。

19.如图21-35,等边三角形ABC 中,AB=2,点P 是AB 边上的任意一点(点P 可
以与A 点重合,但不与B 重合),过点P 作PE ⊥BC ,垂足为E ;过点E 作EF ⊥AC ,垂足为F ;过点F 作FQ ⊥AB ,垂足为Q ,设PB=x ,AQ=y 。

(1)写出y 与x 之间的函数关系式;
(2)当BP 的长等于多少时,点P 与点Q 重合?
(3)当线段PE 、FQ 相交时,写出线段PE 、EF 、PQ 所围成的三角形的周长的取值范围(不必写出解答过程)。

图21-35
()()f x f x -=3
()f x x x =+333()()()()f x x x x x x x -=-+-=--=-+()()f x f x -=-3
()f x x x =+()f x x
=-()()
f x x f x -==()()f x f x -=()f x x =-4y x =2
1y x =+31y x =
y =1
y x x =+
20.一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出的土豆的千克数与他手中持有的钱数(含备用零钱)的关系如图21-36所示。

结合图形,回答下列问题:
(1)农民自带的零钱是多少?
(2)降价后他按每千克0.4元将剩余的土豆销售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?
21.如图21-37,△ABC的一个锐角三角形余料,边BC=120,高AD=80,要把它加工成矩形零件,使矩形PQMN的边长QM在BC上,其余两个顶点P、N分别在AB、AC 上,若矩形宽PQ=x,长PN=y,求y与x之间的函数关系式。

参考答案:
一、1.C 2.B 3.D 4.x ≤3且x≠2 5. 6. 7.
二、8.A 9.D 10.C 11.A 12.A 13.C 14.C 15.D 16.C 17.D
三、18.(1)③⑤ ①② (2)奇函数 偶函数 19.(1) (2) (3)设三角形周长为C ,
20.(1)农民自带的零钱是5元; (2)(20-5)÷0.4+30=45(㎏),他一共带了45㎏土豆。

21. 3120(080)2
y x x =-+<<
290
(0)y x x
=
>44(2)S n n =-≥1
y x
=
2y x =11(02)28y x x =
+<≤4
3
BP =C ≤≤。

相关文档
最新文档