专插本06高等数学真题及答案
06年专升本高数真题答案
共 7 页,第 1 页2006年河南省普通高等学校选拔优秀专科生进入本科阶段学习考试高等数学 答案及解析一、单项选择题(每小题2分,共计60分)1.答案:B【解析】:.B x x ⇒≤-≤-⇒≤≤1121102.答案:A【解析】: .01ln )1ln()1ln()()(22==+++-+=-+x x x x x f x f A ⇒3. 答案:C【解析】: .1sin lim20-=-→xxx x C ⇒4.答案:B 【解析】:.B nnn n n n n ⇒=+=+∞→∞→2]sin 32[lim sin 32lim 5.答案:B【解析】:.B a a a ae xe xf ax x ax x x ⇒=⇒+===-=→→→1122lim 1lim)(lim 202006. 答案:C 【解析】:x x f f f x f x x f x f x x )1()1()1()21(lim)1()21(lim00--+-+=--+→→ C f xf x f x f x f x x ⇒'=---+-+=→→)1(3)1()1(lim 2)1()21(lim2007. 答案:A【解析】: .A y x x x y ⇒==⇒=⇒='5,24220008.答案:D【解析】: .D t tt t dx dy ⇒-=-=2sin sin 2229.答案:B 【解析】:.B xy x y x x yn n n ⇒=⇒+=⇒=--1ln 1ln )()1()2( 10.答案:A【解析】:.A y y y x x x x x x x x y x x x ⇒∞=-==⇒++-+=++--=-→-→±∞→2122lim ,4lim ,1lim )2)(1()3)(1(233211.答案:C【解析】:由罗尔中值定理条件:连续、可导及端点的函数值相等.C ⇒12.答案:C 【解析】:.C e y e y x x⇒>=''<-='--0,013.答案:D 【解析】:.D C e F e d e f dx e f e x x x x x⇒+-=-=⎰⎰-----)()()()(14.答案:B共 7 页,第 2 页【解析】:.B C ex f e x f e x f x x x⇒+=⇒='⇒=-'++)1(21)1(212)()()12(15.答案:B【解析】:是常数,所以.⎰ba xdx arcsin B xdx dx d ba⇒=⎰0arcsin 16.答案:C 【解析】:.C x dx x ⇒-==++∞∞+⎰)21arctan 4(412arctan 4141112π17.答案:D【解析】:由定积分的几何意义可得D 的面积为.⎰-badx x g x f |)()(|D ⇒18.答案:B【解析】:.B n n n ⇒=⇒=+-⇒-⊥30943}3,43{}3,,1{19.答案:B【解析】: .B x f x x f x ⇒='⇒=1)1,()1,(20.答案:A【解析】:令xy e F yz F xyz ez y x F z z x z-='-='⇒-=222,),,(.A z x z xy xyz yz xy e yz x z z ⇒-=-=-=∂∂⇒)12(22221.答案:A【解析】:222x ydx xdy dy x xydx dz -++= .A dy dx dx dy dy dx dzy x ⇒+=-++=⇒==221122.答案:A【解析】:,6)0,0(),(062,06222-=∂∂⇒=⇒=-=∂∂=-=∂∂x zy x y x y z x y x z 是极大值.⇒=∂∂∂-=∂∂2,6222y x zy z A ⇒23.答案:A【解析】:有二重积分的几何意义知:区域D 的面积为.=⎰⎰Ddxdy πA ⇒24.答案:B【解析】:积分区域},0|),{(}0,0|),{(a x y a y y x x y a x y x D ≤≤≤≤=≤≤≤≤=.B ⇒25.答案:D【解析】:在极坐标下积分区域可表示为:,在直角坐标系下边界方程为}sin 20,20|),{(θπθθ≤≤≤≤=r r D ,积分区域为右半圆域y y x 222=+D⇒26.答案:D【解析】:: 从1变到0,.L ,1⎩⎨⎧-==x y xx x ⎰⎰⇒-=+=-+012)(D dx dx dy dx y x L 27.答案:C共 7 页,第 3 页【解析】:收敛.⇒<22sin n n ππ∑∞=π12sinn n C ⇒28. 答案:A 【解析】:在收敛,则在绝对收敛,即级数绝对收敛.∑∞=0n nnx a2-=x 1-=x ∑∞=-0)1(n n n a A ⇒29. 答案:C【解析】:dx xxdy y y ydx x ydy x sin cos sin cos 0sin cos cos sin -=⇒=+ .C C y x C x y xxd y y d ⇒=⇒=+⇒-=⇒sin sin ln sin ln sin ln sin sin sin sin 30.答案:C【解析】:-1不是微分方程的特征根,为一次多项式,可设 .x xe b ax y -+=*)(C ⇒二、填空题(每小题2分,共30分)31.答案:1【解析】:.1)(sin 1|sin |=⇒≤x f x 32.答案:123【解析】:=++=++--=--+→→→)31(1lim )31)(2()2(lim 231lim2222x x x x x x x x x x x x .123341==33.答案:dx x 2412+【解析】: .dx x dy 2412+=34.答案:5,4==b a 【解析】:.b a b a b ax x x f -+-=-=+-⇒++='12,02323)(25,4==⇒b a 35.答案:)1,1(-【解析】: .)1,1(),(0662632-=⇒=-=''⇒+-='y x x y x x y 36.答案:2【解析】:.2)1()1()()(=-=⇒=-g f C C x g x f 2)()(=-⇒x g x f 37.答案:323π【解析】:.3202sin )sin (3023232π=+=+=+⎰⎰⎰⎰πππ-ππ-ππ-dx x xdx dx x dx x x 38.答案:32-e 【解析】: .⎰⎰⎰⎰--=--=+=====-201110012132)()1(e dx e dx x dt t f dx x f xt x共 7 页,第 4 页39.答案:3π【解析】: .3,21663||||,cos π>=⇒<==⋅>=<b a b a b a b a 40.答案:x y z 222=+【解析】:把中的换成,即得所求曲面方程.x y 22=2y 22y z +x y z 222=+41.答案:y x cos 21+【解析】:.⇒+=∂∂y x y xzsin 2y x y x z cos 212+=∂∂∂42.答案:32-【解析】: .⎰⎰⎰⎰⎰-=-=-=--Ddx x dy x y dx dxdy x y 102101122322)()(43.答案:∑∞=+∞-∞∈-02),(,!1)1(n nnx x n 【解析】: .∑∞=⇒=0!n n xn x e ∑∑∞=∞=-+∞-∞∈-=-==0022),(,!1)1(!)()(2n n n n n xx x n n x e x f 44.答案:21ln(x+)22(≤<-x 【解析】:,∑∑∑∞=∞=-+∞=+++=-=+-=+-0111011)21ln()2()1(1)2()1(2)1()1(n n n n n n n n n n x n x n x n x .)22(≤<-x 45.答案:032=-'-''y y y 【解析】:x xe C eC y 321+=-0323,1221=--⇒=-=⇒λλλλ .032=-'-''⇒y y y 三、计算题(每小题5分,共40分)46.计算 .xx e x xx 2sin 1lim 3202-→--【解析】: 20300420320161lim 3222lim 81lim 2sin 1lim2222xe x xe x x e x xx e x x x x x x x x x -=+-=--=---→-→-→-→ .161lim 161322lim 220000-=-=-=-→-→x x x x e x xe 47.求函数的导数.xx x y 2sin 2)3(+=dxdy 【解析】:取对数得 :,)3ln(2sin ln 2x x x y +=两边对求导得:x x xx x x x x y y 2sin 332)3ln(2cos 2122++++='共 7 页,第 5 页所以]2sin 332)3ln(2cos 2[)3(222sin 2x xx x x x x x x y x+++++='.x x x x x x x x x x x 2sin )32()3()3ln(2cos )3(212sin 222sin 2+++++=-48.求不定积分.⎰-dx xx 224【解析】:⎰⎰⎰====⎰-==-=π<<π-dt t tdt tdt t tdx x x tx t )2cos 1(2sin 4cos 2cos 2sin 4422sin 22222.C x x x C t t x C t t +--=+-=+-=242arcsin 2cos sin 22arcsin 22sin 2249.计算定积分.⎰--+102)2()1ln(dx x x 【解析】:⎰⎰⎰+---+=-+=-+101010102)1)(2(12)1ln(21)1ln()2()1ln(dx x x x x x d x dx x x .⎰=-=+-+=++--=10102ln 312ln 322ln 12ln 312ln )1121(312ln x x dx x x 50.设 ,其中皆可微,求.),()2(xy x g y x f z ++=),(),(v u g t f yz x z ∂∂∂∂,【解析】:xv v g x u u g x y x y x f x z ∂∂∂∂+∂∂∂∂+∂+∂+'=∂∂)2()2(),(),()2(2xy x g y xy x g y x f v u'+'++'=.=∂∂∂∂+∂∂∂∂+∂+∂+'=∂∂yvv g y u u g y y x y x f y z )2()2(),()2(xy x g x y x f v '++'51.计算二重积分,⎰⎰=Dydxdy xI 2其中由所围成.D 12,===x x y x y 及【解析】:积分区域如图06-1所示,可表示为:.x y x x 2,10≤≤≤≤所以 ⎰⎰⎰⎰==10222xxDydyx dx ydxdy xI .10310323)2(1051042122====⎰⎰x dx x y dx x xx 52.求幂级数的收敛区间(不考虑区间端点的情况).nn nx n ∑∞=--+0)1()3(1【解析】: 令,级数化为 ,这是不缺项的标准的幂级数.t x =-1nn nt n ∑∞=-+0)3(1xx因为 ,313)3(11)3(1lim 1)3(1)3(1limlim 11=--+-=+⋅-+-+==∞→+∞→+∞→nn n n nn nn n n n a a ρ故级数的收敛半径,即级数收敛区间为(-3,3).nn nt n ∑∞=-+0)3(131==ρR 对级数有,即.nn nx n ∑∞=--+0)1()3(1313<-<-x 42<<-x 故所求级数的收敛区间为.),(42-53.求微分方程 通解.0)12(2=+-+dy x xy dy x 【解析】:微分方程可化为 ,这是一阶线性微分方程,它对应的齐0)12(2=+-+dx x xy dy x 212xx y x y -=+'次线性微分方程通解为.02=+'y x y 2xCy =设非齐次线性微分方程的通解为,则,代入方程得2)(x x C y =3)(2)(x x C x C x y -'='.C x x x C x x C +-=⇒-='2)(1)(2故所求方程的通解为.2211xCx y +-=四、应用题(每小题7分,共计14分)54.某公司的甲、乙两厂生产同一种产品,月产量分别为千件;甲厂月生产成本是(千y x ,5221+-=x x C 元),乙厂月生产成本是(千元).若要求该产品每月总产量为8千件,并使总成本最小,求甲、3222++=y y C 乙两厂最优产量和相应最小成本.【解析】:由题意可知:总成本,8222221++-+=+=y x y x C C C 约束条件为.8=+y x 问题转化为在条件下求总成本的最小值 .8=+y x C 把代入目标函数得 的整数).8=+y x 0(882022>+-=x x x C 则,令得唯一驻点为,此时有.204-='x C 0='C 5=x 04>=''C 故 是唯一极值点且为极小值,即最小值点.此时有.5=x 38,3==C y 所以 甲、乙两厂最优产量分别为5千件和3千件,最低成本为38千元.55.由曲线和轴所围成一平面图形,求此平面图形绕轴旋转一周所成的旋转体的体积.)2)(1(--=x x y x y 【解析】:平面图形如图06-2所示,此立体可看作X 型区域绕轴旋转一周而得到。
2006-2010年江苏省专转本高数真题集参考答案
2006年—2010年江苏省专转本真题参考答案1、 计算11lim31--→x x x解:原式32)1)(1()1)(1(lim)1)(1)(1()1)(1)(1(lim332033233230=++-+-=+++-+++-=→→x x x x x x x x x x x x x x x 2、 已知)21()21(lim ,2)2(lim==∞→→xxf x x f x x 则解:设ux 41=,则当x →0时,u →∞,代入已知极限得: 21)21(lim ,2)42(lim 4)42(4lim ===∞→∞→∞→u uf u uf u uf u u u 解得 即21)21(lim =∞→xxf x3、 求极限xx xx 3)2(lim -∞→ 解:原式6)6(2)21(lim --⋅-∞→=-=e x xx4、求极限xx x x sin lim 30-→解:6sin 6lim cos 13lim sin lim02030==-=-→→→x xx x x x x x x x 5、已知32lim22=-++→x bax x x ,则常数a,b 的值为( ) A 、a=-1,b=-2 B 、a=-2,b=0 C 、a=-1,b=0 D 、a=-2,b=-1解:2lim ,24,024)(lim 2222-++--==++=++→→x bax x a b b a b ax x x x34)2(lim 2)2()4(lim 224lim 22222=+=++=--+-=---+=→→→a a x x a ax x x a ax x x x x A=-1,b=-2 6、设2)(lim =-∞→xx cx x ,常数c= 。
解:2ln ,2)1(lim )1(lim )(lim ===-+=-+=--⋅-∞→∞→∞→c e cx c c x c c x x c c c ccx x x x x x7、计算xx x x )11(lim -+∞→解:21221)121(lim )121(lim )11(lim e x x x x x x x x x x =-+=-+=-++⋅-∞→∞→∞→8、设当x →0时,函数f(x)=x-sinx 与g(x)=a n是等价无穷小,则常数a,n 的值为( ) A.4,61.4,121.3,31.3,61========n a D n a C n a B n a 解:3,61,12,21,2lim cos 1lim sin lim 120100====-=-=--→-→→n a na n nax x nax x ax x x n x n x n x 9、设423)(22-+-=x x x x f ,则x=2是f(x)的( )A 、跳跃型间断点B 、可去间断点C 、无穷型间断点D 、振荡型间断点解:4121lim 423lim 2222=+-=-+-→→x x x x x x x 10、 若,)(lim 0A x f x =→且f(x)在x=x 0处有定义,则当A= f(x 0) 时f(x)在x 0处连续。
《高等数学》专插本2005-2019年历年试卷
广东省2019年普通高等学校本科插班生招生考试高等数学一、单项选择题(本在题共 小题,每小题 分,共 分。
每小题只有一个选项符合题目要求).函数22()2x xf x x x -=+-的间断点是✌.2x =- 和0x = .2x =- 和1x =.1x =- 和2x = .0x = 和1x =.设函数1,0()2,0cos ,0x x f x x x x +<⎧⎪==⎨⎪>⎩,则0lim ()x f x → ✌.等于1 .等于2.等于1 或2 .不存在 已知()tan ,()2xf x dx x Cg x dx C=+=+⎰⎰C 为任意常数,则下列等式正确的是 ✌.[()()]2tan xf xg x dx x C +=+⎰.()2tan ()x f x dx x C g x -=++⎰.[()]tan(2)x f g x dx C=+⎰ .[()()]tan 2xf xg x dx x C +=++⎰.下列级数收敛的是 ✌.11nn e∞=∑ .13()2nn ∞=∑ .3121()3n n n ∞=-∑ .121()3nn n ∞=⎡⎤+⎢⎥⎣⎦∑. .已知函数 ()bf x ax x =+在点1x =-处取得极大值,则常数,a b 应满足条件✌.0,0a b b -=< .0,0a b b -=>.0,0a b b +=< .0,0a b b +=>二、填空题(本大题共 小题,每小题 分,共 分).曲线33arctan x t ty t⎧=+⎨=⎩,则0t =的对应点处切线方程为y =.微分方程0ydx xdy +=满足初始条件的1|2x y ==特解为y =.若二元函数(,)z f x y =的全微分sin cos ,xxdz e ydx e ydy =+ 则2zy x∂=∂∂.设平面区域{(,)|0,01}D x y y x x =≤≤≤≤,则Dxdxdy =⎰⎰.已知1()sin(1)tf x dx t t tπ=>⎰,则1()f x dx +∞=⎰三、计算题(本大题共 小题,每小题 分,共 分).求20sin 1lim x x e x x →--.设(0)21x x y x x =>+,求dydx.求不定积分221xdx x ++⎰.计算定积分012-⎰.设xyzx z e-=,求z x ∂∂和z y∂∂ .计算二重积分22ln()Dx y d σ+⎰⎰,其中平面区域22{(,)|14}D x y x y =≤+≤ .已知级数1n n a ∞=∑和1n n b ∞=∑满足0,n n a b ≤≤且414(1),321n n b n b n n ++=+-判定级数1n n a ∞=∑的收敛性.设函数()f x 满足(),xdf x x de-=求曲线()y f x =的凹凸区间 四、综合题(大题共 小题,第 小题 分,第 小题 分,共 分) .已知函数()x ϕ满足0()1()()xxx x t t dt x t dt ϕϕϕ=+++⎰⎰( )求()x ϕ;( )求由曲线 ()y x ϕ=和0,2x x π==及0y =围成的平面图形绕x 轴旋转而成的立体的体积.设函数()ln(1)(1)ln f x x x x x =+-+( )证明:()f x 在区间(0,) 内单调减少;( )比较数值20192018与20182019的大小,并说明理由;年广东省普通高校本科插班生招生考试《高等数学》参考答案及评分标准一、单项选择题(本大题共 小题,每小题 分,共 分) ✌ 二、填空题(本大题共 小题,每个空 分,共 分) 13x 2xcos x e y 13π 三、计算题(本大题共 小题,每小题 分,共 分)原式00cos sin 1limlim 222x x x x e x e x x →→-+=== 解:21ln ln ln(21)12ln 1212(ln 1)2121xx x y x y x x x y x y x dy x x dx x x =+∴=-+'∴=+-+∴=+-++解:22222211112(1)12112arctan ln(1)2x dxx dx d x x xx x C++=++++=+++⎰⎰⎰,t =则211,22x t dx tdt =-=20121021420153011,,2211()221()2111()253115t x t dx tdt t t tdtt t dtt t -==-==-=-=-=-⎰⎰⎰解:设(,,)xyzf x y z x z e=--(,,)1(,,)(,,)11,11xyz x xyz y xyzz xyz xyz xyzxyzf x y z yze f x y z xze f x y z xye z yze z xze x xye y xye ∴=-=-=--∂-∂∴==-∂+∂+解:由题意得12,0r θπ≤≤≤≤222020ln()3(4ln 2)23(4ln 2)|2(8ln 23)Dx y d d ππσθθπ∴+==-=-=-⎰⎰⎰ 解:由题意得414(1),321n n b n b n n ++=+-414(1)1lim lim 1,3213n x x nb n b n n +→∞→∞+∴==<+-由比值判别法可知1nn b∞=∑收敛0,n n a b ≤≤由比较判别法可知1n n a ∞=∑也收敛.解()()()()(1)xx x x df x x de df x xde f x xe f x e x ----=∴='∴=-''∴=-()f x ∴的凹区间为(1,)+∞,凸区间为(,1)-∞( )由题意得0()1()()()1()xxx x x t dt x x t dt ϕϕϕϕϕ'=++-=+⎰⎰()()()()0x x x x ϕϕϕϕ''∴=-''∴+=特征方程210r +=,解得r i=±通解为()cos sin x x x Cϕ=++(0)1,0()cos sin C x x xϕϕ=∴=∴=+☎✆由题意得2202022(cos sin )(1sin 2)1(cos 2)22x V x x dx x dx x x ππππππππ=+=+=-=+⎰⎰证明( )()ln(1)(1)ln 1()ln(1)ln 111ln(1)ln ()1f x x x x x x x f x x x x x x x x x=+-++'∴=+-+-+=+--++ 证明11ln(1)ln ()01x x x x +--+<+即可 即证11ln(1)ln ()1x x x x+-<++令()ln g x x =()ln g x x =在(0,)+∞连续可导,由拉格朗日中值定理得ln(1)ln 1ln(1)ln ()1x x x x g x x x ξ+-'+-===+-且1x x ξ<<+111101x x x xξξ<<+∴<<<+ 11ln(1)ln ()1x x x x ∴+-<++成立11ln(1)ln ()01x x x x ∴+--+<+()f x ∴在(0,)+∞单调递减( )设2019,2018a b ==则201820192019,2018ba ab ==比较,a b b a 即可,假设a bb a >即ln ln a b b a >即ln ln b ab a >设ln (),x g x x =则21ln ()xg x x -'=()g x 在(0,)+∞单调递减即()()g b g a ∴>,即a b b a >成立即2019201820182019>广东省 年普通高等学校本科插班生招生考试高等数学一、单项选择题(本在题共 小题,每小题 分,共 分。
2006年河南专升本考试高等数学试题和答案
x t sin u 2 du dy 0 8.设 , 则 2 dx y cos t
A. 解:
( C.- t
2
)
t2
B.
2
2t
D. 2t
1 B. [1,1] C. [0,1] 2 解: 0 x 1 1 2 x 1 1 B .
A. [ ,1]
2 2
[ f ( x) g ( x)]dx
a
b
B. D.
[ f ( x) g ( x)]dx
a
b a b
b
23 设 D 为圆周由 x y 2 x 2 y 1 0 围成的闭区域 ,则 A.
dxdy
D
(
)
| f ( x) g ( x) | dx 解:由定积分的几何意义可得 D 的面积为 | f ( x) g ( x) | dx D .
1 dx x
22.函数 z 2 xy 3x 3 y 20 在定义域上内 A.有极大值,无极小值 B. 无极大值,有极小值 C.有极大值,有极小值 D. 无极大值,无极小值
2 2
(
)
解:
( 6 x 0, 2 x 6 y 0 ( x, y) (0,0) 2 6, x y x 2 2 z z 6, 2 是极大值 A . 2 xy y
2
D. [1,2]
2.函数 y ln( x 1 x) ( x ) 是 A.奇函数 B. 偶函数 C.非奇非偶函数
2 2
2
( D. 既奇又偶函数
)
解: f ( x) f ( x) ln( x 1 x) ln( x 1 x) ln 1 0 A . 3. 当 x 0 时, x sin x 是 x 的 A. 高阶无穷小 B. 低阶无穷小 C. 同阶非等价无穷小 ( D. 等价无穷小 )
06广东专升本考题及解答
广东省2006年普通高等学校本科插班生考试高等数学第一部分 选择题(共15分)一. 单项选择题(每小题3分,共15分)1.数()1f x =+在0x =处A 、无定义B 、不连续C 、可导D 、连续但不可导 2.设函数()f x 在点0x 处连续,且0()lim4x x f x x x →=-,则0()f x =A 、-4B 、0C 、1/4D 、4 3.设函数1(1),0()11sin ,2x a x x f x x x x ⎧+>⎪=⎨⎪+<⎩若0lim ()x f x →存在,则a =A 、32B 、112e - C 、32e D 、124.设()ln z xy =,则dz =A 、11dx dyx y +B 、11dx dyyx+C 、dx dy xy+ D 、ydx xdy +5.积分0xedx +∞-⎰A 、收敛且等于-1B 、收敛且等于0C 、收敛且等于1D 、发散第二部分 非选择题(共85分)二. 填空题(每小题3分,共15分) 6.若直线4y =是曲线321ax y x +=-的水平渐近线,则a =7.由参数方程2sin 1tx t y e-=+⎧⎨=⎩所确定的曲线在0t =相应点处的切线方程是8.积分(cos sin )x x x dx ππ-+=⎰9.曲线x y e =及直线0x =、1x =和0y =所围成平面图形绕x 轴旋转所成的 旋转体体积V=10.微分方程4450y y y '''-+=的通解是三. 计算题(每小题6分,共48分) 11.求极限1lim ln 2ln 2n n n →∞⎡⎤⎛⎫+- ⎪⎢⎥⎝⎭⎣⎦。
12.计算不定积分⎰13.设函数21sin 2x y x ⎛⎫=- ⎪⎝⎭,求dy dx。
14.函数()y yx =是由方程y e =dy dx在点(1,0)处的值。
15.计算定积分1)x dx ⎰。
16.求二重积分2Dxy d σ⎰⎰,其中积分区域(){}22,1,0D x y x y x =+≤≥。
2006年浙江省普通高校“专升本”联考《高等数学(一)》试卷答案解析
dt
dt
dy dy dt 2e2t (sin2t sin t cos t) sin2t sin t cos t dx dx 2e2t (cos2 t sin t cos t) cos2 t sin t cos t
dt
17.解: 原式
sin2 x cos2 x sin2 xcos2 x
F(x)
x f (t)dt
1 f (t)dt
x f (t)dt
1t 2dt
x
1dt
0
0
1
0
1
1
1 3
t3
0
(t) x 1
1 3
(x
1)
x
2 3
,故选项
D
正确
12.C 解析:由图像可知: S = 1 x(x 1)(2 x)dx 2 x(x 1)(2 x)dx ,所以选项 C
a
3
故一阶导数为: S(a) (a 1)2 a2 2a 1
令 S(a) 0 a 1 , S(a) 2 0 ,所以 S( 1) 1 为最小的面积
2
2 12
此图形绕 x 轴旋转一周所得到的几何体的体积:Vx
1
2 y2dx 2
-
1 2
1 2
x4dx
2
x5
1 2
0
5 0 80
四、综合题: 本题共 3 小题,共 20 分。其中第 1 题 8 分,第 2 题 7 分,第 3 题 5 分。
二、选择题: 本大题共 5 小题,每小题 4 分,共 20 分。
题号
9
10
11
12
13
答案
C
D
D
C
B
06年高等数学(上)试题及答案
华东交通大学2006—2007学年第一学期考试卷承诺:我将严格遵守考场纪律,知道考试违纪、作弊的严重性,还知道请他人代考或代他人考者将被开除学籍和因作弊受到记过及以上处分将不授予学士学位,愿承担由此引起的一切后果。
专业 班级 学号 学生签名:试卷编号: (A )卷《高等数学(A)Ⅰ》 课程 (工科本科06级) 课程类别:必闭卷(√) 考试日期:2007.1.15 题号 一 二三四 五 总分 12 3 4 5 6 7 1 2分值 10 15 7777777998阅卷人 (全名)考生注意事项:1、本试卷共 6 页,总分 100 分,考试时间 120 分钟。
2、考试结束后,考生不得将试卷、答题纸和草稿纸带出考场。
一、填空题(每题2分,共10分)______)1(34)( 122=-+-=x x x x x x f 第一类间断点为设函数、___________ 11 2 02=+=⎰dy dt t y x则,设、_______)1 1(1 3==K xy 处的曲率,在点等边双曲线、_________141=+⎰dx x x、__________ } 3 2{}2 1 1{ 5==-=λλ则垂直,,,与,,已知向量、b a二、选择题(每题 3分,共15分)∞=--+∞→ D. 2 C. 1 B. 0 . A )B ()sin 11( 122limx x x x x 、22222221 D. )1(2 C. 12 B. 2 A.) C ( )()1ln(arctan 2t t t dxy d x y y t y t x -++==⎩⎨⎧+==则,确定设、 得分 评阅人得分 评阅人1dx x211+222ln 1-21xx ex e x x x e x xxsin D. C. )ln(1 B. 1 A.)D (0 3><>++<>时成立的是当下列各式中,、1cos D. 1cos C. 1sin B. 1sinA.) A ()1(1sin )( 42C x C x C x C x dx xf xx x f ++-++-='=⎰则,设、⎩⎨⎧==-+⎩⎨⎧==-+⎩⎨⎧==-+=-+⎩⎨⎧=+=++822 D. 0 822 C.0 822 B. 822 A.)D ( 19522222222222z y y x y y y x x y y x y y x xoy z y z y x 为平面上的投影曲线方程在曲线、三、计算题(每题 7分,共49分)x x x ex x 222sin 112lim--→、21 42 21422 1 2222limlimlimlim23042==-=-=--=→→→→xxe xe x xxe x x ex x xx x x xx 原式解:)22(2lim n n n n n --+∞→、 2 21214 224 limlim=-++=-++=∞→∞→nn nn n n nn n 原式解:得分 评阅人得分评阅人y e e y xx '++=求,设、 )1ln( 32 xx x x xxxx x x x e ee e e e e e e ee y 222122221 ]2)1(21[11 )1(11+=⋅++++='++++='-解:dxx x ⎰-2214、Cx x xCt t dtt tdttdttttdt dx t x +---=+--=-=====⎰⎰⎰arcsin 1 cot )1(csccot cos sincos cos sin 2222原式则,令解:dxx x ⎰1arctan 5、)1(arctan 121+=⎰x d x 原式解:得分 评阅人得分 评阅人得分 评阅人分扣缺1C。
高职升本《高等数学》历年试题(2006-2013)
2006年天津市高等院校“高职升本科”招生统一考试高等数学本试卷分第I 卷(选择题)和第Ⅱ卷两部分。
共 150分。
考试时间120分钟。
第I 卷(选择题共40分)注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上,并 将本人考试用条形码贴在答题卡的贴条形码处。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动, 用橡皮擦干净后,再选涂其他答案标号。
答在试卷上的无效。
3.考试结束,监考人将本试卷和答题卡一并收回。
一、选择题:本大题共10小题,每小题4分,共40分。
1.下列说法正确的是A .函数 y = x ln( x 2+1- x )的定义域为区间(-∞,0]B .函数 y = e xx -1+1在区间(-∞,+∞)内是偶函数e C .当n → ∞时, 12 + n 22 + ........nn 2是无穷小量 nD .当 x → +∞时, y = e xsinx 不是无穷大量f(x 0 + 2h) - f(x 0) =2.设 f (x )在点A . -2x 0的某领域可导, f (x 0)为极大值,则lim hh →0B .0C .1D .23.设奇函数 f (x )在区间 (-∞,+∞)内二阶可导,若当 x > 0时, f '(x ) > 0且f ''(x ) > 0,则当 x < 0时, y = f (x )A .单调增加,且曲线是凸的C .单调减少,且曲线是凸的 B .单调增加,且曲线是凹的D .单调减少,且曲线是凹的⎰ f (x )dx =f (x ),则4.若 f (x ) = e -2x + x limx →0B .- 1 e -2x + CA .- 2e -2x + C 2D .- 1 x + 1e -2 x 2 + C 2 2C .- 1 e -2x + 2x 2+ C24 2⎰ ⎰ f (x )dx = sin 2,则 xf (x 2)dx =5.若11D . sin 22A. sin 2 B .2sin 2 C sin 2.21+∞6.若广义积分⎰ dx 收敛,则k 的取值范围为 x ln xkeA .k ≥ 27.若向量a ,b 的模分别为| a |= 2,| b |= 2且B .k > 0C .k >1D .k > 2a ⋅b = 2⨯ ,则| a b |=C .- 2A .2B . 2D .18.平面3x - 2y = 0 A .过Z 轴B .平行于XOY 坐标面 D .平行于Y 轴C .平行于X 轴9.若 f (1,1) = -1为 f (x , y ) = ax 3 + by 3+ cxy 的极值,则常数a,b,c 的值分别为 A .1,-1,-1 B .1,1,-3 C .-1,-1,-3 D .-1,-1,310.微分方程 y ''- 4y '+5y = 0的通解为A . y = e x(C 1cosx + C 2sinx )B . y = e x(C 1cos 2x + C 2sin 2x )C . y = e 2x (C 1cosx + C 2sinx )D . y = e 2x (C 1cos 2x + C 2sin 2x )2006年天津市高等院校“高职升本科”招生统一考试高等数学第Ⅱ卷 (选择题 共110分)二三题号得分总分(17)(18)(19)(20)(21)(22)(23)(24)注意事项:1.答第Ⅱ卷前,考生须将密封线内的项目填写清楚。
2006年江苏专转本高等数学真题
2006年江苏省普通高校“专转本”统一考试高等数学一、选择题(本大题共6小题,每小题4分,满分24分)1、若21)2(li m=→x x f x ,则=→)3(limx f xx ( ) A 、21 B 、2 C 、3D 、31 2、函数⎪⎩⎪⎨⎧=≠=001sin )(2x x xx x f 在=x 处( )A 、连续但不可导B 、连续且可导C 、不连续也不可导D 、可导但不连续 3、下列函数在[]1,1-上满足罗尔定理条件的是( ) A 、xe y = B 、x y +=1C 、21x y -= D 、xy 11-= 4、已知C e dx x f x +=⎰2)(,则=-⎰dx x f )('( )A 、C ex+-22B 、C e x +-221 C 、C e x +--22D 、C e x +--2215、设∑∞=1n nu为正项级数,如下说法正确的是 ( )A 、如果0lim 0=→n n u ,则∑∞=1n n u 必收敛 B 、如果l u u nn n =+∞→1lim )0(∞≤≤l ,则∑∞=1n n u 必收敛 C 、如果∑∞=1n nu收敛,则∑∞=12n nu必定收敛 D 、如果∑∞=-1)1(n n nu 收敛,则∑∞=1n n u 必定收敛6、设对一切x 有),(),(y x f y x f -=-,}0,1|),{(22≥≤+=y y x y x D ,=1D }0,0,1|),{(22≥≥≤+y x y x y x ,则⎰⎰=D dxdy y x f ),(( )A 、0B 、⎰⎰1),(D dxdy y x f C 、2⎰⎰1),(D dxdy y x f D 、4⎰⎰1),(D dxdy y x f二、填空题(本大题共6小题,每小题4分,满分24分)7、已知0→x 时,)cos 1(x a -与x x sin 是等级无穷小,则=a 8、若A x f x x =→)(lim 0,且)(x f 在0x x =处有定义,则当=A 时,)(x f 在0x x =处连续.9、设)(x f 在[]1,0上有连续的导数且2)1(=f ,⎰=13)(dx x f ,则⎰=1')(dx x xf10、设1=a ,b a ⊥,则=+⋅)(b a a11、设x e u xysin =,=∂∂xu12、=⎰⎰Ddxdy . 其中D 为以点)0,0(O 、)0,1(A 、)2,0(B 为顶点的三角形区域.三、解答题(本大题共8小题,每小题8分,满分64分)13、计算11lim31--→x x x .14、若函数)(x y y =是由参数方程⎩⎨⎧-=+=tt y t x arctan )1ln(2所确定,求dx dy 、22dx yd . 15、计算⎰+dx x xln 1. 16、计算dx x x ⎰202cos π.17、求微分方程2'2y xy y x -=的通解.18、将函数)1ln()(x x x f +=展开为x 的幂函数(要求指出收敛区间).19、求过点)2,1,3(-M 且与二平面07=-+-z y x 、0634=-+-z y x 都平行的直线方程.20、设),(2xy x xf z =其中),(v u f 的二阶偏导数存在,求y z ∂∂、xy z∂∂∂2.四、证明题(本题满分8分).21、证明:当2≤x 时,233≤-x x .五、综合题(本大题共3小题,每小题10分,满分30分)22、已知曲线)(x f y =过原点且在点),(y x 处的切线斜率等于y x +2,求此曲线方程.23、已知一平面图形由抛物线2x y =、82+-=x y 围成. (1)求此平面图形的面积;(2)求此平面图形绕y 轴旋转一周所得的旋转体的体积.24、设⎪⎩⎪⎨⎧=≠=⎰⎰00)(1)(t a t dxdy x f t t g tD ,其中t D 是由t x =、t y =以及坐标轴围成的正方形区域,函数)(x f 连续. (1)求a 的值使得)(t g 连续; (2)求)('t g .2006年江苏省普通高校“专转本”统一考试高等数学参考答案1、C2、B3、C4、C5、C6、A7、28、)(0x f9、1- 10、111、)cos sin (x x y e xy + 12、113、原式322131lim 21341==--→x xx 14、21211122''t t t t x y dx dy t t =++-==,t t t t x dx dy dx y d t 411221)(22''22+=+== 15、原式C x x d x ++=++=⎰23)ln 1(32)ln 1(ln 116、原式x d x dx x x xx x d x cos 24sin 2sin sin 20220202202⎰⎰⎰+=-==πππππ24cos 2cos 24220202-=-+=⎰ππππxdx x x17、方程变形为2'⎪⎭⎫⎝⎛-=x y x y y ,令x y p =则''xp p y +=,代入得:2'p xp -=,分离变量得:dx x dp p ⎰⎰=-112,故C x p +=ln 1,C x x y +=ln . 18、令)1ln()(x x g +=,0)0(=g ,200'1)1()1()(+∞=∞=∑∑+-=-=n n n n nnx n dx x x g ,故201)1()(+∞=∑+-=n n n x n x f ,11<<-x .19、{}1,1,11-n 、{}1,3,42-n ,k j i kj in n l ++=--=⨯=3213411321直线方程为123123+=-=-z y x .20、'22f x y z =∂∂,''222''213'2''22''212'2222)2(2yf x f x xf y f x f x xf x y z ++=⋅+⋅+=∂∂∂. 21、令33)(x x x f -=,[]2,2-∈x ,033)(2'=-=x x f ,1±=x ,2)1(-=-f ,2)1(=f , 2)2(-=f ,2)2(=-f ;所以2min -=f ,2max =f ,故2)(2≤≤-x f ,即233≤-x x .22、y x y +=2',0)0(=y通解为x Ce x y +--=)22(,由0)0(=y 得2=C ,故x e x y 222+--=. 23、(1)364)8(2222=--=⎰-dx x x S (2)πππ16)8()(28424=-+=⎰⎰dy y dy y V24、dx x f t dy x f dx dxdy x f tttD t⎰⎰⎰⎰⎰==0)()()(⎪⎩⎪⎨⎧=≠=⎰00)()(0t at x f t g t(1)0)(lim)(lim 000==⎰→→dx x f t g tt t ,由)(t g 的连续性可知0)(lim )0(0===→t g g a t(2)当0≠t 时,)()('t f t g =,当0=t 时,)0()(lim )(lim )0()(lim)0(0000'f h f hdx x f h g h g g h hh h ===-=→→→⎰ 综上,)()('t f t g =.。
高数专插本试题及答案
高等数学历年试题集及答案(2005-2016)2005年广东省普通高等学校本科插班生招生考试《高等数学》试题一、单项选择题(本大题共5小题,每小题3分,共15分)1、下列等式中,不成立...的是A 、1)sin(limx =--→πππx x B 、11sin lim x =∞→x xC 、01sin lim 0x =→x x D 、1sin 20x lim =→x x 2、设)(x f 是在(+∞∞-,)上的连续函数,且⎰+=c e dx x f x 2)(,则⎰dx xx f )(=A 、22x e -B 、c e x +2C 、C e x +-221D 、C e x +213、设x x f cos )(=,则=--→ax a f x f ax )()(limA 、-x sinB 、x cosC 、-a sinD 、x sin4、下列函数中,在闭区间[-1,1]上满足罗尔中值定理条件的是A 、|)(=x f x |B 、2)(-=x x f C 、21)(x x f -=D 、3)(x x f =5、已知x xy u )(=,则yu ∂∂= A 、12)(-x xy x B 、)ln(2xy x C 、1)(-x xy x D 、)ln(2xy y 二、填空题(本大题共5小题,每个空3分,共15分) 6、极限)1(1lim -∞→xx e x =。
7、定积分211sin x e xdx --⎰=。
8、设函数xxx f +-=22ln)(,则(1)f ''=。
9、若函数1(1),0,()(12),0.x a x x f x x x +≤⎧⎪=⎨⎪+>⎩在x=0处连续,则a=。
10、微分方程222x xe xy dydx-=+的通解是。
三、计算题(本大题共10小题,每小题5分,共50分) 11、求极限1(22n lim +-+∞→n n n )。
12、求极限202x 0ln (1)limxt dt x →+⎰。
专插本《高等数学》2008-2012 年试题
10、微分方程 的通解是。
三、计算题(本大题共8小题,每小题6分,共48分)
11、计算 。
12、求函数 在区间[-1,2]上的最大值及最小值。
13、设参数方程 确定函数y=y(x),计算 。
14、求不定积分 。
15、计算定积分 。
16、设方程 确定隐函数 ,求 。
17、计算二重积分 ,其中D是由y轴、直线y=1,y=2及曲线xy=2所围成的平面区域。
20、设函数 .
(1)判断 在区间(0,2)上的图形的的凹凸性,并说明理由;
(2)证明:当0<x<2时,有 <0。
2009年广东省普通高校本科插班生招生考试
《高等数学》试题答案及评分参考
一、单项选择题(本大题共5小题,每小题3分,共15分)
1、A 2、C 3、A 4、D 5、C
二、填空题(本大题共5小题,每个空3分,共15分)
1、设 则
A. -1 B.1 C. 3 D.
2、极限
A. 0 B.1 C. 2 D.
3、下列函数中,在点 处连续但不可导的是
A. B.
C. D.
4、积分
A. B.
C. D.
5、改变二次积分 的积分次序,则I=
A. B.
C. D.
二、填空题(本大题共5小题,每小题3分,共15分)
6、若当 时, ,则常数a=。
6、-4 7、 8、4 9、2y 10、
三、计算题(本大题共8小题,每小题6分,共48分)
11、解:原式=
=
= .
12、解: ,
=
= .
13、解: ,
.
14、解:设
原式=
=
= .
15、解: 为奇函数, ,
2006年河南专升本高数真题及答案.doc
2006年河南省普通高等学校 选拔优秀专科生进入本科阶段学习考试《高等数学》试卷一、单项选择题(每小题2分,共计60分)在每小题的四个备选答案中选出一个正确答案,并将其代码写在题 干后面的括号内。
不选、错选或多选者,该题无分.1.已知函数)12(-x f 的定义域为]1,0[ ,则)(x f 的定义域为 ( )A. ]1,21[ B. ]1,1[- C. ]1,0[ D. ]2,1[-解:B x x ⇒≤-≤-⇒≤≤112110.2.函数)1ln(2x x y -+=)(+∞<<-∞x 是 ( ) A .奇函数 B. 偶函数 C.非奇非偶函数 D. 既奇又偶函数解:01ln )1ln()1ln()()(22==+++-+=-+x x x x x f x f A ⇒. 3. 当0→x 时,x x sin 2-是x 的 ( ) A. 高阶无穷小 B. 低阶无穷小 C. 同阶非等价无穷小 D. 等价无穷小解: 1sin lim 20-=-→xxx x C ⇒.4.极限=+∞→nnn n sin 32lim( )A. ∞B. 2C. 3D. 5解:B nnn n n n n ⇒=+=+∞→∞→2]sin 32[lim sin 32lim .5.设函数⎪⎩⎪⎨⎧=+≠-=0,10,1)(2x a x x e x f ax ,在0=x 处连续,则 常数=a ( )A. 0B. 1C. 2D. 3解:B a a a ae xe xf ax x ax x x ⇒=⇒+===-=→→→1122lim 1lim)(lim 20200. 6. 设函数)(x f 在点1=x 处可导 ,则=--+→xx f x f x )1()21(lim 0( ) A. )1(f ' B. )1(2f ' C. )1(3f ' D. -)1(f '解:xx f f f x f x x f x f x x )1()1()1()21(lim )1()21(lim 00--+-+=--+→→C f xf x f x f x f x x ⇒'=---+-+=→→)1(3)1()1(lim 2)1()21(lim2007. 若曲线12+=x y 上点M 处的切线与直线14+=x y 平行,则点M 的坐标( )A. (2,5)B. (-2,5)C. (1,2)D.(-1,2) 解: A y x x x y ⇒==⇒=⇒='5,2422000.8.设⎪⎩⎪⎨⎧==⎰202cos sin ty du u x t ,则=dxdy( )A. 2tB. t 2C.-2tD. t 2-解: D t tt t dx dy ⇒-=-=2sin sin 222. 9.设2(ln )2(>=-n x x y n ,为正整数),则=)(n y ( )A.x n x ln )(+B. x 1C.1)!2()1(---n n x n D. 0解:B xy x y x x y n n n ⇒=⇒+=⇒=--1ln 1ln )()1()2(.10.曲线233222++--=x x x x y ( )A. 有一条水平渐近线,一条垂直渐近线B. 有一条水平渐近线,两条垂直渐近线C. 有两条水平渐近线,一条垂直渐近线,D. 有两条水平渐近线,两条垂直渐近线解:A y y y x x x x x x x x y x x x ⇒∞=-==⇒++-+=++--=-→-→±∞→2122lim ,4lim ,1lim )2)(1()3)(1(2332. 11.下列函数在给定的区间上满足罗尔定理的条件是 ( )A. ]2,0[|,1|-=x yB. ]2,0[,)1(132-=x yC.]2,1[,232+-=x x y D . ]1,0[,arcsin x x y =解:由罗尔中值定理条件:连续、可导及端点的函数值相等C ⇒. 12. 函数x e y -=在区间),(+∞-∞内 ( )A. 单调递增且图像是凹的曲线B. 单调递增且图像是凸的曲线C. 单调递减且图像是凹的曲线D. 单调递减且图像是凸的曲线 解: C e y e y x x ⇒>=''<-='--0,0.13.若⎰+=C x F dx x f )()(,则⎰=--dx e f e x x )( ( ) A.C e F e x x ++--)( B. C e F x +-)( C. C e F e x x +---)( D. C e F x +--)( 解:D C e F e d e f dx e f e x x x x x ⇒+-=-=⎰⎰-----)()()()(.14. 设)(x f 为可导函数,且x e x f =-')12( ,则 =)(x f ( )A. C e x +-1221 B. C ex ++)1(212 C. C e x ++1221 D. C e x +-)1(212 解:B C e x f ex f e x f x x x⇒+=⇒='⇒=-'++)1(21)1(212)()()12(. 15. 导数=⎰batdt dx d arcsin ( )A.x arcsinB. 0C. a b arcsin arcsin -D. 211x-解:⎰b a xdx arcsin 是常数,所以 B xdx dx d ba⇒=⎰0arcsin .16.下列广义积分收敛的是 ( )A. ⎰+∞1dx e xB. ⎰+∞11dx xC. ⎰+∞+1241dx xD. ⎰+∞1cos xdx 解:C x dx x⇒-==++∞∞+⎰)21arctan 4(412arctan 4141112π. 17.设区域D 由)(),(,),(,x g y x f y a b b x a x ==>==所围成,则区域D 的面积为 ( )A. ⎰-ba dx x g x f )]()([ B.⎰-ba dx x g x f )]()([C. ⎰-b adx x f x g )]()([ D. ⎰-b adx x g x f |)()(| 解:由定积分的几何意义可得D 的面积为 ⎰-badx x g x f |)()(|D ⇒.18. 若直线32311-=+=-z n y x 与平面01343=++-z y x 平行,则常数=n ()A. 2B. 3C. 4D. 5 解: B n n n ⇒=⇒=+-⇒-⊥30943}3,43{}3,,1{.19.设yxy x y x f arcsin)1(),(-+=,则偏导数)1,(x f x '为 ( ) A.2 B.1 C.-1 D.-2 解: B x f x x f x ⇒='⇒=1)1,()1,(.20. 设方程02=-xyz e z 确定了函数),(y x f z = ,则xz∂∂ = ( )A. )12(-z x zB. )12(+z x zC. )12(-z x yD. )12(+z x y解: 令xy e F yz F xyz e z y x F z z x z -='-='⇒-=222,),,(A z x z xy xyz yz xy e yz x z z ⇒-=-=-=∂∂⇒)12(222. 21.设函数xyy x z +=2 ,则===11y x dz ( )A. dy dx 2+B. dy dx 2-C. dy dx +2D. dy dx -2解:222x ydxxdy dy x xydx dz -++=A dy dx dx dy dy dx dz y x ⇒+=-++=⇒==2211.22.函数2033222+--=y x xy z 在定义域上内 ( ) A.有极大值,无极小值 B. 无极大值,有极小值 C.有极大值,有极小值 D. 无极大值,无极小值解:,6)0,0(),(062,06222-=∂∂⇒=⇒=-=∂∂=-=∂∂xz y x y x y z x y x z ⇒=∂∂∂-=∂∂2,6222y x zyz 是极大值A ⇒. 23设D 为圆周由012222=+--+y x y x 围成的闭区域 ,则=⎰⎰Ddxdy( )A. πB. 2πC.4πD. 16π解:有二重积分的几何意义知:=⎰⎰Ddxdy 区域D 的面积为π.24.交换二次积分⎰⎰>axa dy y x f dx 00(),(,常数)的积分次序后可化为( )A. ⎰⎰aydx y x f dy 00),( B. ⎰⎰a aydx y x f dy 0),(C. ⎰⎰a a dx y x f dy 0),( D. ⎰⎰a yadx y x f dy 0),(解: 积分区域},0|),{(}0,0|),{(a x y a y y x x y a x y x D ≤≤≤≤=≤≤≤≤= B ⇒.25.若二重积分⎰⎰⎰⎰=20sin 20)sin ,cos (),(πθθθθrdr r r f d dxdy y x f D,则积分区域D为()A. x y x 222≤+B. 222≤+y xC. y y x 222≤+D. 220y y x -≤≤解:在极坐标下积分区域可表示为:}sin 20,20|),{(θπθθ≤≤≤≤=r r D ,在直角坐标系下边界方程为y y x 222=+,积分区域为右半圆域D ⇒26.设L 为直线1=+y x 上从点)0,1(A 到)1,0(B 的直线段,则=-+⎰Ldy dx y x )(( )A. 2B.1C. -1D. -2解:L :,1⎩⎨⎧-==x y xx x 从1变到0,⎰⎰⇒-=+=-+012)(D dx dx dy dx y x L .27.下列级数中,绝对收敛的是 ( )A .∑∞=1sinn nπ B .∑∞=-1sin)1(n n nπC .∑∞=-12sin)1(n nn πD .∑∞=1cos n n π解: ⇒<22sinn n ππ∑∞=π12sinn n 收敛C ⇒. 28. 设幂级数n n n n a x a (0∑∞=为常数Λ,2,1,0=n ),在点2-=x 处收敛,则∑∞=-0)1(n n na( )A. 绝对收敛B. 条件收敛C. 发散D. 敛散性不确定解:∑∞=0n nn x a 在2-=x 收敛,则在1-=x 绝对收敛,即级数∑∞=-0)1(n n n a 绝对收敛A ⇒.29. 微分方程0sin cos cos sin =+ydx x ydy x 的通解为 ( ) A. C y x =cos sin B. C y x =sin cosC. C y x =sin sinD. C y x =cos cos解:dx xxdy y y ydx x ydy x sin cos sin cos 0sin cos cos sin -=⇒=+C C y x C x y xx d y y d ⇒=⇒=+⇒-=⇒sin sin ln sin ln sin ln sin sin sin sin .30.微分方程x xe y y y -=-'+''2的特解用特定系数法可设为 ( )A. x e b ax x y -+=*)(B. x e b ax x y -+=*)(2C. x e b ax y -+=*)(D. x axe y -=*解:-1不是微分方程的特征根,x 为一次多项式,可设x e b ax y -+=*)( C ⇒.二、填空题(每小题2分,共30分)31.设函数,1||,01||,1)(⎩⎨⎧>≤=x x x f 则=)(sin x f _________.解:1)(sin 1|sin |=⇒≤x f x .32.=--+→xx x x 231lim22=_____________.解:=++=++--=--+→→→)31(1lim )31)(2()2(lim 231lim 2222x x x x x x x x x x x x 123341==. 33.设函数x y 2arctan =,则=dy __________.解:dx xdy 2412+= . 34.设函数bx ax x x f ++=23)(在1-=x 处取得极小值-2,则常数b a 和分别为___________.解:b a b a b ax x x f -+-=-=+-⇒++='12,02323)(25,4==⇒b a .35.曲线12323-+-=x x x y 的拐点为 __________.解:)1,1(),(0662632-=⇒=-=''⇒+-='y x x y x x y .36.设函数)(),(x g x f 均可微,且同为某函数的原函数,有1)1(,3)1(==g f 则=-)()(x g x f _________.解:2)1()1()()(=-=⇒=-g f C C x g x f 2)()(=-⇒x g x f .37.⎰-=+ππdx x x )sin (32 _________.解:3202sin )sin (323232π=+=+=+⎰⎰⎰⎰πππ-ππ-ππ-dx x xdx dx x dx x x .38.设函数⎪⎩⎪⎨⎧<≥=0,0,)(2x x x e x f x ,则 ⎰=-20)1(dx x f __________.解:⎰⎰⎰⎰--=--=+=====-201110012132)()1(e dx e dx x dt t f dx x f x t x .39. 向量}1,1,2{}2,1,1{-==b a ρρ与向量的夹角为__________.解:3,21663||||,cos π>=⇒<==⋅>=<b a b a b a b a ρρρρρρρρ .40.曲线⎩⎨⎧==022z xy L :绕x 轴旋转一周所形成的旋转曲面方程为 _________. 解:把x y 22=中的2y 换成22y z +,即得所求曲面方程x y z 222=+.41.设函数y x xy z sin 2+= ,则=∂∂∂yx z2_________. 解:⇒+=∂∂y x y xzsin 2y x y x z cos 212+=∂∂∂. 42.设区域}11,10|),{(≤≤-≤≤=y x y x D ,则________)(2⎰⎰=-Ddxdy x y .。
高数2005-2016年专插本试题(卷)与答案解析
高等数学历年试题集及答案(2005-2016)2005年广东省普通高等学校本科插班生招生考试《高等数学》试题一、单项选择题(本大题共5小题,每小题3分,共15分) 1、下列等式中,不成立...的是 A 、1)sin(lim x =--→πππx x B 、11sin lim x =∞→x x C 、01sin lim 0x =→x x D 、1sin 20x lim =→x x 2、设)(x f 是在(+∞∞-,)上的连续函数,且⎰+=c e dx x f x 2)(,则⎰dx xx f )(=A 、22x e - B 、c e x +2 C 、C e x +-221 D 、C e x +213、设x x f cos )(=,则=--→ax a f x f ax )()(limA 、-x sinB 、x cosC 、-a sinD 、x sin 4、下列函数中,在闭区间[-1,1]上满足罗尔中值定理条件的是A 、|)(=x f x | B 、2)(-=x x f C 、21)(x x f -= D 、3)(x x f =5、已知xxy u )(=,则yu ∂∂= A 、12)(-x xy x B 、)ln(2xy x C 、1)(-x xy x D 、)ln(2xy y二、填空题(本大题共5小题,每个空3分,共15分) 6、极限)1(1lim -∞→xx ex = 。
7、定积分211sin x exdx --⎰= 。
8、设函数xxx f +-=22ln )(,则(1)f ''= 。
9、若函数1(1),0,()(12),0.x a x x f x x x +≤⎧⎪=⎨⎪+>⎩在x=0处连续,则a= 。
10、微分方程222x xe xy dydx-=+的通解是 。
三、计算题(本大题共10小题,每小题5分,共50分) 11、求极限1(22n lim +-+∞→n n n )。
广东专插本考试《高等数学》真题
普通高校本科插班生招生(一)考试高等数学一、单项选择题(本大题共5小题,每小题3分,共15分.每小题只有一项符合题目要求)1.=+→∆)sin 1sin 3(lim 0x xx x xA .0B .1C .3D .42.设函数)(x f 具有二阶导数,且1)0(-='f ,0)1(='f ,1)0(-=''f ,3)1(-=''f ,则下列说法正确的是A .点0=x 是函数)(x f 的极小值点B .点0=x 是函数)(x f 的极大值点C .点1=x 是函数)(x f 的极小值点D .点1=x 是函数)(x f 的极大值点3.已知Cx dx x f +=⎰2)(,其中C 为任意常数,则⎰=dx xf )(2A .C x +5B .C x +4C .C x +421D .C x +3324.级数∑∞==-+13)1(2n nnA .2B .1C .43D .215.已知{}94) , (22≤+≤=y x y x D ,则=+⎰⎰Dd yx σ221A .π2B .π10C .23ln2πD .23ln 4π二、填空题(本大题共5小题,每小题3分,共15分)6.已知⎩⎨⎧== 3log t 2y tx ,则==1t dx dy 。
7.=+⎰-dx x x )sin (22。
8.=⎰+∞-dx e x 021。
9.二元函数1+=y xz,当e x =,0=y 时的全微分===ex y dz 0。
10.微分方程ydx dy x =2满足初始条件1=x y 的特解为=y 。
三、计算题(本大题共8小题,每小题6分,共48分)11.确定常数a ,b 的值,使函数⎪⎪⎩⎪⎪⎨⎧>+=<++= 0 )21(00 1)(2x x x b x x ax x f x ,,,在0=x 处连续。
12.求极限))1ln(1(lim 20x x x x +-→.13.求由方程xxe y y =+arctan )1(2所确定的隐函数的导数dx dy.14.已知)1ln(2x +是函数)(x f 的一个原函数,求⎰'dx x f )(.15.求曲线x xy ++=11和直线0=y ,0=x 及1=x 围成的平面图形的面积A .16.已知二元函数21y xyz +=,求y z ∂∂和x y z ∂∂∂2.17.计算二重积分⎰⎰-Dd y x σ1,其中D 是由直线x y =和1=y ,2=y 及0=x 围成的闭区域.18.判定级数∑∞=+12sin n nx n的收敛性.四、综合题(本大题共2小题,第19小题10分,第20小题12分,共22分)19.已知函数0)(4)(=-''x f x f ,0=+'+''y y y 且曲线)(x f y =在点)0 0(,处的切线与直线12+=x y 平行(1)求)(x f ;(2)求曲线)(x f y =的凹凸区间及拐点.20.已知dtt x f x⎰=02cos )((1)求)0(f '(2)判断函数)(x f 的奇偶性,并说明理由;(3)0>x ,证明)0(31)(3>+->λλλx x x f .。
06年《高等数学》试题及答案
2006年河南省普通高等学校 选拔优秀专科生进入本科阶段学习考试《高等数学》试卷题号 一 二 三 四 五 六 总分 核分人 分数一、单项选择题(每小题2分,共计60分)在每小题的四个备选答案中选出一个正确答案,并将其代码写在题 干后面的括号内。
不选、错选或多选者,该题无分.1.已知函数)12(-x f 的定义域为]1,0[ ,则)(x f 的定义域为 ( ) A. ]1,21[B. ]1,1[-C. ]1,0[D. ]2,1[-解:B x x ⇒≤-≤-⇒≤≤112110.2.函数)1ln(2x x y -+=)(+∞<<-∞x 是 ( ) A .奇函数 B. 偶函数 C.非奇非偶函数 D. 既奇又偶函数 解:01ln )1ln()1ln()()(22==+++-+=-+x xx xx f x f A ⇒.3. 当0→x 时,x x sin 2-是x 的 ( ) A. 高阶无穷小 B. 低阶无穷小 C. 同阶非等价无穷小 D. 等价无穷小 解: 1sin lim2-=-→xx xx C ⇒.4.极限=+∞→nnn n sin 32lim( )A. ∞B. 2C. 3D. 5 解:B nn nnn n n ⇒=+=+∞→∞→2]sin 32[lim sin 32lim.5.设函数⎪⎩⎪⎨⎧=+≠-=0,10,1)(2x a x xe xf ax,在0=x 处连续,则 常数=a ( ) A. 0 B. 1 C. 2 D. 3 解:B a a a aexex f axx axx x ⇒=⇒+===-=→→→1122lim 1lim)(lim 2020.6. 设函数)(x f 在点1=x 处可导 ,则=--+→xx f x f x )1()21(lim( )A. )1(f 'B. )1(2f 'C. )1(3f 'D. -)1(f ' 解:xx f f f x f xx f x f x x )1()1()1()21(lim)1()21(lim--+-+=--+→→C f xf x f xf x f x x ⇒'=---+-+=→→)1(3)1()1(lim2)1()21(lim207. 若曲线12+=x y 上点M 处的切线与直线14+=x y 平行,则点M 的坐标( ) A. (2,5) B. (-2,5) C. (1,2) D.(-1,2) 得分 评卷人解: A y x x x y ⇒==⇒=⇒='5,2422000.8.设⎪⎩⎪⎨⎧==⎰202cos sin ty du u x t,则=dx dy ( ) A. 2t B. t 2 C.-2t D. t 2- 解: D t tt t dxdy ⇒-=-=2sin sin 222.9.设2(ln )2(>=-n x x yn ,为正整数),则=)(n y ( )A.x n x ln )(+B. x1 C.1)!2()1(---n nxn D. 0解:B xy x y x x yn n n ⇒=⇒+=⇒=--1ln 1ln )()1()2(.10.曲线233222++--=x xx x y ( )A. 有一条水平渐近线,一条垂直渐近线B. 有一条水平渐近线,两条垂直渐近线C. 有两条水平渐近线,一条垂直渐近线,D. 有两条水平渐近线,两条垂直渐近线 解:A y y y x x x x x xx x y x x x ⇒∞=-==⇒++-+=++--=-→-→±∞→2122lim,4lim ,1lim)2)(1()3)(1(2332.11.下列函数在给定的区间上满足罗尔定理的条件是 ( ) A.]2,0[|,1|-=x y B. ]2,0[,)1(132-=x yC.]2,1[,232+-=x x y D . ]1,0[,arcsin x x y = 解:由罗尔中值定理条件:连续、可导及端点的函数值相等C ⇒.12. 函数xe y -=在区间),(+∞-∞内 ( )A. 单调递增且图像是凹的曲线B. 单调递增且图像是凸的曲线C. 单调递减且图像是凹的曲线D. 单调递减且图像是凸的曲线 解: C ey ey xx ⇒>=''<-='--0,0.13.若⎰+=C x F dx x f )()(,则⎰=--dx e f e x x )( ( ) A.C eF exx++--)( B. C eF x+-)( C. C eF exx+---)( D. C eF x+--)(解:D C eF ed ef dx e f e xxxx x ⇒+-=-=⎰⎰-----)()()()(.14. 设)(x f 为可导函数,且xe xf =-')12( ,则 =)(x f ( )A.C ex +-1221 B. C ex ++)1(212C.C ex ++1221 D. C ex +-)1(212解:B C ex f e x f e x f x x x⇒+=⇒='⇒=-'++)1(21)1(212)()()12(.15. 导数=⎰batdt dxd arcsin ( )A.x arcsinB. 0C. a b arcsin arcsin -D.211x-解:⎰baxdx arcsin 是常数,所以B xdx dxd ba⇒=⎰0arcsin .16.下列广义积分收敛的是 ( ) A. ⎰+∞1dx e xB. ⎰+∞11dx xC. ⎰+∞+1241dx xD. ⎰+∞1cos xdx解:C x dx x⇒-==++∞∞+⎰)21arctan 4(412arctan4141112π. 17.设区域D 由)(),(,),(,x g y x f y a b b x a x ==>==所围成,则区域D 的面积为 ( )A. ⎰-ba dx x g x f )]()([ B.⎰-badx x g x f )]()([C. ⎰-b adx x f x g )]()([ D. ⎰-badx x g x f |)()(|解:由定积分的几何意义可得D 的面积为 ⎰-badx x g x f |)()(|D ⇒.18. 若直线32311-=+=-z ny x 与平面01343=++-z y x 平行,则常数=n( )A. 2B. 3C. 4D. 5解: B n n n ⇒=⇒=+-⇒-⊥30943}3,43{}3,,1{. 19.设yx y x y x f arcsin)1(),(-+=,则偏导数)1,(x f x '为 ( )A.2B.1C.-1D.-2 解: B x f x x f x ⇒='⇒=1)1,()1,(. 20. 设方程02=-xyz e z确定了函数),(y x f z = ,则xz ∂∂ = ( )A. )12(-z x z B.)12(+z x z C.)12(-z x y D. )12(+z x y解: 令xy e F yz F xyz e z y x F zz x z -='-='⇒-=222,),,(A z x z xyxyz yz xyeyz xz z⇒-=-=-=∂∂⇒)12(222.21.设函数xy y x z +=2,则===11y x dz ( )A. dy dx 2+B. dy dx 2-C. dy dx +2D. dy dx -2 解:222xydxxdy dy x xydx dz -++=A dy dx dx dy dy dx dzy x ⇒+=-++=⇒==2211.22.函数2033222+--=y x xy z 在定义域上内 ( ) A.有极大值,无极小值 B. 无极大值,有极小值 C.有极大值,有极小值 D. 无极大值,无极小值 解:,6)0,0(),(062,06222-=∂∂⇒=⇒=-=∂∂=-=∂∂xz y x y x yz x y xz⇒=∂∂∂-=∂∂2,6222yx z yz 是极大值A ⇒.23设D 为圆周由012222=+--+y x y x 围成的闭区域 ,则=⎰⎰Ddxdy ( )A. πB. 2πC.4πD. 16π 解:有二重积分的几何意义知:=⎰⎰Ddxdy 区域D 的面积为π.24.交换二次积分⎰⎰>a xa dy y x f dx0(),(,常数)的积分次序后可化为 ( )A. ⎰⎰a ydx y x f dy0),( B.⎰⎰aay dx y x f dy),( C. ⎰⎰aa dx y x f dy00),( D. ⎰⎰ayadx y x f dy),(解: 积分区域},0|),{(}0,0|),{(a x y a y y x x y a x y x D ≤≤≤≤=≤≤≤≤=B ⇒.25.若二重积分⎰⎰⎰⎰=20sin 20)sin ,cos (),(πθθθθrdr r r f d dxdy y x f D,则积分区域D 为( )A. x yx 222≤+ B. 222≤+yxC. y yx 222≤+ D. 220yy x -≤≤解:在极坐标下积分区域可表示为:}sin 20,20|),{(θπθθ≤≤≤≤=r r D ,在直角坐标系下边界方程为y yx 222=+,积分区域为右半圆域D ⇒26.设L 为直线1=+y x 上从点)0,1(A 到)1,0(B 的直线段,则=-+⎰Ldy dx y x )(( )A. 2B.1C. -1D. -2 解:L :,1⎩⎨⎧-==xy x x x 从1变到0,⎰⎰⇒-=+=-+012)(D dx dx dy dx y x L.27.下列级数中,绝对收敛的是 ( )A .∑∞=1sinn nπB .∑∞=-1sin)1(n nnπC .∑∞=-12sin)1(n nnπD .∑∞=1cos n n π解: ⇒<22sinnnππ∑∞=π12sinn n收敛C ⇒.28. 设幂级数n n nn a x a (0∑∞=为常数 ,2,1,0=n ),在点2-=x 处收敛,则∑∞=-0)1(n n na( ) A. 绝对收敛 B. 条件收敛 C. 发散 D. 敛散性不确定解:∑∞=0n nn x a 在2-=x 收敛,则在1-=x 绝对收敛,即级数∑∞=-0)1(n n na 绝对收敛A ⇒.29. 微分方程0sin cos cos sin =+ydx x ydy x 的通解为 ( ) A. C y x =cos sin B. C y x =sin cos得分C. C y x =sin sinD. C y x =cos cos 解:dx xx dy yy ydx x ydy x sin cos sin cos 0sin cos cos sin -=⇒=+C C y x C x y xx d yy d ⇒=⇒=+⇒-=⇒sin sin ln sin ln sin ln sin sin sin sin .30.微分方程xxe y y y -=-'+''2的特解用特定系数法可设为 ( )A. x e b ax x y -+=*)(B. xeb ax x y -+=*)(2C. xeb ax y -+=*)( D. xaxe y -=*解:-1不是微分方程的特征根,x 为一次多项式,可设xe b ax y -+=*)( C ⇒.二、填空题(每小题2分,共30分)31.设函数,1||,01||,1)(⎩⎨⎧>≤=x x x f 则=)(sin x f _________.解:1)(sin 1|sin |=⇒≤x f x .32.=--+→xxx x 231lim22=_____________.解:=++=++--=--+→→→)31(1lim)31)(2()2(lim231lim2222x x x x x x xxx x x x123341==.33.设函数x y 2arctan =,则=dy __________.解:dx xdy 2412+=.34.设函数bx axx x f ++=23)(在1-=x 处取得极小值-2,则常数b a 和分别为___________.解:b a b a b ax x x f -+-=-=+-⇒++='12,02323)(25,4==⇒b a .35.曲线12323-+-=x x x y 的拐点为 __________.解:)1,1(),(0662632-=⇒=-=''⇒+-='y x x y x x y .36.设函数)(),(x g x f 均可微,且同为某函数的原函数,有1)1(,3)1(==g f 则=-)()(x g x f _________.解:2)1()1()()(=-=⇒=-g f C C x g x f 2)()(=-⇒x g x f . 37.⎰-=+ππdx x x )sin(32 _________.解:3202sin)sin(323232π=+=+=+⎰⎰⎰⎰πππ-ππ-ππ-dx x xdx dx x dx x x .38.设函数⎪⎩⎪⎨⎧<≥=0,0,)(2x x x e x f x,则 ⎰=-20)1(dx x f __________.解:⎰⎰⎰⎰--=--=+=====-211112132)()1(e dx e dx x dt t f dx x f xtx .39. 向量}1,1,2{}2,1,1{-==b a与向量的夹角为__________.解:3,21663||||,cos π>=⇒<==⋅>=<b a b a b a b a. 40.曲线⎩⎨⎧==022z xy L :绕x 轴旋转一周所形成的旋转曲面方程为 _________. 解:把x y22=中的2y 换成22y z+,即得所求曲面方程x yz222=+.41.设函数y x xy z sin 2+= ,则 =∂∂∂yx z 2_________.解:⇒+=∂∂y x y xz sin 2y x yx z cos 212+=∂∂∂.42.设区域}11,10|),{(≤≤-≤≤=y x y x D ,则________)(2⎰⎰=-Ddxdy x y .解:⎰⎰⎰⎰⎰-=-=-=--Ddx x dy x y dxdxdy x y 12101122322)()( .43. 函数2)(xex f -=在00=x 处展开的幂级数是________________.解: ∑∞=⇒=0!n n xn xe ∑∑∞=∞=-+∞-∞∈-=-==022),(,!1)1(!)()(2n n nnn xx xn n x ex f .44.幂级数∑∞=+++-0112)1()1(n n n nn x的和函数为 _________.解:∑∑∑∞=∞=-+∞=+++=-=+-=+-011111)21ln()2()1(1)2()1(2)1()1(n n nn n nn n n nx nx n x n x,)22(≤<-x .45.通解为xxeC eC y 321+=-(21C C 、为任意常数)的二阶线性常系数齐次微分方程为_________.解:xxe C eC y 321+=-0323,1221=--⇒=-=⇒λλλλ032=-'-''⇒y y y .三、计算题(每小题5分,共40分)46.计算 xx exxx 2sin1lim322-→--.解:23042320161lim3222lim81lim2sin 1lim2222xexxex xexxx ex xx xx xx xx -=+-=--=---→-→-→-→161lim 161322lim220-=-=-=-→-→xx xx exxe.47.求函数xx x y 2sin 2)3(+=的导数dxdy .解:取对数得 :)3ln(2sin ln 2x x x y +=,得分 评卷人两边对x 求导得:x xxx x xx y y2sin 332)3ln(2cos 2122++++='所以]2sin 332)3ln(2cos 2[)3(222sin 2x xxx x x x x x y x+++++='x x x x x xx x xx x 2sin )32()3()3ln(2cos )3(212sin 222sin 2+++++=-.48.求不定积分 ⎰-dx xx224.解:⎰⎰⎰====⎰-==-=π<<π-dt t tdt tdt t tdxxxtx t )2cos 1(2sin4cos 2cos 2sin4422sin 22222C x x x C t t x C t t +--=+-=+-=242arcsin2cos sin 22arcsin 22sin 22.49.计算定积分⎰--+12)2()1ln(dx x x .解:⎰⎰⎰+---+=-+=-+11112)1)(2(12)1ln(21)1ln()2()1ln(dx x x xx xdx dx x x⎰=-=+-+=++--=112ln 312ln 322ln 12ln312ln )1121(312ln xx dx xx.50.设),()2(xy x g y x f z ++= ,其中),(),(v u g t f 皆可微,求 yz xz ∂∂∂∂,.解:xv v g xu u g xy x y x f x z ∂∂∂∂+∂∂∂∂+∂+∂+'=∂∂)2()2(),(),()2(2xy x g y xy x g y x f v u'+'++'= =∂∂∂∂+∂∂∂∂+∂+∂+'=∂∂yv v g yu u g yy x y x f yz )2()2(),()2(xy x g x y x f v'++'. 51.计算二重积分⎰⎰=Dydxdy x I 2,其中D 由12,===x x y x y 及所围成.解:积分区域如图06-1所示, 可表示为:x y x x 2,10≤≤≤≤. 所以 ⎰⎰⎰⎰==10222xxDydy x dxydxdyx I10310323)2(105142122====⎰⎰xdx x ydx x xx.52.求幂级数nn nx n ∑∞=--+0)1()3(1的收敛区间(不考虑区间端点的情况).解: 令t x =-1,级数化为 nn nt n ∑∞=-+0)3(1,这是不缺项的标准的幂级数.xy x y =o12x y 2=图06-1因为 313)3(11)3(1lim1)3(1)3(1limlim11=--+-=+⋅-+-+==∞→+∞→+∞→nnn n nn nn n nn a a ρ,故级数nn nt n ∑∞=-+0)3(1的收敛半径31==ρR ,即级数收敛区间为(-3,3).对级数nn nx n ∑∞=--+0)1()3(1有313<-<-x ,即42<<-x .故所求级数的收敛区间为),(42-. 53.求微分方程 0)12(2=+-+dy x xy dy x 通解. 解:微分方程0)12(2=+-+dx x xy dy x 可化为 212xx y xy -=+',这是一阶线性微分方程,它对应的齐次线性微分方程02=+'y xy 通解为2xC y =.设非齐次线性微分方程的通解为2)(xx C y =,则3)(2)(xx C x C x y -'=',代入方程得C xx x C x x C +-=⇒-='2)(1)(2.故所求方程的通解为2211xC xy +-=.四、应用题(每小题7分,共计14分)54. 某公司的甲、乙两厂生产同一种产品,月产量分别为y x ,千件;甲厂月生产成本是5221+-=x xC (千元),乙厂月生产成本是3222++=y yC (千元).若要求该产品每月总产量为8千件,并使总成本最小,求甲、乙两厂最优产量和相应最小成本.解:由题意可知:总成本8222221++-+=+=y x y x C C C ,约束条件为8=+y x .问题转化为在8=+y x 条件下求总成本C 的最小值 .把8=+y x 代入目标函数得 0(882022>+-=x x x C 的整数).则204-='x C ,令0='C 得唯一驻点为5=x ,此时有04>=''C . 故 5=x 是唯一极值点且为极小值,即最小值点.此时有38,3==C y . 所以 甲、乙两厂最优产量分别为5千件和3千件,最低成本为38千元.55.由曲线)2)(1(--=x x y 和x 轴所围成一平面图形,求此平面图形绕y 轴旋转一周所成的旋转体的体积.解:平面图形如图06-2所示,此立体可看作X 型区域绕y 轴旋转一周而得到。
06级高数(下)试题及答案-8页word资料
一、 填空题(每空 3 分,共 15 分)1. 设()()a b y 1,3,2,2,,4r r==,则当y =时, rr a b ⊥;当y = 时, //rr a b .2. 函数 (,,)u x y z z x y=--221的间断点是.3. 设函数z x y y =+22, 则 dz =.4. 设G 是一个单连通域,(,)P x y 与(,)Q x y 在G 内即有一阶连续偏导数, 则曲线积分LPdx Qdy +⎰ 在G 内与路径无关的充要条件是.二、单项选择题 (每小题3分,共15分)1. 设直线方程为 L :x x y y z z m n p---==000, 平面方程为 :Ax By Cz D ∏+++=0, 若直线与平面平行,则 ( ).(A) 充要条件是:0Am Bn Cp ++=.(B) 充要条件是:A B C m n p==. (C) 充分但不必要条件是:0Am Bn Cp ++=(D) 充分但不必要条件是:A B C m n p==. 2.设(,)z z x y =是由方程 zx y z e ++= 所确定的隐函数, 则zx∂=∂( ). (A) z e -11. (B) ze -21.(C) z e -11. (D) ze -1.3.函数33(,)3f x y x y xy =+- 的极小值为 ( ).(A)1 . (B) 1-. (C) 0. (D) 3-.4.下列说法正确的是 ( ).(A) 若lim 0n n u →+∞=, 则级数 1n n u ∞=∑ 必收敛.(B) 若级数1n n u ∞=∑ 发散, 则必有 lim 0n n u →+∞≠. (C) 若级数1n n u ∞=∑ 发散, 则 lim n n s →+∞=∞. (D) 若lim 0n n u →+∞≠, 则 级数 1n n u ∞=∑ 必发散.5.微分方程 0ydx xdy += 的通解是 ( ).(A) 0x y +=. (B) y x =. (C)y C =. (D) xy C =.三、求解下列各题 (共2小题, 每小题8分, 共16分) 1.设一平面经过原点及点(,,),-632M 且与平面x y z -+=428 垂直, 求此平面方程.2.设(,),z f u v =而,u y v xy ==,且f具有二阶连续偏导数,求zx y∂∂∂2.四、求下列积分 (共2小题, 每小题8分, 共16分): 1、计算二重积分x y Ded σ+⎰⎰22,其中D 是由圆周224x y +=所围成的闭区域. 2、计算曲线积分2(22)(4)ÑLxy y dx x x dy -+-⎰, 其中 L 是取圆周229x y += 的正向闭曲线.五、计算题 (共2小题, 每小题8分,共16分): 1、 利用高斯公式计算曲面积分xdydz ydzdx zdxdy ∑++⎰⎰Ò,其中∑是长方体:{}(,,)|,,x y z x a y b z c Ω=≤≤≤≤≤≤000整个表面的外侧.2、判别正项级数 122nn n ∞=+∑ 的敛散性.六、解下列各题(共2小题. 每小题8分, 共16分): 1、设幂级数11n n nx ∞-=∑. (1). 求收敛半径及收敛区间 . (2). 求和函数. 2、求微分方程'''x y y y e ++=222 的通解.七、(6分) 求一曲线方程,这曲线通过原点,并且它在点(,)x y 处的切线斜率等于x y +2.南昌大学 2019~2019学年第二学期期末考试试卷及答案 一、填空题(每空 3 分,共 15 分)1. 设()()a b y 1,3,2,2,,4r r ==,则当y =-103时, rr a b ⊥;当y = 6时, //rr a b .2. 函数(,,)u x y z z x y=--221的间断点是{}(,,)|x y z z x y =+22.3. 设函数z x y y =+22, 则 dz =()xydx x y dy++222.4. 设G 是一个单连通域,(,)P x y 与(,)Q x y 在G 内即有一阶连续偏导数, 则曲线积分LPdx Qdy +⎰ 在G 内与路径无关的充要条件是P Q y x∂∂=∂∂.二、单项选择题 (每小题3分,共15分)1. 设直线方程为 L :x x y y z z m n p---==000, 平面方程为 :Ax By Cz D ∏+++=0, 若直线与平面平行,则 ( A ).(A) 充要条件是:0Am Bn Cp ++=.(B) 充要条件是:A B C m n p==. (C) 充分但不必要条件是:0Am Bn Cp ++=(D) 充分但不必要条件是:A B C m n p==. 2.设(,)z z x y =是由方程 zx y z e ++= 所确定的隐函数, 则zx∂=∂( C ). (A) z e -11. (B) ze -21.(C) z e -11. (D) ze -1.3.函数33(,)3f x y x y xy =+- 的极小值为 ( B ).(A)1 . (B) 1-. (C) 0. (D) 3-.4.下列说法正确的是 ( D ).(A) 若lim 0n n u →+∞=, 则级数 1n n u ∞=∑ 必收敛.(B) 若级数1n n u ∞=∑ 发散, 则必有 lim 0n n u →+∞≠. (C) 若级数1n n u ∞=∑ 发散, 则 lim n n s →+∞=∞. (D) 若lim 0n n u →+∞≠, 则 级数 1n n u ∞=∑ 必发散.5.微分方程 0ydx xdy += 的通解是 ( D ).(A) 0x y +=. (B) y x =. (C)y C =. (D) xy C =.三、求解下列各题 (共2小题, 每小题8分, 共16分) 1.设一平面经过原点及点(,,),-632M 且与平面x y z -+=428 垂直, 求此平面方程.解法一: 所求平面的法向量(,,),(,,)n n OM ⊥-⊥=-412632u u u ur r r .则(,,)(,,)(,,)-⨯-=-412632446. 取 (,,)n =-223r.故所求平面方程为:x y z +-=2230. 解法二: 设所求平面法向量(,,),n A B C =r则,(,,)n OM n ⊥⊥-412u u u ur r r .于是有 ,.A B C A B C -+=⎧⎨-+=⎩6320420解得: ,A B C B ==-32. 由平面的点法式方程可知,所求平面方程为Ax By Cz ++=0.将,A B C B ==-32代入上式,并约去()B B ≠0,便得:x y z +-=2230. 即为所求平面方程.2.设(,),z f u v =而,u y v xy ==,且f具有二阶连续偏导数,求zx y∂∂∂2.解:'.zy f x∂=⋅∂2 ()'''''z f y f f x x y∂=++⋅∂∂222122'''''.f yf xyf =++22122四、求下列积分 (共2小题, 每小题8分, 共16分): 1、计算二重积分x y Ded σ+⎰⎰22,其中D 是由圆周224x y +=所围成的闭区域. 解:x y Ded d ed πρσθρρ+=⋅⎰⎰⎰⎰2222200().e d e e ρρπρππ⎡⎤===-⎣⎦⎰2222240012122、计算曲线积分2(22)(4)ÑLxy y dx x x dy -+-⎰, 其中 L 是取圆周229x y += 的正向闭曲线.解:,,Q P x x x y ∂∂=-=-∂∂2422 .Q P x y∂∂-=-∂∂2 由格林公式,有 原式().Dd σππ=-=-⋅⋅=-⎰⎰222318五、计算题 (共2小题, 每小题8分,共16分): 1、 利用高斯公式计算曲面积分xdydz ydzdx zdxdy ∑++⎰⎰Ò,其中∑是长方体:{}(,,)|,,x y z x a y b z c Ω=≤≤≤≤≤≤000整个表面的外侧. 解:,,.P x Q y R z ===,,PQRxy z∂∂∂===∂∂∂111 则由高斯公式有原式().dv abc Ω=++=⎰⎰⎰11132、判别正项级数 122nn n ∞=+∑ 的敛散性.解:lim lim n n n n n n u n u n ++→∞→∞⎛⎫+=⋅ ⎪+⎝⎭113222Qlim .()n n n →∞+==<+311222所以原级数收敛.六、解下列各题(共2小题. 每小题8分, 共16分):1、设幂级数11n n nx ∞-=∑.(1). 求收敛半径及收敛区间 . (2). 求和函数.解: (1). limlim .n n n na n a n ρ+→∞→∞+===111 所以收敛半径.R =1当x =1时,n n ∞=∑1发散;当x =-1时,()n n n ∞-=-∑111 发散.所以收敛区间为:(,)-11.(2). 设和函数为:()n n S x nx ∞-==∑11. ()xx xn n n n S x dx nx dx nx dx ∞∞--==⎛⎫== ⎪⎝⎭∑∑⎰⎰⎰110011 .x n nn n x x x x ∞∞==⎡⎤===⎣⎦-∑∑1101故 '().().()x S x x x x ⎛⎫==-<< ⎪--⎝⎭2111112、求微分方程'''x y y y e ++=222 的通解.解:..r r r r ++===-2122101()x Y C C x e -∴=+12.λ=2Q 不是特征根,所以设特解为: *x y Ae =2.则(*)',(*)''x x y Ae y Ae ==2224,代入原方程得A =29. *xy e ∴=229.故通解为:().x x y C C x e e -=++21229七、(6分) 求一曲线方程,这曲线通过原点,并且它在点(,)x y 处的切线斜率等于x y +2.解: 依题意: ',().y x y y =+⎧⎨=⎩200则: x y x Ce =--+22.把()y =00 代入上式, 得C =2.故().x y e x =--21。
2006年安徽专升本高数答案
安徽省2006年普通高等学校专升本招生考试高等数学参考答案一、单项选择题(每小题3分,共30分)1、C2、D3、B4、A5、C6、B7、D8、C9、A 10、A 二、填空题(每小题3分,共30分)11.13−12.2 13.12 14.(1,-3)15.2xe C ++ 16.21y − 17.1y x e e e =+−18. 1 19. A-E 20. 0.25三、计算题(本大题共9小题)21.解:原式=()222sin limsin x x xx x →∞−+=sin lim sin x x xx x→∞−+=sin 1limsin 1x x x x x→∞−+=122.解:方程两边取对数得 ln y x =ln()x y + 方程两边对x 求导得1''.ln y y y x x x y++=+ 整理得 ()ln 1()'.()x y x x y x y y x y x x y +−−+=++所以()()ln 1dy x y x y dx x x y x −+=+−⎡⎤⎣⎦23.解:原式=121(1)(1)x x x e dx x e dx −+−∫∫=1212101(1)(1)xx x x e x e dx e x e dx −++−−∫∫ =2()1e − 24.解:2222ln 2arcsin 2()x zy x Sec x y y∂=•+•+∂Q2222sec ()xz y x y y ∂=++∂在定义域内连续2222222ln 2arcsin 2sec ()2sec ()x z z dz dx dy y x x y dx y x y dyx y ⎡⎤∂∂⎡⎤∴=+=+++++⎥⎣⎦∂∂⎥⎦ 25.解:13(2)1lim 3(3)3n n n n l n +→∞+==+Q113,3(2)nn n x R l n ∞=∴==+∑即幂级数在(-3,3)内收敛且收敛半径为3。
2006年河南专升本高数真题(带答案)
2006年河南专升本⾼数真题(带答案)2006年河南省普通⾼等学校选拔优秀专科⽣进⼊本科阶段学习考试《⾼等数学》试卷⼀、单项选择题(每⼩题2分,共计60分)在每⼩题的四个备选答案中选出⼀个正确答案,并将其代码写在题⼲后⾯的括号内。
不选、错选或多选者,该题⽆分. 1.已知函数)12(-x f 的定义域为]1,0[ ,则)(x f 的定义域为() A. ]1,2 1[ B. ]1,1[- C. ]1,0[ D. ]2,1[-解:B x x ?≤-≤-?≤≤112110.2.函数)1l n (2x x y -+=)(+∞<<-∞x 是()A .奇函数 B. 偶函数 C.⾮奇⾮偶函数 D. 既奇⼜偶函数解:01ln )1ln()1ln()()(22==+++-+=-+x x x x x f x f A ?.3. 当0→x 时,x x s i n 2-是x 的() A. ⾼阶⽆穷⼩ B. 低阶⽆穷⼩ C. 同阶⾮等价⽆穷⼩ D. 等价⽆穷⼩解: 1sin lim20-=-→xxx x C ?. 4.极限=+∞→nnn n s 32li()A. ∞B. 2C. 3D. 5解:B nnn n n n n ?=+=+∞→∞→2]sin 32[lim sin 32lim.5.设函数??)(2x a x x e x f ax ,在0=x 处连续,则常数=a ()A. 0B. 1C. 2D. 3解:B a a a ae xe xf ax x ax x x ?=?+===-=→→→1122lim 1lim)(lim 20200. 6. 设函数)(x f 在点1=x 处可导,则=--+→xx f x f x )1()21(lim0 ()A. )1(f 'B. )1(2f 'C. )1(3f 'D. -)1(f ' 解:xx f f f x f x x f x f x x )1()1()1()21(lim )1()21(lim00--+-+=--+→→C f xf x f x f x f x x ?'=---+-+=→→)1(3)1()1(lim 2)1()21(lim200 7. 若曲线12+=x y 上点M 处的切线与直线14+=x y 平⾏,则点M 的坐标()A. (2,5)B. (-2,5)C. (1,2)D.(-1,2)解: A y x x x y ?==?=?='5,2422000.8.设==02cos sin ty duu x t ,则=dxdy()A. 2t B. t 2 C.-2t D. t 2-解: D t tt t dx dy ?-=-=2sin sin 222. 9.设2(ln )2(>=-n x x y n ,为正整数),则=)(n y ()A.x n x ln )(+B.x 1 C.1)!2()1(---n n xn D. 0 解:B xy x y x x yn n n ?=?+=?=--1ln 1ln )()1()2(. 10.曲线233222++--=x x x x y ()A. 有⼀条⽔平渐近线,⼀条垂直渐近线B. 有⼀条⽔平渐近线,两条垂直渐近线C. 有两条⽔平渐近线,⼀条垂直渐近线,A y y y x x x x x x x x y x x x ?∞=-==?++-+=++--=-→-→±∞→2122lim ,4lim ,1lim )2)(1()3)(1(2332.11.下列函数在给定的区间上满⾜罗尔定理的条件是() A.]2,0[|,1|-=x y B. ]2,0[,)1(132-=x yC.]2,1[,232+-=x x y D . ]1,0[,arcsin x x y =解:由罗尔中值定理条件:连续、可导及端点的函数值相等C ?.12. 函数xey -=在区间),(+∞-∞内()A. 单调递增且图像是凹的曲线B. 单调递增且图像是凸的曲线C. 单调递减且图像是凹的曲线D. 单调递减且图像是凸的曲线解: C e y e y x x>=''<-='--0,0.13.若+=C x F dx x f )()(,则?=--dx e f e xx)( ()A.C e F e x x ++--)(B. C e F x +-)(C. C e F e x x +---)(D. C e F x +--)(解:D C e F e d e f dx e f e x x x x x ?+-=-=?-----)()()()(.14. 设)(x f 为可导函数,且x e x f =-')12( ,则 =)(x f ()A. C e x +-1222 C. C e x ++1221 D. C e x +-)1(212 解:B C ex f e x f e x f x x x+=='=-'++)1(21)1(212)()()12(.15. 导数=?ba tdt dxd arcsin () A.x arcsin B. 0 C. a b arcsin arcsin - D. 2 11x-解:?b a xdx arcsin 是常数,所以B xdx dx d ba=0arcsin . 16.下列⼴义积分收敛的是() A.+∞1dx e xB. ?+∞11dx x C. ?+∞+1241dx x D. ?+∞1cos xdx解:C x dx xarctan 4(412arctan 4141112π. 17.设区域D 由)(),(,),(,x g y x f y a b b x a x ==>==所围成,则区域D 的⾯积为()A.-b adx x g x f )]()([ B. ?-badx x g x f )]()([C.-badx x f x g )]()([ D. ?-badx x g x f |)()(|解:由定积分的⼏何意义可得D 的⾯积为 ?-badx x g x f |)()(|D ?.18. 若直线32311-=+=-z n y x 与平⾯01343=++-z y x 平⾏,则常数=n()A. 2B. 3C. 4D. 5解: B n n n ?=?=+-?-⊥30943}3,43{}3,,1{. 19.设yx y x y x f arcsin)1(),(-+=,则偏导数C.-1D.-2 解: B x f x x f x ?='?=1)1,()1,(.20. 设⽅程02=-xyz e z确定了函数),(y x f z = ,则x z= ()A. )12(-z x zB. )12(+z x zC. )12(-z x yD. )12(+z x y解:令xy e F yz F xyz e z y x F z z x z -='-='?-=222,),,(A z x z xy xyz yz xy e yz x z z ?-=-=-=)12(222. 21.设函数x y y x z +=2 ,则===11y x dz () A. dy dx 2+ B. dy dx 2- C. dy dx +2 D. dy dx -2解:222xydxxdy dy x xydx dz -++= A dy dx dx dy dy dx dz y x ?+=-++=?==2211.22.函数2033222+--=y x xy z 在定义域上内()A.有极⼤值,⽆极⼩值B. ⽆极⼤值,有极⼩值C.有极⼤值,有极⼩值D. ⽆极⼤值,⽆极⼩值解:,6)0,0(),(062,06222-==?=-=??=-=??x z y x y x y z x y x z=-=2,6222y x zy z 是极⼤值A ?.23设D 为圆周由01222A. πB. 2πC.4πD. 16π解:有⼆重积分的⼏何意义知:=??Ddxdy 区域D 的⾯积为π. 24.交换⼆次积分??>a xa dy y x f dx 000(),(,常数)的积分次序后可化为() A. ??a y dx y x f dy 0 ),( B. ??a a ydx y x f dy 0),(C.aa dx y x f dy 0),( D. ??a yadx y x f dy 0),(解:积分区域},0|),{(}0,0|),{(a x y a y y x x y a x y x D ≤≤≤≤=≤≤≤≤=B ?.25.若⼆重积分=20sin 20)sin ,cos (),(πθθθθrdr r r f d dxdy y x f D,则积分区域D 为()A. x y x 222≤+B. 222≤+y xC. y y x 222≤+D. 220y y x -≤≤解标下积分区域可表⽰为:}s i n 20,20|),{(θπθθ≤≤≤≤=r r D ,在直⾓坐标系下边界⽅程为y y x 222=+,积分区域为右半圆域D ?26.设L 为直线1=+y x 上从点)0,1(A 到)1,0(B 的直线段,则=-+?Ldy dx y x )(()A. 2B.1C. -1D. -2 解:L:-==x y xxx从1变到0,-=+=-+012)(D dx dx dy dx y x L .27.下列级数中,绝对收敛的是()A .∑∞=1sin n n πB .∑∞=-1sin)1(n nnπC .∑∞=-12sin)1(n nn πcos n n π解: ?<22sinn n ππ∑∞=π12sinn n收敛C ?. 28. 设幂级数n n n na x a(0∑∞=为常数 ,2,1,0=n ),在点2-=x 处收敛,则∑∞=-0)1(n n na()A. 绝对收敛B. 条件收敛C. 发散D. 敛散性不确定解:∑∞=0n n在2-=x 收敛,则在1-=x 绝对收敛,即级数∑∞=-0)1(n n n a 绝对收敛A ?.29. 微分⽅程0s i n c o s co s s i n =+y d x x y d y x 的通解为() A. C y x =cos sin B. C y x =sin cos C. C y x =sin sin D. C y x =cos cos 解:dx x xdy y y ydx x ydy x sin cos sin cos 0sin cos cos sin -=?=+C C y x C x y xxd y y d ?=?=+?-=?sin sin ln sin ln sin ln sin sin sin sin . 30.微分⽅程xxe y y y -=-'+''2的特解⽤特定系数法可设为()A. xeb ax x y -+=*)( B. xeb ax x y -+=*)(2C. xe b ax y -+=*)( D. xaxe y -=*解:-1不是微分⽅程的特征根,x 为⼀次多项式,可设xe b ax y -+=*)( C ?.⼆、填空题(每⼩题2分,共30分)31.设函数,1||,01||,1)(>≤=x x x f 则=)(sin x f _________.解:1)(sin 1|sin |=?≤x f x .32.=--+→xx x x 231lim22=_____________.=++=++--=--+→→→)31(1lim )31)(2()2(lim 231lim2222x x x x x x x x x x x x 123341==.33.设函数x y 2arctan =,则=dy __________.解:dx xdy 2412+= . 34.设函数bx ax x x f ++=23)(在1-=x 处取得极⼩值-2,则常数ba 和分别为___________.解:b a b a b ax x x f -+-=-=+-?++='12,02323)(25,4==?b a .35.曲线12323-+-=x x x y 的拐点为 __________.解:)1,1(),(0662632-=?=-=''?+-='y x x y x x y .36.设函数)(),(x g x f 均可微,且同为某函数的原函数,有1)1(,3)1(==g f 则=-)()(x g x f _________.解:2)1()1()()(=-=?=-g f C C x g x f 2)()(=-?x g x f .37.-=+ππdx x x )sin (32 _________.解:3202sin )sin (302323π=+=+=+πππ-ππ-ππ-dx x xdx dx x dx x x .38.设函数<≥=0,0,)(2x x x e x f x,则 ?=-20)1(dx x f __________.解:--=--=+=====-201110012132)()1(e dx e dx x dt t f dx x f xt x .39. 向量}1,1,2{}2,1,1{-==b a与向量的夹⾓为__________.解:3,21663||||,cos π>=?<==?>=40.曲线??==022z xy L :绕x 轴旋转⼀周所形成的旋转曲⾯⽅程为 _________.解:把x y 22=中的2y 换成22y z +,即得所求曲⾯⽅程x y z 222=+.41.设函数y x xy z sin 2+= ,则 =yx z2_________.解: ?+=??y x y x z sin 2y x yx z cos 212+=. 42.设区域}11,10|),{(≤≤-≤≤=y x y x D ,则___)(2=-Ddxdy x y . 解:-=-=-=--Ddx x dy x y dx dxdy x y 102101122322)()( . 43. 函数2)(x e x f -=在00=x 处展开的幂级数是________________. 解:∑∞=?=0!n n xn x e ∑∑∞=∞=-+∞-∞∈-=-==0022),(,!1)1(!)()(2n n n n n x x x n n x e x f .44.幂级数∑∞=+++-0112)1()1(n n n nn x 的和函数为 _________.解:∑∑∑∞=∞=-+∞=+++=-=+-=+-0111011)21l n)2()1(1)2()1(2)1()1(n n n n n n n n n nx n x n x n x,)22(≤<-x .45.通解为xxe C e C y 321+=-(21C C 、为任意常数)的⼆阶线性常系数齐次微分⽅程为_________.解:x xe C e C y 321+=-0323,1221=--?=-=?λλλλ032=-'-''?y y y .三、计算题(每⼩题5分,共40分)46.计算 xx ex x x 2sin 1lim 3202-→--. 解:20300420320161lim 3222lim 81lim 2sin 1lim 2222x e x xe x x e x xx ex x x x x x x x x -=+-=--=---→-→-→-→ 161lim 161322lim22000-=-=-=-→-→x x x x e x xe . 47.求函数xx x y 2sin 2)3(+=的导数dx dy .解:取对数得:)3ln(2sin ln 2x x x y +=,两边对x 求导得:x xx x x x x y y 2sin 332)3ln(2cos 2122++++=' 所以]2sin 332)3ln(2cos 2[)3(222sin 2x xx x x x x x x y x+++++=' xx x x x x x x x x x 2sin )32()3()3ln(2cos )3(212sin 222sin 2+++++=-.48.求不定积分 ?-dx x x 224.:====?-==-=π<<π-dt t tdt tdt t tdx x x t x t )2cos 1(2sin 4cos 2cos 2sin 4422sin 22222Cx x x C t t x C t t +--=+-=+-=242arcsin 2cos sin 22arcsin 22sin 22.49.计算定积分--+102)2()1ln(dx x x .解:+---+=-+=-+101010102)1)(2(12)1ln(21)1ln()2()1ln(dx x x x x x d x dx x x=-=+-+=++--=10102ln 312ln 322ln 12ln 312ln )1121(312ln x x dx x x .50.设),()2(xy x g y x f z ++= ,其中),(),(v u g t f 皆可微,求yz x z ,. 解:xv v g x u u g x y x y x f x z ++?+?+'=??)2()2( ),(),()2(2xy x g y xy x g y x f v u '+'++'==++?+?+'=??yvv g y u u g y y x y x f y z )2()2(),()2(xy x g x y x f v'++'.51.计算⼆重积分??=ydxdy x I 2,其中D 由12,===x x y x y 及所围成.解:积分区域如图06-1所⽰,可表⽰为:x y x x 2,10≤≤≤≤. 所以 == 1222xx Dydy x dx ydxdy x I 10310323)2(1051042122====??x dx x y dx x xx .52.求幂级数nn nx n ∑∞=--+0)1()3(1解:令t x =-1,级数化为 nn nt n ∑∞=-+0)3(1,这是不缺项的标准的幂级数. 因为 313)3(11)3(1lim 1)3(1)3(1lim lim 11=--+-=+?-+-+==∞→+∞→+∞→nnn n n n n n n n n a a ρ,故级数nn nt n ∑∞3(1的收敛半径31==ρR ,即级数收敛区间为(-3,3). 对级数nn nx n ∑∞=--+0)1()3(1有313<-<-x ,即42<<-x . 故所求级数的收敛区间为),(42-. 53.求微分⽅程 0)12(2=+-+dy x xy dy x 通解.解:微分⽅程0)12(2=+-+dx x xy dy x 可化为 212xx y x y -=+',这是⼀阶线性微分⽅程,它对应的齐次线性微分⽅程02=+'y x y 通解为2xC y =. 2)(x x C y =,则3)(2)(x x C x C x y -'=',代⼊C x x x C +-=?2)(2. 2211xCx y +-=.四、应⽤题(每⼩题7分,共计14分)54. 某公司的甲、⼄两⼚⽣产同⼀种产品,⽉产量分别为y x ,千件;甲⼚⽉⽣产成本是5221+-=x x C (千元),⼄⼚⽉⽣产成本是3222++=y y C (千元).若要求该产品每⽉总产量为8千件,并使总成本最⼩,求甲、⼄两⼚最优产量和相应最⼩成本.解:由题意可知:总成本8222221++-+=+=y x y x C C C ,约束条件为8=+y x . 问题转化为在8=+y x 条件下求总成本C 的最⼩值 .把8=+y x 代⼊⽬标函数得 0(882022>+-=x x x C 的整数).则204-='x C ,令0='C 得唯⼀驻点为5=x ,此时有04>=''C . 故 5=x 是唯⼀极值点且为极⼩值,即最⼩值点.此时有38,3==C y . 所以甲、⼄两⼚最优产量分别为5千件和3千件,最低成本为38千元. 55.由曲线)2)(1(--=x x y 和x 轴所围成⼀平⾯图形,求此平⾯图形绕y 轴旋转⼀周所成的旋转体的体积.解:平⾯图形如图06-2所⽰,此⽴体可看作X 型区域绕y 轴旋转⼀周⽽得到。
《高等数学》专插本2005-2019年历年试卷
广东省2019年普通高等学校本科插班生招生考试高等数学一、单项选择题(本在题共 小题,每小题 分,共 分。
每小题只有一个选项符合题目要求).函数22()2x xf x x x -=+-的间断点是.2x =- 和0x = .2x =- 和1x = .1x =- 和2x = .0x = 和1x =.设函数1,0()2,0cos ,0x x f x x x x +<⎧⎪==⎨⎪>⎩,则0lim ()x f x → .等于1 .等于2 .等于1 或2 .不存在 已知()tan ,()2xf x dx x Cg x dx C =+=+⎰⎰C 为任意常数,则下列等式正确的是.[()()]2tan x f x g x dx x C +=+⎰ .()2tan ()x f x dx x C g x -=++⎰.[()]tan(2)x f g x dx C =+⎰.[()()]tan 2x f x g x dx x C +=++⎰.下列级数收敛的是.11nn e ∞=∑ .13()2nn ∞=∑.3121()3n n n ∞=-∑ .121()3n n n ∞=⎡⎤+⎢⎥⎣⎦∑..已知函数 ()bf x ax x =+在点1x =-处取得极大值,则常数,a b 应满足条件.0,0a b b -=< .0,0a b b -=>.0,0a b b +=< .0,0a b b +=> 二、填空题(本大题共 小题,每小题 分,共 分).曲线33arctan x t ty t ⎧=+⎨=⎩,则0t =的对应点处切线方程为y =.微分方程0ydx xdy +=满足初始条件的1|2x y ==特解为y = .若二元函数(,)z f x y =的全微分sin cos ,xxdz e ydx e ydy =+ 则2zy x∂=∂∂ .设平面区域{(,)|0,01}D x y y x x =≤≤≤≤,则Dxdxdy =⎰⎰.已知1()sin(1)tf x dx t t tπ=>⎰,则1()f x dx +∞=⎰三、计算题(本大题共 小题,每小题 分,共 分).求20sin 1lim x x e x x →--.设(0)21x x y x x =>+,求dydx.求不定积分221xdx x ++⎰.计算定积分012-⎰.设xyzx z e-=,求z x ∂∂和z y∂∂ .计算二重积分22ln()Dx y d σ+⎰⎰,其中平面区域22{(,)|14}D x y x y =≤+≤ .已知级数1n n a ∞=∑和1n n b ∞=∑满足0,n n a b ≤≤且414(1),321n n b n b n n ++=+- 判定级数1nn a ∞=∑的收敛性.设函数()f x 满足(),xdf x x de-=求曲线()y f x =的凹凸区间四、综合题(大题共 小题,第 小题 分,第 小题 分,共 分) .已知函数()x ϕ满足0()1()()xxx x t t dt x t dt ϕϕϕ=+++⎰⎰( )求()x ϕ;( )求由曲线 ()y x ϕ=和0,2x x π==及0y =围成的平面图形绕x 轴旋转而成的立体的体积.设函数()ln(1)(1)ln f x x x x x =+-+ ( )证明:()f x 在区间(0,)+∞内单调减少; ( )比较数值20192018与20182019的大小,并说明理由;年广东省普通高校本科插班生招生考试《高等数学》参考答案及评分标准一、单项选择题(本大题共 小题,每小题 分,共 分) 二、填空题(本大题共 小题,每个空 分,共 分)13x2x cos xe y 13π 三、计算题(本大题共 小题,每小题 分,共 分)原式00cos sin 1limlim 222x x x x e x e x x →→-+=== 解:21ln ln ln(21)12ln 1212(ln 1)2121xx x y x y x x x y x y x dy x x dx x x =+∴=-+'∴=+-+∴=+-++解:22222211112(1)12112arctan ln(1)2x dxx dx d x x xx x C++=++++=+++⎰⎰⎰,t =则211,22x t dx tdt =-=20121021420153011,,2211()221()2111()253115t x t dx tdt t t tdtt t dtt t -==-==-=-=-=-⎰⎰⎰解:设(,,)xyzf x y z x z e=--(,,)1(,,)(,,)11,11xyz x xyz y xyzz xyz xyz xyz xyzf x y z yze f x y z xze f x y z xye z yze z xze x xye y xye ∴=-=-=--∂-∂∴==-∂+∂+解:由题意得12,0r θπ≤≤≤≤222020ln()3(4ln 2)23(4ln 2)|2(8ln 23)Dx y d d ππσθθπ∴+==-=-=-⎰⎰⎰ 解:由题意得414(1),321n n b n b n n ++=+-414(1)1lim lim 1,3213n x x nb n b n n +→∞→∞+∴==<+- 由比值判别法可知1nn b∞=∑收敛0,n n a b ≤≤由比较判别法可知1n n a ∞=∑也收敛.解()()()()(1)xx x x df x x de df x xde f x xe f x e x ----=∴='∴=-''∴=-()f x ∴的凹区间为(1,)+∞,凸区间为(,1)-∞( )由题意得0()1()()()1()xxx x x t dt x x t dt ϕϕϕϕϕ'=++-=+⎰⎰()()()()0x x x x ϕϕϕϕ''∴=-''∴+=特征方程210r +=,解得r i=±通解为()cos sin x x x Cϕ=++(0)1,0()cos sin C x x xϕϕ=∴=∴=+由题意得2202022(cos sin )(1sin 2)1(cos 2)22x V x x dx x dx x x ππππππππ=+=+=-=+⎰⎰证明( )()ln(1)(1)ln 1()ln(1)ln 111ln(1)ln ()1f x x x x x x x f x x x x x x x x x=+-++'∴=+-+-+=+--++ 证明11ln(1)ln ()01x x x x +--+<+即可 即证11ln(1)ln ()1x x x x+-<++令()ln g x x =()ln g x x =在(0,)+∞连续可导,由拉格朗日中值定理得ln(1)ln 1ln(1)ln ()1x x x x g x x x ξ+-'+-===+-且1x x ξ<<+ 111101x x x xξξ<<+∴<<<+11ln(1)ln ()1x x x x ∴+-<++成立11ln(1)ln ()01x x x x∴+--+<+()f x ∴在(0,)+∞单调递减( )设2019,2018a b ==则201820192019,2018b a a b ==比较,a b b a 即可,假设a bb a>即ln ln a b b a >即ln ln b ab a >设ln (),x g x x =则21ln ()xg x x -'=()g x 在(0,)+∞单调递减即()()g b g a ∴>,即a b b a >成立即2019201820182019>广东省 年普通高等学校本科插班生招生考试高等数学一、单项选择题(本在题共 小题,每小题 分,共 分。