高中数学竞赛历届IMO竞赛试题届完整中文版
历年全国高中数学联赛试题及答案76套题
历年全国高中数学联赛试题及答案76套题(一)2019年全国高中数学联赛试题及答案1. 小川野升平想在一个边长为6米的正方形的地块上建造一个有一堵墙的房子,墙要用沙发垫、玻璃门中的一种建造,沙发垫墙每平方米需要50元,玻璃门墙每平方米需要80元。
为了满足小川野升平的预算,需要选择合适的方案,可以使花费尽可能少。
请求出该房子沙发垫墙和玻璃门墙各多少平方米,以及花费的最小值。
解:由题意得,房子在四周建墙,所以共4个墙面。
墙面中有一个为门,另外3个可以被沙发垫或玻璃门所替代。
因为墙长宽相等,所以选择沙发垫或玻璃门所用的面积是相等的,即我们只需要考虑使用沙发垫或玻璃门的墙面数量即可。
用$x$表示使用沙发垫的墙面数量,则使用玻璃门的墙面数量为$3-x$,进而可列出花费的表达式:$$f(x)=50x+80(3-x)=80x+240$$为获得花费的最小值,我们需要求出$f(x)$的最小值,即求出$f(x)$的极小值。
因为$f(x)$是$x$的一次函数,所以可求出其导函数$f'(x)=80-30x$。
当$f'(x)=0$时,即$x=\frac83$,此时$f(x)$有极小值$f(\frac83)=400$。
当$x<\frac83$时,$f'(x)>0$,$f(x)$单调递增;当$x>\frac83$时,$f'(x)<0$,$f(x)$单调递减。
所以我们选择使用3个沙发垫的构建方案,所需面积为$3\times6=18m^2$,花费为$50\times18=900$元。
因此,该房子沙发垫墙面积为18平方米,玻璃门墙面积为0平方米,花费最小值为900元。
2. 对于正整数$n$,记$S_n$为$\sqrt{n^2+1}$的小数部分,$T_n$表示$S_1,S_2,\cdots,S_n$的平均值,则$s_n=10T_n-5$。
求$\sum_{k=1}^{2019}s_k$的个位数。
全国高中数学奥林匹克竞赛试题
全国高中数学奥林匹克竞赛试题一、设集合A为所有满足条件“能被3整除且末位数字为7”的正整数的集合,集合B为所有满足条件“能被7整除且末位数字为3”的正整数的集合。
则集合A和B的交集:A. 只含有一个元素B. 含有有限个元素C. 含有无限多个元素D. 为空集(答案)C二、在三角形ABC中,角A、B、C的对边分别为a、b、c,若a + 2b = 3c,且sin A : sinB : sinC = 3 : 4 : 5,则cos C的值为:A. 1/5B. -1/5C. 3/5D. -3/5(答案)B三、已知函数f(x) = ax3 + bx2 + cx + d的图像经过点(0,1),且在x=1处取得极值,在x=-1处取得最值。
则a+b+c的值为:A. -1B. 0C. 1D. 2(答案)D四、设等差数列{an}的前n项和为Sn,若a1 = -23,且S10 = S14,则S20的值为:A. -110B. -90C. -70D. -50(答案)C五、已知椭圆C的方程为x2/a2 + y2/b2 = 1 (a > b > 0),其左焦点为F,过F作直线l 交椭圆C于A、B两点。
若|AF| = 3|FB|,且cos∠BFA = -5/13,则椭圆C的离心率为:A. √2/2B. √3/2C. 2√2/3D. √5/3(答案)A六、设函数f(x) = ex - ax - 1,若存在唯一的实数x0,使得f(x0) = 0,则实数a的取值范围为:A. a < 0B. 0 < a < 1C. a > 1D. a = 1(答案)C七、已知向量a = (1,2),b = (2,m),若a与b的夹角为锐角,则m的取值范围是:A. m > -1 且 m ≠ 4B. m > 4C. m ≠ 4D. -1 < m < 4(答案)A八、设函数f(x) = ln(x + 1) - x2/2,若对所有的x ∈ [0, +∞),都有f(x) ≤ ax + b ≤ x2/2 + ln(x + 1)成立,则a + b的最大值为:A. -1B. 0C. 1/2D. 1(答案)B。
第49届国际数学奥林匹克(IMO)试题及解答 (1)
。
2
,( 借) <丝掣( 2) . 舒任意n,6∈I,口<6,当A>0时恒有
剖析:这里( 1) 与( 2) 等价是有条件的,并不 是对任意的函数,( z) 都成立的.如反例:
当J =Q( 有理数) ,A为无理数时,则对于任
意 的 口 , 6, ∈ Q, 厂 (z)=z2, 有 竿 尝 ∈ Q, 所 以
6.在凸四边形ABcD中,BA≠BC,∞l 和 甜z 分 别足△ABC和△ADC的内 切圆.假 没存 在一个圆 鲫与射线BA相 切( 切点不在 线段BA 上),与射线BC相切( 切点不在线段BC上) ,且
与直线AD和直线CD都相切.证明:圆叫1和 c【J 2 的两条外公切线的交点在圆cc ,上.( 俄罗斯提供)
作圆的一条平行于ac的切线z靠近边上海中学数学2008年第l324006浙江省衢州高级中学吴光耀严密性是数学的三大特点之一数学计算与教学证明的严密性既是数学科学的特点又可以训练思维使学生细心周密而这些素质又指导学生去思考生活工作中的问题使他们养成周密稳重的习惯有助于提高基本素质
上海中学数学·2008年第l O期
证明:由于n一2Rs i nA,6—2Rs i nB,c一
2Rsi nC只要证:
■ — — i 忑 ■ 一 s i n2A+s i n2B
十
■.I
si
—
n2B— si n2C
— 瓦砑 ■ 一
f
、 彳
■垡g二堑垡垒! ……m
AC的那条) ,设 z与圆鲫相切于点丁,下证B,y, T三点共线.
田●
如图4,设z 与射线BA,BC分别交于点A1, C1,则圆御是三角形BAl Cl 的关于顶点B的旁 切圆,T是它与A1Cl 的切点,而圆叫3是三角形 BAC关于点B的旁切圆,圆螂与AC相切于点 V.则由Al Cl ∥AC知,△BAC和△BAl C1以B 为中心位似,而V,T分别是对应旁切圆与对应 边的切 点,因此 y,丁 是这一对位 似形中的 对应 点,而B是位似中心,故B,V,T共线,从巾i 命题 得证.
imo数学竞赛试题及答案
imo数学竞赛试题及答案IMO数学竞赛试题及答案一、选择题1. 下列哪个数是最小的正整数?A. 0B. 1C. 2D. 3答案:B2. 如果一个数的立方等于它本身,那么这个数可以是:A. -1B. 0C. 1D. 2答案:ABC3. 一个长方体的长、宽、高分别是8cm、6cm和5cm,那么它的表面积是多少平方厘米?A. 236B. 284C. 312D. 376答案:B二、填空题4. 一个数的平方根是3,那么这个数是_________。
答案:95. 一个等差数列的前三项分别是2,4,6,那么它的第10项是_________。
答案:22三、解答题6. 证明:对于任意的正整数 \( n \),\( n^5 - n \) 总是能被30整除。
解答:首先,我们可以将 \( n^5 - n \) 分解为 \( n(n^4 - 1) \)。
接下来,我们注意到 \( n^4 - 1 \) 可以表示为 \( (n^2 +1)(n^2 - 1) \)。
而 \( n^2 - 1 \) 可以进一步分解为 \( (n +1)(n - 1) \)。
因此,我们有:\( n^5 - n = n(n^2 + 1)(n + 1)(n - 1) \)。
由于 \( n \) 是正整数,\( n - 1 \) 和 \( n + 1 \) 也是整数。
这意味着 \( n^5 - n \) 中至少包含因子2和3(因为 \( n^2 + 1 \) 至少是奇数,从而至少包含一个2的因子)。
因此,\( n^5 - n \)可以被30整除。
7. 一个圆的半径是15厘米,求圆的面积。
解答:圆的面积可以通过公式 \( A = \pi r^2 \) 计算,其中\( A \) 是面积,\( r \) 是半径,\( \pi \) 是圆周率,约等于3.14159。
将给定的半径 \( r = 15 \) 厘米代入公式,我们得到:\( A = \pi \times 15^2 = \pi \times 225 \approx 706.86 \)平方厘米。
历年全国高中数学竞赛试卷及答案(77套)
(5月14日下午14:30—16:30)
题目
一
二
三
总成绩
13
14
15
16
得分
评卷人
复核人
考生注意:1.本试卷共有三大题(16个小题),全卷满分140分
2.用黑(蓝)色圆珠笔或钢笔作答。
3.计算器,通讯工具不准待入考场。
4.解题书写不要超过封线
一,单项选择题(本大题共6个小题,每小题5分,共30分)
二,填空题(本大题共6个小题,每小题5分,共30分)
7.1008 8.0 9.2 10. 11.2 12.243
三,解答题(本大题共4个小题,每小题20分,共80分)
13.证明:(1)因为
所以,数列 成等比数列 ……5分
于是
即数列 的通项公式 ……10分
(2)法1:因为 对任意的正整数n都成立,故
由(1)知
∴共有C 种比赛方式.
三.(15分)长为 ,宽为1的矩形,以它的一条对角线所在的直线为轴旋转一周,求得到的旋转体的体积.
解:过轴所在对角线BD中点O作MN⊥BD交边AD、BC于M、N,作AE⊥BD于E,
则△ABD旋转所得旋转体为两个有公共底面的圆锥,底面半径AE= = .其体积V= ( )2· = π.同样,
1.设有三个函数,第一个是y=φ(x),它的反函数是第二个函数,而第三个函数的图象与第二个函数的图象关于x+y=0对称,那么,第三个函数是( )
A.y=-φ(x)B.y=-φ(-x)C.y=-φ-1(x)D.y=-φ-1(-x)
解:第二个函数是y=φ-1(x).第三个函数是-x=φ-1(-y),即y=-φ(-x).选B.
2020年IMO高中数学竞赛真题
星期一,21.九月2020第1题.考虑凸四边形ABCD.设P是ABCD内部一点.且以下比例等式成立:∠P AD:∠P BA:∠DP A=1:2:3=∠CBP:∠BAP:∠BP C.证明:∠ADP的内角平分线、∠P CB的内角平分线和线段AB的垂直平分线三线共点.第2题.设实数a,b,c,d满足a≥b≥c≥d>0,且a+b+c+d=1.证明:(a+2b+3c+4d)a a b b c c d d<1.第3题.有4n枚小石子,重量分别为1,2,3,...,4n.每一枚小石子都染了n种颜色之一,使得每种颜色的小石子恰有四枚.证明:我们可以把这些小石子分成两堆,同时满足以下两个条件:•两堆小石子有相同的总重量;•每一堆恰有每种颜色的小石子各两枚.星期二,22.九月2020第4题.给定整数n>1.在一座山上有n2个高度互不相同的缆车车站.有两家缆车公司A和B,各运营k辆缆车;每辆从一个车站运行到某个更高的车站(中间不停留其他车站).A公司的k辆缆车的k个起点互不相同,k个终点也互不相同,并且起点较高的缆车,它的终点也较高.B公司的缆车也满足相同的条件.我们称两个车站被某个公司连接,如果可以从其中较低的车站通过该公司的一辆或多辆缆车到达较高的车站(中间不允许在车站之间有其他移动).确定最小的正整数k,使得一定有两个车站被两个公司同时连接.第5题.有一叠n>1张卡片.在每张卡片上写有一个正整数.这叠卡片具有如下性质:其中任意两张卡片上的数的算术平均值也等于这叠卡片中某一张或几张卡片上的数的几何平均值.确定所有的n,使得可以推出这叠卡片上的数均相等?第6题.证明:存在正常数c具有如下性质:对任意整数n>1,以及平面上n个点的集合S,若S中任意两点之间的距离不小于1,则存在一条分离S的直线ℓ,使得S中的每个点到直线ℓ的距离不小于cn−1/3.(我们称直线ℓ分离点集S,如果某条以S中两点为端点的线段与ℓ相交.)注.如果证明了比cn−1/3弱的估计cn−α,会根据α>1/3的值,适当给分.。
(完整版)国际数学奥林匹克(IMO)竞赛试题(第38届)
国际数学奥林匹克(IMO )竞赛试题(第38届) 1. 在坐标平面上,具有整数坐标的点构成单位边长的正方格的顶点.这些正方格被涂上黑白相间的两种颜色(像棋盘一样).对于任意一对正整数m 和n ,考虑一个直角三角形其顶点具有整数坐标,两腰长分别为m 和n ,且其两腰都在这些正方格的边上. 设S 1为这个三角形区域中所有黑色部分的总面积,S 2则为所有白色部分的总面积. 令f(m ,n)=|S 1-S 2|,o a. 当m ,n 同为正偶数或者同为正奇数时,计算f(m ,n);o b. 求证f(m ,n)≤max(m ,n)/2对所有m ,n 都成立;o c. 求证不存在常量C 使得f(m ,n).2. 设∠A 是△ABC 中最小的內角.B 和C 将此三角形的外接圆分成两个弧.U 为落在不含A 点的弧上且异于B ,C 的一点.线段AB ,AC 的垂直平分线分别交AU 于V ,W . 直线BV , CW 相交于T ,求证:AU =TB +TC .3. x 1,x 2,...,x n 是正实数满足|x 1+x 2+...x n |=1 且对所有i 有|x i |≤(n+1)/2. 试证明存在x 1,x 2,...,x n 的一个 排列y 1,y 2,...,y n 满足|y 1+2y 2+...+ny n |≤(n+1)/2.4. 一个n×n 的矩阵称为一个n 阶“银矩阵”,如果它的元素取自集合S={1,2,...,2n-1}且对于每一个i=1,2,...,n ,它的第i 列与第i 行中的所有元素合起来恰好是S 中的所有元素.求证:o a. 不存在n=1997阶的银矩阵;b. 有无限多个n ,存在n 阶银矩阵.5. 试找出所有的正整数对(a ,b)满足6. 对每个正整数n ,将n 表示成2的非负整数次方之和,令f(n)为正整数n 的上述不同表示法的个数.如果俩个表示法的差别仅在于他们中各个数相加的次序不同,这两个表示法就被视为是相同的.例如,f(4)=4,因为4恰有下列四种不同的表示法:4; 2+2; 2+1+1;1+1+1+1.求证:对于任意整数n ≥3, 22/4/22(2)2nn n f <<。
(完整word)重点高中数学竞赛历届IMO竞赛试题(1-46届完整中文版)
第1届IMO1.求证(21n+4)/(14n+3) 对每个自然数 n都是最简分数。
2.设√(x+√(2x-1))+√(x-√(2x-1))=A,试在以下3种情况下分别求出x的实数解:(a) A=√2;(b)A=1;(c)A=2。
3.a、b、c都是实数,已知 cos x的二次方程试用 cos x 和5.(6.上。
试1.找出所有具有下列性质的三位数 N:N能被11整除且 N/11等于N的各位数字的平方和。
2.寻找使下式成立的实数x:4x2/(1 - √(1 + 2x))2< 2x + 93.直角三角形ABC的斜边BC的长为a,将它分成 n 等份(n为奇数),令α为从A点向中间的那一小段线段所张的锐角,从A到BC边的高长为h,求证:tan α = 4nh/(an2 - a).4.已知从A、B引出的高线长度以及从A引出的中线长,求作三角形ABC。
5.正方体ABCDA'B'C'D'(上底面ABCD,下底面A'B'C'D')。
X是对角线AC上任意一点,Y是B'D'上任意一点。
a.求XY中点的轨迹;b.求(a)中轨迹上的、并且还满足 ZY=2XZ的点Z的轨迹。
6.一个圆锥内有一内接球,又有一圆柱体外切于此圆球,其底面落在圆锥的底面上。
令V1为圆锥的体7.BXC、AXD3.解方程 cos n x - sin n x = 1, 其中n是一个自然数。
4. P是三角形ABC内部一点,PA交BC于D,PB交AC于E,PC交AB于F,求证AP/PD, BP/PE, CP/PF 中至少有一个不大于2,也至少有一个不小于2。
5.作三角形ABC使得 AC=b, AB=c,锐角AMB = α,其中M是线断BC的中点。
求证这个三角形存在的充要条件是b tan(α/2) <=c < b.又问上式何时等号成立。
6.三个不共线的点A、B、C,平面p不平行于ABC,并且A、B、C在p的同一侧。
全国高中数学竞赛试题及答案
全国高中数学竞赛试题及答案试题一:函数与方程1. 已知函数\( f(x) = 2x^3 - 3x^2 + x - 5 \),求\( f(x) \)的极值点。
2. 求解方程\( x^2 - 4x + 3 = 0 \)的所有实根。
3. 判断函数\( g(x) = \frac{1}{x} \)在区间\( (0, +\infty) \)上的单调性。
试题二:解析几何1. 已知椭圆\( \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \),其中\( a > b > 0 \),求椭圆的焦点坐标。
2. 求圆\( (x - h)^2 + (y - k)^2 = r^2 \)的切线方程,已知切点坐标为\( (m, n) \)。
3. 证明点\( P(x_1, y_1) \)和点\( Q(x_2, y_2) \)的连线\( PQ \)的中点坐标为\( \left(\frac{x_1 + x_2}{2}, \frac{y_1 +y_2}{2}\right) \)。
试题三:数列与级数1. 已知等差数列的首项\( a_1 = 3 \),公差\( d = 2 \),求第10项\( a_{10} \)。
2. 求等比数列\( b_1, b_2, b_3, \ldots \)的前\( n \)项和,其中\( b_1 = 1 \),公比\( r = 3 \)。
3. 判断数列\( c_n = \frac{1}{n(n + 1)} \)的收敛性。
试题四:概率与统计1. 从5个红球和3个蓝球中随机抽取3个球,求至少有2个红球的概率。
2. 抛掷一枚均匀硬币4次,求正面朝上的次数为2的概率。
3. 某工厂生产的产品中有2%是次品,求从一批产品中随机抽取10个产品,至少有1个是次品的概率。
试题五:组合与逻辑1. 有5个不同的球和3个不同的盒子,将球分配到盒子中,每个盒子至少有一个球,求不同的分配方法总数。
2. 证明:对于任意的正整数\( n \),\( 1^2 + 2^2 + 3^2 + \ldots + n^2 = \frac{n(n + 1)(2n + 1)}{6} \)。
高中数学奥林匹克竞赛试题及答案
1 求一个四位数,它的前两位数字及后两位数字分别相同,而该数本身等于一个整数的平方.1956年波兰.x=1000a+100a+10b+b=11(100a+b)其中0<a≢9,0≢b≢9.可见平方数x被11整除,从而x被112整除.因此,数100a+b=99a+(a+b)能被11整除,于是a+b能被11整除.但0<a+b≢18,以a+b=11.于是x=112(9a+1),由此可知9a+1是某个自然数的平方.对a=1,2,…,9逐一检验,易知仅a=7时,9a+1为平方数,故所求的四位数是7744=882.2 假设n是自然数,d是2n2的正约数.证明:n2+d不是完全平方.1953年匈牙利.【证设2n2=kd,k是正整数,如果n2+d是整数x的平方,那么k2x2=k2(n2+d)=n2(k2+2k)但这是不可能的,因为k2x2与n2都是完全平方,而由k2<k2+2k<(k+1)2得出k2+2k不是平方数.3 试证四个连续自然数的乘积加上1的算术平方根仍为自然数.1962年上海高三决赛题.【证】四个连续自然数的乘积可以表示成n(n+1)(n+2)(n+3)=(n2+3n)(n2+8n+2)=(n2+3n+1)2-1因此,四个连续自然数乘积加上1,是一完全平方数,故知本题结论成立.4 已知各项均为正整数的算术级数,其中一项是完全平方数,证明:此级数一定含有无穷多个完全平方数.1963年俄【证】设此算术级数公差是d,且其中一项a=m2(m∈N).于是a+(2km+dk2)d=(m+kd)2对于任何k∈N,都是该算术级数中的项,且又是完全平方数.5 求一个最大的完全平方数,在划掉它的最后两位数后,仍得一个完全平方数(假定划掉的两个数字中的一个非零).1964年俄.【解】设n2满足条件,令n2=100a2+b,其中0<b<100.于是n>10a,即n≣10a+1.因此b=n2100a2≣20a+1由此得 20a+1<100,所以a≢4.经验算,仅当a=4时,n=41满足条件.若n>41则n2-402≣422-402>100.因此,满足本题条件的最大的完全平方数为412=1681.6 求所有的素数p,使4p2+1和6p2+1也是素数.1964年波兰【解】当p≡±1(mod 5)时,5|4p2+1.当p≡±2(mod 5)时,5|6p2+1.所以本题只有一个解p=5.7 证明存在无限多个自然数a有下列性质:对任何自然数n,z=n4+a都不是素数.1969德国.【证】对任意整数m>1及自然数n,有n4+4m4=(n2+2m2)2-4m2n2=(n2+2mn+2m2)(n2-2mn+2m2)而 n2+2mn+2m2>n2-2mn+2m2=(n-m)2+m2≣m2>1故n4+4m4不是素数.取a=4²24,4²34,…就得到无限多个符合要求的a.8 将某个17位数的数字的顺序颠倒,再将得到的数与原来的数相加.证明:得到的和中至少有一个数字是偶数.1970年苏【证】假设和的数字都是奇数.在加法算式中,末一列数字的和d+a为奇数,从而第一列也是如此,因此第二列数字的和b+c≢9.于是将已知数的前两位数字a、b与末两位数字c、d去掉,所得的13位数仍具有性质:将它的数字颠倒,得到的数与它相加,和的数字都是奇数.照此进行,每次去掉首末各两位数字.最后得到一位数,它与自身相加显然是偶数.矛盾!9 证明:如果p和p+2都是大于3的素数,那么6是p+1的因数.1973年加拿大【证】因p是奇数,2是p+1的因数.因为p、p+1、p+2除以3余数不同,p、p+2都不被3整除,所以p+1被3整除.10 证明:三个不同素数的立方根不可能是一个等差数列中的三项(不一定是连续的).美国1973年【证】设p、q、r是不同素数.假如有自然数l、m、n和实数a、d,消去a,d,得化简得(m-n)3p=(l-n)3q+(m-l)3r+3(l-n)(m11 设n为大于2的已知整数,并设V n为整数1+kn的集合,k=1,2,….数m∈V n称为在V n中不可分解,如果不存在数p,q∈V n使得pq=m.证明:存在一个数r∈V n可用多于一种方法表达成V n中不可分解的元素的乘积.1977年荷兰【证】设a=n-1,b=2n-1,则a2、b2、a2b2都属于V n.因为a2<(n+1)2,所以a2在V n中不可分解.式中不会出现a2.r=a2b2有两种不同的分解方式:r=a2²b2=a2…(直至b2分成不可分解的元素之积)与r=ab²ab=…(直至ab分成不可分解的元素之积),前者有因数a2,后者没有.12 证明在无限整数序列10001,100010001,1000100010001,…中没有素数.注意第一数(一万零一)后每一整数是由前一整数的数字连接0001而成.1979年英国【证】序列1,10001,100010001,…,可写成1,1+104,1+104+108,…一个合数.即对n>2,a n均可分解为两个大于1的整数的乘积,而a2=10001=137²73.故对一切n≣2,a n均为合数.13 如果一个自然数是素数,并且任意地交换它的数字,所得的数仍然是素数,那么这样的数叫绝对素数.求证:绝对素数的不同数字不能多于3个.1984年苏【证】若不同数字多于3个,则这些数字只能是1、3、7、9.不难验证1379、3179、9137、7913、1397、3197、7139除以7,余数分别为0、1、2、3、4、5、6.因此对任意自然数M,104³M与上述7个四位数分别相加,所得的和中至少有一个被7整除,从而含数字1、3、7、9的数不是绝对素数.14正整数d不等于2、5、13.证在集合{2,5,13,d}中可找到两个不同元素a、b,使得ab-1不是完全平方数.1986年德【证】证明2d-1、5d-1、13d-1这三个数中至少有一个不是完全平方数即可.用反证法,设5d-1=x2 5d-1=y2 13d -1=z2 其中x、y、z是正整数.x是奇数,设x=2n-1.代入有2d-1=(2n-1)2即d=2n2-2n+1 说明d也是奇数.y、Z是偶数,设y=2p,z=2q,代入(2)、(3)相减后除以4有2d=q2-p2=(q+p)(q-p)因2d是偶数,即q2-p2是偶数,所以p、q同为偶数或同为奇数,从而q+p和q-p都是偶数,即2d是4的倍数,因此d是偶数.这与d是奇数相矛盾,故命题正确.15 .求出五个不同的正整数,使得它们两两互素,而任意n(n≢5)个数的和为合数.1987年全苏【解】由n个数a i=i²n!+1,i=1,2,…,n组成的集合满足要求.因为其中任意k个数之和为m²n!+k(m∈N,2≢k ≢n)由于n!=1²2²…²n是k的倍数,所以m²n!+k是k的倍数,因而为合数.对任意两个数a i与a j(i>j),如果它们有公共的质因数p,则p也是a i-a j=(i-j)n!的质因数,因为0<i-j<n,所以p也是n!的质因数.但a i与n!互质,所以a i与a j不可能有公共质因数p,即a i、a j(i≠j)互素.令n=5,便得满足条件的一组数:121,241,361,481,601.16 n≣2,证:如果k2+k+n对于整数k素数.1987苏联(1)若m≣p,则p|(m-p)2+(m-p)+n.又(m-p)2+(m-p)+n≣n>P,这与m是使k2+k+n为合数的最小正整数矛盾.(2)若m≢p-1,则(p-1-m)2+(p-1-m)+n=(p-1-m)(p-m)+n被p整除,且(p-1-m)2+(p-1-m)+n≣n>p因为(p-1-m)2+(p-1-m)+n为合数,所以p-1-m≣m,p≣2m+1由得4m2+4m+1≢m2+m+n即3m2+3m+1-n≢0由此得17 正整数a与b使得ab+1整除a2+b2.求证:(a2+b2)/(ab+1)是某个正整数的平方.1988德国a2-kab+b2=k (1)显然(1)的解(a,b)满足ab≣0(否则ab≢-1,a2+b2=k(ab+1)≢0).又由于k不是完全平方,故ab>0.设(a,b)是(1)的解中适合a>0(从而b>0)并且使a+b最小的那个解.不妨设a≣b.固定k与b,把(1)看成a的二次方程,它有一根为a.设另一根为a′,则由韦达定理a′为整数,因而(a′,b)也是(1)的解.由于b>0,所以a′>0.但由(3)从而a′+b<a+b,这与a+b的最小性矛盾,所以k必为完全平方.18 求证:对任何正整数n,存在n个相继的正整数,它们都不是素数的整数幂.1989年瑞典提供.【证】设a=(n+1)!,则a2+k(2≢k≢n+1),被k整除而不被k2整除(因为a2被k2整除而k不被k2整除).如果a2+k是质数的整数幂p l,则k=p j(l、j都是正整数),但a2被p2j整除因而被p j+1整除,所以a2+k被p j整除而不被p j+1整除,于是a2+k=p j=k,矛盾.因此a2+k(2≢k≢n+1)这n个连续正整数都不是素数的整数幂.19 n为怎样的自然数时,数32n+1-22n+1-6n是合数?1990年全苏解32n+1-22n+1-6n=(3n-2n)(3n+1+2n+1)当n>l时,3n-2n>1,3n+1+2n+1>1,原数是合数.当n=1时,原数是13 20 设n是大于6的整数,且a1、a2、…、a k是所有小于n且与n互素的自然数,如果a2-a1=a3-a2=…=a k-a k-1>0求证:n或是素数或是2的某个正整数次方.1991年罗马尼亚.证由(n-1,n)=1,得a k=n-1.令d=a2-a1>0.当a2=2时,d=1,从而k=n-1,n与所有小于n的自然数互素.由此可知n是素数.当a2=3时,d=2,从而n与所有小于n的奇数互素.故n是2的某个正整数次方.设a2>3.a2是不能整除n的最小素数,所以2|n,3|n.由于n-1=a k=1+(k-1)d,所以3d.又1+d=a2,于是31+d.由此可知3|1+2d.若1+2d<n,则a3=1+2d,这时3|(a3,n).矛盾.若1+2d≣n,则小于n且与n互素自然数的个数为2.设n=2m(>6).若m为偶数,则m+1与n互质,若m为奇数,则m+2与m互质.即除去n-1与1外、还有小于n且与n互质的数.矛盾.综上所述,可知n或是素数或是2的某个正整数次方.21 试确定具有下述性质的最大正整数A:把从1001至2000所有正整数任作一个排列,都可从其中找出连续的10项,使这10项之和大于或等于A.1992年台北数学奥林匹克【解】设任一排列,总和都是1001+1002+…+2000=1500500,将它分为100段,每段10项,至少有一段的和≣15005,所以A≣15005另一方面,将1001~2000排列如下:2000 1001 1900 1101 18001201 1700 1301 1600 14011999 1002 1899 1102 17991202 1699 1302 1599 1402………………1901 1100 1801 1200 17011300 1601 1400 1501 1300并记上述排列为a1,a2,…,a2000(表中第i行第j列的数是这个数列的第10(i-1)+j项,1≢i≢20,1≢j≢10)令S i=a i+a i+1+…+a i+9(i=1,2,…,1901)则S1=15005,S2=15004.易知若i为奇数,则S i=15005;若i为偶数,则S i=15004.综上所述A=15005.22 相继10个整数的平方和能否成为完全平方数?1992年友谊杯国际数学竞赛七年级【解】(n+1)2+(n+2)2+…+(n+10)2=10n2+110n+385=5(2n2+22n+77)不难验证n≡0,1,-1,2,-2(mod 5)时,均有2n2+22n+77≡2(n2+n+1)0(mod 5)所以(n+1)2+(n+2)2+…+(n+10)2不是平方数,23 是否存在完全平方数,其数字和为1993?1993年澳门数学奥林匹克第二轮【解】存在,取n=221即可.24 能表示成连续9个自然数之和,连续10个自然数之和,连续11个自然数之和的最小自然数是多少?1993年美国数学邀请赛【解】答495.连续9个整数的和是第5个数的9倍;连续10个整数的和是第5项与第6项之和的5倍;连续11个整数的和是第6项的11倍,所以满足题目要求的自然数必能被9、5、11整除,这数至少是495.又495=51+52+…+59=45+46+…+54=40+41+…+5025 如果自然数n使得2n+1和3n+1都恰好是平方数,试问5n+3能否是一个素数?1993年全俄数学奥林匹克【解】如果2n+1=k2,3n+1=m2,则5n+3=4(2n+1)-(3n+1)=4k2-m2=(2k+m)(2k-m).因为5n+3>(3n+1)+2=m2+2>2m+1,所以2k-m≠1(否则5n+3=2k+m=2m+1).从而5n+3=(2k+m)(2k-m)是合数.26 设n是正整数.证明:2n+1和3n+1都是平方数的充要条件是n+1为两个相邻的平方数之和,并且为一平方数与相邻平方数2倍之和.1994年澳大利亚数学奥林匹克【证】若2n+1及3n+1是平方数,因为2(2n+1),3(3n+1),可设2n+1=(2k+1)2,3n+1=(3t±1)2,由此可得n+1=k2+(k+1)2,n+1=(t±1)2+2t2反之,若n+1=k2+(k+1)2=(t±1)2+2t2,则2n+1=(2k+1)2,3n+1=(3t±1)2从而命题得证.27 设a、b、c、d为自然数,并且ab=cd.试问a+b+c+d能否为素数.1995年莫斯科数学奥林匹克九年级题【解】由题意知正整数,将它们分别记作k与l.由a+c>c≣c1,b+c>c≣c2。
高中数学奥林匹克竞赛试题
高中数学奥林匹克竞赛试题高中数学奥林匹克竞赛试题一、选择题(共20小题,每小题2分,共40分。
从每题四个选项中选择一个正确答案,将其标号填入题前括号内)1. 已知函数f(x) = 2x^2 + bx + c, f(1) = 5, f(2) = 15,则b + c的值是:A. 4B. 6C. 8D. 122. 设等差数列{an}的公差为d,已知a₁ + a₃ + a₅ = 9d,a₂ + a₄ + a₆= 15d,则a₇的值为:A. 8dB. 9dC. 10dD. 11d3. 若复数z = a + bi满足|z - 1| = |z + 1|,则a的值为:A. -1B. 0C. 1D. 24. 若直线y = kx + m与椭圆(x + 2)²/9 + y²/16 = 1相交于点P,请问此时P点的横坐标x的取值范围是:A. [0, -4/3]B. [0, -2]C. (-∞, -2]D. (-∞, 0]5. 已知正整数a、b满足a + b = 10,ab = 15,则a/b的值是:A. 1/2B. 2/3C. 3/2D. 3/5二、填空题(共10小题,每小题4分,共40分)6. 若正整数x满足5x ≡ 15 (mod 17),则x的最小正整数解为_______。
7. 在平面直角坐标系中,一次函数y = kx + c经过点(1, 2),且该直线与x轴交于点(3, 0),则k的值为_______。
8. 设二次函数y = ax² + bx + c的图象与x轴交于A、B两点,若A、B两点间的距离为10,且判别式Δ = b² - 4ac > 0,则a/b的值为_______。
9. 设U为自然数集合,函数f: U → U满足f(f(f(x)))) = 1 + x,则f(2019)的值为_______。
10. 若平面上直线y = kx + 1与曲线y = x² + 2x相切于点P,请问k的取值范围是_______。
imo数学奥林匹克历届试题
imo数学奥林匹克历届试题IMO(International Mathematical Olympiad)是国际数学奥林匹克竞赛的英文简称,是世界范围内最具影响力的数学竞赛之一。
自1959年起,IMO每年都在不同国家举办,每个国家都会派出一支由高中生组成的代表队参赛。
这场竞赛旨在挑战学生的数学智力、培养他们的创新思维和解决问题的能力。
在这篇文章中,我们将回顾IMO数学奥林匹克的历届试题,展示一些经典问题的解决方法。
1. 第一届IMO(1959年)题目:证明当n为整数时,n^2 + n + 41为素数。
解析:我们可以通过代入不同的整数n来验证这个结论。
当n=1时,结果为43,为素数;当n=2时,结果为47,同样为素数。
我们可以继续代入更多的整数,发现每次结果都是素数。
虽然这种代入法不能证明对于所有的整数n都成立,但是通过大量的例子验证,我们可以有很高的信心认为这个结论是成立的。
2. 第十届IMO(1968年)题目:证明不等式(1+1/n)^n < 3,其中n是大于1的整数。
解析:我们可以通过数学归纳法证明这个不等式。
首先,当n=2时,不等式成立:(1+1/2)^2 = 2.25 < 3。
假设当n=k时不等式成立,即(1+1/k)^k < 3。
我们需要证明当n=k+1时,不等式也成立。
通过观察(1+1/k)^k,我们可以发现随着k的增大,(1+1/k)^k的值趋近于e,其中e是自然对数的底数。
而e约等于2.71828,小于3。
因此,当n=k+1时,(1+1/(k+1))^(k+1) < (1+1/k)^k < 3。
根据数学归纳法原理,我们可以得出对于所有的n大于1的整数,不等式(1+1/n)^n < 3成立。
3. 第二十二届IMO(1981年)题目:设a、b、c是一个正数的三个边长,证明不等式(a^2 + b^2)/(a+b) + (b^2 + c^2)/(b+c) + (c^2 + a^2)/(c+a) ≥ a + b + c。
2020年IMO高中数学竞赛真题
2020年IMO高中数学竞赛真题星期一,21.九月2020 第1题.考虑凸四边形ABCD.设P是ABCD内部一点.且以下比例等式成立:∠PAD:∠PBA:∠DPA=1:2:3=∠CBP:∠BAP:∠BPC.证明:∠ADP的内角平分线、∠PCB的内角平分线和线段AB的垂直平分线三线共点.第2题.设实数a,b,c,d满足a≥b≥c≥d>0,且a+b+c+d=1.证明:(a+2b+3c+4d)a a b b c c d d<1.第3题.有4n枚小石子,重量分别为1,2,3,...,4n.每一枚小石子都染了n种颜色之一,使得每种颜色的小石子恰有四枚.证明:我们可以把这些小石子分成两堆,同时满足以下两个条件:•两堆小石子有相同的总重量;•每一堆恰有每种颜色的小石子各两枚.星期二,22.九月2020 第4题.给定整数n>1.在一座山上有n2个高度互不相同的缆车车站.有两家缆车公司A和B,各运营k辆缆车;每辆从一个车站运行到某个更高的车站(中间不停留其他车站).A公司的k辆缆车的k个起点互不相同,k个终点也互不相同,并且起点较高的缆车,它的终点也较高.B公司的缆车也满足相同的条件.我们称两个车站被某个公司连接,如果可以从其中较低的车站通过该公司的一辆或多辆缆车到达较高的车站(中间不允许在车站之间有其他移动).确定最小的正整数k,使得一定有两个车站被两个公司同时连接.第5题.有一叠n>1张卡片.在每张卡片上写有一个正整数.这叠卡片具有如下性质:其中任意两张卡片上的数的算术平均值也等于这叠卡片中某一张或几张卡片上的数的几何平均值.确定所有的n,使得可以推出这叠卡片上的数均相等?第6题.证明:存在正常数c具有如下性质:对任意整数n>1,以及平面上n个点的集合S,若S中任意两点之间的距离不小于1,则存在一条分离S的直线ℓ,使得S中的每个点到直线ℓ的距离不小于cn−1/3.(我们称直线ℓ分离点集S,如果某条以S中两点为端点的线段与ℓ相交.)注.如果证明了比cn−1/3弱的估计cn−α,会根据α>1/3的值,适当给分.。
imo中文试题及答案
imo中文试题及答案1. 请解释“对称性”在数学中的含义,并给出一个具体的例子。
答案:对称性在数学中指的是一个对象在某种变换下保持不变的性质。
例如,在几何学中,一个正方形在旋转90度后,其形状和位置与旋转前相同,因此正方形具有旋转对称性。
2. 已知函数f(x) = x^2 - 4x + 3,求f(x)的最小值。
答案:首先对函数f(x)进行配方,得到f(x) = (x-2)^2 - 1。
由于平方项(x-2)^2总是非负的,所以f(x)的最小值出现在(x-2)^2 = 0时,即x = 2。
此时f(x)的最小值为-1。
3. 请列举至少三种不同的数学证明方法。
答案:数学证明方法有很多种,以下是三种常见的方法:a) 直接证明:直接从已知条件出发,通过逻辑推理得出结论。
b) 反证法:假设结论不成立,推导出矛盾,从而证明原结论的正确性。
c) 归纳法:通过观察特定情况下的规律,归纳出一般性的结论。
4. 计算下列定积分的值:∫(0到1) (x^2 - 3x + 2) dx。
答案:首先找到被积函数的原函数,即∫(x^2 - 3x + 2) dx =(1/3)x^3 - (3/2)x^2 + 2x。
然后计算定积分:[(1/3)x^3 -(3/2)x^2 + 2x](0到1) = [(1/3)(1)^3 - (3/2)(1)^2 + 2(1)] - [(1/3)(0)^3 - (3/2)(0)^2 + 2(0)] = (1/3 - 3/2 + 2) = 1/6。
5. 证明:如果一个三角形的两边相等,则其对应的两个角也相等。
答案:设三角形ABC中,AB = AC,我们需要证明∠B = ∠C。
根据等边对等角定理,如果两边相等,则其对应的角也相等。
因此,∠B = ∠C。
国际数学奥林匹克竞赛试题及解答
国际数学奥林匹克竞赛试题及解答国际数学奥林匹克竞赛(International Mathematical Olympiad,简称IMO)是世界范围内最高水平的数学竞赛之一。
每年有来自各个国家和地区的优秀学生参加,他们在这场激烈的竞赛中展示他们的数学才能。
以下将介绍一些历年IMO试题,并为您提供解答。
2008年IMO试题:1. 证明方程 x^2 + y^2 + z^2 = 2008x + 2009y + 2010z 只有有限多个整数解。
解答:我们可以将方程改写为 (x-1004)^2 + (y-1004.5)^2 + (z-1005)^2 = 2.5^2 + 3.5^2 + 5^2。
因此,方程的解可看作是(1004, 1004.5, 1005)平移后和(2.5, 3.5, 5)放缩后的结果。
由于放缩的倍数是有限的,因此方程只有有限多个整数解。
2012年IMO试题:2. 设 a_1, a_2, ..., a_n 是 n 个正整数的序列,并且满足 a_i * a_{i+1} = a_n + a_{n-i} 对于所有的1 ≤ i ≤ n-1。
证明:n 是一个完全平方数。
解答:考虑给定的方程 a_i * a_{i+1} = a_n + a_{n-i},将其展开后整理得到a_i * (a_{i+1} - a_{n-i}) = a_n - a_{n-i}。
根据方程左右两边为整数,我们可以得到 a_{i+1} - a_{n-i} 是 a_i 的一个因子。
由于 a_1, a_2, ..., a_n 都是正整数,所以 a_{i+1} - a_{n-i} 的取值范围有限。
当 i = 1 时,我们可以推导出 a_2 - a_{n-1} 是 a_1 的因子。
同理,对于 i = 2, ..., n-1,我们可以推导出 a_{i+1} - a_{n-i} 也是a_1 的因子。
因此,a_1 的所有因子均出现在 a_2 - a_{n-1} 中。
高中数学竞赛 历届imo竞赛试题(-46届完整中文版)
第1届I M O1.求证(21n+4)/(14n+3) 对每个自然数 n都是最简分数。
2.设√(x+√(2x-1))+√(x-√(2x-1))=A,试在以下3种情况下分别求出x的实数解:(a) A=√2;(b)A=1;(c)A=2。
3.a、b、c都是实数,已知 cos x的二次方程a cos2x +b cos x +c = 0,试用a,b,c作出一个关于 cos 2x的二次方程,使它的根与原来的方程一样。
当a=4,b=2,c=-1时比较 cos x和cos 2x的方程式。
4.试作一直角三角形使其斜边为已知的 c,斜边上的中线是两直角边的几何平均值。
5.在线段AB上任意选取一点M,在AB的同一侧分别以AM、MB为底作正方形AMCD、MBEF,这两个正方形的外接圆的圆心分别是P、Q,设这两个外接圆又交于M、N,(a.) 求证 AF、BC相交于N点;(b.) 求证不论点M如何选取直线MN 都通过一定点 S;(c.) 当M在A与B之间变动时,求线断 PQ的中点的轨迹。
6.两个平面P、Q交于一线p,A为p上给定一点,C为Q上给定一点,并且这两点都不在直线p上。
试作一等腰梯形ABCD(AB平行于CD),使得它有一个内切圆,并且顶点B、D分别落在平面P和Q上。
第2届IMO1.找出所有具有下列性质的三位数 N:N能被11整除且 N/11等于N的各位数字的平方和。
2.寻找使下式成立的实数x:4x2/(1 - √(1 + 2x))2< 2x + 93.直角三角形ABC的斜边BC的长为a,将它分成 n 等份(n为奇数),令α为从A 点向中间的那一小段线段所张的锐角,从A到BC边的高长为h,求证:tan α = 4nh/(an2 - a).4.已知从A、B引出的高线长度以及从A引出的中线长,求作三角形ABC。
5.正方体ABCDA'B'C'D'(上底面ABCD,下底面A'B'C'D')。
10届imo试题及答案
10届imo试题及答案**第10届国际数学奥林匹克(IMO)试题及答案****一、第10届IMO试题****1. 几何问题**在三角形ABC中,点D和E分别位于边AB和AC上,使得AD/DB = AE/EC = 2/1。
证明:三角形ADE的外接圆与三角形ABC的外接圆的交点F(除了A)位于线段DE上。
**2. 数论问题**设n为正整数。
证明:存在一个正整数k,使得对于所有1 ≤ i≤ n,同余式x^2 ≡ i (mod k)在x上恰好有一个解。
**3. 组合问题**给定一个由n个元素组成的集合S,其中n ≥ 3。
定义一个n元素的排列p为“好”的,如果对于S中的任意两个不同的元素i和j,p中i和j之间的距离不等于i和j在S中的原始距离。
求“好”排列的最大数量。
**4. 代数问题**设f(x)是一个具有实系数的多项式,使得对于所有实数x,f(x) ≥ 0。
证明:存在一个实数a,使得对于所有实数x,f(x) ≥ f(a)。
**二、第10届IMO答案****1. 几何问题答案**要证明三角形ADE的外接圆与三角形ABC的外接圆的交点F (除了A)位于线段DE上,我们可以使用相似三角形和圆的性质。
首先,由于AD/DB = AE/EC = 2/1,我们可以得出三角形ADE与三角形ABC相似,且相似比为2:3。
设三角形ADE的外接圆与三角形ABC的外接圆的交点为F(除了A)。
由于两个圆的交点F位于两个圆上,根据圆的性质,AF是两个圆的公共弦。
接下来,我们考虑三角形ADF和三角形ACF。
由于AD/DB = AE/EC = 2/1,我们可以得出DF/FB = AE/EC = 2/1。
这意味着F是线段DB的中点。
同理,F也是线段EC的中点。
因此,F位于线段DE上。
综上所述,我们证明了三角形ADE的外接圆与三角形ABC的外接圆的交点F(除了A)位于线段DE上。
**2. 数论问题答案**要证明存在一个正整数k,使得对于所有1 ≤ i ≤ n,同余式x^2 ≡ i (mod k)在x上恰好有一个解,我们可以使用中国剩余定理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1届I M O1.求证(21n+4)/(14n+3)对每个自然数n都是最简分数。
2.设√(x+√(2x-1))+√(x-√(2x-1))=A,试在以下3种情况下分别求出x的实数解:(a)A=√2;(b)A=1;(c)A=2。
3.a、b、c都是实数,已知cosx的二次方程acos2x+bcosx+c=0,试用a,b,c作出一个关于cos2x的二次方程,使它的根与原来的方程一样。
当a=4,b=2,c=-1时比较cosx和cos2x的方程式。
4.试作一直角三角形使其斜边为已知的c,斜边上的中线是两直角边的几何平均值。
5.在线段AB上任意选取一点M,在AB的同一侧分别以AM、MB为底作正方形AMCD、MBEF,这两个正方形的外接圆的圆心分别是P、Q,设这两个外接圆又交于M、N,(a.)求证AF、BC相交于N点;(b.)求证不论点M如何选取直线MN都通过一定点S;(c.)当M在A与B之间变动时,求线断PQ的中点的轨迹。
6.两个平面P、Q交于一线p,A为p上给定一点,C为Q上给定一点,并且这两点都不在直线p上。
试作一等腰梯形ABCD(AB平行于CD),使得它有一个内切圆,并且顶点B、D分别落在平面P和Q 上。
第2届IMO1.找出所有具有下列性质的三位数N:N能被11整除且N/11等于N的各位数字的平方和。
2.寻找使下式成立的实数x:4x2/(1-√(1+2x))2<2x+93.直角三角形ABC的斜边BC的长为a,将它分成n等份(n为奇数),令为从A点向中间的那一小段线段所张的锐角,从A到BC边的高长为h,求证:tan=4nh/(an2-a).4.已知从A、B引出的高线长度以及从A引出的中线长,求作三角形ABC。
5.正方体ABCDA'B'C'D'(上底面ABCD,下底面A'B'C'D')。
X是对角线AC上任意一点,Y是B'D'上任意一点。
a.求XY中点的轨迹;b.求(a)中轨迹上的、并且还满足ZY=2XZ的点Z的轨迹。
6.一个圆锥内有一内接球,又有一圆柱体外切于此圆球,其底面落在圆锥的底面上。
令V1为圆锥的体积,V2为圆柱的体积。
(a).求证:V1不等于V2;(b).求V1/V2的最小值;并在此情况下作出圆锥顶角的一般。
7.等腰梯形ABCD,AB平行于DC,BC=AD。
令AB=a,CD=c,梯形的高为h。
X点在对称轴上并使得角BXC、AXD都是直角。
试作出所有这样的X点并计算X到两底的距离;再讨论在什么样的条件下这样的X点确实存在。
第3届IMO1.设a、b是常数,解方程组x+y+z=a;x2+y2+z2=b2;xy=z2并求出若使x、y、z是互不相同的正数,a、b应满足什么条件2.设a、b、c是某三角形的边,A是其面积,求证:a2+b2+c2>=4√3A.并求出等号何时成立。
3.解方程cos n x-sin n x=1,其中n是一个自然数。
4.P是三角形ABC内部一点,PA交BC于D,PB交AC于E,PC交AB于F,求证AP/PD,BP/PE,CP/PF 中至少有一个不大于2,也至少有一个不小于2。
5.作三角形ABC使得AC=b,AB=c,锐角AMB=,其中M是线断BC的中点。
求证这个三角形存在的充要条件是btan(/2)<=c<b.又问上式何时等号成立。
6.三个不共线的点A、B、C,平面p不平行于ABC,并且A、B、C在p的同一侧。
在p上任意取三个点A',B',C',A'',B'',C''设分别是边AA',BB',CC'的中点,O是三角形A''B''C''的重心。
问,当A',B',C'变化时,O的轨迹是什么第4届IMO1.找出具有下列各性质的最小正整数n:它的最后一位数字是6,如果把最后的6去掉并放在最前面所得到的数是原来数的4被。
2.试找出满足下列不等式的所有实数x:√(3-x)-√(x+1)>1/2.3.正方体ABCDA'B'C'D'(ABCD、A'B'C'D'分别是上下底)。
一点x沿着正方形ABCD的边界以方向ABCDA作匀速运动;一点Y以同样的速度沿着正方形B'C'CB的边界以方向B'C'CBB'运动。
点X、Y 在同一时刻分别从点A、B'开始运动。
求线断XY的中点的轨迹。
4.解方程cos2x+cos22x+cos23x=1。
5.在圆K上有三个不同的点A、B、C。
试在K上再作出一点D使得这四点所形成的四边形有一个内切圆。
6.一个等腰三角形,设R为其外接圆半径,内切圆半径为r,求证这两个圆的圆心的距离是√(R(R-2r))。
7.求证:正四面体有5个不同的球,每个球都与这六条边或其延长线相切;反过来,如果一个四面体有5个这样的球,则它必然是正四面体。
第5届IMO1.找出下列方程的所有实数根(其中p是实参数):√(x2-p)+2√(x2-1)=x.2.给定一点A及线断BC,设空间中一点P使得存在线段BC上有一点X满足角APX是直角,试求出所有这样的点P的轨迹。
3.在一个n边形中,所有内角都相等,边长依次是a1>=a2>=...>=a n,求证:所有边长都相等。
4.设y是一个参数,试找出方程组x i+x i+2=yx i+1(i=1,...,5)的所有解x1, (x5)5.求证cospi/7-cos2pi/7+cos3pi/7=1/2.6.五个同学A、B、C、D、E参加竞赛,一种猜测说比赛结果的名次依然是ABCDE。
但是实际上没有一位同学的名次被猜中,而且预测中名次相邻的同学也没有真的相邻(例如,C、D两位同学名次不是(1,2)、(2,3)、(3,4)、(4,5)中的任何一种)。
还有一种猜测说结果会是DAECB的顺序。
实际上是恰好有两个同学所得的名次与预测的一样;而且有两对同学(4个不同的同学)的名次像预测中的一样是相连。
试讨论最后的名次如何第6届IMO1.(a)求所有正整数n使得2n-1能被7整除;(b)求证不存在正整数n使得2n+1能被7整除。
2.假设a、b、c是某三角形的三边长,求证:a2(b+c-a)+b2(c+a-b)+c2(a+b-c)<=3abc.3.三角形ABC的三边长为别为a、b、c。
分别平行于ABC的各边作三角形ABC内切圆的切线,每条切线都在ABC中又切出一个小三角形,再在每个这样的小三角形中作内切圆,求这四个内切圆的面积之和(用a,b,c表示)。
4.十七个人互相通信,每一个人都和其他人写信。
在他们的信上一共讨论有三个不同的话题,每两个人只讨论一个话题,求证:这些人当中至少有三个人他们所讨论的话题是一样的。
5.平面上有五个点,任意两点的连线都不平行,也不垂直,现从每一个点向其他四点两两连接的直线作垂线,试求出所有这些垂线的交点的最大数目。
6.四面体ABCD的中心是D0,分别过A、B、C作DD0的平行线,这些线分别交平面BCD、CAD、ABD于点A0、B0、C0,求证:ABCD的体积是A0B0C0D0的三分之一;再问如果D0为三角形ABC内的任意一点,结果是否仍然成立第7届IMO1.试找出所有位于区间[0,2pi]的x使其满足2cosx≤|√(1+sin2x)-√(1-sin2x)|≤√2.2.如下方程组的系数a ij,a11x1+a12x2+a13x3=0a21x1+a22x2+a23x3=0a31x1+a32x2+a33x3=0满足:a.a11、a22、a33是正数,其余是负数;b.每个方程中的系数之和是正的。
求证:该方程组的有唯一的解x1=x2=x3=0。
3.四面体ABCD被平行于AB、CD边的一个平面分割成两部分,并且该平面到AB边的距离是该平面到CD边距离的k倍。
试求出这两部分的体积比。
4.四个实数,它们中的任何三个的乘积再加上第四个数都等于2,求出这四个数的所有可能值。
5.三角形OAB中的角O是锐角,M是边AB上任意一点,从M向OA、OB边引垂线,垂足分别为P、Q。
设三角形OPQ的垂心为,求出当M在AB边上移动时点H的轨迹;若M在三角形OAB内部移动是H的轨迹又是什么6.平面上给定了n>2个点,任何两点之间都有线断相连,这些线断长度中的最大值被定义为这个点集的直径,求证:长度为直径的线断至多有n条。
第8届IMO1.在一次数学竞赛中共有A、B、C三道题,25名参赛者每人至少答对了一题。
在所有没有答对A的学生中,答对B的人数是答对C的人数的两倍,只答对问题A的人数比既答对A又至少答对其他一题的人数多1。
又已知在所有恰好答对一题的参赛者中,有一半没有答对A。
请问有多少学生只答对B2.三角形ABC,如果,BC+AC=tanC/2(BCtanA+ACtanB).则该三角形为等腰三角形。
3.求证:从正四面体的内切圆圆心到各顶点距离之和小于从空间中任意其他点到各顶点距离之和。
4.对任何自然数n以及满足sin2n x不为0的实数x,求证:1/sin2x+1/sin4x+...+1/sin2n x=cotx-cot2n x.5.a i(i=1,2,3,4)是互不相同的实数,解方程组(i=1,2,3,4)|a i-a1|x1+|a i-a2|x2+|a i-a3|x3+|a i-a4|x4=1。
6.在三角形ABC的边BC、CA、AB上分别任选三内点K、L、M,求证三角形AML、BKM、CLK之中至少有一个的面积小于活等于三角形ABC的四分之一。
第9届IMO1.平行四边形ABCD,边长AB=a,AD=1,角BAD=A,已知三角形ABD是一个锐角三角形,求证以A,B,C,D 为圆心半径为1的四个圆能够覆盖此平行四边形的充要条件是a≤cosA+√3sinA.2.若四面体有且仅有一边大于1,求证其体积≤1/8.3.k,m,n是自然数且m+k+1是一个大于n+1的素数,令c s=s(s+1),求证(c m+1-c k)(c m+2-c k)...(c m+n-c k)可被乘积c1c2..整除。
4.任意两个锐角三角形A0B0C0和A1B1C1。
考虑所有与三角形A1B1C1相似且外接于三角形A0B0C0的所有三角形ABC(即BC边包含A0,CA边包含B0,AB边包含C0),试构造出满足此条件的面积最大的三角形ABC。
5.a1,...,a8是不全为0的实数,令c n=a1n+a2n+...+a8n(n=1,2,3,...),如果数列{c n}中有无穷多项等于0,试求出所有使c n=0的自然数n。