人教版数学高一-高一数学《函数的基本性质 奇偶性》学案
高中数学教案《函数的基本性质》
教学计划高:《函数的基本性质》一、教学目标1.知识与技能:学生能够理解并掌握函数单调性、奇偶性的定义及判断方法;能够运用函数图像理解并阐述这些性质;能够识别并解决与函数基本性质相关的简单问题。
2.过程与方法:通过观察、分析、比较等数学活动,引导学生发现函数的基本性质;通过小组讨论、合作探究等学习方式,培养学生团队协作和问题解决的能力;通过练习和实践,提高学生应用函数性质解决实际问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣和好奇心,培养学生的数学审美意识和严谨的科学态度;通过探索函数性质的过程,让学生体会数学中的对称美、和谐美,增强对数学美的感受力。
二、教学重点和难点教学重点:函数单调性、奇偶性的定义、性质及判断方法;函数图像在理解函数性质中的应用。
教学难点:理解函数单调性、奇偶性的本质,能够灵活运用这些性质解决问题;通过函数图像准确判断函数的性质。
三、教学过程1. 引入新课(约5分钟)情境导入:通过生活中的实例(如气温变化、股票价格波动等)引出函数的概念,让学生感受到函数在生活中的广泛应用。
提出问题:设问“这些函数有哪些共同的特点或性质?”引导学生思考并引出函数的基本性质——单调性和奇偶性。
明确目标:介绍本节课的学习目标,即掌握函数单调性、奇偶性的定义、性质及判断方法,并能够通过函数图像理解这些性质。
2. 讲授新知(约15分钟)定义讲解:详细讲解函数单调性(增函数、减函数)和奇偶性(奇函数、偶函数)的定义,结合实例帮助学生理解。
性质阐述:阐述函数单调性和奇偶性的基本性质,如单调函数的图像特征、奇偶函数的图像对称性等。
示例分析:通过具体函数示例(如一次函数、二次函数、反比例函数等),分析它们的单调性和奇偶性,加深学生的理解。
3. 观察探究(约10分钟)图像观察:利用多媒体展示不同函数的图像,引导学生观察图像的特点,尝试从图像中判断函数的单调性和奇偶性。
小组讨论:组织学生进行小组讨论,分享各自观察到的图像特征和判断结果,相互纠正错误,共同探究函数性质的图像表示方法。
3.1.3 高中必修一数学教案《函数的奇偶性》
高中必修一数学教案《函数的奇偶性》教材分析函数的奇偶性是高中数学必修一人教版B版第三章第一单元第三节的内容,是函数的一条重要性质。
教材从学生熟知的函数入手,结合初中学生已经学习过的轴对称和中心对称,感受奇函数和偶函数的图象特征,从特殊到一般,从具体到抽象,注重信息技术的应用,比较系统地学习函数的奇偶性。
从知识结构上而言,奇偶性既是函数概念的拓展和深化,又是后续研究基本初等函数的基础,起着承上启下的作用。
学情分析从学生的认知基础来看,学生在初中已经学习了轴对称图形和中心对称图形,并且有了一定数量的简单函数的储备。
同时,学生刚刚学习了函数的单调性,已经积累了研究函数的基本方法与初步经验。
从学生的思维发展来看,高一学生的思维能力正在由形象经验型向抽象理论型转变,能够用假设、推理来思考和解决问题。
教学目标1、理解函数奇偶性的概念和图像特征,能判断一些简单函数的奇偶性。
2、经历奇偶性概念的形成过程,提高观察抽象能力以及从特殊到一般的归纳概括能力。
3、通过自主探索,体会数形结合的思想,感受数学的对称美;通过分组讨论,培养合作交流的精神,学会认识事物的特殊性与一般性之间的关系,培养学生善于探索的思维品质。
教学重点函数奇偶性的概念及其建立过程,判断函数的奇偶性。
教学难点对函数奇偶性的概念理解与认识。
教学方法讲授法、讨论法、练习法教学过程一、复习导入初中时我们学习过有关轴对称和中心对称的知识,而且已经知道,在平面直角坐标系中,点(x,y)关于y轴的对称点为(-x,y),关于原点的对称点为(-x,-y)。
例如,(-2,3)关于y轴的对称点(2,3),关于原点的对称点(2,-3)二、学习新知1、偶函数填写下表,观察指定函数的自变量x互为相反数时,函数值之间具有什么关系,并分别说出函数图象应具有的特征。
不难发现,上述两个函数,当自变量取为相反数的两个值x和-x,对应的函数值相等。
f(-x)= (-x)2 = x2 = f(x)g(-x)= 1|−x| = 1|x|= g(x)一般地,设函数y = f(x)的定义域为D,如果对D内的任意一个x,都有-x∈D,且f(-x)= f(x)则称y = f(x)为偶函数。
人教版高中数学《函数的基本性质》优质教案
2.1函数的基本性质一、教学目标1.结合具体函数,了解函数单调性的含义;2.会运用函数奇偶性的定义和函数的图象理解研究函数的奇偶性;3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性.二、教学重点1.回顾和理解函数的三大性质单调性、奇偶性以及周期性基础知识,掌握其概念的应用,一般是判断单调性、求参数或求值;2.掌握运用基础知识处理函数性质的综合应用题的解题思路. 其中奇偶性多与单调性相结合,而周期性常与抽象函数相结合,并以结合奇偶性求函数值为主.三、教学难点掌握周期性与抽象函数结合类的题型.高考对函数周期性的考查,常与抽象函数结合,题型主要以选择题或填空的形式出现,常涉及函数求值问题,且与函数的单调性、奇偶性相结合命题.四、教学过程(一)考情解读设计意图:对2016年广东开始高考卷之后的全国卷类型题进行整合,以表格形式呈现,一目了然,分析可得函数的基本性质是高考的常考内容,题型一般为选择填空,占分一般为5-10分.紧接着分析考点内容,明确复习方向.(二)知识梳理设计意图:对函数的单调性、奇偶性、周期性的定义、图像特点等进行梳理,把重点内容标红,并进行相应讲解,为后面的题型讲解奠定知识基础.1.单调函数的定义及几何意义2.函数的最值3.函数的奇偶性4.周期性(三)典例分析题型一:函数的单调性设计意图:精选了两道单调性的题目作为例题,例1为简单地应用单调性定义及函数图像特征判断单调性的题目,通过此题老师可带领学生总结判断函数单调性的方法:定义法、图像法等;例2为已知分段函数单调性求参数范围的题目,通过此题巩固应用单调性求参数、不等式等题型.【例1】(2021·全国甲卷)下列函数中是增函数的为()A .()f x x =-B .()23x f x ⎛⎫= ⎪⎝⎭C .()2f x x =D .()f x 【例2】已知函数()()2313,11,1a x a x f x x x ⎧-+<=⎨-+≥⎩在R 上单调递减,则实数a 的取值范围是( )A .11,63⎛⎫ ⎪⎝⎭B .11,63⎡⎫⎪⎢⎣⎭C .1,3⎛⎫-∞ ⎪⎝⎭D .11,,63⎛⎤⎛⎫-∞+∞ ⎪⎥⎝⎦⎝⎭ 题型二:函数的奇偶性设计意图:精选了两道奇偶性的题目作为例题,例1为简单地应用奇偶性定义求参数的题目,通过此题老师可带领学生巩固奇偶性的定义及图像特征;例2为奇偶性与分段函数结合的题目,但只要把握奇偶性的定义,可很快解决,通过此题再次强化奇偶性相关知识.【例1】(2021·全国Ⅰ卷)已知函数()()322x x x a f x -=⋅-是偶函数,则a =______.【例2】(2019·全国Ⅰ卷)设f (x )为奇函数,且当x ≥0时,f (x )=e 1x -,则当x <0时,f (x )=A .e 1x --B .e 1x -+C .e 1x ---D .e 1x --+题型三:函数的周期性设计意图:由于周期性一般与抽象函数及奇偶性相结合,题目比较综合.这里选取了一道直接利用周期性定义进行求值的题目,教师通过此题引导学生回顾求值由内到外的原则及分段函数求值的相关知识,巩固周期性的定义,为下一题型综合题奠定基础.【例1】(2018·江苏卷)函数()f x 满足()()()4f x f x x +=∈R ,且在区间(]2,2-上,()πcos ,02,21,20,2x x f x x x ⎧<≤⎪⎪=⎨⎪+-<≤⎪⎩则()()15f f 的值为________. 题型四:函数性质的综合应用设计意图:精选了两道函数性质的综合应用的题型.例1为单调性与奇偶性相结合解不等式 的相关问题,教师可引导学生将此类已知单调性和奇偶性的抽象函数问题具体化画图来思考,紧紧扣住定义解题.例2为奇偶性与周期性相结合求值的题,通过此题再次巩固奇偶性和周期性的定义,将题目已知条件转化为熟悉的定义再去解题.()2017(,)(1)11(2)1A.[2,2] B.[1,1] C.[0,4] D.[1,3]f x f f x x ⋅-∞+∞ =- -- --【例1】(全国Ⅰ卷)函数在单调递减,且为奇函数,若,则满足的的取值范围是()≤≤ ()(,)(1)(1).(1)2(1)(2)(3)(502018A.50 B.0 C.2 D.0)5f x f x f f f f f f x -∞+∞ -=+=++++= ⋅-若,则…(【例2】(全国Ⅱ卷)已知是定义域为的奇函数,满足)(四)巩固练习设计意图:精选了三道题作为练习题.第一题考查单调性的判断和奇偶性定义,再次巩固函数基本性质的概念,为基础题.第二题为单调性与奇偶性相结合解不等式的相关问题,巩固数形结合思想.第三题为奇偶性和周期性相结合求值的题,为自编题,难度系数不高,巩固学生对周期性和奇偶性的概念理解,提高信心.1.(2020·全国Ⅰ卷)设函数()331f x x x =-,则()f x ( )A .是奇函数,且在()0,+∞单调递增B .是奇函数,且在()0,+∞单调递减C .是偶函数,且在()0,+∞单调递增D .是偶函数,且在()0,+∞单调递减2.(2014·全国Ⅰ卷)已知偶函数f x ()在[0,)+∞单调递减,f (2)0=.若f x >(-1)0,则x 的取值范围是__________.()()()()()3R ,R,4,22,2022=A.2022 B.2 C.2022 D.2f x x f x f x f f ∈ +=-= --.已知函数是上的奇函数对任意都有若则()(五)总结提升设计意图:制作了本节课的思维导图,引导同学们再次巩固函数基本性质高考重点考查的题型及其对应方法.五、作业设计设计意图:作业选取了两道单选题,一道多选题,四道填空题.题一考查单调性判断和奇偶性定义;题二考查奇偶性的定义,深化概念;题三考查单调性解不等式,为单调性的应用类题;题四考查奇偶性应用求解析式;题五考查偶函数的定义,跟2021出现的题目非常相像,说明研究高考题的重要性,值得深思;题六考查周期性的定义,为周期性和奇偶性的简单综合题;题七需要将题目所给等式经过化简才能变为周期性的定义的模式,进一步深化周期性与奇偶性的概念及其应用.。
人教版高一数学《函数奇偶性》教案
人教版高一数学《函数奇偶性》教案指对数的运算一、反思数学符号:“”“”出现的背景1.数学总是在不断的发明创造中去解决所遇到的问题。
2.方程的根是多少?;①.这样的数存在却无法写出来?怎么办呢?你怎样向别人介绍一个人?描述出来。
②..那么这个写不出来的数是一个什么样的数呢?怎样描述呢?①我们发明了新的公认符号“”作为这样数的“标志”的形式.即是一个平方等于三的数.②推广: 则.③后又常用另一种形式分数指数幂形式3.方程的根又是多少?①也存在却无法写出来??同样也发明了新的公认符号“”专门作为这样数的标志,的形式.即是一个2为底结果等于3的数.②推广: 则.二、指对数运算法则及性质:1.幂的有关概念:(1)正整数指数幂: = ( ). (2)零指数幂: ).(3)负整数指数幂: (4)正分数指数幂:(5)负分数指数幂: ( 6 )0的正分数指数幂等于0,负分指数幂没意义. 2.根式:(1)如果一个数的n次方等于a, 那么这个数叫做a的n次方根.如果,那么x叫做a的次方根,则x= (2)0的任何次方根都是0,记作. (3) 式子叫做根式,n叫做根指数,a叫做被开方数.(4) . (5)当n为奇数时, = . (6)当n为偶数时, = = .3.指数幂的运算法则:(1) = . (2) = . 3) = .4) = .二.对数1.对数的定义:如果,那么数b叫做以a为底n的对数,记作,其中a叫做, 叫做真数.2.特殊对数:(1) = ; (2) = . (其中3.对数的换底公式及对数恒等式(1) = (对数恒等式). (2) ; (3) ; (4) .(5) = (6) = .(7) = .(8) = ; (9) = 共3页,当前第1页123(10)三、经典体验:1.化简根式: ;;;2.解方程:; ; ;;3.化简求值:;4.【徐州六县一区09-10高一期中】16. 求函数的定义域。
四、经典例题例:1画出函数草图: .练习:1. “等式log3x2=2成立”是“等式log3x=1成立”的▲.必要不充分条件例:2. 若则▲.练习:1. 已知函数求的值▲..例3:函数f(x)=lg( )是(奇、偶)函数。
人教版高中数学必修一《函数的单调性和奇偶性》教学设计
函数的单调性与奇偶性(教学设计)《函数的单调性与奇偶性》教材分析《函数的单调性与奇偶性》系人教版高中数学必修一的内容,该内容包括函数的单调性与奇偶性的定义与判断及其证明。
在初中学习函数时,借助图像的y直观性研究了一些函数的增减性.这节内容是初中有关内容的深化、延伸和提高.这节通过对具体函数图像的归纳和抽象,概括出函数在某个区间上是增函数或减函数的准确含义,明确指出函数的增减性是相对于某个区间来说的.教材中判断函数的增减性,既有从图像上进行观察的直观方法,又有根据其定义进行逻辑推理的严格方法,最后将两种方法统一起来,形成根据观察图像得出猜想结论,进而用推理证明猜想的体系.函数的单调性是函数众多性质中的重要性质之一,函数的单调性一节中的知识是前一节内容函数的概念和图像知识的延续,它和后面的函数奇偶性,合称为函数的简单性质,是今后研究指数函数、对数函数、幂函数及其他函数单调性的理论基础;在解决函数值域、定义域、不等式、比较两数大小等具体问题中均需用到函数的单调性;同时在这一节中利用函数图象来研究函数性质的数形结合思想将贯穿于我们整个高中数学教学。
《函数的单调性与奇偶性》课标分析在初中学习函数时,借助图像的y直观性研究了一些函数的增减性.这节内容是初中有关内容的深化、延伸和提高.这节通过对具体函数图像的归纳和抽象,概括出函数在某个区间上是增函数或减函数的准确含义,明确指出函数的增减性是相对于某个区间来说的.教材中判断函数的增减性,既有从图像上进行观察的直观方法,又有根据其定义进行逻辑推理的严格方法,最后将两种方法统一起来,形成根据观察图像得出猜想结论,进而用推理证明猜想的体系.函数的单调性是函数众多性质中的重要性质之一,函数的单调性一节中的知识是前一节内容函数的概念和图像知识的延续,它和后面的函数奇偶性,合称为函数的简单性质,是今后研究指数函数、对数函数、幂函数及其他函数单调性的理论基础;在解决函数值域、定义域、不等式、比较两数大小等具体问题中均需用到函数的单调性;同时在这一节中利用函数图象来研究函数性质的数形结合思想将贯穿于我们整个高中数学教学。
高一数学上册《函数的基本性质》教案、教学设计
3.学生在小组合作学习中的参与度有待提高。教师应关注学生的个体差异,调动每个学生的积极性,使他们在合作交流中发挥自己的优势,共同进步。
4.学生对于数学知识在实际生活中的应用认识不足,教师可通过引入实际问题,让学生体会数学知识的价值,激发学生学习数学的兴趣。
6.教学评价,关注成长
在教学过程中,教师应关注学生的成长和发展,采用多元化的评价方式,如课堂表现、作业完成情况、小组合作交流等,全面评估学生的学习效果。
7.创设互动氛围,激发学生学习兴趣
8.融入信息技术,提高教学质量
利用多媒体、网络等信息技术手段,丰富教学资源,提高教学质量。如通过数学软件绘制函数图像,让学生更直观地感受函数性质。
3.结合所学函数性质,尝试解决以下拓展性问题:
(1)已知函数f(x) = x^3 - 6x^2 + 9x + 1,判断其奇偶性,并求单调区间。
(2)已知函数g(x) = 3cos(2x) + 4sin(x),求最小正周期及一个周期内的单调区间。
4.请同学们预习下一节课内容,了解函数的极值及其在实际问题中的应用。
3.鼓励学生积极参与课堂讨论,勇于表达自己的观点,培养学生自信、勇敢的品质。
4.通过解决实际问题,让学生认识到数学知识在生活中的重要作用,增强学生应用数学知识解决实际问题的意识,提高学生的社会责任感。
在本章节的教学过程中,教师应以学生为主体,关注学生的个体差异,充分调动学生的积极性、主动性和创造性。通过讲解、示范、讨论等多种教学手段,使学生在掌握函数基本性质的基础上,提高自身的数学素养和综合素质。同时,注重培养学生的团队合作精神,使其在合作交流中相互学习、共同成长。
高中数学教案《函数的奇偶性
高中数学教案《函数的奇偶性》章节一:函数奇偶性的概念引入教学目标:1. 理解函数奇偶性的概念;2. 学会判断函数的奇偶性;3. 掌握函数奇偶性的性质。
教学内容:1. 引入奇偶性的概念;2. 举例说明奇偶性的判断方法;3. 总结奇偶性的性质。
教学步骤:1. 引入奇偶性的概念,让学生思考日常生活中遇到的奇偶性例子;2. 给出函数奇偶性的定义,解释奇偶性的判断方法;3. 通过具体例子,让学生学会判断函数的奇偶性;4. 引导学生总结奇偶性的性质。
教学评估:1. 课堂提问,了解学生对奇偶性概念的理解程度;2. 布置练习题,让学生运用奇偶性的判断方法。
章节二:奇函数和偶函数的性质教学目标:1. 理解奇函数和偶函数的性质;2. 学会运用奇偶性解决实际问题。
教学内容:1. 介绍奇函数和偶函数的性质;2. 举例说明奇偶性在实际问题中的应用。
教学步骤:1. 回顾奇偶性的概念,引导学生理解奇函数和偶函数的性质;2. 通过具体例子,让学生学会运用奇偶性解决实际问题;3. 总结奇偶性在实际问题中的应用。
教学评估:1. 课堂提问,了解学生对奇偶性性质的理解程度;2. 布置练习题,让学生运用奇偶性解决实际问题。
章节三:函数奇偶性的判定定理教学目标:1. 理解函数奇偶性的判定定理;2. 学会运用判定定理判断函数的奇偶性。
教学内容:1. 介绍函数奇偶性的判定定理;2. 举例说明判定定理的运用方法。
教学步骤:1. 引导学生理解函数奇偶性的判定定理;2. 通过具体例子,让学生学会运用判定定理判断函数的奇偶性;3. 总结判定定理的运用方法。
教学评估:1. 课堂提问,了解学生对判定定理的理解程度;2. 布置练习题,让学生运用判定定理判断函数的奇偶性。
章节四:函数奇偶性在实际问题中的应用教学目标:1. 理解函数奇偶性在实际问题中的应用;2. 学会运用奇偶性解决实际问题。
教学内容:1. 介绍函数奇偶性在实际问题中的应用;2. 举例说明奇偶性在实际问题中的解决方法。
高一数学教案函数的奇偶性5篇
高一数学教案函数的奇偶性5篇使学生从形与数两方面理解函数单调性的概念,学会利用函数图像理解和研究函数的性质,初步掌握利用函数图象和单调性定义判断、证明函数奇偶性的方法.高一数学教案函数的奇偶性1一、内容与解析 (一)内容:基本初等函数习题课(一)。
(二)解析:对数函数的性质的掌握,要先根据其图像来分析与记忆,这样更形像更直观,这是学习图像与性质的基本方法,在此基础上,我们要对对数函数的两种情况的性质做一个比较,使之更好的'掌握.二、目标及其解析:(一)教学目标(1)掌握指数函数、对数函数的概念,会作指数函数、对数函数的图象,并能根据图象说出指数函数、对数函数的性质,了解五个幂函数的图象及性质及其奇偶性.(二)解析(1)基本初等函数的学习重要是学习其性质,要掌握好性质,从图像上来理解与掌握是一个很有效的办法.(2)每类基本初类函数的性质差别比较大,学习时要有一个有效的区分.三、问题诊断分析在本节课的教学中,学生可能遇到的问题是不易区分各函数的图像与性质,不容易抓住其各自的特点。
四、教学支持条件分析在本节课一次递推的教学中,准备使用P5高一数学教案函数的奇偶性2【教学目标】【知识目标】:使学生从形与数两方面理解函数单调性的概念,学会利用函数图像理解和研究函数的性质,初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法.【能力目标】通过对函数单调性定义的探究,渗透数形结合数学思想方法,培养学生观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力.【德育目标】通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯,让学生经历从具体到抽象,从特殊到一般,从感性到理性的认知过程. 【教学重点】函数单调性的概念、判断及证明. 函数的单调性是学生第一次接触用严格的逻辑语言证明函数的性质,并在今后解决初等函数的性质、求函数的值域、不等式及比较两个数的大小等方面有广泛的实际应用,【教学难点】归纳抽象函数单调性的定义以及根据定义证明函数的单调性. 由于判断或证明函数的单调性,常常要综合运用一些知识(如不等式、因式分解、配方及数形结合的思想方法等)所以判断或证明函数的单调性是本节课的难点.【教材分析】函数的单调性是函数的重要性质之一,它把自变量的变化方向和函数值的变化方向定性的联系在一起,所以本节课在教材中的作用如下 (1)函数的单调性起着承前启后的作用。
高一年级数学人教版必修一3.2.2函数的奇偶性教案
高一年级人教版必修一3.2.2函数的奇偶性教案年级:高一年级版本:人教版模块:必修一【教材分析】在“函数的奇偶性”这一节中,“数”与“形”有着密切的联系。
它既是函数概念的拓展和深化,是继函数单调性后的又一个重要性质,又是后续研究指数函数、对数函数、幂函数、三角函数等函数的必备知识。
因此本节课起着承上启下的重要作用。
奇偶性的教学无论在知识上还是在能力上对学生的教育起着非常重要的作用。
【核心素质培养目标】1.结合具体函数的图像和解析式,深刻理解奇函数、偶函数的定义。
2.通过画图,分析图像了解奇函数、偶函数图象的特征,培养直观想象核心素养。
3.通过例题学习,归纳并掌握判断(证明)函数奇偶性的方法,培养逻辑推理核心素养。
【教学重难点】教学重点:函数奇偶性的概念及函数奇偶性的判定教学难点:判断函数奇偶性的方法与格式【教学方法】师生共同探究,从代数的角度来严格推证。
【教学过程】一、情景引入,提出问题对称美是大自然的一种美,对称美在数学中随处可见,今天我们学习数学中的对称美。
师:复习函数的三要素和三种表示法。
生:三要素是:定义域、值域、对应关系;三种表示方法是:解析法、图象法、列表法。
师:结合的三要素和三种表示方法想一想(1)这个函数图象有什么特征?生:答定义域关于原点对称且图像关于y轴对称。
(2)当自变量x取一对相反数时,相应的两个函数值什么关系?生:从函数值对应表可以看到,当自变量x取一对相反数时,相应的两个函数值相等。
(3)你能尝试用函数解析式描述图象的对称特征吗?生:对于定义域内任意一个x,都有f(-x)=f(x)。
师:这时我们称f(x)=x2为偶函数,设计意图:启发学生由图象获取函数性质的直观认识,从而引入新课。
二、获取新知,生成概念(板书)偶函数:一般地,如果对于函数f(x)的定义域内的任意一个x都有f(-x)=f(x),那么函数f(x)就叫做偶函数。
师:研究函数优先考虑定义域,把f(x)=x2定义域改成(0,+∞),仍然是偶函数吗?生:不是师:判断函数是偶函数的前提什么?生:函数的定义域关于原点对称。
高中数学必修一《函数的奇偶性》教案
函数的奇偶性和平中学朱飞鸽教学目标:1、学习函数奇偶性的概念;2、利用定义判断简单函数的奇偶性3、培养学生观察和归纳的能力,培养学生勇于探索创新的精神。
教学重点:函数的奇偶性及其建立过程,判断函数的奇偶性方法与格式教学难点:对函数奇偶性概念的理解与认识教学过程:一、新课引入1、智力测验题:现有10枚硬币,摆成一个等边三角形,试只移动其中的3枚使三角形的方向改变。
引导学生寻找其中的原因和规律:由于中间部分是个正六边形,即是个中心对称图形,而等边三角形的三个顶点恰在相间的三条边上,所以只需移动这三枚硬币到另三条边上即可改变方向;而且我们把它看成一个轴对称图形也可解决问题。
小结:由此可见该智力题的解决关键是我们把握了图形的对称性,而实际生活中对称性的应用远非仅仅解决智力题,它在许多地方起着极其重要的作用,例如:火箭为保持飞行方向和飞行平稳,尾翼称中心对称设计;汽车为易于驾驶设计成轴对称等等。
2美丽的蝴蝶,盛开的鲜花,我们学校刚刚落成的综合大楼,它们都具有对称的美。
对称也是函数图象的一个重要特征,通过图象的对称进而得到函数(函数值变化)的一个重要性质。
今天,让我们开启知识的大门,进入更精彩纷呈的函数奇偶性的学习。
(板书课题)二、新课讲述请同学们观察图像填写下表学生填表、观察、函数2)(x x f =的图象,并注意观察分析随自变量的改变函数值间的变化特征。
让学生叙述自己(对函数值间的变化特征)的发现:),2()2(),1()1(f f f f =-=-适时引入课件,加深印象。
(板书概念)一般地,对于函数)(x f ,如果对于函数定义域内任意一个x ,都有)()(x f x f =-,那么函数)(x f 就叫做偶函数。
再注意观察x x g 1)(=的图象,显然xx g 1)(=不是偶函数,那么它随自变量的改变函数值间存在怎样的变化规律呢?引入课件,加深印象。
引导学生利用类比的方法得出结论,并试述概念。
(由教师板书概念)一般地,对于函数)(x f ,如果对于函数定义域内任意一个x ,都有)()(x f x f -=-,那么函数)(x f 就叫做奇函数。
人教课标版高中数学必修一《函数的奇偶性》教案-新版
1.3 第三课时 函数的奇偶性一、教学目标(一)核心素养函数的奇偶性从图形观察开始,发现图象典型特征,猜想出相关结论,通过数据验证,给出证明全过程,最后生成概念.这一过程包含了发现、猜想、证明的数学思维方式,也培育了学生数学抽象、直观想象、逻辑推理、数据分析等数学核心素养.(二)学习目标1.了解奇函数、偶函数的定义2. 运用奇偶性的定义判断一些简单函数的奇偶性3. 结合函数单调性,解决函数的综合问题(三)学习重点1.理解奇函数、偶函数的概念2. 判断函数的奇偶性(四)学习难点函数奇偶性的应用二、教学设计(一)课前设计1.预习任务(1)偶函数:一般地,如果对于函数()f x 的定义域内____一个x ,都有_______,那么函数()f x 就叫做偶函数.(2)奇函数:一般地,如果对于函数()f x 的定义域内____一个x ,都有_______,那么函数()f x 就叫做奇函数.详解:(1)任意,()()f x f x =-;(2)任意,()()f x f x =--2.预习自测(1)作函数,y x y x ==的图象,初步判断函数为奇函数还是偶函数.详解:由图象初步判断y x =为偶函数,y x =为奇函数(二)课堂设计1.知识回顾(1)函数的定义(2)函数的单调性2.问题探究探究一偶函数、奇函数的概念生成=图象,探求对称关系本质●活动①观察函数2y x=,y x师:同学初中数学学习过图形的对称关系,请说出上图的对称关系=函数图象关于y轴对称.生:2y x=,y x=图象的对称关系?师:如何验证2=,y xy x生:可以把图象画在一张白纸上,沿着y轴对折,y轴两边的图象重合.师:作图会有误差的情况出现,有更严谨的验证方法吗?(提示点的坐标)生:可以在图象上取若干个点来验证.师:图象是由点构成的,研究图象对称关系,其实质是研究点的坐标对应关系.因此,我们在图象上取点验证,就涉及到以下几个问题:第一,如何取点?不妨先取部分特殊点(整数点方便计算):我们由函数解析式,取x为整数时,计算相应y的值,对应整数点(,)x y在图象中的位置进行观察.2y x=:(-1,1),(-2,4),(-3,9),(0,0),(1,1),(2,4),(3,9)=:(-1,1),(-2,2),(-3,3),(0,0),(1,1),(2,2),(3,3)如下表:y x可以发现:(,)x y为坐标的整数点位于函数图象上,且这些整数点在图象上的位置是关于y轴对称.第二,如何验证?这些整数点关于y 轴对称,从“形”上观察:对折后“重合”,即点与点对折后合为一个点.因此在坐标系中这些点不是孤立的,是成对出现的,而且它们的相对位置“远近高低”相同一致.“远近”相同,是指点与y 轴的距离,即横坐标的绝对值x 相等.“高低”一致,高度相等,是指点与x 轴的距离,即纵坐标的绝对值y 相等.从“数”上分析:由表中数据,“远近”相同时,相应整数点横坐标是互为相反数;“高低”一致时,相应整数点纵坐标是相等的.第三,严谨性.刚才我们对部分整数点进行了验证,由特殊到一般的思想,我们可以验证:在图象上任取一点(,)A A A x y 时,图象上有一个点(,)B B B x y 与之对应,当AB 两点的坐标满足0A B x x +=且A B y y =时,它们对折之后才能重合.由A 的任意性,确定了相对应点B 的任意性,只有这样我们才能说整个函数图象关于y 轴对称.当AB 两点投影到x 轴时,,A B x x 的取值范围就是函数的定义域,其相互制约关系0A B x x +=,也说明了定义域也有对称关系,即定义域关于原点对称.师:由以上探究发现,函数图象对称关系的本质,是由点的坐标数量关系决定的.若我们在图象上任意取两个点AB ,若它们的坐标满足0A B x x +=且A B y y =(两点任意、横相反、纵相等),就可以说该图象关于y 轴对称,我们称这类函数为偶函数.【设计意图】图象的对称实质的研究,让学生更深层次体会函数图象与数量关系的本质联系,进一步加深了函数对应关系这一核心思想的理解.●活动② 偶函数概念的生成师:按照函数图象对称关系的本质,是由点的坐标数量关系决定的思想,及“两点任意、横相反、纵相等”的原则,能否定义偶函数.生:图象关于y 轴对称的函数为偶函数.师:函数以定义域优先的原则,从数量关系上定义更严谨,参考函数单调性的定义. 生:一般地,函数()y f x =,定义域内任取12,x x ,满足120x x +=且12()()f x f x =时,称()y f x =为偶函数.师:这位同学抓住了“两点任意、横相反、纵相等”的原则,我们在此基础上进行提炼,“任取12,x x 满足120x x +=”可以变形为12x x =-.可把这个关系简化为“x 与x -”,因此我们如下定义偶函数:一般地,函数()y f x =定义域I ,x I ∀∈(x I -∈)都有()()f x f x =-时,那么称()y f x =为偶函数.师:若()y f x =为偶函数,图象满足哪些性质呢?对应到函数的定义域呢? 生:图象关于y 轴对称.函数的定义域关于(0,0)O 对称.师:这样说可以吗?(1)偶函数图象关于y 轴对称.(2)图象关于y 轴对称的函数是偶函数.(3)偶函数的定义域关于(0,0)O 对称.(4)定义域关于(0,0)O 对称的函数是偶函数.生:(1)由定义是正确的;(2)是定义推导的起源是正确的;(3)由图象在x 轴投影的对应关系,或由定义“两点任意、横相反”知,是正确的;(4)函数()f x x =,定义域R 关于原点对称,图象不关于y 轴对称,不正确.【设计意图】图象的对称关系的实质探究,让学生从“形”定性的认识,到 “数”的定量分析;研究图象,就研究其构成元素所有点的坐标关系,由特殊点再到任意点,由函数对应关系的本质,深入到定义域,值域层面研究.整个探究过程由外到内、由形到数、由整体到局部、由特殊到一般的思想,体现了数学概念生成过程趣味横生. ●活动③奇函数的概念生成师:由(4)知,并不是所有的函数都是偶函数,偶函数只是众多函数中较典型的一类.请同学们观察函数y x =,1y x=图象,完成下面两个函数值对应表.师:请观察y x =,1y x =图象,及函数值对应表特征,上图有何对称关系?如何验证?生:y x =,1y x=图象关于原点成中心对称关系,函数图象整体围绕着(0,0)O 旋转0180与原图象重合.师:由上面的推导,函数图象对称关系的本质,是由点的坐标数量关系决定的.同学们能总结关于图象关于原点对称的本质关系吗?生:在图象上任取一点(,)A A A x y 时,图象上有一个点(,)B B B x y 与之对应,当AB 两点的坐标满足0A B x x +=且0A B y y +=时,它们对折之后才能重合.由点A 的任意性,确定了相对应点B 的任意性,只有这样我们才能说整个函数图象关于原点对称.当AB 两点投影到x 轴时,,A B x x 的取值范围就是函数的定义域,其相互制约关系0A B x x +=,也说明了定义域也有对称关系,即定义域关于原点对称,0A B y y +=也说明了值域也有对称关系,即值域关于原点对称.师:我们在图象上任意取两个点AB ,若它们的坐标满足0A B x x +=且0A B y y +=(两点任意、横相反、纵相反),就可以说该图象关于原点对称,我们称这类函数为奇函数.师:由偶函数定义,及“两点任意、横相反、纵相反”的原则,能否定义奇函数.生:一般地,函数()y f x =定义域I ,x I ∀∈(x I -∈)都有()()(()()0)f x f x f x f x -=-+-=时,那么称()y f x =为奇函数.师:若()y f x =为奇函数,图象满足哪些性质呢?对应到函数的定义域呢? 生:图象关于原点对称.函数的定义域关于原点对称.师:这样说可以吗?(1)奇函数图象关于原点对称(2)图象关于原点对称的函数是奇函数(3)奇函数的定义域关于原点对称(4)定义域关于原点对称的函数是奇函数生:(1)由定义是正确的;(2)是定义推导的起源是正确的;(3)由图象在x 轴投影的对应关系,或由定义“两点任意、横相反”知,是正确的;(4)也可能是偶函数,不正确.师:我们对偶函数、奇函数的定义作了介绍,我们称函数的这类性质为奇偶性.奇偶性是一部分函数的性质,因此我们在判断函数是否奇偶性?第一,图象法.可以从图象特征观察:若图像关于y 轴对称,我们称之为偶函数,否则该函数不是偶函数;若图像关于原点对称,我们称之为奇函数,否则该函数不是偶函数;因此,从奇偶性的角度可以将函数分类:奇函数、偶函数、既是奇函数又是偶函数、既不是奇函数又不是偶函数(简称非奇非偶函数).第二,定义法.也可以从数量特征观察:首先判定函数定义域是否关于原点对称, 若不对称,则该函数为非奇非偶函数;若对称,再判断()f x 与()f x -关系:如果()()f x f x =-,则该函数为偶函数.如果()()0f x f x +-=,则该函数为奇函数.【设计意图】偶函数的概念生成,为奇函数的概念引入奠定了基础,有共同的思维方式,也有不同的内在体现,让学生对函数奇偶性的概念生成过程,及本质内涵有更深的理解.探究二:函数奇偶性的判断.●活动①定义法判断函数奇偶性.例1 判断下列函数的奇偶性,并说明理由.(1)()f x =(2)1()1f x x =- 【知识点】函数奇偶性【数学思想】【解题过程】解:(1)()f x ={}1不关于原点对称. ()f x ∴为非奇非偶函数(2)1()1f x x =-函数的定义域(,1)(1,1)(1,)-∞-⋃-⋃+∞关于原点对称. 11()()11f x f x x x -===--- ()f x ∴为偶函数 【思路点拨】由定义法判断【答案】(1)非奇非偶函数;(2)偶函数同类训练:判断下列函数的奇偶性,并说明理由.(1)1()1f x x =-(2)()f x = 【知识点】函数奇偶性【数学思想】【解题过程】解:(1)1()1f x x =-函数的定义域(,1)(1,)-∞⋃+∞不关于原点对称 ()f x ∴为非奇非偶函数(2)()f x =函数的定义域{1}{1}-⋃关于原点对称()()f x f x -=== ()f x ∴为偶函数【思路点拨】定义法灵活运用【答案】(1)非奇非偶函数;(2)偶函数【设计意图】让学生明确定义法判断函数奇偶性的步骤.●活动②定义法、图象法判断函数奇偶性.例2:判断函数(1),0()(1),0x x x f x x x x -<⎧=⎨+>⎩的奇偶性 【知识点】分段函数奇偶性【数学思想】化归思想、数形结合思想【解题过程】解:(1),0()(1),0x x x f x x x x -<⎧=⎨+>⎩的定义域(,0)(0,)-∞⋃+∞关于原点对称.当0x >时,0x -<()()[1()](1)()(0)f x x x x x f x x ∴=---=-+=->当0x <时,0x ->()()[1()](1)()(0)f x x x x x f x x ∴=-+-=--=-<综上所述,()()f x f x -=-,()f x 奇函数.【思路点拨】定义法、用图象法【答案】奇函数同类训练 判断函数2223,0()23,0x x x f x x x x ⎧-+<=⎨--->⎩的奇偶性 【知识点】函数奇偶性【数学思想】化归思想、数形结合思想【解题过程】解:当0x >时,0x -<22()()2()323()(0)f x x x x x f x x ∴=---+=++=->当0x <时,0x ->22()()2()323()(0)f x x x x x f x x ∴=-----=-+-=-<综上所述,()()f x f x -=-,()f x 奇函数【思路点拨】对于较熟悉的函数,可以作函数图象法判断单调性.【答案】奇函数【设计意图】定义法、图象法灵活运用, 判断函数奇偶性.●活动③利用性质法判断函数奇偶性.例3 判断函数24()f x x x =+奇偶性.【知识点】性质法:对于两个函数在定义域关于原点对称的情形下,函数的奇偶性质,偶函数的和、差、积、商(分母不为零)仍为偶函数;奇函数的和、差仍为奇函数;奇(偶)数个奇函数的积、商(分母不为零)仍为奇(偶)函数;一个奇函数与偶函数的积为奇函数,这样的方法称为性质法.【数学思想】化归思想【解题过程】解:24()f x x x =+函数的定义域R 关于原点对称.记:21()f x x =,函数的定义域R 关于原点对称.211()()()f x x f x -=-=,21()f x x ∴=为偶函数;42()f x x =,函数的定义域R 关于原点对称.422()()()f x x f x -=-=,42()f x x ∴=为偶函数.性质法:24()f x x x =+为偶函数.【思路点拨】函数12()()f x f x 、的定义域必须满足定义域关于原点对称,且12()()f x f x 、定义域的交集为()f x 的定义域也必须关于原点对称,判断各分函数的奇偶性,再判断复合后的奇偶性.【答案】偶函数同类训练 判断35()f x x x x =++奇偶性.【知识点】奇偶性判断【数学思想】化归思想【解题过程】35()f x x x x =++函数的定义域R 关于原点对称35()()()()()f x x x x f x -=-+-+-=- ()f x ∴为奇函数.【思路点拨】可由性质法证明【答案】奇函数【设计意图】在部分题目特别是选择题、填空题判断奇偶性时,性质法方便快捷,但此部分涉及到复合函数定义域的问题,对学生能力要求较高.探究三: 函数综合问题●活动①奇偶函数图象问题例4如图所示为偶函数()f的大小.f与(3)y f x=的局部图象,试比较(1)【知识点】函数奇偶性【数学思想】数形结合思想【解题过程】解:作()x∈--的图象关于y轴对称的图象.=在[3,1]y f x由图象知(3)(1)>f f【思路点拨】利用奇偶性,找出另一区间的图象【答案】(3)(1)>f f同类训练如图所示为奇函数()f的大小.f与(3)y f x=的局部图象,试比较(1)【知识点】函数奇偶性【数学思想】数形结合思想【解题过程】解:法一:由图象知(3)(1)->-,又()f x是奇函数.f f∴<f ff f f f(3)(3),(1)(1)∴-=--=-,(3)(1)法二:因为()y f x =是奇函数,故由对称性可作出[1,3]x ∈时的图象,由图象知(3)(1)f f <.【思路点拨】利用奇偶性,找出另一区间的图象【答案】(3)(1)f f <【设计意图】由于奇函数、偶函数图象的对称性,因而如果知道一个函数是奇函数或偶函数,只要把它的定义域分成关于原点对称的两部分,得出函数在一部分上的性质和图象,就可推出这个函数在另一部分上的性质和图象.●活动②函数奇偶性的应用例5若()f x 是定义在R 上的奇函数,当0x <时,()(2)f x x x =-,求函数()f x 的解析式.【知识点】利用奇偶性求解析式【数学思想】转化与化归思想【解题过程】解:法一:()f x 是定义在R 上的奇函数,()()f x f x ∴-=-,(0)0f =.当0x >时,0x -<,()()(2)f x f x x x ∴=--=+.∴函数()f x 的解析式为(2),0()0,0(2),0x x x f x x x x x +>⎧⎪==⎨⎪-<⎩.法二:()f x 是定义在R 上的奇函数,()()f x f x ∴-=-,(0)0f =.令t x =-,若0x <,则0t >,且x t =-.()(2)(0)f x x x x =-<,()(2)f t t t ∴-=-+,即()(2)f t t t -=-+.()(2)f t t t ∴=+,0x ∴>时,()(2)f x x x =+.∴函数()f x 的解析式为(2),0()0,0(2),0x x x f x x x x x +>⎧⎪==⎨⎪-<⎩.【思路点拨】在未知范围内取值,利用转化到已知范围内的函数解析式求解;也可以用图象对称关系,待定系数法求解析式。
最新人教版高一数学必修1第一章《函数的奇偶性》教案
最新人教版高一数学必修1第一章《函数的奇偶性》教案本节讨论函数的奇偶性是描述函数整体性质的。
教材采用了处理函数单调性的方法,即先给出几个特殊函数的图象,让学生通过图象直观获得函数奇偶性的认识,然后利用表格探究数量变化特征,通过代数运算,验证发现的数量特征对定义域中的“任意”值都成立,最后在这个基础上建立了奇(偶)函数的概念。
因此,在教学时,充分利用信息技术创设教学情境,会使数与形的结合更加自然。
三维目标:1.理解函数的奇偶性及其几何意义,培养学生观察、抽象的能力,以及从特殊到一般的概括、归纳问题的能力。
2.学会运用函数图象理解和研究函数的性质,掌握判断函数的奇偶性的方法,渗透数形结合的数学思想。
重点难点:教学重点:函数的奇偶性及其几何意义。
教学难点:判断函数的奇偶性的方法和书写过程的格式。
课时安排:1课时教学过程:引入新课:思路1:同学们,我们生活在美的世界中,有过许多对美的感受,请大家想一下有哪些美呢?(学生回答可能有和谐美、自然美、对称美……)今天,我们就来讨论对称美,请大家想一下哪些事物给过你对称美的感觉呢?(学生举例,再在屏幕上给出一组图片:喜字、蝴蝶、建筑物、XXX的标志)生活中的美引入我们的数学领域中,它又是怎样的情况呢?下面,我们以XXX的标志为例,给它适当地建立直角坐标系,那么大家发现了什么特点呢?(学生发现:图象关于y轴对称.)数学中对称的形式也很多,这节课我们就同学们谈到的与y轴对称的函数展开研究.思路2:结合轴对称与中心对称图形的定义,请同学们观察图形,说出函数y=x2和y=x3的图象各有怎样的对称性?引出课题:函数的奇偶性.推进新课:新知探究:提出问题:1.如下图所示,观察下列函数的图象,总结各函数之间的共性.2.那么如何利用函数的解析式描述函数的图象关于y轴对称呢?填写下面两表,你发现这两个函数的解析式具有什么共同特征?x。
f(x)=x23-2-1123x。
f(x)=|x|3-2-11233.请给出偶函数的定义?4.偶函数的图象有什么特征?5.函数f(x)=x2,x∈[-1,2]是偶函数吗?6.偶函数的定义域有什么特征?7.观察函数f(x)=x和f(x)=的图象,类比偶函数的推导过程,给出奇函数的定义和性质?活动:教师从以下几点引导学生:1.观察图象的对称性。
函数的基本性质教案设计
函数的基本性质教案设计这是函数的基本性质教案设计,是优秀的数学教案文章,供老师家长们参考学习。
函数的基本性质教案设计第1篇各位老师,大家好!今天我说课的课题是高中数学人教A版必修一第一章第三节”函数的基本性质”中的“函数的奇偶性”,下面我将从教材分析,教法、学法分析,教学过程,教辅手段,板书设计等方面对本课时的教学设计进行说明。
一、教材分析(一)教材特点、教材的地位与作用本节课的主要学习内容是理解函数的奇偶性的概念,掌握利用定义和图象判断函数的奇偶性,以及函数奇偶性的几个性质。
函数的奇偶性是函数中的一个重要内容,它不仅与现实生活中的对称性密切相关,而且为后面学习幂函数、指数函数、对数函数的性质打下了坚实的基础。
因此本节课的内容是至关重要的,它对知识起到了承上启下的作用。
(二)重点、难点1、本课时的教学重点是:函数的奇偶性及其几何意义。
2、本课时的教学难点是:判断函数的奇偶性的方法与格式。
(三)教学目标1、知识与技能:使学生理解函数奇偶性的概念,初步掌握判断函数奇偶性的方法;2、方法与过程:引导学生通过观察、归纳、抽象、概括,自主建构奇函数、偶函数等概念;能运用函数奇偶性概念解决简单的问题;使学生领会数形结合思想方法,培养学生发现问题、分析问题和解决问题的能力。
3、情感态度与价值观:在奇偶性概念形成过程中,使学生体会数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。
二、教法、学法分析1.教学方法:启发引导式结合本章实际,教材简单易懂,重在应用、解决实际问题,本节课准备采用"引导发现法"进行教学,引导发现法可激发学生学习的积极性和创造性,分享到探索知识的方法和乐趣,在解决问题的过程中,体验成功与失败,从而逐步建立完善的认知结构.使用多媒体辅助教学,突出了知识的产生过程,又增加了课堂的趣味性.2.学法指导:引导学生采用自主探索与互相协作相结合的学习方式。
让每一位学生都能参与研究,并最终学会学习.三、教辅手段以学生独立思考、自主探究、合作交流,教师启发引导为主,以多媒体演示为辅的教学方式进行教学四、教学过程为了达到预期的教学目标,我对整个教学过程进行了系统地规划,设计了五个主要的教学程序:设疑导入,观图激趣。
人教版高中数学必修1《函数的奇偶性》教案
§1.3.2函数的奇偶性(1)教学目标:知识目标——理解函数的奇偶性并能熟练应用数形结合的数学思想解决、推导问题;能应用奇偶性的知识解决简单的函数问题。
能力目标——通过函数奇偶性概念的形成过程,培养学生观察、归纳、抽象的能力,渗透数形结合的数学思想;培养学生从特殊到一般的概括归纳问题的能力。
情感目标—— 通过构建和谐的课堂教学氛围,激发学生的学习兴趣,调动学习积极性;养成积极主动,勇于探索,不断创新的学习习惯和品质。
教学分析:教学重点:函数的奇偶性的概念及其建立过程,判断函数的奇偶性的步骤; 教学难点:对函数奇偶性概念的理解与认识 教学方法:诱思引探鼓励法 教学工具:多媒体课件 教学过程一、 创设情景,激发兴趣(多媒体投放图片) 二、 实例引入,初步感知请比较下列两组函数图象,从对称的角度,你发现了什么 ?2()f x x = ||)(x x f =y 轴对称师:再观察表1和表2,你看出了什么? 表1x -3 -2 -1 0 1 2 3 f(x)=|x|321 0123表2生:当自变量x 取一对相反数时,相应的两个函数值相等。
三、实验体验,加以体会 【探究】图象关于轴对称的函数满足:对定义域内的任意一个,都有。
反之也成立吗?(超级链接几何画板演示)师:从以上的讨论,你能够得到什么?(师生讨论,共同完善,形成概念,老师板书偶函数定义)一般地,如果对于函数的定义域内的任意一个,都有,那么称函数是偶函数;师:仿此请观察下面两组图象,你能给出关于原点对称的函数图象与式子之间的关系,进而给出奇函数的定义吗?一般地,如果对于函数的定义域内的任意一个,都有,那么称函数是奇函数。
问题1:具有奇偶性函数的图象的对称如何?师:偶函数的图象关于y 轴对称,奇函数的图象关于原点对称。
问题2:函数的奇偶性是怎样的一个性质?与单调性有何区别?师:函数的奇偶性在定义域上的一个整体性质,它不同于函数的单调性 。
新人教A版必修一《函数的奇偶性》学案
§1.3.2函数的奇偶性 学案学习目标:1、理解函数奇偶性的概念及其图象特征2、学会判断函数的奇偶性3、学会运用奇偶函数的图象研究函数的一些简单的性质4、培养自己观察、抽象的能力;从特殊到一般的概括、归纳能力;注意数形结合思想 学习内容:(同学们,为了更好的完成本节课的学习任务,请大家务必提前认真完成以下任务!)下图是y x y 12==和的图象图(1) 图(2)观察上图不难发现:图(1)关于y 轴对称,图(2)关于原点对称.而且任意两个对称点的共同特征是:横坐标(自变量)互为相反数.那么你能发现两个对称点的纵坐标(函数值))(0x f -与)(0x f 的关系吗?如果你发现了它们的关系,现在如果把图象类似图(1)的函数命名为偶函数;图象类似图(2)的函数命名为奇函数.你试着根据你发现的关系归纳出奇函数和偶函数的定义:完成了以上任务后,你现在已经知道了奇函数和偶函数定义及其图象特征,接下来不妨小试身手吧!一、 熟悉定义(这部分必须做)1、 判断下列函数的奇偶性①5)(x x f = ②21)(xx f = ③x x f =)( ④x x x f +=1)( ⑤|2||2|)(--+=x x x f ⑥1)(=x f ⑦1)1()(--=x x x x f 2、 已知函数)(x f y =是奇函数,如果1)(=a f ,那么=-)(a f _______ 变式:设函数)(x f 是R 上的奇函数,且当0>x 时,32)(-=xx f ,则)2(-f 等于( ) 笔记:笔记:(-0(x -2xA .1-B .114C .1D .114- 3、已知)(x f 是奇函数,且在0=x 处有定义,试求)0(f 的值.(提示:利用定义) 若)(x f 是偶函数,且在0=x 处有定义,你还能确定)0(f 的值吗?二、引伸提高(这部分根据自己的实际情况尽量去做)例1、设)(x f 是定义在R 上的偶函数,且在)0,(-∞上是增函数,则)2(f 与))(32(2R a a a f ∈+-的大小关系是(A .)2(f <)32(2+-a a fB .)2(f ≥)32(2+-a a fC .)2(f >)32(2+-a a fD .与a 的取值有关练习、设函数)(x f 是定义在R 上的偶函数,且在区间)0,(-∞上是增函数,又)123()12(22+-<++a a f a a f ,则a 的取值范围是_______ .例2、已知)(x f 为偶函数,)(x g 是奇函数,且2)()(2-+=-x x x g x f ,求)(x f 与)(x g 的解析式.练习、已知)(x f 、)(x g 的定义域均为R ,)(x f 为奇函数,)(x g 为偶函数,且1)()(2+-=+x x x g x f ,求)(x f 的解析式.例3、已知)(x f 是定义在R 上的奇函数,且当0<x 时,12)(+-=x x f ,那么当0>x 时,)(x f 的解析式为 .练习、已知)(x f 是定义在R 上的奇函数,0>x 时,32)(2-+-=x x x f ,那么当0<x 时,)(x f 的解析式为 .上题变式:(1) 求)(x f 的解析式;(2) 画出)(x f y =的图像;(3) 求出)(x f 的单调区间.。
高中数学教案《函数的奇偶性
高中数学教案《函数的奇偶性》第一章:引言1.1 课程目标:理解函数奇偶性的概念。
学会判断函数的奇偶性。
1.2 教学内容:引入函数的概念。
介绍奇函数和偶函数的定义。
举例说明奇函数和偶函数的性质。
1.3 教学方法:使用多媒体课件进行讲解。
通过具体例子引导学生理解奇偶性的概念。
进行小组讨论,让学生互相交流思路。
1.4 教学活动:引入函数的概念,引导学生回顾已学的函数知识。
讲解奇函数和偶函数的定义,举例说明其性质。
布置练习题,让学生巩固奇偶性的判断方法。
第二章:奇函数的性质2.1 课程目标:理解奇函数的性质。
学会运用奇函数的性质解决问题。
2.2 教学内容:回顾奇函数的定义。
介绍奇函数的性质,如奇函数的图像关于原点对称等。
举例说明奇函数性质的应用。
2.3 教学方法:使用多媒体课件进行讲解。
通过具体例子引导学生理解奇函数的性质。
进行小组讨论,让学生互相交流思路。
2.4 教学活动:回顾奇函数的定义,引导学生复习相关知识。
讲解奇函数的性质,举例说明其应用。
布置练习题,让学生巩固奇函数性质的理解。
第三章:偶函数的性质3.1 课程目标:理解偶函数的性质。
学会运用偶函数的性质解决问题。
3.2 教学内容:回顾偶函数的定义。
介绍偶函数的性质,如偶函数的图像关于y轴对称等。
举例说明偶函数性质的应用。
3.3 教学方法:使用多媒体课件进行讲解。
通过具体例子引导学生理解偶函数的性质。
进行小组讨论,让学生互相交流思路。
3.4 教学活动:回顾偶函数的定义,引导学生复习相关知识。
讲解偶函数的性质,举例说明其应用。
布置练习题,让学生巩固偶函数性质的理解。
第四章:奇偶性的判断4.1 课程目标:学会判断函数的奇偶性。
理解奇偶性在实际问题中的应用。
4.2 教学内容:介绍判断函数奇偶性的方法。
举例说明如何判断函数的奇偶性。
探讨奇偶性在实际问题中的应用。
4.3 教学方法:使用多媒体课件进行讲解。
通过具体例子引导学生理解判断函数奇偶性的方法。
进行小组讨论,让学生互相交流思路。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、学习目标
理解奇函数、偶函数的概念及几何意义,能熟练判别函数的奇偶性。
二、学习重难点
重点:熟练判别函数的奇偶性。
难点:理解函数的奇偶性。
三、课前预习
1.什么叫增函数、减函数?
2.指出f(x)=2x 2-1的单调区间及单调性。
→变题:|2x 2-1|的单调区间
3.对于f(x)=x 、f(x)=x 2、f(x)=x 3、f(x)=x 4,分别比较f(x)与f(-x)。
四、典型例题
1.奇函数、偶函数的概念:
①偶函数:一般地,对于函数()f x 定义域内的任意一个x ,都有()()f x f x -=,那么函数()f x 叫偶函数.
②仿照偶函数的定义给出奇函数的定义.
如果对于函数定义域内的任意一个x ,都有()()f x f x -=-),那么函数()f x 叫奇函数。
③讨论:定义域特点?与单调性定义的区别?图象特点?(定义域关于原点对称;整体性) ④练习:已知f(x)是偶函数,它在y 轴左边的图像如图所示,画出它右边的图像。
2.奇偶性判别:
例1:判别下列函数的奇偶性: f(x)=34x 、f(x)=43x 、f(x)=-4x 6+5x 2、f(x)=3x +31
x 、f(x)=2x 4-+3。
判别下列函数的奇偶性:
f(x)=|x +1|+|x -1| f(x)=
23x 、f(x)=x +x 1、 f(x)=21x
x +、f(x)=x 2,x ∈[-2,3]
3.小结奇偶性判别方法:先考察定义域是否关于原点对称,再用比较法、计算和差、比商法判别f(x)与f(-x)的关系。
→思考:f(x)=0的奇偶性?
4.奇偶性与单调性综合的问题:
例3:已知f(x)是奇函数,且在(0,+∞)上是减函数,问f(x)的(-∞,0)上的单调性。
变题:已知f(x)是偶函数,且在[a,b]上是减函数,试判断f(x)在[-b,-a]上的单调性,并给出证明。
五、课堂练习
1已知函数)(x f y =在R 是奇函数,且当0≥x 时,x x x f 2)(2-=,则0<x 时,)(x f 的解析式为?
2.已知f(x)是奇函数,g(x)是偶函数,且f(x)-g(x)=
1
1+x ,求f(x)、g(x)。
3定义在)1,1(-上的奇函数1
)(2+++=nx x m x x f ,则常数=m ____,=n _____ 4.已知f(x)是奇函数,且在[3,7]是增函数且最大值为4,那么f(x)在[-7,-3]上是( )函数,且最 值是 。
六、课后练习
1.如果定义在区间]5,3[a -上的函数)(x f 为奇函数,则a =_____
2. 函数y=f(x)与y=g(x)的图象如所示:
则函数y=f(x)·g(x)的图象可能为( )
2.设定义于[-2,2]上的偶函数在区间[0,2]上单调递增,则在[-2,0]上_________________.
3. 设a 为实数,函数ƒ(x )= x 2
+|x-a|+1 ( x ∈R ),①讨论函数ƒ(x )的奇偶性;②求函数ƒ(x )的最小值。
4. 已知集合A={x| -2≤x≤5},B={x|m+1≤x≤2m-1},若A∪B=A,求出实数m的取值范围。
七、课后反思。