第5课时 二次函数 (1)
九年级数学下第1章二次函数1.2二次函数的图像与性质第5课时二次函数y=a2+k的图象与性质习题湘教
解得 x=-65或 2, ∴B(2,0).
∵D(-1,1), ∴BD2=(2+1)2+(1-0)2=10, CD2=(0+1)2+(4-1)2=10, BC2=22+42=20, ∴BD2+CD2=BC2,且BD=CD, ∴△BDC是等腰直角三角形.
(2)求tan ∠ABC. 解:令 x=0,则 y=13(0-4)2-3=73,则 OC=73. ∵二次函数图象的顶点坐标为(4,-3),
∴点 B 与点 A 关于直线 x=4 对称.
∴B 点坐标为(7,0).∴OB=7. 7
∴tan ∠ABC=OOCB=37=13.
12.把二次函数 y=a(x-h)2+k 的图象先向左平移 2 个单位 长度,再向上平移 4 个单位长度,得到二次函数 y=12(x +1)2-1 的图象.
探究培优 不习惯读书进修的人,常会自满于现状,觉得没有什么事情需要学习,于是他们不进则退2022年4月30日星期六2022/4/302022/4/302022/4/30
读书,永远不恨其晚。晚比永远不读强。2022年4月2022/4/302022/4/302022/4/304/30/2022 正确的略读可使人用很少的时间接触大量的文献,并挑选出有意义的部分。2022/4/302022/4/30April 30, 2022 书籍是屹立在时间的汪洋大海中的灯塔。
(1)当m=5时,求n的值;
解:当 m=5 时,y=-12(x-5)2+4, 当 x=1 时,n=-12×42+4=-4.
(2)当n=2时,若点A在第一象限内,结合图象,求当y≥2 时,自变量x的取值范围;
解:当 n=2 时,将 C(1,2)的坐标代入函数表达式 y=-12(x-m)2+4,得 2=-12(1-m)2+4, 解得 m=3 或 m=-1(舍去), ∴此时抛物线的对称轴为 x=3, 根据抛物线的对称性可知,当 y=2 时,x=1 或 x=5, ∴x 的取值范围为 1≤x≤5.
二次函数复习教案1-人教版正式版
课题;二次函数(1)教学目标:1.理解并掌握二次函数的性质,能熟练运用图象性质解决简单的数学问题.2.学会灵活应用待定系数法求二次函数关系式,能正确确定抛物线的对称轴和顶点.3.能利用二次函数解决实际问题,如:最大利润问题、最大高度问题、最大面积问题等.会通过建立坐标系来解决实际问题.4.理解一元二次方程与二次函数的关系,并能利用二次函数的图象,解决二次函数的综合应用.教学重、难点:重点:二次函数图象及其性质,应用二次函数分析和解决简单的实际问题.】难点:二次函数性质的灵活运用,能把相关应用问题转化为数学问题.教法与学法指导:本节课主要采用“解读考试要求----知识梳理----师生构建知识网络-----题组训练,夯实基础-----考点剖析----针对训练----回顾反思-----当堂检测----布置作业的课堂教学模式.在教学过程中,以学生总结为主,教师给予适当的指导.本节课我通过回顾知识点来巩固二次根式的主要内容,然后利用知识树,帮助学生梳理本章的内容,通过自主学习,小组合作及师生互动完成典型例题,揭示解题技巧,再通过变式训练得到发展和提高. 在整个复习过程中, 始终抓住中考这条主线, 从中考命题趋势分析入手,引导学生针对中考的热点问题复习回顾,让学生积极主动参与教学,真正体会到学习数学的成就感.课前准备:教师:导学案、课件.学生:课前完成学案:知识要点回顾,以及知识树的构建.教学过程:一、解读中考,弄清目标活动内容1:中考要求1.通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义.2.会运用描点法画出二次函数的图像,能从图像上认识二次函数的性质.3.会根据公式确定图像的顶点、开口方向和对称轴(公式不要求记忆和推导),并解决简单的实际问题.4.会利用二次函数的图像求一元二次方程的近似解.5.知道给定不共线三点的坐标可以确定一个二次函数.}处理方式:先让学生独立思考,再小组交流,师生互动,补充完善,达成共识.设计意图:让学生明确中考对本节知识点的要求,使学生在复习过程中把握复习的方向,明确复习的重点,掌握解题的方法与技巧.二、知识梳理,厚积薄发(多媒体展示,课前学案完成)活动内容1:导入新课导语:华罗庚教授说:读书要从薄到厚,又从厚到薄。
人教版九年级数学上册《二次函数y=a(x-h)2+k 的图象和性质》二次函数PPT教学课件(第1课)
C.y=2(x+2)2
D.y=2(x-2)2
解析:根据平移的规律可知把二次函数
y=2x2的图象向上平移2个单位长度,所得 图象对应的函数解析式为y=2x2+2.故选
A.
巩固练习
4.抛物线y=-3(x-2)2的开口向 轴是 直线x=2 .
下 ,对称
解析:抛物线y=-3(x-2)2中,因为-3<0,所
(1)自变量x的取值范围是什么?
(2)画函数图象时,x取哪些值列表能使函数图象
上的点均匀对称? (3)如何用平滑的曲线连接各点?
新知探究
y y = 2x2+1 y = 2x2 -1 8
(1)三条抛物线的开口方向、对称轴、 顶点坐标分别是什么?
(2)你有什么方法把抛物线y=2x2分别移 动到抛物线y=2x2+1的位置和抛物
注意: k带前 面的符 号!
探究二次函数
7. 抛物线
可以如何由抛物线
的图象和性质
得到?
当k>0时 向上平移 k 个单位长度
顶点
当k<0时 向下平移 个单位长度
顶点
巩固练习
抛物线
的开口 向下 ,对称轴是 y 轴 ,
图象存在最 高 点,坐标是
,当 x
时
, yቤተ መጻሕፍቲ ባይዱ
y 随 x 的增大而增大,当 x
时,y 随 x 的增大而减小. x
新知探究
抛物线y = ax2+k 与抛物线y=ax2 有什么关系 ?
y = ax2+k (k>0) y
结论:
抛物线y=ax2+k的图象相当于把抛物线
y=ax2的图象 向上(k>0)或 向下(k<0)平
2 二次函数的图象与性质2.二次函数y=ax2+bx+c的图象与性质第5课时PPT课件(华师大版)
例 3 [教材补充例题]
2
(1)已知 0≤x≤1,那么函数 y=-2x +8x-6 的
最大值是 ( B )
B.0
A.-6
C.2
D.4
2
(2)函数 y=x +2x-3(-2≤x≤2)的最大值和最小值分别是 ( C )
A.4 和-3
B.-3 和-4
C.5 和-4
D.-1 和-4
第5课时
二次函数最值的应用
第26章
26.2
二次函数
二次函数的图象与性质
2.二次函数y=ax2+bx+c的图象与性质
第26章
第5课时
二次函数
二次函数最值的应用
目标突破
总结反思
第5课时
二次函数最值的应用
目标突破
目标一 能用二次函数模型解决几何图形中的最值
例 1 [教材补充例题] 如图 26-2-4,在△ABC 中,∠B=90°,AB=12
第5课时
二次函数最值的应用
2
2
则 y=(x-40)[90-3(x-50)]=-3x +360x-9600=-3(x-60) +1200.
∵a=-3<0,∴抛物线开口向下,y 有最大值,最大值为 1200,∴销售该
苹果每天能获得的最大利润是 1200 元.
上面的解答过程正确吗?如果不正确,错在哪里?并写出正确的
cm,BC=24 cm,动点 P 从点 A 开始沿边 AB 向点 B 以 2 cm/s 的速度移动(不
与点 B 重合),动点 Q 从点 B 开始沿边 BC 向点 C 以 4 cm/s 的速度移动(不
与点 C 重合),点 P,Q 分别从点 A,B 同时出发.
二次函数图像和性质课件(1)完整版公开课全篇
B. y= –(x+1)2+1
C.y=(x–1)2+1
D. y= –(x–1)2+1
1)若抛物线y=-x2向左平移2个单位,再向 下平移4个单位所得抛物线的解析式是 ________
2)如何将抛物线y=2(x-1) 2+3经过平移 得到抛物线y=2x2
3) 将抛 物线y=2(x -1)2+3经过怎样的平 移得到抛物线y=2(x+2)2-1
(h,k)
二次函数y=a(x-h)²+k与y=ax²的关系
1.
(1)形状相同(图像都是抛物线,开口方向相同).
(2)都是轴对称图形.
(3)都有最(大或小)值.
(4)a>0时, 开口向上,在对称轴左侧,y都随x的增大而减小,在对称轴右侧,y都随 x的增大 而增大. a<0时,开口向下,在对称轴左侧,y都随x的增大而增大,在对称轴右侧,y都随 x的 增大而减小 .
y=3x2
向右
向上
y=3(x-1)2
y=3(x-1)2+2
二次函数y=3(x-1)2+2的 图象和抛物线 y=3x²,y=3(x-1)2有什么关 系?它的开口方向,对称轴 和顶点坐标分别是什么?
y 3x 12 2
y 3x 12
二次函数y=3(x-1)2+2的 图象可以看作是抛物线 y=3x2先沿着x轴向右平移 1个单位,再沿直线x=1向 上平移2个单位后得到的.
向下
在对称轴的左侧,y随着x的增大而减小. 在对称轴的右侧, y随着x的增大而增大.
当x=h时,最小值为k.
在对称轴的左侧,y随着x的增大而增大. 在对称轴的右侧, y随着x的增大而减小.
2.2 二次函数的图象与性质 第5课时 教案
一、情境导入在跳绳时,绳甩到最高处的形状可近似地看作抛物线.如图,正在甩绳的甲、乙两名学生拿绳的手间距为4米,距地面均为1米,学生丙的身高是1.5米,距甲拿绳的手水平距离为1米,绳子甩到最高处时,刚好通过他的头顶.当绳子甩到最高时,学生丁从距甲拿绳的手2.5米处进入游戏,恰好通过.你能根据以上信息确定学生丁的身高吗?二、合作探究探究点:二次函数y=ax2+bx+c的图象与性质【类型一】二次函数y=ax2+bx+c的图象的性质若点A(2,y1),B(-3,y2),C(-1,y3)三点在抛物线y=x2-4x-m的图象上,则y1、y2、y3的大小关系是()A.y1>y2>y3B.y2>y1>y3C.y2>y3>y1D.y3>y1>y2解析:∵二次函数y=x2-4x-m中a=1>0,∴开口向上,对称轴为x=-b2a=2.∵A(2,y1)中x=2,∴y1最小.又∵B(-3,y2),C(-1,y3)都在对称轴的左侧,而在对称轴的左侧,y随x的增大而减小,故y2>y3,∴y2>y3>y1.故选C.方法总结:当二次项系数a>0时,在对称轴的左边,y随x的增大而减小,在对称轴的右边,y随x的增大而增大;当a<0时,在对称轴的左边,y随x的增大而增大,在对称轴的右边,y随x的增大而减小.变式训练:见《学练优》本课时练习“课堂达标训练”第3题【类型二】二次函数y=ax2+bx+c的图象的位置与各项系数符号的关系已知抛物线y=ax2+bx+c(a≠0)经过点(-1,0),且顶点在第一象限.有下列四个结论:①a<0;②a+b+c>0;③-b2a>0;④abc>0.其中正确的结论是________(填序号).解析:由抛物线的开口方向向下可推出a<0,抛物线与y轴的正半轴相交,可得出c>0,对称轴在y轴的右侧,a,b异号,b>0,∴abc<0;因为对称轴在y轴右侧,∴对称轴为-b2a>0;由图象可知:当x=1时,y>0,∴a+b+c>0.∴①②③都正确.故答案为①②③.方法总结:二次函数y=ax2+bx+c(a≠0),a的符号由抛物线开口方向决定;b的符号由对称轴的位置及a的符号决定;c的符号由抛物线与y轴交点的位置决定.变式训练:见《学练优》本课时练习“课堂达标训练”第7题【类型三】二次函数y=ax2+bx+c与一次函数图象的综合在同一直角坐标系中,函数y=mx+m和函数y=mx2+2x+2(m是常数,且m≠0)的图象可能是()解析:若函数y=mx+m中的m<0时,函数y=mx2+2x+2开口方向朝下,对称轴为x=-b2a=-22m=-1m>0,则对称轴应在y轴右侧,故A、B选项错误,D选项正确;若函数y=mx+m中的m>0时,函数y=mx2+2x+2开口方向朝上,对称轴为x=-b2a=-22m=-1m<0,则对称轴应在y轴左侧,故C选项错误.故选D.方法总结:熟记一次函数y=ax+b在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.【类型四】 二次函数y =ax 2+bx +c 与几何图形的综合已知:如图,二次函数y =ax 2+bx +c 的图象与x 轴交于A 、B 两点,其中点A 的坐标为(-1,0),点C 的坐标为(0,5),另抛物线经过点(1,8),M 为它的顶点.(1)求抛物线的解析式; (2)求△MCB 的面积S △MCB .解析:(1)将已知的三点坐标代入抛物线中,即可求得抛物线的解析式;(2)根据抛物线的解析式先求出点M 和点B 的坐标,可将S △MCB 化为其他图形面积的和差来解.解:(1)依题意可知⎩⎪⎨⎪⎧a -b +c =0,a +b +c =8,c =5,解得⎩⎪⎨⎪⎧a =-1,b =4,c =5,∴抛物线的解析式为y =-x 2+4x +5;(2)令y =0,得(x -5)(x +1)=0,解得x 1=5,x 2=-1,∴点B 的坐标为(5,0).由y =-x 2+4x +5=-(x -2)2+9,得点M 的坐标为(2,9).作ME ⊥y 轴于点E ,可得S △MCB =S 梯形MEOB -S △MCE -S △OBC =12(2+5)×9-12×4×2-12×5×5=15. 方法总结:本题考查了二次函数解析式的确定以及图形面积的求法.不规则图形的面积通常转化为规则图形的面积的和差.变式训练:见《学练优》本课时练习“课后巩固提升”第8题 【类型五】 二次函数y =ax 2+bx +c 的实际应用跳绳时,绳甩到最高处时的形状是抛物线.正在甩绳的甲、乙两名同学拿绳的手间距AB 为6米,到地面的距离AO 和BD 均为0.9米,身高为1.4米的小丽站在距点O 的水平距离为1米的点F 处,绳子甩到最高处时刚好通过她的头顶点E .以点O 为原点建立如图所示的平面直角坐标系,设此抛物线的解析式为y =ax 2+bx +0.9.(1)求该抛物线的解析式;(2)如果身高为157.5厘米的小明站在OD 之间且离点O 的距离为t 米,绳子甩到最高处时超过他的头顶,请结合函数图象,求出t 的取值范围.解析:(1)已知抛物线解析式y =ax 2+bx +0.9,选定抛物线上两点E (1,1.4),B (6,0.9),把坐标代入解析式即可得出a 、b 的值,继而得出抛物线解析式;(2)求出y =1.575时,对应的x 的两个值,从而可确定t 的取值范围.解:(1)由题意得点E 的坐标为(1,1.4),点B 的坐标为(6,0.9),代入y =ax 2+bx +0.9,得⎩⎪⎨⎪⎧a +b +0.9=1.4,36a +6b +0.9=0.9,解得⎩⎪⎨⎪⎧a =-0.1,b =0.6.故所求的抛物线的解析式为y =-0.1x 2+0.6x +0.9; (2)157.5cm =1.575m ,当y =1.575时,-0.1x 2+0.6x +0.9=1.575,解得x 1=32,x 2=92,则t 的取值范围为32<t <92.方法总结:解答本题的关键是注意审题,将实际问题转化为求函数问题,培养自己利用数学知识解答实际问题的能力.三、板书设计二次函数y =ax 2+bx +c 的图象与性质1.二次函数y =ax 2+bx +c 的图象与性质1.已知二次函数y=ax2﹣2x+2(a>0),那么它的图象一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限2.二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是()函数有最小值B.对称轴是直线x=A.C.当x<,y随x的增大而减小D.当﹣1<x<2时,y>03.如图,平面直角坐标系中,点M是直线y=2与x轴之间的一个动点,且点M是抛物线y=x2+bx+c的顶点,则方程x2+bx+c=1的解的个数是()A.0或2B.0或1C.1或2D.0,1或24.如果抛物线y=x2+(m﹣1)x﹣m+2的对称轴是y轴,那么m的值是_________.5.二次函数y=x2﹣4x﹣5的图象的对称轴是直线_________.6.若抛物线y=2x2﹣mx﹣m的对称轴是直线x=2,则m=_________.7.已知抛物线y=x2﹣x﹣1.(1)求抛物线y=x2﹣x﹣1的顶点坐标、对称轴;(2)抛物线y=x2﹣x﹣1与x轴的交点为(m,0),求代数式m2+的值.8.如图,已知抛物线y=x2﹣x﹣6,与x轴交于点A和B,点A在点B的左边,与y轴的交点为C.(1)用配方法求该抛物线的顶点坐标;(2)求sin∠OCB的值;(3)若点P(m,m)在该抛物线上,求m的值.9.若二次函数y=a1x2+b1x+c1的图象记为C1,其顶点为A,二次函数y=a2x2+b2x+c2的图象记为C2,其顶点为B,且满足点A在C2上,点B在C1上,则称这两个二次函数互为“伴侣二次函数”.(1)一个二次函数的“伴侣二次函数”有_________个;(2)∠求二次函数y=x2+3x+2与x轴的交点;∠求以上述交点为顶点的二次函数y=x2+3x+2的“伴侣二次函数”.(3)试探究a1与a2满足的数量关系.总结二次函数性质,充分地相信学生,鼓励学生大胆地用自己的语言进行归纳,在教学过程中,注重为。
第5课时二次函数
第5课时:二次函数编者:曹金凤 审核:郭红霞 班级_________第一部分 预习案 学号_________一、知识回顾 姓名_________1、一次函数、二次函数的图象及性质2、 二次函数、一元二次方程、一元二次不等式三者之间的关系二、基础训练1.设函数()21f x mx mx =--,若()0f x <的解集为R ,则实数m 的取值范围是 .2.若12,x x 是方程24420x mx m -++=的两个实数根,则2212x x +的最小值为 .3.二次函数的图象经过点(1,2),(0,7)-,且对称轴为2x =,则函数的解析式为 .4.已知函数⎪⎩⎪⎨⎧<+≥+-=0,0,2)(22x mx x x x x x f 为奇函数,若函数)(x f 在区间]2,1[--a 上单调递增,则实数a 的取值范围为_______________.三、我的疑惑第二部分 探究案问题1.根据下列条件求二次函数()y f x =的解析式(1)图象顶点坐标为(2,1)-,与y 轴交点坐标为(0,11)(2)()f x 满足(0)1f =且(1)()2f x f x x +-=(3)()f x 的零点为22--和22+-,且(0)1f =问题2. (1)已知函数b ax x x f ++=2)(的值域为),0[+∞,若关于x 的不等式c x f <)(的解集为)6,(+m m ,求实数c 的值。
(2)已知函数f (x )=-4x 2+4ax -4a -a 2在区间[0,1]内有一个最大值-5,求a 的值.问题3.设函数f(x)=ax2-2x+2,对于满足1<x<4的一切x值都有f(x)>0,求实数a的取值范围.我的收获第三部分训练案1.若函数f(x)=ax2-6x+2的图象与x轴有且只有一个公共点,则a=________.2.已知函数f(x)=-x2+4x+a,x∈[0,1],若f(x)有最小值-2,则f(x)的最大值为________.3.方程x2-mx+1=0的两根为α,β,且α<1<β<2,则实数m的取值范围是. 4.设二次函数f(x)=ax2+2ax+1在[-3,2]上有最大值4,则实数a的值为______.5.设abc>0,二次函数f(x)=ax2+bx+c的图象可能是________.6.已知()()()2f x x a x b =---,,m n 是方程()0f x =的两根,且,a b m n <<,则实数,,,a b m n 的大小关系是________.7.是否存在实数a ,使函数f (x )=x 2-2ax +a 的定义域为[-1,1]时,值域为[-2,2],若存在,求a 的值;若不存在,说明理由.8.已知函数f (x )=x 2,g (x )=x -1.(1)若存在x ∈R 使f (x )<b ·g (x ),求实数b 的取值范围;(2)设F (x )=f (x )-mg (x )+1-m -m 2,且|F (x )|在[0,1]上单调递增,求实数m 的取值范围.。
沪科版数学九年级上册21.2.2《二次函数y=a2+b+c的图象和性质》(第5课时)教学设计
沪科版数学九年级上册21.2.2《二次函数y=a2+b+c的图象和性质》(第5课时)教学设计一. 教材分析《二次函数y=a2+b+c的图象和性质》是沪教版数学九年级上册第21章第2节的内容。
这部分内容是在学生已经掌握了二次函数的一般形式y=ax^2+bx+c的基础上,进一步探讨二次函数的图象和性质。
本节课的内容对于学生来说较为抽象,需要通过大量的实例和练习来理解和掌握。
教材中提供了丰富的例题和练习题,以及一些探究活动,帮助学生逐步深入理解二次函数的图象和性质。
二. 学情分析九年级的学生已经具备了一定的数学基础,对于二次函数的一般形式已经有了一定的了解。
但是,对于二次函数的图象和性质,学生可能还存在一些困惑和疑问。
因此,在教学过程中,需要引导学生通过观察、分析和推理来理解和掌握二次函数的图象和性质。
同时,学生对于数学的兴趣和积极性也需要教师的激发和引导。
三. 教学目标1.让学生理解二次函数的图象和性质,能够运用二次函数的性质解决一些实际问题。
2.培养学生的观察能力、分析能力和推理能力。
3.激发学生对数学的兴趣和积极性,培养学生的合作意识和探究精神。
四. 教学重难点1.二次函数的图象和性质的理解和运用。
2.二次函数的图象和性质的推导和证明。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过观察、分析和推理来理解和掌握二次函数的图象和性质。
2.运用多媒体教学手段,展示二次函数的图象和性质的实例,帮助学生直观地理解和掌握。
3.学生进行小组讨论和探究活动,培养学生的合作意识和探究精神。
六. 教学准备1.多媒体教学设备。
2.相关的教学PPT或投影片。
3.练习题和测试题。
七. 教学过程1.导入(5分钟)通过一个实际问题,引出二次函数的图象和性质的概念。
2.呈现(10分钟)利用多媒体展示一些二次函数的图象和性质的实例,让学生直观地感受和理解二次函数的图象和性质。
3.操练(10分钟)让学生通过观察和分析,找出二次函数的图象和性质的特点,并进行推理和证明。
湘教版九年级下册数学精品课件 第1章 二次函数 第5课时 二次函数y=ax2+bx+c的图象与性质
大而减小;当 x > 6 时,函数
值随 x 的增大而增大.
O
(6,3)
5 10 x
归纳总结 二次函数 y = ax2+bx+c的图象和性质
抛物线 y = ax2+bx+c 的顶点坐标是:
b 4ac b2
( ,
).
2a 4a
对称轴是:直线 x b . 2a
二次函数 y = ax2+bx+c的图象和性质
y
x b 2a
O (1)
如果 a>0,当 x< b 时,y 随x
的增大而减小;当
2a
x>
b
时,
2a
y 随 x 的增大而增大;当 x = b
x
2a
时,函数达到最小值,最小值
为 4ac b2 .
4a
二次函数 y = ax2+bx+c的图象和性质
y x b
2a
O (2)
如果 a < 0,当 x< b 时,y 随 x
(2) y 5x2 80x 319; 直线 x = 8
(3)
y
2
x
1 2
x
2
;
直线 x = 1.25
(4) y x 12 x.
直线 x = 0.5
3, 5
8, 1
5 4
,
9 8
1 2
,
9 4
2. 把抛物线 y=x2+bx+c 的图象向右平移 3 个单位长
度,再向下平移 2 个单位长度,所得图象的解析式为
那么现在你会画这个二次函2 数的图象吗?2
根据顶点式 y 1 (x 6)2 3 确定对称轴,顶点坐标.
5、4二次函数第一课时
5、4 二次函数(第1课时)目标展示:(1)会列二次函数表示实际问题中两个变量的数量关系,(2)能判断所给函数是否是二次函数,能说出二次函数的项和各项系数..学习重、难点:了解二次函数的概念和列二次函数表示实际问题中的数量关系。
.导入课题:问题: 如图,从喷头飞出的水珠,在空中走过一条曲线后落到草地上,在这条曲线的各个位置上,水珠的竖直高度h与它距离喷头的水平距离x之间有什么关系?上面问题中变量之间的关系可以用那一种函数来表示?这种函数与以前学习的函数、方程有哪些联系?今天我们学习“二次函数”(板书课题)1.自学指导(1)自学内容:P23页到P24页内容(2)自学时间:5分钟。
(3)自学方法:先寻找问题中的等量关系,再根据等量关系写出两个变量的关系式. (4)自学参考提纲:①回忆正方体的表面积与棱长的关系公式,由此写出正方体的表面积y与棱长x的关系式,y是x的函数吗?②探索多边形的对角线数d与边数n的关系公式,根据公式写出d与n的关系式,d是n的函数吗?③探索一年后的产量与现在的年产量的关系,两年后的产量与现在的年产量的关系,写出y与x的关系式,y是x的函数吗?④请写出二次函数的定义.⑤请写出上述四个函数解析式中的二次项系数、一次项系数和常数项.练习:(1)写出下列问题中的两个变量之间的关系:①圆的面积y (cm2)与圆的半径x ( cm ) ,写出y与x之间的函数关系式;②王先生存人银行2万元,先存一个一年定期,一年后银行将本息自动转存为又一个一年定期,设一年定期的存款年利率为x,两年后王先生共得本息和y元,写出y与x之间的函数关系式;③一个圆柱的高等于底面半径,写出它的表面积S与半径r之间的关系式;④n支球队参加比赛,每两个队之间进行一场比赛,写出比赛的场次数m与球队数n 之间的关系式.(2)交流学习成果:利用师生对话的形式强化两个问题中的等量关系、函数关系式的求法以及它是函数的理由.(3)总结:根据等量关系写两个变量的函数关系式的关键是寻找问题中的等量关系,等量关系可以从面积公式、体积公式、行程问题公式、工程问题公式、增长率问题公式等.1、已知函数y=(a-1)x2+3x -1,若y是x的二次函数,则a的取值范围是_______.2、有一根长80cm的铁丝,用它围成一个矩形,写出矩形的面积S(cm2)与它的一边长x(cm)之间的函数关系式__________,自变量x的取值范围是________。
二次函数的图象与性质(第5课时)PPT课件
A. (5,0)
B. (0,5) C. (0,3) D. (3,0)
4、对于抛物线y=-2x2+4x+1,下列说法正确的是( C )
A. y最大值=1 B. y最小值=1 C. y最大值=3 D. y最小值=3
5. 画二次函数y=x2-2x-1的图象.
配方:y=(x-1)2-2 对称轴:x=1, 顶点坐标:(1,-2)
动脑筋 画二次函数y=-2x2+6x-1 的图象?
配方:y
= =
-
2 2
x2 +
x-
6
3 2
x-1 =
2
+2×
- 2( x2 - 3 x)-1=
94-1
=
-2
x- 32
-
2
x2
2
+72
.
-
3
x
+
-
3 2
2
-
-
3 2
2
-1
对称轴是直线 x =
3 2
,顶点坐标是
3 2
,
7
A. y=-(x-1)2-3
B. y=-(x+1)2-3
C. y=-(x-1)2+3
D. y=-(x+1)2+3
2、抛物线y=x2-3x+2与y轴交点的坐标是( A )
A. (0,2) B. (1,0) C. (0,-3) D. (0,0)
3、把抛物线y=2x2向上平移5个单位,所得抛物线的顶点
坐标为( B )
这个最大值等于顶点的纵坐标
7 2
.
从二次函数
y
=
1( 2
x
人教版九年级数学上册《二次函数的图象和性质(第5课时)》示范教学设计
二次函数的图象和性质(第5课时)教学目标1.针对具体的系数取值,能画出二次函数y =a (x -h )2+k 的图象,并能指出如何由y =ax 2的图象平移得到.2.能根据表达式说出二次函数y =a (x -h )2+k 的开口方向、对称轴和顶点坐标. 3.通过自主画图探索活动,增进学生对抛物线自身特点的认知与对二次函数图象和性质的理解,体会数形结合思想的应用.教学重点抛物线y =a (x -h )2+k (a ≠0)与抛物线y =ax 2(a ≠0)的位置关系.教学难点理解a ,h ,k 三个字母系数对二次函数图象的影响.教学过程知识回顾二次函数y =a (x -h )²(a ≠0)的性质:【设计意图】通过复习已经学过的二次函数y =a (x -h )²(a ≠0)的性质的知识,为引出新课“二次函数y =a (x -h )2+k (a ≠0)的图象和性质”作铺垫.新知探究一、探究新知【问题】在同一直角坐标系中,画出二次函数212y x =-,()2122y x =--,()21212y x =--+的图象,并分别指出它们的开口方向、对称轴和顶点坐标. 【师生活动】教师提出问题,学生独立思考并作图回答问题. 学生作图:先列表(略),然后描点,再分别画出它们的图象.根据所画图象,学生回答:教师提问:结合所画图象,观察三个二次函数的顶点坐标和对称轴有什么关系? 学生观察图象,思考并回答,教师总结.教师追问:三个二次函数图象之间的位置有什么关系?教师提示:可以类比前面研究“抛物线y =ax 2+k (a ≠0)与抛物线y =ax 2(a ≠0)的位置关系”的方法来思考问题.学生根据提示,分小组讨论,并作答.抛物线212y x =-向右平移2个单位长度,就得到抛物线()2122y x =--.抛物线()2122y x =--向上平移1个单位长度,就得到抛物线()21212y x =--+.教师总结:它们的图象只有位置不同.【设计意图】巩固学生对描点法画函数图象的认识,为进一步探究抛物线y =a (x -h )2+k (a ≠0)与抛物线y =ax 2(a ≠0)的位置关系作铺垫.二、典例精讲【例1】画出函数()21112y x =-+-的图象,并指出它的开口方向、对称轴和顶点坐标.怎样移动抛物线212y x =-可以得到抛物线()21112y x =-+-?【师生活动】教师提出问题,学生独立思考并作图回答问题. 学生作图:先列表(略),然后描点,画出它的图象.根据所画图象,学生回答:抛物线()21112y x =-+-的开口向下,对称轴是x =-1,顶点坐标是(-1,-1).教师提问:抛物线212y x =-和抛物线()21112y x =-+-有什么关系?学生分小组讨论,尝试利用函数平移知识作答,教师总结.【归纳】一般地,抛物线y =a (x -h )2+k 与y =ax 2形状相同,位置不同.把抛物线y =ax 2向上(下)、向左(右)平移,可以得到抛物线y =a (x -h )2+k .平移的方向、距离要根据h ,k 的值来决定.【新知】抛物线y =a (x -h )2+k 的特点:(1)当a >0时,开口向上;当a <0时,开口向下. (2)对称轴是x =h . (3)顶点坐标是(h ,k ).(4)如果a >0,当x <h 时,y 随x 的增大而减小;当x >h 时,y 随x 的增大而增大;如果a <0,当x <h 时,y 随x 的增大而增大;当x >h 时,y 随x 的增大而减小. 【例2】要修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1 m 处达到最高,高度为3 m ,水柱落地处离池中心3 m ,水管应多长?【师生活动】教师提出问题,学生分小组讨论,并派学生代表回答.【答案】解:如图,以水管与地面交点为原点,原点与水柱落地处所在直线为x 轴,水管所在直线为y 轴,建立平面直角坐标系.点(1,3)是图中这段抛物线的顶点,因此可设这段抛物线对应的函数解析式是 y =a (x -1)2+3(0≤x ≤3).由这段抛物线经过点(3,0),可得0=a (3-1)2+3,解得34a =-.因此()23134y x =--+(0≤x ≤3). 当x =0时,y =2.25,也就是说,水管长2.25 m .【设计意图】通过例1和例2的讲解与练习,巩固学生对所学知识的理解及应用.课堂小结板书设计一、二次函数y =a (x -h )2+k (a ≠0)的图象与性质二、抛物线y =a (x -h )2+k (a ≠0)与抛物线y =ax ²(a ≠0)的位置关系课后任务完成教材第37页练习.。
22.1《二次函数的图象和性质》课件(共5课时)
2.类比探究二次函数 y = ax2 + k 的图象和性质
归纳: 一般地,当 a>0 时,抛物线 y = ax2 + k 的对称轴是 y 轴,顶点是(0,k),开口向上,顶点是抛物线的最 低点,a 越大,抛物线的开口越小.当 x<0 时, y 随 x 的增大而减小,当 x>0 时, y 随 x 的增大而增大.
3.练习、巩固二次函数的定义
练习2 填空: (1)一个圆柱的高等于底面半径,则它的表面积 S 与底面半径 r 之间的关系式是__S_=__4_π_r_2_; (2) n 支球队参加比赛,每两队之间进行两场比 赛,则比赛场次数 m 与球队数 n 之间的关系式是 ___m_=__n(__n_-_1__)____.
某种产品现在的年产量是 20 t ,计划今后两年增加 产量.如果每一年都比上一年的产量增加 x 倍,那么两 年后这种产品的产量 y 将随计划所定的 x 的值而确定, y 与 x 之间的关系应该怎样表示?
y 20x2 40x 20
2.通过实例,归纳二次函数的定义
这三个函数关系式有什么共同点?
y 6x2 m 1 n2 1 n
2
4.小结
(1)本节课学了哪些主要内容? (2)抛物线 y = ax2 + k 与抛物线 y = ax2 的区别与联 系是什么?
5.布置作业
教科书习题 22.1 第 5 题(1).
九年级 上册
22.1 二次函数的图象和性质 (第4课时)
• 本课是在学生已经学习了二次函数 y = ax2,y = ax2+ k 的基础上,继续进行二次函数的学习,这是对二次函 数图象和性质研究的延续.
2.类比探究 y a(x h)2, y a(x h)2 k 的图 象和性质
22.1 二次函数的图象和性质(第5课时)
这节课你有什么收获?
九、作业: 教科书习题22.1第6题,第7题(2ቤተ መጻሕፍቲ ባይዱ.
十、课后反思
课题
22.1二次函数的图象和性质(第5课时)
课时
1
主备人:张红亮
一、教材内容分析
本节课是在讨论了二次函数 的图象和性质的基础上对二次函数y = ax 2+bx+c的图象和性质
进行研究.主要的研究方法是通过配方将y=ax 2+bx+c向 转化,体会知识之间内在联系.在
具体探究过程中,从特殊的例子出发,分别研究a>0和a<0的情况,再从特殊到一般,得出y=ax 2+bx+c
的图象和性质.
二、学情分析
三、教学目标(知识与技能,过程与方法,情感态度与价值观)
四、教学重点
五、教学难点
六、教学方法
自主、合作、探究
七、教具
多媒体
八、教学过程
教师活动
学生活动
设计意图
激情导入
展示目标
明确学习目标
自主学习
问题1
如何研究二次函数 的图象和性质?
你能画出 的图象吗?
如何直接画出 的图象?
观察图象,二次函数 的性质是什么?
小组合作
你能用前面的方法讨论二次函数y = -2x 2 - 4x +1的
图象和性质吗?
你能说说二次函数y = ax 2 + bx + c的图象和性质吗?
达标测评
2)二次函数y = -2x 2 + 4x -1,
当x _____时,y随x的增大而增大,
当x ______时,y随x的增大而减小.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数(一)
【学习目标】 理解二次函数的概念,熟练掌握二次函数的图像与性质. 【学习重点】 基本初等函数的图像及性质. [自主学习]
1.什么叫做二次函数?它的图象是什么?
答:_______________,y 叫做x 的二次函数。
它的图象是一条________。
(考点:二次函数的二次项系数不为0,且二次函数的表达式必须为整式) 2.二次函数的解析式的三种形式
一般式:)0(2
≠++=a c bx ax y ;对称轴方程是 ;顶点为 ; 两点式:))((21x x x x a y --=;对称轴方程是 ;与x 轴的交点为 ; 顶点式:h k x a y +-=2
)(;对称轴方程是 ;顶点为 ; 3.二次函数)0(2
≠++=a c bx ax y 的单调性:
当0>a 时: 为增函数; 为减函数;
当0<a 时: 为增函数; 为减函数;(填写单调区间) [基础训练]
1. 若函数y=(m -2)x 2
+5x+1是关于x 的二次函数,则m 的取值范围为 .
2.抛物线y=2x 2+4x+m 2
-m 经过坐标原点,则m 的值为 . 3.抛物线y=x 2
+bx+c 的顶点坐标为(1,3),则b = ,c = . 4.若直线y =ax +b 不经过二、四象限,则抛物线y =ax 2
+bx +c( ) A.开口向上,对称轴是y 轴 B.开口向下,对称轴是y 轴 C.开口向下,对称轴平行于y 轴 D.开口向上,对称轴平行于y 轴
5. 二次函数y=3x 2
-6x+5,当x>1时,y 随x 的增大而 ;当x<1时,y 随x 的增大而 ;当x=1时,函数有最 值是 .
6. 已知函数y=4x 2-mx+5,当x> -2时,y 随x 的增大而增大;当x< -2时,y 随x 的增大而减少;则x =1时,y 的值为 .
7. 已知二次函数y=-12 x 2+3x+5
2
的图象上有三点A(x 1,y 1),B(x 2,y 2),C(x 3,y 3)且3<x 1<x 2<x 3,则
y 1,y 2,y 3的大小关系为 . [技能提升]
1. 在同一坐标系中,函数y= ax 2+c 与y= c
x
(a<c)图象可能是图所示的( )
A B C D
2.二次函数的图象经过A (-1,0),B (3,0),函数有最小值-8,求该二次函数的解析式。
3. 已知二次函数y=x 2
-(m+1)x+1,当x ≥1时,y 随x 的增大而增大,求m 的取值范围.
二次函数(二)
【学习目标】熟练掌握二次函数的图像与性质,从而能判断一元二次方程根的存在性及根的个数.
体会高中数学中数形结合的思想.
【学习重点】基本函数图像的综合运用. [自主学习]
1. 二次函数与一元二次方程,一元二次不等式之间的内在联系.
(1)f(x)=ax 2+bx+c (a ≠0)的图像与x 轴交点的横坐标是方程___________的实根. (2)若21,x x 为f(x)=0的实根,则f(x)在x 轴上截得的线段长应|21x x -|=___________. (3)当_________________时,恒有f(x)>0; 当__________________时,恒有f(x)<0. (4)若21,x x 为f (x)=0的实根,则当0>a ,∈x _______________时,f(x)>0; 当0<a ,∈x _______________时,f(x)<0.
2. 设f (x)=ax 2+bx+c(a>0), 则二次函数在闭区间[m,n]上的最大、最小值的分布情况. (1)若],[2-n m a
b ∈,则
=max f ______________,=min f ___________________. (2)若],[2-n m a
b ∉,则
=max f ______________,=min f ___________________.
[基础训练]
1. 函数f(x)= x 2+2x-4的图象与x 轴的交点为A 和B ,则他们的坐标分别为
___________________,|AB|=___________.
2. 函数f(x)=-3x 2
+2x -1的图象与x 轴交点的个数是( )
A.没有交点
B.只有一个交点
C.有两个交点
D.有三个交点
3. 不等式0322
>+-x x 的解集为____________________________.
4. 不等式0322≥+--
x x 的解集为____________________________.
5. 求下列函数的最大、最小值.
(1)y=x 2
+x-1,x ∈[-3,-1] (2)y=2x 2
+3x,x ∈[-2, 1] (3)y=-x 2
+2x-1,x ∈[3,5] [技能提升] 1.已知
a ax x x f -++=3)(2,若]2,2[-∈x 时,0)(≥x f 恒成立,求a 得取值范围.
2.已知方程0)1(2)122
=-+-+m mx x m (有一正根和一负根,求实数m 的取值范围.。