高考100题解三角形:专题6 三角形中的最值问题

合集下载

高中数学解三角形最值(精选.)

高中数学解三角形最值(精选.)

高中数学解三角形最值(精选.)三角形中的最值(或范围)问题解三角形问题,可以较好地考察三角函数的诱导公式,恒等变换,边角转化,正弦余弦定理等知识点,是三角,函数,解析几何和不等式的知识的交汇点,在高考中容易出综合题,其中,三角形中的最值问题又是一个重点。

其实,这一部分的最值问题解决的方法一般有两种:一是建立目标函数后,利用三角函数的有界性来解决,二是也可以利用重要不等式来解决。

类型一:建立目标函数后,利用三角函数有界性来解决 例1.在△ABC 中,,,a b c 分别是内角,,A B C 的对边,且2asinA =(2b+c )sinB+(2c+b )sinC.(1) 求角A 的大小;(2)求sin sin B C +的最大值.变式1:已知向量(,)m a c b =+,(,)n a c b a =--,且0m n ⋅=,其中,,A B C 是△ABC 的内角,,,a b c 分别是角,,A B C 的对边.(1) 求角C 的大小;(2)求sin sin A B +的最大值.解:由m n ⋅=()a c +()()0a c b b a -+-=,得a 2+b 2—c 2=ab=2abcosC所以cosC=21,从而C=60故sin sin sin sin(120)O A B A A +=+-=3sin(60 +A)所以当A=30 时,sin sin A B +的最大值是3变式2.已知半径为R 的圆O 的内接⊿ABC 中,若有2R (sin 2A —sin 2C )=(2a —b )sinB 成立,试求⊿ABC 的面积S 的最大值。

解:根据题意得:2R(224Ra —224Rc )=(2a —b)*Rb 2 化简可得c 2=a 2+b 2—2ab, 由余弦定理可得: C=45 , A+B=135 S=21absinC=212RsinA*2RsinB*sinC =2sinAsin(135 —A)=22R (2sin(2A+45 )+1∵0<A<135 ∴45 <2A+45 <315∴ 当2A+45=90即A=15时,S 取得最大值2212R +。

高中数学。三角形中的最值、范围问题。练习题(含答案)

高中数学。三角形中的最值、范围问题。练习题(含答案)

高中数学。

三角形中的最值、范围问题。

练习题(含答案)解三角形问题是高考高频考点。

主要利用三角形的内角和定理、正弦定理、余弦定理、三角形面积公式等知识解题。

在解题过程中,需要灵活利用三角形的边角关系进行“边转角”“角转边”。

另外,要注意a+c。

ac。

a+c三者的关系。

高考中经常将三角变换与解三角形知识综合起来命题。

如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理实现边角互化;以上特征都不明显时,则要考虑两个定理都有可能用到。

而三角变换中主要是“变角、变函数名和变运算形式”,其中的核心是“变角”,即注意角之间的结构差异,弥补这种结构差异的依据就是三角公式。

正弦定理的主要作用是方程和分式中的边角互化。

其原则为关于边,或是角的正弦值是否具备齐次的特征。

如果齐次则可直接进行边化角或是角化边,否则不可行。

例如:(1)sinA+sinB-sinAsinB=sinC。

可化为a+b-ab=c;(2)bcosC+ccosB=a 可化为sinBcosC+sinCcosB=sinA(恒等式);(3) bcsinBsinC/2=asinA/2.余弦定理为a²=b²+c²-2bccosA。

变式为a=(b+c)-2bc(1+cosA)。

此公式在已知a,A的情况下,配合均值不等式可得到b+c和bc的最值。

在三角形中,任意两边之和大于第三边。

在判定是否构成三角形时,只需验证较小的两边之和是否比第三边大即可。

在求最值时使用较少。

另外,在三角形中,边角以及角的三角函数值存在等价关系。

例如a>b则A>B,则sinA>sinB,cosAB 则cosAB则sinA>sinB仅在一个三角形内有效。

解三角形中处理不等关系的几种方法包括:(1)转变为一个变量的函数;(2)利用均值不等式求得最值。

例如,已知四边形面积为S1、S2、S3、S4,则S1+S2+S3+S4的最大值为多少?答案】1) $\frac{b}{a}=\frac{\sqrt{3}+1}{2}$;2) $a+b+c$ 的最大值为 $2\sqrt{3}+\sqrt{6}$。

高考100题解三角形:专题6 三角形中的最值问题

高考100题解三角形:专题6 三角形中的最值问题

【答案】 3
【解析】由 a 2 ,且 2 b(sin A sin B) (c b) sin C ,故 (a b)(sinA sinB) (c b) sinC ,又根据正弦
定理,得 (a b)(a b) (c b)c ,化简得, b2 c2 a2 bc ,故 cosA b2 c2 a2 1 ,所以 A 600 , 2 bc 2
∵ 0 A ,∴ 0 sin A
2

4
2
因此 2 2(sin A 1 )2 9 9 ,由此可知 sin A sin C 的取值范围是 ( 2 , 9] .
2
4 88
28
【 例 3 】【 2014 重 庆 高 考 理 第 10 题 】 已 知 ABC 的 内 角 A, B, C 满 足 sin 2 A sin( A B C)
【方法总结】对于三角形中边的代数式的最值问题,若是三角形中最大(小)边长问题,先根据角判定三边的
大小关系,再用正弦定理或余弦定理求解;若是关于两边以上的齐次代数式,若能求得两边的和或积为常数,
可以利用基本不等式求最值,也可以利用正弦定理化为对应角的三角函数式的最值,常用题中条件和三角形内
角和定理化为一个角的三角式函数最值问题,再利用三角公式化为一个角的三角函数在某个范围上的最值问题,
IV.题型攻略·深度挖掘
【考试方向】
这类试题在考查题型上,通常以选择题或填空题或解答题的形式出现,一般中档题,考查综合运用正余弦定理
及相关知识与方法解综合问题的能力.
【技能方法】
1.与平面向量结合的三角形问题,常利用平面向量的知识将向量条件或问题化为三角形的边角条件或问题,再
利用正余弦定理化为纯边或纯角条件或问题求解,如在 ABC 中,由

高考数学《与解三角形有关的最值问题》

高考数学《与解三角形有关的最值问题》

高考数学与解三角形有关的最值问题与三角形有关的最值问题主要涉及求三角函数值最值,边长的最值,面积、向量的最值.解决这类的问题方法有:一、将所给条件转化为三角函数,利用三角函数求解最值;二、将所给条件转化为边,利用基本不等式或者函数求解最值;三、建立坐标系,求出动点的轨迹方程,利用几何意义求解最值;四、多元问题可消元后再用上述方法求解.如2018年T14就是与解三角形有关的最值问题.例1在△ABC中,已知A,B,C所对的边分别为a,b,c,若a2+b2+2c2=8,则△ABC面积的最大值为________.点评:例2在△ABC中,已知角A,B,C的对边分别为a,b,c,tan C=sin A+sin B cos A+cos B.(1) 求角C的大小;(2) 若△ABC的外接圆直径为1,求a2+b2+c2的取值范围.点评:【思维变式题组训练】1. 在△ABC 中,已知2cos 2A 2=33sin A ,若a =23,则△ABC 周长的取值范围为________.2. 在△ABC 中,若sin C =2cos A cos B ,则cos 2A +cos 2B 的最大值为________.3. 在锐角三角形 ABC 中,已知2sin 2 A + sin 2B = 2sin 2C ,则1tan A +1tan B +1tan C 的最小值为________.4. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,向量m =(a ,b ),n =(cos A ,cos B ),p =⎝⎛⎭⎫22sin B +C 2,2sin A ,若m ∥n ,|p |=3. (1) 求角A ,B ,C 的值;(2) 若x ∈⎣⎡⎦⎤0,π2,求函数f (x )=sin A sin x +cos B cos x 的最大值与最小值.。

三角函数与解三角形中的最值(范围)问题

三角函数与解三角形中的最值(范围)问题


sin
2
2
(sin+cos)
sin

π
4

sin
2
1
(1+
),
2
tan
π
π
因为 B ∈[ , ),所以tan
6
4
因为函数 y =
sin(+
B ∈[
3
,1),
3
2
1
3
(1+ )在[ ,1)上单调递减,
2

3

所以 的取值范围为(

2,
6+ 2
].
2

高中总复习·数学
2. (2024·湖北三校联考)记△ ABC 的内角 A , B , C 的对边分别为
π
≤ )的图象离原点最近的对称轴为 x = x 0,若满足| x 0|≤
2
π
,则称 f ( x )为“近轴函数”.若函数 y =2
6
“近轴函数”,则φ的取值范围是(

sin (2 x -φ)是
高中总复习·数学
解析: y =2 sin
π
(2 x -φ),令2 x -φ= + k π, k ∈Z,∴图象
6
6
π
[0, ]上的值域为[-1,2].故选D.
2
高中总复习·数学
2.
4
3
sin+5
函数 y =
的最大值是
2−sin
6 ,最小值是
解析:法一
2−5
sin x =
,而-1≤
+1
原函数可化为
.
sin x ≤1,所以
2−5
4
-1≤
≤1,所以 ≤ y ≤6,因此原函数的最大值是6,最小值

完整版)解三角形中的最值问题

完整版)解三角形中的最值问题

完整版)解三角形中的最值问题解三角形中的最值问题1.在三角形ABC中,已知角A,B,C所对边长分别为a,b,c,且a²+b²=2c²,求cosC的最小值。

解析:由余弦定理知cosC=(a²+b²-c²)/(2ab),代入已知条件得cosC≥-1/2.因此cosC的最小值为-1/2.2.在三角形ABC中,已知角B=60°,AC=3,求AB+2BC的最大值。

解析:根据余弦定理,AB²=AC²+BC²-2AC·BCcosB,代入已知条件得AB²=9+BC²-6BC·1/2,即AB²=BC²-3BC+9.由于AB+2BC=AB+BC+BC,因此可将其转化为求AB+BC的最大值。

设x=BC,则AB²=x²-3x+9,求导得x=3/2时,AB+BC取得最大值,即AB+2BC的最大值为9/2.3.在三角形ABC中,已知角A,B,C的对边分别为a,b,c,且a≥b,sinA+3cosA=2sinB。

(1)求角C的大小;(2)求(a+b)/c的最大值。

解析:(1)由sinA+3cosA=2sinB得2sin(A+π/3)=2sinBsinA/3,因此sin(A+π/3)=sinB/3.由于a≥b,因此A≥B,所以A+π/3=B/3,即A=π/3-B/3.由正弦定理得c/sinC=2b/sinB,代入已知条件得c=2b(sinA+3cosA)/sinB=6b/√3=2√3b,因此角C的大小为π/3.2)由正弦定理得(a+b)/c=sinA+sinB/sinC,代入已知条件得(a+b)/c=2sinB/sinC,即sinC=2sinB(a+b)/c。

由于sinC≤1,因此(a+b)/c≤1/2.当且仅当A=π/2时,(a+b)/c取得最大值1/2.4.在三角形ABC中,已知内角A,B,C的对边分别为a,b,c,且a=___。

【高考数学大题精做】专题06 三角形中的最值问题(第一篇)(解析版)

【高考数学大题精做】专题06 三角形中的最值问题(第一篇)(解析版)

1 / 18第一篇 三角函数与解三角形专题06 三角形中的最值问题【典例1】【湖南省益阳市、湘潭市2020届高三9月调研考试】已知锐角三角形ABC 中,内角,,A B C 的对边分别为,,a b c ,且2cos cos a b Bc C-=(1)求角C 的大小.(2)求函数sin sin y A B =+的值域. 【思路引导】 (1)由2cos cos a b Bc C-=利用正弦定理得2sin cos sin cos sin cos A C B C C B -=,根据两角和的正弦公式及诱导公式可得1cos 2C =,可求出C 的值;(2)对函数的关系式进行恒等变换,利用两角和与差的正弦公式及辅助角公式把函数的关系式变形成同一个角正弦型函数,进一步利用定义域求出函数的值域. 解:(1)由2cos cos a b Bc C-=, 利用正弦定理可得2sin cos sin cos sin cos A C B C C B -=, 可化为()2sin cos sin A C sin C B A =+=,1sin 0,cos 2A C ≠∴=Q 0,,23C C ππ⎛⎫∈∴= ⎪⎝⎭Q .(2)sin sin 3y A sinB A sin A ππ⎛⎫=+=+-- ⎪⎝⎭2 / 181sin sin 26A A A A π⎛⎫=+=+ ⎪⎝⎭, 2,032A B A Q ππ+=<<,62A ππ∴<<,2,36362A sin A ππππ⎛⎤⎛⎫∴<+<∴+∈ ⎥ ⎪ ⎝⎭⎝⎦,32y ⎛∴∈ ⎝. 【典例2】【2020届海南省高三第二次联合考试】在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,且22cos a c b C -=. (1)求sin 2A C B +⎛⎫+⎪⎝⎭的值; (2)若b =c a -的取值范围.【思路引导】(1)利用正弦定理边化角,结合两角和差正弦公式可整理求得cos B ,进而求得B 和A C +,代入求得结果;(2)利用正弦定理可将c a -表示为2sin 2sin C A -,利用两角和差正弦公式、辅助角公式将其整理为2sin 3C π⎛⎫- ⎪⎝⎭,根据正弦型函数值域的求解方法,结合C 的范围可求得结果.解:(1)由正弦定理可得:2sin sin 2sin cos A C B C -=A B C π++=Q ()sin sin A B C ∴=+()2sin sin 2sin cos 2cos sin sin 2sin cos B C C B C B C C B C ∴+-=+-=即2cos sin sin B C C =()0,C π∈Q sin 0C ∴≠ 1cos 2B ∴=()0,B π∈Q 3B π∴= 23AC π∴+=2sin sin 23A C B π+⎛⎫∴+==⎪⎝⎭(2)由(1)知:sin sin3B π==2sin sin sin a c bA C B∴====3 / 182sin c C ∴=,2sin a A =()2sin 2sin 2sin 2sin 2sin 2sin cos 2cos sin c a C A C B C C B C B C∴-=-=-+=--2sin sin sin 2sin 3C C C C C C π⎛⎫=-==- ⎪⎝⎭23A C π+=Q 203C π∴<< ,333C πππ⎛⎫∴-∈- ⎪⎝⎭(2sin 3C π⎛⎫∴-∈ ⎪⎝⎭,即c a -的取值范围为(【典例3】【山西省平遥中学2020届高三上学期11月质检】 已知△ABC 的内角A ,B ,C 满足sin sin sin sin sin sin sin sin A B C BC A B C-+=+-.(1)求角A ;(2)若△ABC 的外接圆半径为1,求△ABC 的面积S 的最大值. 【思路引导】(1)利用正弦定理将角化为边可得222a b c bc =+-,再由余弦定理即可得A ; (2)由正弦定理2aR sinA=,可得a ,由基本不等式利用余弦定理可得222b c bc bc bc bc +-≥-=,从而由12S bscinA =可得解. 解:(1)设内角A ,B ,C 所对的边分别为a ,b ,c . 根据sin sin sin sin sin sin sin sin A B C BC A B C-+=+-,可得222a b c ba b c bc c a b c-+=⇒=+-+-, 所以2221cos 222b c a bc A bc bc +-===,又因为0A π<<,所以3A π=.(2)22sin 2sin sin 3a R a R A A π=⇒=== 所以2232b c bc bc bc bc =+-≥-=,所以11sin 32224S bc A =≤⨯⨯=(b c =时取等号).4 / 18【典例4】【2020届河北省保定市高三上学期期末】已知ABC ∆的三个内角A ,B ,C 所对的边分别为,,a b c ,设(sin ,1cos )m B B =-u r ,(2,0)n =r. (1)若23B π=,求m u r 与n r 的夹角θ; (2)若||1,m b ==r,求ABC ∆周长的最大值.【思路引导】 (1)将23B π=代入可求得m u r .根据平面向量数量积的坐标运算求得m n ⋅u r r ,由数量积的定义即可求得cos θ,进而得夹角θ.(2)根据||1m =r 及向量模的坐标表示,可求得B .再由余弦定理可得22()4a cb +=.结合基本不等式即可求得a c +的最大值,即可求得周长的最大值;或由正弦定理,用角表示出a c +,结合辅助角公式及角的取值范围,即可求得a c +的取值范围,进而求得周长的最大值.解:(1)23B π=,所以322m ⎛⎫= ⎪ ⎪⎝⎭u r ,因为(2,0)n =r ,20m n ⋅==u r r ∴ ,又||m ==u r ||2n =r ,1cos 2θ==∴,3πθ∴=,(2)因为||1m =u r,即||1m ===r,所以3B π=,方法1.由余弦定理,得2222cos b a c ac B =+-.2222()()3()324a c a c a c ac a c ++⎛⎫=+-≥+-⋅=⎪⎝⎭,即2()34a c +≥,即a c +≤(当且仅当a c =时取等号) 所以ABC ∆周长的最大值为5 / 18方法2.由正弦定理可知,2sin sin sin a c bA C B===, 2sin ,2sin a A c C ==∴,23A C π+=,所以22sin 2sin 3sin 36a c A A A A A ππ⎛⎫⎛⎫+=+-==+⎪ ⎪⎝⎭⎝⎭,又203A π<<,5666A πππ<+<,1sin ,162A π⎛⎫⎛⎤∴+∈ ⎪ ⎥⎝⎭⎝⎦,a c +∈∴,所以当3A π=时,a c +取最大值所以ABC ∆周长的最大值为【典例5】【2020届吉林省长春市东北师大附中等六校高三联合模拟】 如图,在矩形ABCD 中,1AB =,BC =,点E 、F 分别在边BC 、CD 上,3FAE π∠=,06EAB πθθ⎛⎫∠=<< ⎪⎝⎭..(1)求AE ,AF (用θ表示); (2)求EAF ∆的面积S 的最小值. 【思路引导】(1)根据1AB =,BC =,分别在Rt ABE ∆和Rt ADF ∆中,利用锐角三角函数的定义求出AE 和AF即可;(2)由条件知13sin 232sin 23S AE AF ππθ=⋅⋅=⎛⎫+ ⎪⎝⎭,然后根据θ的范围,利用正弦函数的图象和性质求出S 的最小值.解:(1)在Rt ABE ∆中,1AB =,所以1cos cos AB AE EAB θ==∠,6 / 18在Rt ADF ∆中,AD =236DAF EAB πππθ∠=--∠=-,0cos 6cos 6ADAF DAFπθπθ⎛⎫∴==<< ⎪∠⎛⎫⎝⎭- ⎪⎝⎭; (2)13sin 234cos cos 6S AE AF ππθθ=⋅==⎛⎫- ⎪⎝⎭⎝⎭32sin 23πθ===⎛⎫++ ⎪⎝⎭,因为06πθ<<,所以22333πππθ<+<2sin 223πθ⎛⎫<+≤ ⎪⎝⎭,当232ππθ+=时,即当12πθ=时,S取最小值(32.【典例6】【2020届重庆市康德卷高考模拟调研卷理科数学(一)】已知ABC V 中,内角A ,B ,C 的对边分别为a ,b ,c ,且()sin ()(sin sin )a c C a b A B -=+-. (1)求B ; (2)设b =ABC V 的面积为S ,求2sin 2S C -的最大值.【思路引导】(1)用正弦定理化角为边后,再用余弦定理可求得角B ;(2)用正弦定理把边用角表示,即2sin a A =,2sin c C =,这样2sin 2sin sin 2S C ac B C-=-2sin 2sin sin 22A C C=⋅⋅-,又sin sin()sin()3A B C C π=+=+,2sin 2S C -就表示为C 的三角函数,由三角函数恒等变换化为一个角的一个三角函数形式,结合正弦函数性质可得最大值. 解:(1)由正弦定理()()()a c c a b a b -=+-,222a c b ac +-=,由余弦定理2221cos 22a cb B ac +-==,3B π=;7 / 18(2)由正弦定理2sin sin sin 2a c bA C B====,2sin a A =,2sin c C =, 2sin 2sin sin 2S C ac B C -=-2sin 2sin sin 2sin sin 2A C C A C C =⋅=-2)sin sin 23sin cos sin 2C B C C C C C C =+-=+-31cos 2sin 2sin 22sin 2222222C C C C C =-+-=-+sin 213C π⎛⎫=-≤ ⎪⎝⎭当且仅当512C π=时等号成立,故最大值为1. 【典例7】【福建省宁德市2019-2020学年高三上学期第一次质量检查(期末)】ABC ∆的内角A ,B ,C 的对边分别为a ,b ,ccos c C -=⋅,c =(1)求A ;(2)若ABC ∆为锐角三角形,D 为BC 中点,求AD 的取值范围. 【思路引导】(1cos c C -⋅中的边化成角得到cos A =A 的值; (2)由(1)知4A π=,可得C 的范围,再将b 表示成关于tan C 的函数,从而求得b 的取值范围.解:(1cos c C -=⋅sin cos B C A C -=,又sin sin[()]sin()B A C A C =π-+=+,cos cos sin )sin cos A C A C C A C +-=sin sin 0A C C -=, 因为0C π<<,所以sin 0C ≠,所以cos A =0A π<<,所以4A π=. (2)由(1)知4A π=,根据题意得0242C C πππ⎧<<⎪⎪⎨⎪+>⎪⎩,,解得42C ππ<<.8 / 18在ABC ∆中,由正弦定理得sin sin c bC B=,所以)2sin 2cos 242sin sin tan C C C b CC Cπ++===+,因为()42C ππ∈,,所以tan (1,)C ∈+∞,所以(24)b ∈,. 因为D 为BC 中点,所以1()2AD AC AB =+u u u r u u u r u u u r,所以221()4AD AC AB =+u u u r u u u r u u u r 21(48)4b b =++21(2)14b =++,因为(24)b ∈,,所以AD的取值范围为.1. 【陕西省2019年高三第三次教学质量检测】在ABC ∆中,a 、b 、c 分别是角A 、B 、C 的对边,且()()3a b c a b c ab +++-=. (1)求角C 的值;(2)若2c =,且ABC ∆为锐角三角形,求+a b 的取值范围. 【思路引导】(1)根据题意,由余弦定理求得1cos 2C =,即可求解C 角的值; (2)由正弦定理和三角恒等变换的公式,化简得到4sin 6a b A π⎛⎫+=+ ⎪⎝⎭,再根据ABC ∆为锐角三角形,求得62A ππ<<,利用三角函数的图象与性质,即可求解.解:(1)由题意知()()3a b c a b c ab +++-=,∴222a b c ab +-=,由余弦定理可知,222cos 122a b c C ab +-==,又∵(0,)C π∈,∴3C π=.(2)由正弦定理可知,2sin sin sin 3a b A Bπ===,a A b B ==9 / 18∴sin )a b A B +=+2sin sin 3A A π⎤⎛⎫=+- ⎪⎥⎝⎭⎦2cos A A =+4sin 6A π⎛⎫=+ ⎪⎝⎭,又∵ABC ∆为锐角三角形,∴022032A B A πππ⎧<<⎪⎪⎨⎪<=-<⎪⎩,即,则2363A πππ<+<,所以4sin 46A π⎛⎫<+≤ ⎪⎝⎭,综上+a b的取值范围为.2. 【辽宁省葫芦岛市六校协作体2019-2020学年高三上学期11月月考】,,a b c 分别为ABC V 的内角,,A B C 的对边.已知()sin 4sin 8sin a A B A +=.(1)若1,6b A π==,求sin B ; (2)已知3C π=,当ABC V 的面积取得最大值时,求ABC V 的周长.【思路引导】(1)根据正弦定理,将()sin 4sin 8sin a A B A +=,化角为边,即可求出a ,再利用正弦定理即可求出sin B ;(2)根据3C π=,选择in 12s S ab C =,所以当ABC V 的面积取得最大值时,ab 最大,结合(1)中条件48a b +=,即可求出ab 最大时,对应的,a b 的值,再根据余弦定理求出边c ,进而得到ABC V 的周长.解:(1)由()sin 4sin 8sin a A B A +=,得()48a a b a +=, 即48a b +=.因为1b =,所以4a =.由41sin sin6B=π,得1sin 8B =. (2)因为48a b +=≥=, 所以4ab ≤,当且仅当44a b ==时,等号成立.10 / 18因为ABC V的面积11sin 4sin 223S ab C π=≤⨯⨯= 所以当44a b ==时,ABC V 的面积取得最大值, 此时22241241cos 133c π=+-⨯⨯⨯=,则c =, 所以ABC V的周长为53. 【2019年云南省师范大学附属中学高三上学期第一次月考】在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,且满足sin cos 6b A a B π⎛⎫=- ⎪⎝⎭. (1)求角B 的大小;(2)若D 为AC 的中点,且1BD =,求ABC S ∆的最大值. 【思路引导】(1)利用正弦定理边角互化思想得出sin cos 6B B π⎛⎫=- ⎪⎝⎭,再利用两角差的余弦公式可得出tan B 的值,结合角B 的范围可得出角B 的大小;(2)由中线向量得出2BD BA BC =+uu u r uu r uu u r,将等式两边平方,利用平面向量数量积的运算律和定义,并结合基本不等式得出ac 的最大值,再利用三角形的面积公式可得出ABC ∆面积的最大值. 解:(1)由正弦定理及sin cos 6b A a B π⎛⎫=- ⎪⎝⎭得sin sin sin cos 6B A A B π⎛⎫=- ⎪⎝⎭, 由()0,A π∈知sin 0A >,则1sin cos sin 622B B B B π⎛⎫=-=+ ⎪⎝⎭,化简得sin B B =,tan B ∴=. 又()0,B π∈,因此,3B π=;(2)如下图,由1sin 2ABC S ac B ∆==,11 / 18又D 为AC 的中点,则2BD BA BC =+uu u r uu r uu u r, 等式两边平方得22242BD BC BC BA BA =+⋅+u u u r u u u r u u u r u u r u u r , 所以2222423a c BA BC a c ac ac =++⋅=++≥u u u r u u u r, 则43ac ≤,当且仅当a c =时取等号,因此,ABC ∆43=4. 【2020届湖南省常德市高三上学期期末】ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知cos cos 2cos +=ac B b C A.(1)求A ; (2)若a =b c +的最大值.【思路引导】(1)根据正弦定理即正弦的和角公式,将表达式化为角的表达式.即可求得A .(2)利用正弦定理,表示出b c +,结合三角函数的辅助角公式及角的取值范围,即可求得b c +的最大值. 解:(1)∵cos cos 2cos +=ac B b C A,由正弦定理得sin sin cos sin cos 2cos +=AC B B C A从而有()sin sin sin sin 2cos 2cos +=⇒=A AB C A A A , ∵sin 0A ≠,∴1cos 2A =,∵0A π<<,∴3A π=;(2)由正弦定理得:2sin sin sin a b cA B C===, ∴2sin ,2sin b B c C ==,则()22sin sin 2sin 2sin 3⎛⎫+=+=+-⎪⎝⎭b c B C B B π3sin 6B B B π⎛⎫==+ ⎪⎝⎭,12 / 18∵203B π<<,∴5666B πππ<+<, ∴当3B π=时,b c +取得最大值5. 【2020届江西省吉安市高三上学期期末】在ABC ∆中,a ,b ,c 分别是角A ,B ,C 的对边,已知向量(2cos ,)m C b =-r ,(1,cos cos )n a C c A =+r,且//m n r r.(1)求角C 的大小; (2)若c =ABC ∆的周长的取值范围.【思路引导】(1)根据向量平行列出方程,再利用正弦定理进行边角转化,然后求出角C 的大小; (2)根据余弦定理求出+a b 的取值范围,再根据三角形边的几何性质求出周长的取值范围. 解:(1)由//m n r r得22cos 2cos cos a C c A C b +=-, 由正弦定理sin sin sin a b cA B C==, 得2cos (sin cos sin cos )sin C A C C A B +=-, 即2cos sin()sin C A C B +=-,因为在三角形中sin()sin 0A C B +=≠,则1cos 2C =-,又(0,)C π∠∈,故23C π∠=; (2)在ABC ∆中,因c =23C π∠=,由余弦定理得2223c a b ab =++=, 即22()332a b a b ab +⎛⎫+=+≤+ ⎪⎝⎭,当且仅当a b =时取等号,解得2a b +≤,又由三角形性质得a b c +>=2a b +≤,则2a b c <++≤,即ABC ∆的周长的取值范围为(+. 6. 【2020届重庆市康德卷高考模拟调研卷理科数学(二)】如图,在四边形ABCD 中,A为锐角,2cos sin()6A A C C π⎛⎫+=-⎪⎝⎭.13 / 18(1)求A C +;(2)设ABD △、CBD V 的外接圆半径分别为1,r 2r ,若1211mr r DB+≤恒成立,求实数m 的最小值. 【思路引导】(1)根据三角函数的和差角公式与三角函数值求解即可. (2)根据正弦定理参变分离,再利用A 的取值范围求解 解:(1)由题, 2cos sin()A A C +=3sin[()]sin[()]sin(2)sin sin 2A A C A A C A C C C C ++--+=++=-,即1sin(2)sin 22A C C C +=-sin(2)sin 3A C C π⎛⎫⇒+=- ⎪⎝⎭,因为23A C C π+>-.故23A C C π+≠-.所以2233A C C A C πππ++-=⇒+=. (2)122sin 2sin BD BD m A C r r ≥+=+22sin 2sin 3A A π⎛⎫=+- ⎪⎝⎭12sin 2cos 2sin 22A A A ⎛⎫=+⨯-⨯- ⎪⎝⎭3sin A A =6A π⎛⎫=+ ⎪⎝⎭,因为0,2A π⎛⎫∈ ⎪⎝⎭,故当62A ππ+=时6A π⎛⎫+ ⎪⎝⎭有最大值所以m ≥即实数m的最小值为7. 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c.已知2(tan A +tan B)=tan tan cos cos A BB A+. (1)证明:a +b =2c ; (2)求cos C 的最小值. 【思路引导】(1)根据三角函数的基本关系式,可化简得2(sin cos sin cos )sin sin A B B A A B +=+,再根据14 / 18A B C π++=,即可得到sin sin 2sin A B C +=,利用正弦定理,可作出证明;(2)由(1)2a bc +=,利用余弦定理列出方程,再利用基本不等式,可得cos C 的最小值. 解:(1)由题意知,sin sin sin sin 2()cos cos cos cos cos cos A B A BA B A B A B+=+, 化简得:2(sin cos sin cos )sin sin A B B A A B +=+ 即2sin()sin sin A B A B +=+,因为A B C π++=, 所以sin()sin()sin A B C C π+=-=,从而sin sin 2sin A B C +=,由正弦定理得2a b c +=. (2)由(1)知,2a bc +=, 所以222222()3112cos ()22842a b a b a b c b a C ab ab a b ++-+-===+-≥, 当且仅当a b =时,等号成立,故cos C 的最小值为12.8. 【重庆市西南大学附属中学校2019届高三上学期第三次月考】 在ABC △中,内角A B C ,,的对边分别为a b c ,,,已知1cos 2b a Cc =+. (1)求角A ;(2)若·3AB AC =u u u r u u u u r,求a 的最小值. 【思路引导】(Ⅰ)利用正弦定理、诱导公式、两角和差的三角公式求出cosA 的值,可得A 的值.解:(1) ∵ABC V 中,cos 2cb a C -=, ∴由正弦定理知,1sin sin cos sin 2B AC C -=,∵πA B C ++=,∴()sin sin sin cos cos sin B A C A C A C =+=+, ∴1sin cos cos sin sin cos sin 2A C A C A C C +-=, ∴1cos sin sin 2A C C =, ∴1cos 2A =,∴π3A =.(2) 由 (1)及·3AB AC =u u u r u u u r得6bc =,15 / 18所以222222cos 6266a b c bc A b c bc =+-=+--=… 当且仅当b c =时取等号,所以a9. 【吉林省吉林市普通中学2019-2020学年度高三第二次调研测】 已知ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,2A π≠,且满足()sin 220cos 0bc A B C ++=.(1)求ABC ∆的面积S ; (2)若24a S =,求c bb c+的最大值. 【思路引导】(1)由诱导公式和二倍角公式可得sin bc A ,从而得三角形面积;(2)由余弦定理得2222cos 2sin b c bc A a bc A +-==,从而可把22c b b c b c bc++=用角A 表示出来,由三角函数性质求得最大值.解:(1)在ABC ∆中,A B C π++=,∴B C A +=π-∵()sin 220cos 0bc A B C ++=∴2sin cos 20cos 0bc A A A ⋅-= ∵2A π≠,∴cos 0A ≠∴1sin 52S bc A == (2)∵24a S =∴222cos 2sin b c bc A bc A +-= ∴222sin 2cos b c bc A bc A +=+∴222sin 2cos 4c b b c A A A b c bc π+⎛⎫+==+=+ ⎪⎝⎭ ∴当4A π=时,c bb c+取最大值 10. 【湖南省长沙市浏阳市第一中学2019-2020学年高三上学期第六次月考】 已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且tan (sin 2cos )cos 2222A C A C a b a +=. (1)求角B 的值; (2)若△ABC的面积为D 为边AC 的中点,求线段BD 长的最小值.16 / 18【思路引导】 (1)根据tan(sin 2cos )cos 2222A C A C a b a +=,化简可得cos sin 2A C a b A +=,进一步得到1cos 22B =,然后求出B 的值;(2)由(1)的角B 及三角形面积公式可得ac 的值,因为D 为边AC 的中点,所以1()2BD BA BC =+u u u r u u u r u u u r,利用向量的模和基本不等式可求BD u u u r的取值范围,即可得到BD 的最小值.解:(1)由tan(sin 2cos )cos 2222A C A C a b a +=,得sin (sin 2cos )cos cos 22222A C A A C a b a +=, 即(cos cos sin sin )2sin cos 222222A C A C A A a b -=,即cos sin 2A Ca b A +=. 由正弦定理得sin cossin sin 2A C AB A +=,因0,sin 0,sin 02BA A π<<≠≠, 所以cossin 2A C A +=,则sin sin 2sin cos 222B B BB ==, 所以1cos (0)2222B B π=<<, 所以23B π=,即23B π=. (2)由△ABC的面积为1sin 2ac B =12ac =.因为D 为边AC 的中点,所以1()2BD BA BC =+u u u r u u u r u u u r ,所以2221(2)4BD BA BC BA BC u u u r u u u r u u u r u u u r u u u rg =++,即222111(2cos )(2)3444BD c a ac B ac ac ac u u u r =++≥-==,当且仅当a c ==“=”,所以BD u u u r≥BD.11. ABC ∆中,60,2,B AB ABC ==∆o的面积为 (1)求AC(2)若D 为BC 的中点,,E F 分别为边,AB AC 上的点(不包括端点),且120EDF ∠=o ,求DEF ∆面积的最小值. 【思路引导】 (1)利用1sin 2ABC AB B S BC =⋅⋅⋅V 求出BC ,再利用余弦定理求AC 即可; (2)设(),0,60BDE θθ︒︒∠=∈,在BDE V 中,利用正弦定理表示出DE ,在CDF V 中,利用正弦定理表示出DF ,再将DEF V 的面积表示出来,利用三角函数的性质求其最小值.17 / 18解:(1)因为60,2,B AB ==o所以11sin 222ABC AB BC B BC B S C =⋅⋅⋅=⨯=V ,又ABC S =V 4BC =,由余弦定理得:2222212cos 24224122AC AB BC AB BC B =+-⋅⋅=+-⨯⨯⨯=,所以AC =(2)设(),0,60BDE θθ︒︒∠=∈,则60CDF θ︒∠=-,在BDE V 中,由正弦定理得:sin sin BD DEBED B=∠,即()2sin 60θ︒=+,所以sin 60DE =+, 在CDF V 中,由正弦定理得:sin sin CD DFCFD C=∠,由(1)可得22260,,30B BC AC AB C ︒=∴=+=o ,则()21sin 902DFθ︒+=,所以1cos DF θ=,所以()13sin 24sin 60cos DEFS DE DF EDF θθ︒=⋅⋅⋅∠=+⋅V==,当15θ︒=时,()()min sin 2601,6DEP Sθ︒+===-V18 / 18故DEF V的面积的最小值为6 .。

解三角形中的最值或范围问题

解三角形中的最值或范围问题

解法探究2023年12月上半月㊀㊀㊀解三角形中的最值或范围问题◉哈尔滨师范大学教师教育学院㊀李鸿媛㊀㊀摘要:解三角形的最值或范围问题是高考考查的热点内容之一,并且对解三角形的命题设计,不只局限于解三角形,而是通常利用正余弦定理㊁三角形面积公式等求解三角形的边㊁角㊁周长和面积的最值等问题.这类问题的解法主要是将边角互化转化为三角函数的最值问题,或利用基本不等式求最值.本文中对这类问题加以归类解析,以提升学生的解题能力.关键词:解三角形;最值;范围1与边有关的最值或范围问题例1㊀在әA B C 中,角A ,B ,C 的对边分别是a ,b ,c ,角B =π3,若a +c =4,则b 的取值范围为.解析:由a +c =4,B =π3,由余弦定理得b 2=a 2+c 2-2a c c o s B ,则b 2=(a +c )2-2a c -2a c c o s π3,即b 2=16-3a c .由a +c ȡ2a c ,得4ȡ2a c ,即0<a c ɤ4,于是4ɤb 2<16,所以2ɤb <4.评析:本题利用已知条件结合余弦定理,借助基本不等式求三角形边的取值范围[1],渗透了逻辑推理㊁数学运算等数学核心素养.例2㊀在әA B C 中,角A ,32B ,C 成等差数列,且әA B C 的面积为1+2,则A C 边长的最小值是.解析:由A ,32B ,C 成等差数列,得A +C =3B .又A +B +C =π,所以B =π4.设角A ,B ,C 所对的边分别为a ,b ,c ,则由S әA B C =12a c s i n B =1+2,可得a c =22+4.由余弦定理得b 2=a 2+c 2-2a c c o s B ,则b 2=a 2+c 2-2a c .又a 2+c 2ȡ2a c ,则b 2ȡ(2-2)a c ,即b 2ȡ(2-2)(22+4),所以b ȡ2(当且仅当a =c 时,等号成立).故A C 边长的最小值为2.评析:本题考查了学生对等差数列的概念㊁三角形内角和定理㊁三角形面积公式㊁余弦定理等的掌握情况.解题的关键是将余弦定理与不等式相结合,进而求出三角形一边的最值.2与角有关的最值或范围问题例3㊀在әA B C 中,角A ,B ,C 的对边分别是a ,b ,c ,若A ʂπ2,s i n C +s i n (B -A )=2s i n2A ,则角A 的取值范围为.解法一:在әA B C 中,C =π-(A +B ),则s i n C =s i n (A +B ),所以s i n (A +B )+s i n (B -A )=2s i n 2A ,即2s i n B c o s A =22s i n A c o s A .又A ʂπ2,则c o s A ʂ0,所以s i n B =2s i n A .由正弦定理,得b =2a ,则A 为锐角.又s i n B =2s i n A ɪ(0,1],于是可得s i n A ɪ(0,22],故A ɪ(0,π4].评析:解法一利用三角形内角和定理㊁两角和与差的正弦公式㊁正弦定理与三角函数的性质等知识,对学生的推理能力㊁运算能力和直观想象能力进行了考查.解法二:在әA B C 中,C =π-(A +B ),则s i n C =s i n (A +B ),所以s i n (A +B )+s i n (B -A )=2s i n 2A ,即2s i n B c o s A =22s i n A c o s A .又A ʂπ2,则c o s A ʂ0,所以s i n B =2s i n A .由正弦定理,可得b =2a .结合余弦定理,可以得到c o s A =b 2+c 2-a 22b c =12b 2+c 22b c ȡ212b 2 c 22b c =22,当且仅当c =22b 时,等号成立,故A ɪ(0,π4].评析:解法二考查了三角形内角和定理㊁两角和与差的正弦公式㊁正弦定理㊁余弦定理㊁基本不等式等知识.这种解题方法需要学生灵活运用两个正数的和与积的关系,充分体现学生的数学运算能力和数据分析能力.3与周长有关的最值或范围问题例4㊀әA B C 为锐角三角形,角A ,B ,C 所对的472023年12月上半月㊀解法探究㊀㊀㊀㊀边分别为a ,b ,c ,已知33b s i n C +c c o s B =a ,且c =2,求әA B C 周长的最大值.解析:由33b s i n C +c c o s B =a ,根据正弦定理,得33s i n B s i n C +s i n C c o s B =s i n A .由A =π-(B +C ),得s i n A =s i n (B +C ).所以33s i n B s i n C +s i n C c o s B =s i n (B +C ),即33s i n B s i n C =s i n B c o s C .由s i n B ʂ0,得33s i n C =c o s C .又c o s C ʂ0,所以t a n C =3.而0<C <π,则C =π3.根据正弦定理,得a =433s i n A ,b =433s i n B ,则a +b +c =433s i n A +433s i n B +2=433s i n A +433s i n (2π3-A )+2=433(32s i n A +32c o s A )+2=4s i n (A +π6)+2.由әA B C 为锐角三角形,可知0<A <π2,0<2π3-A <π2,ìîíïïïï解得π6<A <π2.所以π3<A +π6<2π3.因此32<s i n (A +π6)ɤ1.故23+2<4s i n (A +π6)+2ɤ6.因此әA B C 周长的最大值为6.评析:这道题解题的关键是利用正弦定理将边化为角,转化为求三角函数的最值问题[2],考查了逻辑推理和数学运算等核心素养.4与面积有关的最值或范围问题例5㊀әA B C 的内角A ,B ,C 所对的边分别是a ,b ,c ,已知2(c -a c o s B )=3b .(1)求角A ;(2)若a =2,求әA B C 面积的取值范围.解法一:(1)略.(2)由(1)知A =π6,又a =2,根据正弦定理,可得b =4s i n B ,c =4s i n C .由C =π-A -B =5π6-B ,得s i n C =s i n (5π6-B ).所以,S әA B C =12b c s i n A =14b c =4s i n B s i n C =4s i n B s i n(5π6-B )=4s i n B (12c o s B +32s i n B )=2s i n B c o s B +23s i n 2B =s i n2B -3c o s 2B +3=2s i n (2B -π3)+3.由0<B <5π6,得-π3<2B -π3<4π3,所以可知-32<s i n (2B -π3)ɤ1,故0<S әA B C ɤ2+3,即әA B C 面积的取值范围为(0,2+3].解法二:(1)略.(2)由(1)知A =π6,a =2,则S әA B C =14b c .由c o s A =b 2+c 2-a 22b c =b 2+c 2-42b c =32,可得b 2+c 2-4=3b c .又b 2+c 2ȡ2b c ,则0<b c ɤ42-3=4(2+3),所以0<S әA B C ɤ2+3.故әA B C 面积的取值范围为(0,2+3].评析:本题求解三角形面积的取值范围,解法一通过正弦定理将边转化为角,再利用三角函数的性质,求解三角形面积的取值范围.解法二先利用余弦定理,结合不等式b 2+c 2ȡ2b c ,求解b c 的取值范围,接着利用三角形面积S әA B C =12b c s i n A 求出面积的取值范围[3].这两种解法都考查了数学运算㊁逻辑推理等数学核心素养.数学这门学科需要学生具备较强的逻辑推理能力㊁运算能力㊁直观想象能力等.针对解三角形最值或范围问题,学生需要熟练掌握三角形的面积公式㊁同角三角函数的基本关系㊁正弦定理㊁余弦定理㊁基本不等式等知识,并能够进行综合运用.参考文献:[1]刘海涛.谈解三角形中有关求范围或最值的解题策略[J ].数理化学习(高中版),2022(7):3G7.[2]张露梅.解三角形中的范围或最值问题[J ].中学生数理化(高二数学),2021(11):35G36.[3]玉素贞.解三角形最值问题的两种转化策略分析[J ].考试周刊,2021(49):85G86.Z57。

2022届高考二轮复习大题专练-解三角形(取值范围、最值问题)含答案

2022届高考二轮复习大题专练-解三角形(取值范围、最值问题)含答案

cos (2)cos a B c b A =-解三角形(取值范围、最值问题)1、△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且满足2a =, (1)求角A 的大小;(2)求△ABC 周长的最大值2、已知ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,且2(cos cos )cos 0a C c A C b ++=. (Ⅰ)求角C 的大小;(Ⅱ)求22sin sin A B +的取值范围.3、在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,sin()62a b c A π++=. (1)求C ;(2)若ABC ∆,求c 的最小值.4、在ABC ∆中,a ,b ,c 分别为角A ,B ,C 的对边,且22cos b c a C -=.(1)求A ;(2)若ABC ∆为锐角三角形,2c =,求b 的取值范围.5、已知ABC ∆的三个内角A ,B ,C 对应的边分别为a ,b ,c 33cos sin a c B b C =+.(1)求角C 的大小;(2)如图,设P 为ABC ∆内一点,1PA =,2PB =,且APB ACB π∠+∠=,求AC BC +的最大值.6、已知ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,且sin sin sin 4cos 0cos sin a A b B c C c A A B--+=. (1)求A ;(2)若a c >,求a b c+的取值范围.7、ABC ∆的三个内角A ,B ,C 的对边分别是a ,b ,c ,已知sinsin 2A B b c B +=. (1)求C ;(2)若1c =,求12a b -的取值范围.8、在ABC ∆中,内角A ,B ,C 所对的边分别a ,b ,c ,且223(cos cos )()222C A a c a c b ac ++-=. (1)求角B 的大小;(2)若(0)b c x x ==>,当ABC ∆仅有一解时,写出x 的范围,并求a c -的取值范围.9、在ABC ∆中,已知角A ,B ,C 所对边分别为a ,b ,c ,sin sin tan cos cos A B C A B+=+. (1)求角C ;(2)若2c =,求a b +的取值范围.10、已知函数4411()cos sin cos sin 22f x x x x x =--. (Ⅰ)求()f x 的最小正周期及单调减区间;(Ⅱ)在ABC ∆中,A ,B ,C 所对的边分别为a ,b ,c ,若()2A f =,BC 边上的中线AD =,求22b c +的最大值.11、在锐角ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,若cos 2B B =,cos cosB c b c +. (1)求角B 的大小和边长b 的值;(2)求ABC ∆面积的取值范围.12、锐角ABC ∆内角A ,B ,C 的对边分别为a ,b ,c .已知22cos b a c A -=⋅.(1)求角C ;(2)若4a b +=,求边c 的取值范围.13、在①sin sin sin sinb A a B A B +,②2sin cos cos cos b C A C C =,③()sin sin sin a b A b B c C -+=,这三个条件中任选一个,补充到下面的问题中,并解决该问题.已知锐角ABC ∆中,a 、b 、c 分别为内角A 、B 、C 的对边,2c =,_____.(1)求角C ;(2)求a b +的取值范围.参考答案1、解:(Ⅰ)∵cos (2)cos a B c b A =-, 由正弦定理2sin sin sin a b c R A B C===, 得sin cos (2sin sin )cos A B c B A =-,sin cos sin cos 2sin cos A B B A C A +=,即sin()2sin cos A B C A +=,又∵A B C π+=-,sin 2sin cos C C A ∴=∵(0,)C π∈,∴1cos ,23A A π==. (Ⅱ)由(Ⅰ)可知3A π=2sin a R A ==22sin 2sin 2sin )2)sin )33a b cR A R BB C C C ππ++=++=++=+--+ 24sin()6C π=++ 250,3666C C ππππ<<∴<+< ∴当,623C C πππ+==时,ABC ∆周长最大最大值为2+4=6,即ABC ∆周长最大值是62、解:()I 因为2(cos cos )cos 0a C c A C b ++=,又cos cos a C c A b +=,所以2cos 0b C b +=, 故1cos 2C =-, 由C 为三角形的内角得23C π=;()II 由()I 知3A B π+=, 221cos21cos21sin sin 1(cos2cos2)22A B A B A B -+-+==-+, 1121cos2cos(2)223A A π=---,1111cos2cos22242A A A =-+-, 11sin(2)26A π=-+, 因为03A π<<, 所以52666A πππ<+<, 所以1sin(2)126A π<+, 所以111sin(2)[262A π-+∈,3)4, 故22sin sin A B +的取值范围1[2,3)4. 3、解:(1)因为sin()62a b c A π++=,所以1cos )22a b c A A ++=,由正弦定理可得sin cos )sin sin C A A A B +=+,即sin sin cos sin sin()C A C A A A C +=++,sin sin sin cos C A A A C =+,又sin 0A ≠,1cos C C =+,即2sin()16C π-=,可得1sin()62C π-=, 又0C π<<, 所以66C ππ-=, 可得3C π=.(2)由题意可得1sin 23ab π=,即4ab c =, 由余弦定理可得222cos 2a b c C ab +-=,可得222128a b c c+-=, 所以22128288ab c c c c c --=, 解得4c ,0c ,(舍去),当且仅当4a b ==时等号成立,所以c 的最小值为4.4、解:(1)22cos b c a C -=,222222a b c b c a ab+-∴-=⨯,化为:222b c a bc +-=, ∴可得2221cos 222b c a bc A bc bc +-===, (0,)A π∈,3A π∴=.(2)因为ABC ∆是锐角三角形,3A π=, 所以2(0,)32C B ππ=-∈,且(0,)2B π∈, 故62C ππ<<,由正弦定理可得2sin()sin 31sin sin c c B b C C π⨯+⋅==== 因为62C ππ<<,所以tan C ,故10tan C<所以114<<, 故b 的取值范围为(1,4).5、解(1)cos sin B b C =+.∴cos sin sin A C B B C =+.∴)cos sin sin B C C B B C ++.cos sin sin B C B C =.易知sin 0B >,tan C ∴=又C 为三角形内角,3C π∴=.(2)由(1)与APB ACB π∠+∠=,得23APB π∠=,在PAB ∆中,由余弦定理,22212cos 14212()72AB AP PB PA PB APB =+-⋅∠=+-⨯⨯⨯-=, 又在ABC ∆中,2222222()2cos ()3()3()24AC BC AC BC AB AC BC AC BC ACB AC BC AC BC AC BC ++=+-⋅∠=+-⋅+-⨯=, 27AC BC ∴+,当且仅当AC BC =时取等“=”所以ACBC +的最大值为6、解:(1)由条件与正弦定理,可得2224cos 0cos a b c c A b A--+=, 2222cos b c a bc A +-=,∴2cos 4cos 0cos bc A c A b A-=, 2cos 10A ∴-=,∴1cos 2A =, 0A π<<,∴3A π=.(2)2sin()sin sin 23sin sin C a b A B c C Cπ+-++==2211cos 122sin 22sin cos 22C cos C C CC +==+112tan 2C =, a c >,A C ∴>,(0,)26C π∈,∴tan2C ∈,∴2a b c +>, ∴故a b c +的取值范围为(2,)+∞. 7、解:(1)因为sinsin 2A B b c B +=, 由正弦定理sin sinsin sin 2A B B C B +=, 因为sin 0B >,所以sin sin sin()2A B C A B +==+, 所以sin()sin 2sin cos 2222C C C C π-==,即cos 2sin cos 222C C C =, 由C 为三角形内角得cos02C ≠, 故1sin 22C =, 所以3C π=;(2)由(1)3C π=,1c =,由正弦定理得2R ,所以121sin()sin )cos 232a b A B B B B B B B π-=-=+=, 因为2(0,)3B π∈, 所以1cos (2B ∈-,1), 所以12a b -的取值范围1(,1)2-. 8、解:(1)因为22(cos cos )()22C A a c a c b ++- (1cos )(1cos )()()22a C c A a c b ++=++- (cos cos )()2a c a C c A a c b +++=+- ()()2a cb ac b +++-= 22222a cb ac +-+= 32ac =, 222a c b ac ⇒+-=,1cos 2B ⇒=, 3B π⇒=.(2)法一:由正弦定理,得sin sin c b C B =,则sin ,43x C B π==, 则203C π<<, 做正弦曲线如图所示, 则当3042x<或14x =,即4x =或023x <时,ABC ∆仅有一解, 故4x =或023x <;法二:由正弦定理,如图,当sin b c B =或b c 时,ABC ∆仅有一解, 故4x =或023x <;当4x =时,242a c -=-=-; 当023x <时,4sin sin sin a c b A C B ===, 可得134(sin sin )4[sin()sin ]4[sin ]4sin()323a c A C C C C C C ππ-=-=+-=-=--, 因为0,0333CC πππ<-<-, 所以3sin()03C π<-, 所以,4sin()[0,23)3a c C π-=--∈. 综上,{2}[0,23)a c -∈-.9、解:(1)因为sin sin sin tan cos cos cos C A B C C A B +==+, 所以sin (cos cos )cos (sin sin )C A B C A B +=+;即sin cos cos sin cos sin sin cos C A C A C B C B -=-,所以sin()sin()C A B C -=-,故C A B C -=-或()C A B C π-=--,解得2A B C +=或B A π-=(舍)又因为在ABC ∆中,A B C π++=,所以60C =︒.(2)(法一)由余弦定理知222222cos c a b ab C a b ab =+-=+-,所以22222314()3()()()44c a b ab a b a b a b ==+-+-+=+, 所以4a b +,当且仅当2a b ==时等号成立.又因为a ,b ,c 是ABC ∆的三条边,所以24a b <+,所以24a b <+.(2)(法二)因为2c =,60C =︒,由正弦定理,sin c C =,所以,a A b B =.所以sin )a b A B +=+,1sin(120))4cos )4sin(30)2A A A A A =+︒-=⨯+=+︒, 因为A ,B ,C 是ABC ∆的三个内角,且60C =︒.所以(0,120)A ∈︒︒,所以30(30,150)A +︒∈︒︒, 所以1sin(30)12A <+︒, 所以24a b <+.10、解:(1)函数44441111()cos sin cos sin (cos sin )sin 22222f x x x x x x x x =--=-- 2222221111(cos sin )(cos sin )sin 2(cos sin )sin 22222x x x x x x x x =-+-=--1(cos2sin 2))224x x x π=-=+, 所以最小正周期为T π=, 令2[24x k ππ+∈,2]k ππ+,k Z ∈,解得3[,],88x k k k Z ππππ∈-+∈, 所以函数的单调减区间为3[,],88k k k Z ππππ-+∈,(2)())24A f A π+=,∴cos()14A π+=-,∴34A π=, 2AB AC AD +=,∴2232cos 424b c bc π++=⨯,∴228b c +=,∴222822b c b c ++-=∴22(1)82b c -+,∴22168(222b c +=-,当且仅当b c =时,取等号.,此时22b c +的最大值为8(2+.11、解:(1)cos 2B B +=,∴1cos 12B B =, sin()16B π∴+=, 262B k πππ∴+=+,k Z ∈,B 为锐角,3B π∴=,cos cos B c b c +=,由正余弦定理可得22222222a c b a b c abc abc +-+-+=,整理可得222a abc =,解得b . (2)1sin sin sin a c b A C B ====, sin a A ∴=,1sin sin()sin()sin 32c C A B A A A π==+=+=+,21111sin sin sin )cos sin )2222ABC S ac B A A A A A A ∆∴==⋅+=+,112cos2)22A A =-+,)6A π=- 02A π<<,02C π<<,23C A π=-, ∴62A ππ<<, ∴52666A πππ<-<, ∴1sin(2)126A π<-,ABC S ∆∴∈12、解:(1)因为22cos b a c A -=⋅,由正弦定理可得2sin sin 2sin cos B A C A -=, 所以2sin[()]sin 2sin cos A C A C A π-+-=,即2sin()sin 2sin cos A C A C A +-=展开可得:2sin cos 2sin cos sin 2sin cos A C C A A C A +-= 得到:2sin cos sin 0A C A -=因为sin 0A ≠,所以1cos 2C =,C 是锐角, 所以3C π=,(2)由正弦定理sin sin sin a b c A B C ===,可得sin a A =⋅,sin b B ⋅sin sin 4A B ⋅⋅=,得c = 因为锐角ABC ∆,所以2032C A ππ<=-<,02A π<<,得到62A ππ<<,∴23sin sin sin sin()sin )326A B A A A A A ππ+=+-=+=+ 因为62A ππ<<,所以2363A πππ<+<,sin()6A π+∈,所以c =. 13、解:若选①sin sin sin sin b A a B A B +=, (1)由sin sin sin sin b A a B A B +及正弦定理得,sin sin sin sin sin sin B A A B C A B +=,即2sin sin sin sin A B C A B ,sin C ∴=, 又C 为锐角,3C π∴=;(2)ABC ∆为锐角三角形,∴022032B B πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得62B ππ<<,由正弦定理得:sin sin sin b a c B A C ===,21sin()]sin )32b a B B B B B π∴+=+-=++3(sin )4sin()26B B B π=+=+.62B ππ<<,2(,)633B πππ∴+∈,则sin()6B π+∈.b a ∴+∈,4];若选②2sin cos cos cos b C A C C =,(1)由2sin cos cos cos b C A C C =及正弦定理得,sin sin (sin cos sin cos )B C C C A A C =+,即sin sin sin()B C C A C =+,sin sin sin B C C B ∴,02B π<<,sin 0B ∴≠,可得tan C , 又02C π<<,3C π∴=;(2)ABC ∆为锐角三角形,∴022032B B πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得62B ππ<<,由正弦定理得:sin sin sin b a c B A C ===,21sin()]sin )32b a B B B B B π∴+=+-=++3(sin )4sin()26B B B π=+=+.62B ππ<<,2(,)633B πππ∴+∈,则sin()6B π+∈.b a ∴+∈,4];若选③()sin sin sin a b A b B c C -+=,(1)由()sin sin sin a b A b B c C -+=及正弦定理得22()a b a b c -+=, 即222a b c ab +-=, 由余弦定理得:2221cos 22a b c C ab +-==, 02C π<<,3C π∴=;(2)ABC ∆为锐角三角形,∴022032B B πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得62B ππ<<,由正弦定理得:sin sin sin b a c B A C ===,21sin()]sin )32b a B B B B B π∴+=+-=++3(sin )4sin()26B B B π=+=+.62B ππ<<,2(,)633B πππ∴+∈,则sin()6B π+∈.b a ∴+∈,4].。

解三角形中的最值(范围)问题

解三角形中的最值(范围)问题

解三角形中的最值(范围)问题1. 锐角三角形ABC 满足2B=A+C ,设最大边与最小边之比为m ,求m 的取值范围. 分析:不妨令则因为所以所以2. 锐角三角形ABC 的面积为S ,角C 既不是最大角,也不是最小角.若,求的取值范围.分析:又所以所以又在锐角三角形ABC 中,角C 既不是最大角,也不是最小角所以所以,即k 的取值范围.60B ︒=090A B C ︒<≤≤<sin sin()1sin sin 2tan 2c C A B ma A A A +====+3060A ︒︒<≤tan 3A <≤12m ≤<22()4c a b S k --=k 222222cos (1cos )442c a b ab ab ab C ab C S k k k --+--===1sin 2S ab C =1cos sin CC k -=1cos tan sin 2C C k C -==42C ππ<<1tan 12C <<3. 三角形ABC 满足B 是锐角,且,则的取值范围是_______. 分析:由正弦定理得 所以又所以又B 是锐角所以4. 锐角三角形ABC 满足,求的取值范围.分析:由正弦定理得所以所以又所以又所以所以28sin sin sin A C B =a cb +28ac b=a c b +===2222cos 8b a c ac B ac =+-=22cos 484a c B ac ++=()22a c b+∈)(sin sin )(sin sin )c b c C B a A B =+-=-22a b +()()()b c c b a a b +-=-222a b c ab +-=1cos 2C =0C π<<3C π=4sin sin sin a b c A B C ===4sin ,4sin a A b B ==22222241cos(2)21cos 2316(sin sin )16[sin sin ()]16[]168cos(2)3223A A a b A B A A A πππ---+=+=+-=+=-+又所以 所以所以5. 三角形ABC 满足BC 边上的高为,则的最大值是_____. 分析:又所以所以所以 又所以 的最大值是46. 三角形ABC 满足点D 在边BC 上,且,若,则的取值范围是______.分析: 62A ππ<<242333A πππ+∈(,)12)[1,)32A π+∈--cos(22(20,24]a b +∈6a c b b c+21122S BC h a =⋅==22c b b c b c bc ++=21sin 212S bc A a ==222sin 2cos a A b c bc A ==+-222cos 4sin()6b c A A A bcπ+=+=+0A π<<c b b c +2DC BD =::3::1AB AD AC k =k。

三角函数解三角形中的最值问题

三角函数解三角形中的最值问题

解三角形求最值问题1.已知ABC ∆中,,,a b c 分别是角,,A B C 的对边,且2223sin 3sin 2sin sin 3sin ,B C B C A a +-==AB AC ⋅的最大值.2. 在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,向量(1,cos ),(cos 21,2)m A n A λλ==---,已知//m n(1)若2λ=,求角A 的大小; (2)若b c +=,求λ的取值范围.3. 设ABC ∆的内角所对的边分别为,,a b c ,且1cos 2a C cb += (1)求角A 的大小; (2)若1a =,求ABC ∆周长的取值范围.4. 已知ABC ∆是半径为R 的圆的内接∆且222(sin sin ))sin R A C b B -=-(1)求角C ; (2)求ABC ∆面积的最大值.5. 已知向量(2,1),(sin ,cos())2A m nBC =-=+,角,,A B C 分别为ABC ∆的三边,,a b c 所对的角, (1)当m n ⋅取得最大值时,求角A 的大小;(2)在(1)的条件下,当a =22b c +的取值范围.6.已知(2cos ,1)a x x =+,(,cos )b y x =且//a b(1)将y 表示成x 的函数()f x ,并求()f x 的最小正周期;(2)记()f x 的最大值为,,,M a b c 分别为ABC ∆的三个内角A B C 、、对应的边长,若(),2A f M =且2a =,求bc 的最大值.7. 在锐角ABC ∆中,,,a b c 分别为内角,,A B C 的对边,设2B A =,求b a 的取值范围.8.在ABC ∆中,角C B A ,,的对边分别是c b a ,,.已知)(sin sin sin R p B p C A ∈=+,且241b ac =. (1)当45=p ,1=b 时,求c a ,的值; (2)若角B 为锐角,求p 的取值范围.9.在ABC ∆中,角C B A ,,的对边分别是c b a ,,,且.3)(2222ab c b a =-+ (1)求2sin 2B A +; (2)若2=c ,求ABC ∆面积的最大值.10.如图,ABC ∆中,2,332sin==∠AB ABC ,点D 在线段AC 上,且334,2==BD DC AD . (1)求BC 的长;(2)求DBC ∆的面积.A B D C。

解三角形中的最值与范围问题(原卷版)

解三角形中的最值与范围问题(原卷版)

专题5解三角形中的最值与范围问题一、三角形中的最值范围问题处理方法1、利用基本不等式或常用不等式求最值:化角为边余弦定理公式里有“平方和”和“积”这样的整体,一般可先由余弦定理得到等式,再由基本不等式求最值或范围,但是要注意“一正二定三相等”,尤其是取得最值的条件。

2、转为三角函数求最值:化边为角如果所求整体结构不对称,或者角度有更细致的要求,用余弦定理和基本不等式难以解决,这时候可以转化为角的关系,消元后使得式子里只有一个角,变为三角函数最值问题进行解决。

要注意三角形隐含角的范围、三角形两边之和大于第三边。

二、边化角与角化边的变换原则在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下:(1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”;(2)若式子中含有a、b、c的齐次式,优先考虑正弦定理“边化角”;(3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”;(4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三三个自由角)时,要用到三角形的内角和定理.2020·浙江卷2019年全国Ⅲ卷·文·理T184.ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知sinsin 2A Ca b A +=. (1)求B ;(2)若ABC ∆为锐角三角形,且1c =,求ABC ∆面积的取值范围.2018·北京卷2018·江苏卷6.在ABC 中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=°,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为 .题型一 由不等式求最值角平分线相关1.(多选)在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,π3ABC ∠=,内角B 的平分线交AC 于点D 且BD =,则下列结论正确的是( )A .111a c+= B .b 的最小值是2C .3a c +的最小值是D .ABC2.(2024届·湖南衡阳市八中校考)在①,②,③中选一个,补充在下面的横线中,并解答.在中,内角A ,B ,C 的对边分别为a ,b ,c ,且满足________.(1)求A ;(2)若内角A 的角平分线交BC 于点,且,求的面积的最小值.(注:如果选择多个条件分别解答,那么按第一个解答计分) 中线相关3.(2024届·湖北校联考)已知分别是的三个内角的对边,且. (1)求角;(2)若在边上且,求面积的最大值.()()b c a b c a bc +−++=sin cos )a Ca Cb =−(2)cos cos 0bc A a C ++=ABC D AD =ABC ,,a b c ABC ,,A B C cos sin 0a C C b c −−=A D BC ,2BD DC AD ==ABC 重点题型·归类精讲浙江省百校联盟2022-2023学年高三上学期11月模拟福建省厦门双十中学高三上学期期中定角定高6.如图,在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,AH=4 ,∠BAC=60°,求△ABC 面积的最小值.对式子变形后利用基本不等式求最值7.在中,角,,的对边分别为,,,已知. (1)若,,求的面积;(2)求的最小值,并求出此时的大小.湖南省益阳市2022届高三上学期9月调研题型二 构造函数求范围9.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且,,求的取值范围.2024届·雅礼中学月考(二)10.记锐角的内角的对边分别为,已知.(1)求证:;(2)若,求的最大值.ABC A B C a b c ()2222sin 0ac B C a c b +++−=π6A =2a =ABC 2224sin 3sin 2sin C A B++B π32c =2a b −ABC ,,A B C ,,a b c sin()sin()cos cos A B A C B C−−=B C =sin 1a C =2211a b +2023届河北省唐山市三模12.(2024届·湖南长郡中学校考)在锐角中,内角的对边分别为,已知.(1)求;(2)若的取值范围.ABC ,,A B C ,,a b c ()2sin cos cos A c B b C +A a =223b c bc ++2023届广东江门市一模2024届常德市一中校考14.在中,a ,b ,c 分别是角A ,B ,C 的对边,若,请完成以下问题: (1)求角B 的大小;(2)若为锐角三角形,,求的取值范围.2024届长沙一中月考(一)15.在锐角中,角的对边分别为,且满足.(1)求证:;(2)设的周长为,求的取值范围.ABC 1cos 2b Cc a +=ABC 1c =22a b +ABC ,,A B C ,,a b c 22b a ac −=2B A =ABC l la2024届长沙一中月考(二)16.的内角A ,B ,C 所对边分别为a ,b ,c ,点O 为的内心,记,,的面积分别为,,,已知,.(1)在①;②;③中选一个作为条件,判断是否存在,若存在,求出的周长,若不存在,说明理由.(注:如果选择多个条件分别解答,按第一个解答计分.)(2)若为锐角三角形,求面积的取值范围.17.在中,角,,所对的边分别为,,,.(1)求角的大小;(2)若的取值范围.ABC ABC OBC △OAC OAB 1S 2S 3S 22213132S S S S S +−=2AB =cos cos 1a C c A +=4sin sin cos21B A A +=12cos 12cos 0sin sin A BA B−−+=ABC ABC ABC ABC ABC A B C a b c sin sin tan cos cos A BC A B+=+C ABC c18.(2024届·扬州中学校考)在锐角ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,3b =,sin sin A a B +,则ABC 周长的取值范围为 .2024届河南省实验中学校考19.在锐角中,内角所对的边分别为,,,满足,且. (1)求证:;(2)已知是的平分线,若,求线段长度的取值范围.湖北省腾云联盟2023-2024学年高三上学期10月联考ABC ,,A B C a b c 222sin sin sin 1sin sin A A CC B−−=A C 2BC =BD ABC ∠4a =BD。

高中数学专题:解三角形中的最值问题

高中数学专题:解三角形中的最值问题

解三角形中的最值问题解三角形中的最值问题有两种解题思路:1. 转化为三角函数求最值问题,有两个转化方法:(1)利用正弦定理将边转化为角的正弦值,A R a sin 2=,B R b sin 2=,C R c sin 2=.(2)利用三角形内角和和诱导公式进行角的转化,C B A sin )sin(=+,C B A cos )cos(-=+,C B A tan )tan(-=+. 最终转化为一个角的三角函数形式,求其最值.2. 转化为利用均值不等式(ab b a 222≥+)求最值问题,主要与余弦定理或其推论相结合,求三角形面积的最大值,或某一个内角余弦值的最小值.一.转化为三角函数求最值问题.例1.(2016年北京卷理科15题)在ABC ∆中,ac b c a 2222+=+.(1)求B 的大小;(2)求C A cos cos 2+的最大值.解:(1)ac b c a 2222=-+,则由余弦定理得:22222cos 222==-+=ac ac ac b c a B ,4π=B , (2))4cos(cos 2)cos(cos 2cos cos 2π+-=+-=+A A B A A C AA A A A A sin 22cos 22sin 22cos 22cos 2+=+-= 1)4sin(≤+=πA 当24ππ=+A 时,C A cos cos 2+取最大值,为1.例2.(2011年全国卷理科16题)在ABC ∆中, 60=B ,3=AC ,则BC AB 2+的最大值为 . 解:设3==AC b ,AB c =,BC a =, 由正弦定理得:2233sin sin sin ====C c B b A a , 则A a sin 2=,C c sin 2=,所以A B A A C a c BC AB sin 4)sin(2sin 4sin 222++=+=+=+AA A A A A A cos 3sin 5sin 4cos 3sin sin 4)60sin(2+=++=++= 72)sin(72≤+=ϕA ;(其中53tan =ϕ), 当1)sin(=+ϕA 时,BC AB 2+取最大值,为72.例3.(2018年北京卷文科14题)若ABC ∆的面积为)(43222b c a -+,且C 为钝角,则=B ;ac 的取值范围是 .解:由余弦定理得B ac b c a cos 2222=-+, 所以B ac B ac S cos 243sin 21⨯==,则3tan =B ,所以3π=B , 由正弦定理得:AA A A A C A A C a c tan 12321sin cos 23sin 21sin )sin(sin sin +=+=+==, 由于C 为钝角,3π=B ,所以⎪⎭⎫ ⎝⎛∈6,0πA ,⎪⎪⎭⎫ ⎝⎛∈33,0tan A , ()+∞∈,3tan 1A ,所以()+∞∈,2a c . 二.转化为利用均值不等式求最值问题.例4.(2013年全国二卷理科17题)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知B c C b a sin cos +=.(1)求B ;(2)若2=b ,求ABC ∆面积的最大值.解:(1)由C B A c b a sin :sin :sin ::=得B C C B A sin sin cos sin sin +=,则B C C B C B C B C B sin sin cos sin sin cos cos sin )sin(+=+=+, 所以B C C B sin sin sin cos =,因为0sin ≠C ,所以B B sin cos =, 1tan =B ,所以4π=B ,(2)由余弦定理得:B ac c a b cos 2222-+=,即ac ac c a )22(2422-≥-+=,所以224224+=-≤ac , 当且仅当c a =时,等号成立, 故1242sin 21+≤==ac B ac S , 所以ABC ∆面积的最大值为12+.例5.(2016年山东理科16题)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知AB B A B A cos tan cos tan )tan (tan 2+=+. (1)证明:c b a 2=+;(2)求C cos 的最小值.(1)证明:BA B A B B A A cos cos sin sin )cos sin cos sin (2+=+, B A B A B A C B A B A B A B A B A cos cos sin sin cos cos sin 2cos cos )sin(2cos cos sin cos cos sin 2+==+=+所以B A C sin sin sin 2+=,则b a c +=2.(2)由余弦定理得:abb a b a abc b a C 222cos 222222⎪⎭⎫ ⎝⎛+-+=-+= 21221243221)(4322=-⨯≥-+=ab ab ab ab ab b a ,当且仅当b a =时,等号成立,所以C cos 的最小值为21. 小结:解三角形中的最值问题或者转化为三角函数求最值,或者利用不等式求最值.。

三角形中的最值与范围问题解析版

三角形中的最值与范围问题解析版

三角形中的最值、范围问题一、知识与方法1、正弦定理可将边用角的正弦值表示:2sin sin sin a b cR A B C===, 2sin a R A =,2sin b R B =,2sin c R C =2、在三角形ABC ∆中,若 222c a b =+,则C 为直角;若 222c a b >+,则C 为钝角;若 222c a b <+, 则C 为锐角;3、在锐角三角形中,已知角C ,求B 的范围,可由下列限制条件求出:02022B B πππ⎧<<⎪⎪⎨⎪<-<⎪⎩ 4、三角形有关最值和范围求解(1)利用余弦定理和基本不等式进行解答; (2)利用正弦定理和三角函数值域进行解答; 例如:已知角C ,求解 sin sin m A n B +的范围 :解题方法:()()sin sin =sin +sin sin +sin m A n B m A n A C m A n A C π+--=+,再利用三角函数和差角公式和辅助角公式进行化简,求出三角函数的值域;注意:若三角形为锐角三角形,已知角C ,则需满足02022B B πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,从而进一步限制B 的范围.(3)利用三角形三边关系进行解答; 若为锐角三角形,则222222222c a b b a c a b c ⎧<+⎪<+⎨⎪<+⎩,若为钝角三角形,如角C 为钝角,则222c a b a b c ⎧>+⎨+>⎩二、题型训练题型一 利用余弦定理和基本不等式求面积与周长最值问题例1.(2021•丙卷模拟)在ABC ∆中角A ,B ,C 的对边分别为a ,b ,c ,若()(sin sin )sin ()a b A B C b c -+=+,2b c +=,则ABC ∆的面积的最大值为( )A .14B C .12D 【解答】解:因为()(sin sin )sin ()a b A B C b c -+=+, 由正弦定理得()()()a b a b c b c -+=+, 所以222a b bc c -=+,由余弦定理得2221cos 22b c a A bc +-==-,由A 为三角形内角得23A π=, 因为2b c +=, 所以2()12b c bc +=,所以113sin 1222ABC S bc A ∆=⨯⨯=1b c ==时取等号, 故选:B . 方法点拨:本题考查正弦定理的边角互化、余弦定理和基本不等式求最值,熟练利用正余弦定理和基本不等式是解题的关键. 巩固训练:1.(2021•河南模拟)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,2cos cos cos a A b C c B =+,当ABC ∆的外接圆半径2R =时,ABC ∆面积的最大值为( )A B .C .D .【解答】解:2cos cos cos a A b C c B =+,∴由正弦定理可得2sin cos sin cos sin cos A A B C C B =+,即2sin cos sin()sin A A B C A =+=,(0,)A π∈, 1cos 2A ∴=,即3A π=,由余弦定理,2221222b c bc bc bc =+-⨯⨯-, 则12bc ,(当且仅当b c =时等号成立),ABC ∴∆的面积11sin 1222S bc A=⨯=b c =时,等号成立, 故选:C .2.在ABC ∆中,A ,B ,C 的对边分别为a ,b ,c ,若1(sin )cos sin cos 2b C A A C -=,且a =ABC ∆面积的最大值为( )A .B .C .D .【解答】解:已知等式整理得:1cos sin cos cos sin sin()sin 2b A A C A C A C B =+=+=,即2sin cos b B A=,由正弦定理sin sin a b A B =2cos A =,即sin tan cos AA A==60A ∴=︒,由余弦定理得:2222cos a b c bc A =+-,即22122b c bc bc bc bc =+--=,则1sin 332ABC S bc A ∆=,即ABC ∆面积的最大值为故选:B .3.(2021春•鼓楼区校级期末)在ABC ∆中,1cos 2a c Bb =+.(1)若7a b +=,ABC ∆的面积为c ; (2)若4c =,求ABC ∆周长的最大值. 【解答】解:(1)由正弦定理知,sin sin sin a b cA B C==, 1cos2a c Bb =+,∴1sin sin cos sin 2A C B B =+,即1sin()sin cos sin 2B C C B B +=+,1sin cos cos sin sin cos sin 2B C B C C B B ∴+=+,∴1sin cos sin 2B C B =,sin 0B ≠,∴1cos 2C =, (0,)C π∈,∴3C π=,11sin 22S ab C ab ===12ab ∴=,由余弦定理知,22222cos ()3493613c a b ab A a b ab =+-=+-=-=,∴c =(2)由余弦定理知,2222cos c a b ab A =+-,2222()()16()3()344a b a b a b ab a b ++∴=+-+-⋅=, 8a b ∴+,当且仅当4a b ==时,取等,ABC ∴∆周长的最大值为4812+=.4.(2021•一模拟)已知ABC ∆的内角A ,B ,C 所对的边分别为a ,b ,c ,且()(sin sin )sin ()0a c A C B a b -+--=.(1)求C ;(2)若ABC S ∆=,2c =,求ABC ∆周长的最小值.【解答】解:(1)ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,且()(sin sin )()sin 0a c A C b a B -++-=.利用正弦定理得:()()()0a c a c b a b -++-=,整理得:2220a c b ab -+-=,即2221cos 22a b c C ab +-==,由于0C π<<, 所以:3C π=.(2)因为11sin sin 223ABC S ab C ab π∆====,所以解得8ab =,所以周长22a b c ab c +++=,当且仅当a b ==所以ABC ∆周长的最小值为2.5.(2021•永州模拟)ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c (sin )b A A =. (1)求B ;(2)若3b =,求ABC ∆周长最大时,ABC ∆的面积.【解答】解:(1)(sin )b A A =,∴sin (sin )C B A A =,∴)sin sin cos A B B A B A +=+,∴cos cos sin sin cos A B B A B A B A =+,∴sin B B =,∴tan B ,0B π<<,∴3B π=.(2)222cos 2a c b B ac+-=, 据(1)可得3B π=,∴222122a c b ac +-=,222b ac ac ∴=+-,29()3a c ac ∴=+-,∴222()9()3()24a c a c a c +++-=, 当且仅当3a c ==时等号成立,即当3a c ==时,a c +取得最大值,即周长取得最大值,此时133sin 23ABC S π∆=⨯⨯⨯=6.(2021•巴中模拟)在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c.已知sin sin(),3b A a B b π=+=. (1)求ABC ∆的外接圆直径; (2)求ABC ∆周长的取值范围. 【解答】解:(1)sin sin()3b A a B π=+,∴由正弦定理,可得sin sin sin sin()3B A A B π=+,(0,)A π∈,sin 0A >,∴sin sin()3B B π=+,化简可得,1sin 2B B =,∴tan B =,(0,)B π∈,∴3B π=,由正弦定理可得,ABC ∆的外接圆直径21sin bR B ===. (2)由(1)可知,3B π=,由余弦定理可得,222b a c ac =+-, 222221()3()3()()24a cb ac ac a c a c +∴=+-+-=+, 当且仅当a c =时,等号成立,b , 2()3ac ∴+,即3a c +,又a cb +>=,∴3a c <+,∴332a b c++,ABC ∴∆的取值范围为.题型二 利用正弦定理和三角函数值域求三角形角度有关的最值、范围问题 例2.在△ABC 中,a 2+c 2=b 2+ac .(Ⅰ)求∠B 的大小; (Ⅱ)求cos A +cos C 的最大值.【解答】解:(Ⅰ)∵在△ABC 中,a 2+c 2=b 2+ac .∴a 2+c 2﹣b 2=ac .∴cos B ===,∴B =(Ⅱ)由(I )得:C =﹣A ,∴cos A +cos C =cos A +cos (﹣A )=cos A ﹣cos A +sin A=cos A +sin A =sin (A +). ∵A ∈(0,), ∴A +∈(,π),故当A +=时,sin (A +)取最大值1,即cos A +cos C 的最大值为1.方法点拨:本题考查了余弦定理、三角形内角和、三角函数和差角公式、辅助角公式以及三角函数值域,熟练掌握余弦定理、三角函数辅助角公式、三角函数值域求解的方法是解题的关键. 巩固训练:1.(2021•沈阳四模)在①2cos cos c b Ba A-=,②2cos 2a C c b +=,③1sin cos sin 2cos 2a A C c A A +=这三个条件中任选一个,补充在下面问题中,并解答该问题.问题:锐角ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,且______. (1)求A ;(2)求cos cos B C +的取值范围. 【解答】解:(1)选① 因为2cos cos c b Ba A -=, 所以2sin sin cos sin cos C B BA A-=, 所以2sin cos sin cos sin cos C A B A A B -=,整理得2sin cos sin cos sin cos sin()sin C A B A A B A B C =+=+=. 因为sin 0C ≠,所以1cos 2A =. 因为(0,)2A π∈,所以3A π=.选②因为2cos 2a C c b +=,所以2sin cos sin 2sin 2sin()A C C B A C +==+, 所以2sin cos sin 2sin cos 2cos sin A C C A C A C +=+, 整理得sin 2cos sin C A C =. 因为sin 0C ≠,所以1cos 2A =. 因为(0,)2A π∈,所以3A π=.选③因为1sin cos sin 2cos 2a A C c A A +,所以sin sin cos sin sin cos cos A A C C A A B A +=,所以sin (sin cos sin cos )cos A A C C A B A +=,整理得sin sin cos A B B A =.因为sin 0B ≠,所以sin A A =.因为(0,)2A π∈,所以tan 3A A π=.(2)因为3A π=,所以1cos cos cos cos()cos sin()26B C B B A B B B π+=-+=+=+.因为2(0,),(0,)232B C B πππ∈=-∈,所以(,)62B ππ∈,所以2(,)633B πππ+∈,所以sin()6B π+∈,故cos cos B C +∈.2.(2021•下城区校级模拟)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,已知sin sin sin b B a A c A -=.(1)求证:2B A =;(2)若ABC ∆是锐角三角形,求sin sin AC的取值范围. 【解答】解:(1)由sin sin sin b B a A c A -=得22b a ac -=, 由余弦定理2222cos b a c ac B =+-, 代入22b a ac -=得22cos ac c ac B =-, 则2cos a c a B =-,由正弦定理得sin sin 2sin cos A C A B =-,所以sin sin()2sin cos A A B A B =+-,得sin sin()A B A =-, 由220b a ac -=>知b a >,故B A >, 所以A B A =-或()A B A π+-=(舍去) 所以2B A ⋯=,(2)3C A π=-,由0,02,03222A A A ππππ<<<<<-<得64A ππ<<,sin sin sin sin sin sin3sin(2)sin cos2cos sin 2A A A AC A A A A A A A===++,32sin 11(,1)3sin 4sin 34sin 2A A A A ==∈--.题型三 利用正弦定理和三角函数值域求三角形边长有关的最值、范围问题例3.(2021•汕头三模)在①22(sin sin )sin 3sin sin B C A B C +=+,②22cos c a B b =+,③cos cos 2cos 0b C c B a A +-=这三个条件中任选一个,补充到下面问题中,并解答问题.在ABC ∆中,内角A ,B ,C 的对边长分别为a ,b ,c ,且____.(1)求角A 的大小;(2)若ABC ∆是锐角三角形,且2b =,求边长c 的取值范围. 【解答】解:(1)选条件①.因为22(sin sin )sin 3sin sin B C A B C +=+, 所以222sin sin sin sin sin B C A B C +-=, 根据正弦定理得,222b c a bc +-=, 由余弦定理得,1cos 2A =, 因为A 是ABC ∆的内角, 所以3A π=选条件②,因为1cos 2c a B b =+,由余弦定理222122a c b c a b ac +-=⨯+,整理得222b c a bc +-=, 由余弦定理得,1cos 2A =, 因为A 是ABC ∆的内角, 所以3A π=.选条件③,因为cos cos 2cos 0b C c B a A +-=, sin cos sin cos 2sin cos 0B C C B A A ∴+-=.sin()2sin cos B C A A ∴+=,即sin 2sin cos A A A =因为0A π<<,sin 0A ≠.∴1cos 2A =, ∴3A π=;(2)因为3A π=,ABC ∆为锐角三角形,所以022032B B πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得62B ππ<<在ABC ∆中,2sin sin c C B=,所以212sin()sin )322sin sin B B B c B B π-+===,即1c . 由62B ππ<<可得,tan B >,所以10tan B<<,所以14c <<. 方法点拨:本题第一问考查正余弦定理的变形及应用,第二问边长范围问题考查正弦定理的边角互化,结合锐角三角形角度的范围和三角函数值域求解出角度的范围.巩固训练:1.在锐角ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,且220c a ab --=. (1)求证:2C A =;(2)若2a =,求c 的取值范围.【解答】解:(1)证明:因为220c a ab --=, 结合余弦定理,得2222cos c a b ab C =+-, 所以22cos ab b ab C =-,即2cos a b a C =-,由正弦定理,得sin sin 2sin cos sin()2sin cos A B A C A C A C =-=+- sin cos sin cos sin()C A A C C A =-=-,因为ABC ∆为锐角三角形, 所以A C A =-,即2C A =; (2)由(1)2C A =, 由正弦定理,得sin sin a cA C=,所以2cos 4cos c a A A ==,由题意,得02032022A A A ππππ⎧<<⎪⎪⎪<-<⎨⎪⎪<<⎪⎩,解得64A ππ<<,所以4cos c A =∈.2.(2021春•慈溪市期末)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知向量m 、n 满足:(2,6)m a =,(,2sin )n b B =,且//m n . (Ⅰ)求角A ;(Ⅱ)若ABC ∆是锐角三角形,且2a =,求b c +的取值范围. 【解答】解:(Ⅰ)因为//mn ,所以2a Bb =,2sin a B=, 由正弦定理得:2sin sin A B B =, 因为sin 0B≠, 所以sin A , 所以3A π=或23π. (Ⅱ)因为2a =,所以由正弦定理得sin sin sin a b c A B C ====,得:b B ,c C =,所以21sin )sin()]sin ]4sin()326b c B C B B B B B B ππ++=+-=++=+,因为ABC ∆是锐角三角形, 所以02B π<<,且2032B ππ<-<,可得62B ππ<<, 所以2363B πππ<+<sin()16B π<+,所以4b c <+.3.(2021春•青山湖区校级期中)在ABC ∆中,3B π=,AC ,则2AB BC +的最大值为( )A.B.C .3 D .4【解答】解:因为3B π=,AC由正弦定理得2sin sin sin a c bA C B===,所以2sin a A =,22sin 2sin()3c C A π==-,由则222sin()4sin 5sin )3AB BC A A A A A πϕ+=-++=+,其中ϕ为辅助角,根据正弦函数的性质得)A ϕ+的最大值 故选:B .4.(2021•B 卷模拟)在锐角ABC ∆中,a ,b ,c 分别为内角A ,B ,C 的对边,且有2b =. 在下列条件中选择一个条件完成该题目:①cos (cos )cos 0C B B A +-=;②2sin (2)sin (2)sin a A b c B c b C =-+-. (1)求A 的大小; (2)求2a c +的取值范围.【解答】解:(1)若选择①,因为cos (cos )cos 0C B B A +-=, 所以cos()cos cos cos 0A B B A B A -++=,即cos cos sin sin cos cos cos 0A B A B B A B A -++=,所以sin sin cos A B B A =, 因为sin 0B ≠,可得sin A A =,所以tan A =,可得3A π=;若选择②,因为2sin (2)sin (2)sin a A b c B c b C =-+-. 所以222222a b bc c bc =-+-,所以222bc b c a =+-,可得2221cos 22b c a A bc +-==,可得3A π=.(2)设ABC ∆外接圆半径为R ,则有22sin sin b R B B==, 可得222122(2sin sin )sin )sin())sin )1sin sin sin 2a c R A C C A B B B B B B +=+==+=+=,因为ABC ∆为锐角三角形,可得022032B B πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,可得62B ππ<<,所以sin B 在(6π,)2π单调递增,cos B 在(6π,)2π(6π,)2π单调递减,所以21a c +∈,4).5.(2021•肥城市模拟)已知锐角ABC ∆的外接圆半径为1,内角A ,B ,C 的对边分别为a ,b ,c ,ABC ∆的面积为S2224)S c b =+-.(1)求C ; (2)求bca的取值范围. 【解答】解:(1)2224)S c b =+-,∴222)4a b c S +-=,∴1cos 4sin 2C ab C =⨯sin C C =,cos 0C ∴≠,tan C又(0,)C π∈∴3C π=,(2)ABC ∆的外接圆半径为1,∴2sin cC=, 又正弦定理sin sin sin a b cA B C==, 2sin a A ∴=,2sin b B =,∴21sin()sin)3322sin sin2tanA A Abca A A Aπ-+======+,又因为ABC∆是锐角三角形,∴22ABππ⎧<<⎪⎪⎨⎪<<⎪⎩,即2232AAπππ⎧<<⎪⎪⎨⎪<-<⎪⎩,∴62Aππ<<,∴tan A>,1tan A<<,32tan A<<∴bca<<6.(2021春•庐阳区校级期末)在ABC∆中,内角A,B,C所对的边分别为a,b,c,(1cos)cosa b C c B++=.(1)求角C的大小;(2)若c=,求ABC∆周长的取值范围.【解答】解:(1)因为(1cos)cosa b C c B++=,所以由正弦定理得sin sin(1cos)sin cosA B C C B++=,又sin()sin()sinB C A Aπ+=-=,所以sin()sin sin cos sin cos0B C B B C C B+++-=,所以2sin cos sin0B C B+=,因为(0,)Bπ∈,所以sin0B≠,所以1cos2C=-,又(0,)Cπ∈,所以23Cπ=.(2)因为c=,23Cπ=,所以由正弦定理得2sin sin sin3b aB A===,则2sinb B=,2sina A=,故ABC∆的周长2sin2sin2sin2sin()3L B A B Bπ+=+-2sin2(sin cos cos sin)33B B Bππ=+-sin B B=+2sin()3B π=++,因为03B π<<,所以(33B ππ+∈,2)3π,sin()3B π+∈1],2sin()3B π+∈2+,故ABC ∆周长的取值范围为2.7.(2021春•淮安期末)从①(2)cos cos 0b c A a B -+=;②222b c a +-=;③(tan tan )2tan b A B c B +=这三个条件中选一个,补充到下面问题中,并完成解答.已知ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,且____. (1)求角A 的大小;(2)若ABC ∆为锐角三角形,b =ABC ∆的周长的取值范围.【解答】解:(1)若选①,在ABC ∆中,由正弦定理得:sin cos 2sin cos sin cos 0B A C A A B -+=, 因为A B C π++=,A ,B ,(0,)C π∈, 所以sin 2sin cos 0C C A -=, 且sin 0C ≠, 因此1cos 2A =,(0,)A π∈, 可得3A π=;若选②,在ABC ∆中,由余弦定理得12cos sin 2bc A bc A ,所以sin A A , 因为sin 0A ≠,因此tan A =,且(0,)A π∈, 故3A π=;若选③,在ABC ∆中,2tan sin cos cos sin sin 1tan cos sin cos sin c A A B A B Cb B A B A B+=+==,且sin 0C ≠, 由正弦定理得:22sin sin sin cos sin c C Cb B A B==, 故1cos 2A =,可得3A π=;(2)因为ABC ∆为锐角三角形, 所以(0,)2B π∈,(0,)2C π∈,因此(,)62B ππ∈,sin sin c a C ==,可得c =3sin a B=, 所以ABC∆的周长为)31cos 333sin sin tan 2B B a c b B B B π+++++=+++,由于(,)62B ππ∈,可得(212B π∈,)4π,可得tan (22B∈,所以ABC ∆的周长取值范围为(3++.8.(2021•烟台模拟)在条件①222sin sin sin sin A B C B C --=,②1cos 2b a Cc =+,③(cos )cos cos 0C C A B +=中,任选一个补充在下面问题中并求解. 问题:在锐角ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,1c =,____. (1)求A ;(2)求ABC ∆面积的取值范围.【解答】解:(1)若选①222sin sin sin sin A B C B C --=,由正弦定理得222a b c --=,由余弦定理得222cos 2b c a A bc +-=, 由A 为三角形内角得6A π=;(2)14ABC S b ∆=,由正弦定理得51sin()cos sin 1622sin sin sin 2tan C C Cc Bb CC C C π-====,由题意得02506C C πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得32C ππ<<,所以tan Cb <ABC S ∆<<故ABC ∆面积的取值范围; (1)若选②1cos 2b a Cc =+,由正弦定理得1sin sin cos sin 2B AC C =+,所以1sin()sin cos sin 2A C A C C +=++,所以1sin cos sin cos sin cos sin 2A C C A A C C +=+,化简得1sin cos sin 2C A C =,因为sin 0C >, 所以1cos 2A =, 由A 为三角形内角得3A π=;(2)ABC S ∆,,由正弦定理得21sin()sin sin 1322sin sin sin 2C C Cc Bb CC C π-+====由题意得022032C C πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得62C ππ<<,所以tan C , 故122b <<,ABC S ∆<<故ABC ∆面积的取值范围; (1)若选③(cos )cos cos 0C C A B +=,所以(cos )cos cos()0C C A A C -+=,化简得sin sin cos A C C A =, 因为sin 0C >,所以tan A =, 由A 为三角形内角得3A π=;(2)ABC S ∆,由正弦定理得21sin()sin sin 1322sin sin sin 2C C Cc Bb CC C π-+====由题意得022032C C πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得62C ππ<<,所以tan C , 故122b <<,ABC S ∆<<故ABC ∆面积的取值范围.题型四 利用三角形三边关系求解范围问题例4.(2019•新课标Ⅲ)ABC ∆的内角A 、B 、C 的对边分别为a ,b ,c .已知sinsin 2A Ca b A +=. (1)求B ;(2)若ABC ∆为锐角三角形,且1c =,求ABC ∆面积的取值范围. 【解答】解:(1)sin sin 2A C a b A +=,即为sin cos sin 22B Ba ab A π-==, 可得sin cossin sin 2sin cos sin 222B B BA B A A ==, sin 0A >, cos2sin cos 222B B B ∴=, 若cos 02B=,可得(21)B k π=+,k Z ∈不成立, 1sin22B ∴=, 由0B π<<,可得3B π=;(2)若ABC ∆为锐角三角形,且1c =,由余弦定理可得1cos3b a π=,由三角形ABC 为锐角三角形,可得2211a a a +-+>且2211a a a +-+>, 解得122a <<,可得ABC ∆面积13sin 234S a π==∈.方法点拨:本题求解三角形面积的取值范围,由于一边和角度已知,可转化为求边长的范围,利用锐角三角形三边关系列出不等关系,从而求解出面积范围. 巩固训练:1.(2021•新高考Ⅱ)在ABC ∆中,角A ,B ,C 所对的边长为a ,b ,c ,1b a =+,2c a =+.(Ⅰ)若2sin 3sin C A =,求ABC ∆的面积;(Ⅱ)是否存在正整数a ,使得ABC ∆为钝角三角形?若存在,求出a 的值;若不存在,说明理由. 【解答】解:()2sin 3sin I C A =,∴根据正弦定理可得23c a =,1b a =+,2c a =+, 4a ∴=,5b =,6c =,在ABC ∆中,运用余弦定理可得2222224561cos 22458a b c C ab +-+-===⨯⨯,22sin cos 1C C +=,sin C ∴===∴11sin 4522ABC S ab C ∆==⨯⨯=()II c b a >>,ABC ∴∆为钝角三角形时,必角C 为钝角, 222222(1)(2)cos 022(1)a b c a a a C ab a a +-++-+==<+,2230a a ∴--<, 0a >, 03a ∴<<,三角形的任意两边之和大于第三边, a b c ∴+>,即12a a a ++>+,即1a >, 13a ∴<<,a 为正整数,2a ∴=.。

解三角形中的最值与范围问题-高考数学复习

解三角形中的最值与范围问题-高考数学复习

∴f(x)=x+122-54∈(1,5), ∴bc22+bc-1∈(1,5), ∴a+b c的取值范围是(1,5).
课时精练
一、单项选择题 1.已知△ABC 的内角 A,B,C 的对边分别为 a,b,c,若 B=π3,a=4,且
三角形有两解,则 b 的取值范围是
A.(2 3,+∞)
√B.(2 3,4)
(2)求a+b c的取值范围.
由(1)知,c2=b2+ab, ∴a=c2-b b2,c>b, 由三角形三边关系可得ab+ +bc>>ac, ,
代入化简可得b<c<2b,
∴a+b c=c2-bb22+bc=bc22+bc-1, 令 x=bc,则 x∈(1,2),f(x)=x2+x-1,1<x<2,
以a12+b12的最大值为2156.
解决此类题目,一是利用正余弦定理,转化成边的函数,或转化成关于 正弦、余弦或正切的函数,根据函数的单调性求解;二是利用三角恒等 变换构造关于正弦、余弦或正切的函数,根据函数的单调性求解.
跟踪训练 3 (2023·浙江联考)已知△ABC 中,内角 A,B,C 所对的边分别
所以1b=sin A=sin 2C,
所以a12+b12=sin2C+sin22C=1-c2os 2C+(1-cos22C)=-cos22C-
1 2cos
2C+32,
因为△ABC为锐角三角形,且B=C,
则有π4<C<π2,得π2<2C<π,所以-1<cos 2C<0, 由二次函数的性质可得,当 cos 2C=-14时,a12+b12取得最大值1265,所
解三角形中的最值与范围问题
重点解读
解三角形中的最值或范围问题,通常涉及与边长、周长有关的 范围问题,与面积有关的范围问题,或与角度有关的范围问题, 一直是高考的热点与重点,主要是利用三角函数、正余弦定理、 三角形面积公式、基本不等式等工具研究三角形问题,解决此 类问题的关键是建立起角与边的数量关系.

高考数学热点必会题型第12讲-解三角形中的最值问题(原卷及答案)

高考数学热点必会题型第12讲-解三角形中的最值问题(原卷及答案)

高考数学热点必会题型第12讲解三角形中的最值问题——每天30分钟7天掌握一、重点题型目录【题型】一、求三角形中的边长有关的最值【题型】二、求三角形中的周长有关的最值【题型】三、求三角形中的面积有关的最值【题型】四、正余弦定理与三角函数性质结合最值【题型】五、化角为边判断三角形的形状【题型】六、化边为角判断三角形的形状【题型】七、利用不等式求范围问题【题型】八、利用三角函数值域求范围问题二、题型讲解总结第一天学习及训练【题型】一、求三角形中的边长有关的最值A B C所对的三边分别为例1.(2022·山东·日照一中高三阶段练习)ABC中,角,,,若ABC的面积为1,则BC的最小值是(),,,2a b c c bDA.2 B.3 C例2.(2022·全国·高三专题练习)在ABC 中,60BAC ∠=,3BC =,且有2CD DB =,则线段AD 长的最大值为( )A B .2 C 1 D .例3.(2022·全国·高三专题练习)在ABC 中,若3B π=,AC =2AB BC +的最大值为( )A .7B .C .D .5【题型】二、求三角形中的周长有关的最值例4.(2022·全国·高三专题练习)在锐角三角形ABC cos 2B B +=,且满足关系式cos cos sin sin 3sin B C A Bb c C⋅+=,则ABC 的周长最大值为( )AB .C .D .例5.(2022·全国·高三专题练习)在ABC 中,ABC ∠的平分线交AC 于点D ,23ABC π∠=,4BD =,则ABC 周长的最小值为( )A .8+B .8+C .16+D .16+例6.(2022·全国·高三专题练习)在ABC 中,已知60C =︒,4AB =,则ABC 周长的最大值为( ) A .8B .10C .12D .14第二天学习及训练【题型】三、求三角形中的面积有关的最值例7.(2023·全国·高三专题练习)在ABC 中,角,,A B C 所对的边分别为,,a b c ,2a =,2cos 2cos 24sin C A B =+,则ABC 面积的最大值是( ) A .23B .1C .43D .2例8.(2023·全国·高三专题练习)ABC 的内角,,A B C 所对的边分别为,,a b c .已知()sin sin sin ,cos cos 2b c B c C a A b C c B -+=+=,则ABC 的面积的最大值( )A .1BC .2D .例9.(2022·全国·高三专题练习)在ABC 中,角,,A B C 的对边分别是,,a b c ,且sin()2sin cos 0B C A B ++=.若2b =,则ABC 面积的最大值为( )A B C D .例10.(2022·全国·高三专题练习)在ABC 中,BAC ∠的平分线交BC 于点,2,6D BD DC BC ==,则ABC ∆的面积的最大值为( )A .6B .C .12D .例11.(2022·全国·高三专题练习)在平面四边形ABCD 中,AB =1,AD =4,BC =CD =2,则四边形ABCD 面积的最大值为( )A B C .D .例12.(2022·全国·高三专题练习)已知边长为2的等边三角形ABC ,D 是平面ABC 内一点,且满足:2:1DB DC =,则三角形ABD 面积的最大值是( )A 43B C 43D 例13.(2022·全国·高三专题练习)已知ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,且2cos 2a C b c =+,若6a =,则ABC ∆的面积的最大值为( ) A .6 B .3C .D .【题型】四、正余弦定理与三角函数性质结合最值例14.(2022·福建·三明一中高三阶段练习)在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若sin c A =,λ=b a ,则实数λ的最大值是( )A B .32C .D .2+例15.(2020·全国·高三专题练习(文))已知平面四边形ABCD 由ACD 与等边ABC 拼接而成,其中22AD CD ==,则平面四边形ABCD 面积的最大值为______.例16.(2020·全国·高三阶段练习(理))在边长为ABC 中,G 是中心,直线l 经过点G 且与AB ,AC 两边分别交于P ,Q 两点,则11GP GQ+的最大值为__________. 第三天学习及训练【题型】五、化角为边判断三角形的形状例17.(2023·全国·高三专题练习)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且()2cos cos a b c A B +=+,则角C 的大小为( )A .π2B .π3C .π4D .π6例18.(2023·全国·高三专题练习)设△ABC 的三边长为BC a =,=CA b ,AB c =,若tan2A a b c =+,tan 2B ba c=+,则△ABC 是( ). A .等腰三角形B .直角三角形C .等腰三角形或直角三角形D .等腰直角三角形例19.(2023·全国·高三专题练习)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若cos c B a =,则这个三角形的形状为( ) A .直角三角形B .等腰三角形C .锐角三角形D .等腰或直角三角形例20.(2022·江苏·高邮市第一中学高三阶段练习)在ABC ,下列说法正确的是( ) A .若cos cos a A b B =,则ABC 为等腰三角形 B .若40,20,25a b B ===︒,则ABC 必有两解 C .若ABC 是锐角三角形,则sin cos A B >D .若cos2cos2cos21A B C +-<,则ABC 为锐角三角形例21.(2022·全国·高三专题练习)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,下列命题正确的是( ) A .若a b >,则cos2cos2A B <B .若cos cos a B b A c -=,则ABC 一定为直角三角形C .若4a =,5b =,6c =,则ABCD .若()()()cos cos cos 1A B B C C A ---=,则ABC 一定是等边三角形 【题型】六、化边为角判断三角形的形状例22.(2023·全国·高三专题练习)在ABC 中,A ∠,B ∠,C ∠的对边分别为a ,b ,c ,2cos 22A b cc+=,则ABC 的形状一定是( ) A .正三角形 B .直角三角形 C .等腰三角形D .等腰直角三角形例23.(2023·全国·高三专题练习)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,满足cos cos a A b B =,则ABC 的形状为( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形D .等腰或直角三角形例24.(2023·全国·高三专题练习)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若cos sin cos b A c B a B =-,则ABC 是( ) A .等腰三角形 B .等边三角形 C .直角三角形D .等腰直角三角形例25.(2022·江苏·海安市立发中学高三阶段练习)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,则下列的结论中正确的是( ) A .若cos cos A B >,则sin sin A B <B .若sin cos sin cos A A B B =,则ABC 一定是等腰三角形C .若ABC 是锐角三角形,则sin sin sin cos cos cos A B C A B C ++>++D .已知ABC 不是直角三角形,则tan tan tan tan tan tan A B C A B C =++第四天学习及训练【题型】七、利用不等式求范围问题例26.(2023·江苏·苏州中学高三阶段练习)已知△ABC 中,sin A =3sin C cos B ,且AB =2,则△ABC 的面积的最大值为( )A .3B .C .9D .例27.(2023·全国·高三专题练习)在等腰ABC 中,AB =AC ,若AC 边上的中线BD 的长为3,则ABC 的面积的最大值是( ) A .6B .12C .18D .24例28.(2023·全国·高三专题练习)设()2πsin cos cos 4f x x x x ⎛⎫=-+ ⎪⎝⎭,在锐角ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若02A f ⎛⎫= ⎪⎝⎭,1a =,则ABC 面积的最大值为( )A BC D 例29.(2023·全国·高三专题练习)如图,镇江金山的江天禅寺是历史悠久的佛教圣地,其周围的金山湖公园也成为市民休闲旅游的最佳选择.为了扩大对家乡旅游的宣传,现对江天禅寺进行无人机拍照.已知慈寿塔DE 的右侧是金山湖,我们选择了三个点,分别是宝塔左侧一点A 与湖对岸B ,F 点,设宝塔底部E 点和这三个点在同一直线上,无人机从A 点沿AD 直线飞行200米到达宝塔顶部D 点后,然后再飞到F 点的正上方,对山脚的江天禅寺EB 区域进行拍照.现测得从A 处看宝塔顶部D 的仰角为60°,sin ABD ∠=100BF =米.若无人机在C 点处获得最佳拍照角度时(即BCE ∠最大),该无人机离地面的高度为( )A .B .C .D .200米例30.(2023·全国·高三专题练习)ABC 的内角,,A B C 所对的边分别为,,a b c .已知222,cos cos 2b c a bc b C c B +-=+=,则ABC 的面积的最大值( )A .1B C .2D .例31.(2023·全国·高三专题练习)在△ABC 中,cos B =2AC =,AB k =,则( )A .△ABC 外接圆面积为定值,且定值为9πB .△ABC 的面积有最大值,最大值为3+C .若k =60C =︒D .当且仅当02k <≤或6k =时,△ABC 有一解例32.(2023·全国·高三专题练习)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,则下列命题正确的是( )A .若A =30°,3a =,4b =,则△ABC 有两解B .若()3AB AC CB -⊥,则角A 最大值为30° C .若222a b c +>,则△ABC 为锐角三角形D .若AB AC AP AB AC λ⎛⎫⎪=+ ⎪⎝⎭,则直线AP 必过△ABC 内心 【题型】八、利用三角函数值域求范围问题例33.(2023·全国·高三专题练习)在ABC 中,若222a b c kab +-=,则实数k 的取值范围是( ) A .()2,2-B .()1,1-C .11,22⎛⎫- ⎪⎝⎭D .0,1例34.(2022·全国·高三专题练习)在锐角ABC 中,cos cos ()sin sin A CA B C a c+=,cos 2C C +=,则a b +的取值范围是( )A .(4⎤⎦B .(2,C .(]0,4D .(]2,4例35.(2022·全国·高三专题练习)已知在锐角ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且60B ︒=,ABC b 的取值范围为( )A .⎡⎣B .C .)D .[)2,6例36.(2022·全国·高三专题练习)已知正三棱柱111ABC A B C 的外接球的表面积为36π,球心为O ,则( ) A .1OA BC ⊥B .该三棱柱所有棱长之和的最大值为36C .该三棱柱侧面积的最大值为12D .三棱锥O ABC -的体积是该三棱柱的体积的16答案第一天学习及训练【题型】一、求三角形中的边长有关的最值例1.(2022·山东·日照一中高三阶段练习)ABC 中,角,,A B C 所对的三边分别为,,,2a b c c b =,若ABC 的面积为1,则BC 的最小值是( ) A .2 B .3 CD【答案】C【分析】由三角形面积公式得到21sin b A=,利用角A 的三角函数表达出254cos sin A BC A -=,利用数形结合及sin sin 055cos cos 44AA A A -=--的几何意义求出最值.【详解】因为△ABC 的面积为1,所211sin 2sin sin 122bc A b b A b A =⨯==,可得21sin b A=,由BC AC AB =-,可得222222||||||22cos BC AC AB AC AB b c bc A b =+-⋅=+-=+()22254cos 54cos 222cos 54cos sin sin sin A Ab b b A b b A A A A--⨯=-=-=, 设sin 1sin 54cos 54cos 4A A m A A ⎡⎤⎢⎥==-⨯⎢⎥-+⎢⎥-⎣⎦,其中(0,π)A ∈,因为sin sin 055cos cos 44AA A A -=--表示点5,04P ⎛⎫⎪⎝⎭与点(cos A ,sin A )连线的斜率,如图所示,当过点P 的直线与半圆相切时,此时斜率最小,在直角△OAP 中,51,4OA OP ==,可得34PA =,所以斜率的最小值为4tan 3PA k APO ∠=-=-,所以m 的最大值为141433⎛⎫-⨯-= ⎪⎝⎭,所以2||3BC ,所以||3BC ,即BC故选:C .【点睛】思路点睛:解三角形中最值问题,要结合基本不等式,导函数或者数形结合,利用代数式本身的几何意义求解.例2.(2022·全国·高三专题练习)在ABC 中,60BAC ∠=,3BC =,且有2CD DB =,则线段AD 长的最大值为( )A B .2 C 1 D .【答案】C【分析】在ABC 中,设角A 、B 、C 的对边分别为a 、b 、c ,利用正弦定理得出b B =,c C =,利用平面向量数量积的运算性质得出222924AD b bc c =++,利用三角恒等变换思想化简得出2224AD B =+,利用正弦型函数的有界性可得出线段AD 长的最大值.【详解】在ABC 中,设角A 、B 、C 的对边分别为a 、b 、c ,由正弦定理可得3sin sin sin 3b c B C π===b B =,c C =, ()()1112333AD AB BD AB BC AB AC AB AB AC =+=+=+-=+,即32AD AB AC =+,所以,()()22222229324444cos3AD ADAB ACAC AB AB AC b c cb π==+=++⋅=++22224212sin 48sin 24sin sin b c bc B C B C =++=++1cos 21cos 2124824sin sin 22B CB C --=⋅+⋅+ 224sin sin 6cos 224cos 23033BB B B ππ⎡⎤⎛⎫⎛⎫=+---+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦1124sin sin 6cos 224cos 223022B B BB B B ⎛⎫⎛⎫=-++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭1cos 212cos 6cos 212cos 22302BB B B B B -=⋅+-+++ 236B =+,所以,2224AD B =+,203B π<<,则4023B π<<,当22B π=时,即当4B π=时,AD 取最大值,即max 1AD =. 故选:C.【点睛】思路点睛:求三角形有关代数式最值是一种常见的类型,主要方法有两类: (1)找到边与边之间的关系,利用基本不等式来求解;(2)利用正弦定理,转化为关于某个角的三角函数,利用函数思想求解. 例3.(2022·全国·高三专题练习)在ABC中,若3B π=,AC =2AB BC +的最大值为( ) A .7B .C .D .5【答案】B【分析】设A θ=,结合正弦定理得22sin ,3AB ⎛⎫=- ⎪⎝⎭πθ2sin BC θ=,然后结合化简整理得到关于θ的函数,进而结合函数的图象与性质即可求出结果.【详解】设A θ=,由正弦定理知22sin sin 3AB BC ===⎛⎫- ⎪⎝⎭θπθ,因此22sin ,3AB ⎛⎫=- ⎪⎝⎭πθ 2sin BC θ=,故222sin 4sin 3AB BC ⎛⎫+=-+ ⎪⎝⎭πθθ222sin cos cos sin 4sin 33⎛⎫=-+ ⎪⎝⎭πθπθθsin 4sin =++θθθ5sin =+θθ()=+θϕ,其中tan ϕ 所以当()sin 1θϕ+=时,,取得最大值,且最大值为 故选:B.【题型】二、求三角形中的周长有关的最值例4.(2022·全国·高三专题练习)在锐角三角形ABCcos 2B B +=,且满足关系式cos cos sin sin 3sin B C A Bb c C⋅+=,则ABC 的周长最大值为( ) AB.C.D.【答案】D【分析】cos 2B B +=,推导出3B π=,由cos cos sin sin 3sin B C A Bb c C+=,推导出b =再由正弦定理可得4sin a A =,24sin 4sin()3c C A π==-,由此能求出周长的取值范围.【详解】cos 2B B +=,∴112cos B B +=,sin()16B π∴+=,262B k πππ∴+=+,2B π<,3B π∴=,cos cos sin sin 3sin B C A B b c C +=,∴2222222223a c b a b c abc abc c+-+-+=,∴a bc,b ∴=4sin sin sin a c bA CB ===, 4sin a A ∴=,24sin 4sin()3c C A π==-,214sin 4sin()3(cos ))326a c A A A A A ππ∴+=+-==+, 三角形ABC 为锐角三角形,∴62A ππ<<,∴2363A πππ<+<,∴sin 16A π⎛⎫<+≤ ⎪⎝⎭66A π⎛⎫∴<+≤ ⎪⎝⎭6a c <+≤b =∴a b c ++≤ABC的周长最大值为故选:D例5.(2022·全国·高三专题练习)在ABC 中,ABC ∠的平分线交AC 于点D ,23ABC π∠=,4BD =,则ABC 周长的最小值为( )A.8+B.8+C.16+D.16+【答案】C【分析】根据等面积法得4aca c +=,进而结合基本不等式得16a c +≥,64ac ≥,当且仅当8a c ==时等号成立,再结合余弦定理得b ≥≥当且仅当8a c ==时等号成立,进而得周长最小值. 【详解】根据题意,设,,AB c BC a AC b ===, 因为ABCABDCBDSSS=+,243ABC BD π∠==,,ABD CBD ∠=∠, 所以111sin sin sin 222AB BC ABC AB BD ABD CB BD CBD ⋅⋅∠=⋅⋅∠+⋅⋅∠,=,所以4ac a c +=,因为根据基本不等式有22a c ac +⎛⎫≤ ⎪⎝⎭,a c +≥所以16a c +≥,64ac ≥,当且仅当8a c ==时等号成立, 由余弦定理得b ==当且仅当8ac ==时等号成立,所以16a b c ++≥+,当且仅当8a c ==时等号成立.所以ABC 周长的最小值为16+故选:C例6.(2022·全国·高三专题练习)在ABC 中,已知60C =︒,4AB =,则ABC 周长的最大值为( ) A .8 B .10C .12D .14【答案】C【分析】根据余弦定理算出2()163a b ab +=+,再利用基本不等式即可得8a b +,从而可得到ABC 周长的最大值.【详解】解:在ABC 中,60C =︒,4AB c ==, ∴由余弦定理,得2222cos c a b ab C =+-,即2222162cos 60a b ab a b ab =+-︒=+-2()3a b ab =+-,由基本不等式有22a b ab +⎛⎫≤ ⎪⎝⎭,所以222216()3()(3144)()a b ab a b a b a b -==+-≥+++,∴8a b +(当且仅当4a b ==时等号成立),ABC ∴周长8412a b c +++=(当且仅当4a b ==时等号成立),即当且仅当4a b ==时,ABC 周长的最大值为12, 故选:C .【点睛】关键点点睛:先用余弦定理得216()3a b ab =+-,再结合基本不等式22a b ab +⎛⎫≤ ⎪⎝⎭即可求a b +的最大值,从而得ABC 周长的最大值.第二天学习及训练【题型】三、求三角形中的面积有关的最值例7.(2023·全国·高三专题练习)在ABC 中,角,,A B C 所对的边分别为,,a b c ,2a =,2cos 2cos 24sin C A B =+,则ABC 面积的最大值是( ) A .23B .1C .43D .2【答案】A【分析】利用二倍角公式和正弦定理化简已知等式可得22224a c b =+=;利用余弦定理可构造等量关系求得cos A ,进而得到sin A ;利用三角形面积公式,将ABCS表示为以2b 为自变量的二次函数的形式,利用二次函数最值的求法可求得所求最大值. 【详解】由2cos 2cos 24sin C A B =+得:22212sin 12sin 4sin C A B -=-+, 即222sin sin 2sin A C B =+,由正弦定理得:22224a c b =+=;由余弦定理得:2222cos 4a b c bc A =+-=,222222cos c b b c bc A ∴+=+-,即cos 2bA c=,()0,A π∈,sin A ∴1sin 2ABCSbc A ∴=== 2224c b +=,2242c b ∴=-,ABCS∴=则当289b =时,42max 996481644448199b b ⎛⎫-+=-⨯+⨯= ⎪⎝⎭,()max 142233ABC S∴=⨯=. 故选:A.例8.(2023·全国·高三专题练习)ABC 的内角,,A B C 所对的边分别为,,a b c .已知()sin sin sin ,cos cos 2b c B c C a A b C c B -+=+=,则ABC 的面积的最大值( )A .1 BC .2D .【答案】B【分析】根据()sin sin sin b c B c C a A -+=,利用正弦定理化角为边,结合余弦定理求得角A ,再根据cos cos 2b C c B +=,利用余弦定理化角为边求得边a ,再利用余弦定理结合基本不等式求得bc 的最大值,再根据三角形的面积公式即可得出答案. 【详解】解:因为()sin sin sin b c B c C a A -+=, 所以222b bc c a -+=, 所以1cos 2A =, 又()0,A π∈, 所以3A π=,因为cos cos 2b C c B +=,所以222222222a b c a c b bc ab ac+-+-+=, 所以2a =,由2222cos a b c bc A =+-,得224b c bc bc =+-≥, 所以4bc ≤,当且仅当2b c ==时,取等号,则1sin 2ABC S bc A ==≤△,所以ABC故选:B.例9.(2022·全国·高三专题练习)在ABC 中,角,,A B C 的对边分别是,,a b c ,且sin()2sin cos 0B C A B ++=.若2b =,则ABC 面积的最大值为( )ABCD.【答案】A【分析】由已知条件,结合三角形内角性质得12cos 0B +=,进而可得角B ,应用正弦定理有033c A A ππ⎛⎫⎛⎫=-<< ⎪⎪⎝⎭⎝⎭,根据三角形面积公式、三角恒等变换得26ABCSA π⎛⎫+ ⎪⎝⎭ABC 面积的最大值. 【详解】由sin()2sin cos 0B C A B ++=,得sin 2sin cos 0A A B +=, ∴sin (12cos )0A B ⋅+=,又sin 0A ≠, ∴12cos 0B +=,即1cos 2B =-,又(0,)B π∈,∴2,33B C A B A πππ==--=-,又sin sin c bC B=,∴2sin sin 302sin 33sin3A b C c A A B ππππ⎛⎫- ⎪⎛⎫⎛⎫⎝⎭===-<< ⎪⎪⎝⎭⎝⎭. 211sin sin sin sin 2sin cos sin 2232ABCSbc A A A A A A A A A A π⎫⎛⎫==-=-==⎪ ⎪⎪⎝⎭⎝⎭sin 2226A A A π⎛⎫+ ⎪⎝⎭ 由03A π<<,有52666A πππ<+<,则sin 2sin 162A ππ⎛⎫+≤= ⎪⎝⎭,26A π⎛⎫+ ⎪⎝⎭ABC故选:A.【点睛】关键点点睛:由已知等量关系求角,利用三角形内角性质、正弦定理及三角形面积公式得到ABC 面积关于内角A 的函数式,根据内角的范围求最值.例10.(2022·全国·高三专题练习)在ABC 中,BAC ∠的平分线交BC 于点,2,6D BD DC BC ==,则ABC ∆的面积的最大值为( )A .6B .C .12D .【答案】C【分析】设AC x =,BAC θ∠=,则2AB x =,结合正弦定理表示得1sin 2ABCSAB AC BAC =⋅⋅∠,由余弦定理可得x 与θ的关系式,联立前式由同角三角函数和二次函数性质化简即可求解【详解】如图,设设AC x =,BAC θ∠=,则由正弦定理可得sin sin BD ABBAD ADB=∠∠①,sin sin CD ACCAD ADC=∠∠②,又ADB ADC π∠+∠=,所以sin sin ADB ADC ∠=∠,①②式联立可得21AB AC =,则2AB x =,则211sin 2sin sin 22ABC S AB AC BAC x x x θθ=⋅⋅∠=⋅⋅=⋅△,对ABC ,由余弦定理可得22222536cos 24AB AC BC x BAC AB AC x +--∠==⋅,则()22422242424425362536036sin 1cos 1416x x x S x x x x x θθ⎛⎫⎛⎫--+ ⎪=⋅=⋅-=⋅-=-⎪ ⎪⎝⎭⎝⎭()()()2422422199********+14420256161616x x x x x ⎡⎤=--+=--=---⎢⎥⎣⎦, 当220x =时,2S 有最大值,()2max 925614416S =⨯=,所以max 12S =, 故选:C【点睛】本题考查由三角形的边角关系求解面积最值,正弦定理、余弦定理解三角形,属于难题,本题中的角平分线性质可当结论进行识记:AD 为ABC 的角平分线,则AB BDAC CD= 例11.(2022·全国·高三专题练习)在平面四边形ABCD 中,AB =1,AD =4,BC =CD =2,则四边形ABCD 面积的最大值为( )A B C .D .【答案】A【分析】通过余弦定理分别表示BD ,从而找到角A ,C 的关系,将四边形的面积用角A ,C 表示,从而求得面积的最大值. 【详解】由余弦定理知:在ABD △中, 有2222cos BD AB AD AB AD A =+-⋅2214214cos 178cos A A =+-⨯⨯⋅=-,在BCD △中,有2222cos BD CB CD CB CD C =+-⋅2222222cos 88cos C C =+-⨯⨯⋅=-,则9178cos 88cos cos cos 8A C A C -=-⇒-=,由四边形ABCD 的面积=三角形ABD 的面积+三角形BCD 的面积, 故1111sin sin 14sin 22sin 2222S AB AD A CB CD C A C =⋅+⋅=⨯⨯+⨯⨯ 2(sin sin )A C =+,在三角形中,易知,(0,)A C π∈,sin ,sin 0A C >,()22sin sin (cos cos )A C A C ++-2222sin sin 2sin sin cos cos 2cos cos A C A C A C A C =++++-22cos()4A C =-+≤,当且仅当A C π+=时等号成立,此时229(sin sin )4sin sin 8A C A C ⎛⎫++≤⇒+≤ ⎪⎝⎭,故2(sin sin )2S A C =+≤=故选:A.【点睛】方法点睛:四边形对角线是公共边,以之为连接点找到角与角的关系,把面积也化成角来表示,从而借助三角函数的最值来求得面积的最值.例12.(2022·全国·高三专题练习)已知边长为2的等边三角形ABC ,D 是平面ABC 内一点,且满足:2:1DB DC =,则三角形ABD 面积的最大值是( ) A43BC43D【答案】C【分析】建立直角坐标系,设(,)D x y ,写出,,A B C 的坐标,利用:2:1DB DC =列式得关于,x y的等式,可得点D 的轨迹为以5(,0)3为圆心,以43为半径的圆,写出直线AB 的方程,计算AB和点D 距离直线AB 的最大距离d r +,代入三角形面积公式计算.【详解】以BC 的中点O为原点,建立如图所示的直角坐标系,则(1,0),(1,0)A B C -,设(,)D x y ,因为:2:1DB DC =,所以()()22221414++=-+x y x y ,得2251639x y ⎛⎫-+= ⎪⎝⎭,所以点D 的轨迹为以5(,0)3为圆心,以43为半径的圆,当点D 距离直线AB 距离最大时,ABD △面积最大,已知直线AB0y -=,2AB =,点D 距离直线AB 的最大距离为:4433+=d r ,所以ABD △面积的最大值为1442233⎫=⨯⨯=⎪⎪⎝⎭ABD S △. 故选:C【点睛】解答本题的关键在于建立直角坐标系,设点(,)D x y ,通过:2:1DB DC =得关于,x y 的等式,从而判断出点D 的轨迹,数形结合分析得当点D 距离直线AB 距离最大时,ABD △面积最大.例13.(2022·全国·高三专题练习)已知ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,且2cos 2a C b c =+,若6a =,则ABC ∆的面积的最大值为( ) A .6 B .3C .D .【答案】D【解析】利用余弦定理求得角A 的值,结合基本不等式可求得bc 的最大值,进而可求得ABC ∆的面积的最大值.【详解】由余弦定理得222222a b c a b c ab+-⋅=+,所以22222a b c b bc +-=+,所以222b c a bc +-=-.由余弦定理的推论得2221cos 222b c a bc A bc bc +-==-=-,又()0,A π∈,所以23A π=.若6a =,由余弦定理的得222222cos 23a b c bc A b c bc bc bc bc =+-=++≥+=, 当且仅当b c =时取等号,所以336bc ≤,解得12bc ≤.故1sin 2ABC S bc A ∆=≤.因此,ABC ∆面积的最大值为故选:D.【点睛】本题考查利用余弦定理解三角形,同时也考查了三角形面积最值的计算,涉及基本不等式的应用,考查运算求解能力,属于中等题.【题型】四、正余弦定理与三角函数性质结合最值例14.(2022·福建·三明一中高三阶段练习)在ABC中,角A、B、C所对的边分别为a、b、c,若sinc A=,λ=b a,则实数λ的最大值是()AB.32C.D.2+【答案】D【分析】根据余弦定理和sinc A=得222212sin2sin cosa b A b b A A=+-⋅,进而得22723aAbπ⎛⎫=-+⎪⎝⎭,再根据三角函数的性质求解即可得答案.【详解】解:由余弦定理,得2222cosa cb b A=+-,结合sinc A=,得222212sin2sin cosa b A b b A A=+-⋅,解得22212sin12aA Ab=+-,即22723aAbπ⎛⎫=-+⎪⎝⎭,则当12Aπ=时,222max(2ba⎛⎫=⎪⎝⎭.max max()2baλ==故选:D.【点睛】本题考查余弦定理与三角函数的性质求最值,考查运算能力,是中档题.例15.(2020·全国·高三专题练习(文))已知平面四边形ABCD由ACD与等边ABC拼接而成,其中22AD CD==,则平面四边形ABCD面积的最大值为______.【答案】2【解析】设D θ∠=,利用余弦定理求出AC ,利用面积公式将ACD 与等边ABC 的面积用θ表示,利用三角函数的性质即可求解.【详解】设D θ∠=,在ACD 中,由余弦定理可得:2222cos 54cos AC AD CD AD CD θθ=+-⨯=- ,所以)21sin 54cos 23ABCSAC πθ=⨯=-, 因为1sin sin 2ACDSAD CD θθ=⨯⨯=,所以)sin 54cos ABC ACDS SSθθ=+=+-sin 2sin 3πθθθ⎛⎫==- ⎪⎝⎭,因为()0,θπ∈,所以2,333πππθ⎛⎫-∈- ⎪⎝⎭,所以max 2S =,故答案为:2【点睛】本题主要考查了三角函数的实际应用,求面积的最值,考查余弦定理、辅助角公式,属于中档题.例16.(2020·全国·高三阶段练习(理))在边长为ABC 中,G 是中心,直线l 经过点G 且与AB ,AC 两边分别交于P ,Q 两点,则11GP GQ+的最大值为__________.【分析】设AGP θ∠=,在,APG AQG 中由正弦定理,用θ表示出,PG GQ ,再利用正余弦的和角公式,将11GP GQ+表示为 θ的函数,求该函数的最值即可. 【详解】设BC 中点为D ,AGP θ∠=,2,33ππθ⎡⎤∈⎢⎥⎣⎦,如下图所示:因为G是重心,所以22233AG AD AC =⋅=⨯=. 在AGP 中,由正弦定理得,sin sin GP AGPAG APG=∠∠,所以sin165sin sin 66AG GP πππθθ⋅==⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭,同理在AGQ △中,由正弦定理得1sin 6GQ πθ=⎛⎫- ⎪⎝⎭.所以11sin sin 2sin cos 666GP GQ πππθθθθ⎛⎫⎛⎫+=++-=⋅= ⎪ ⎪⎝⎭⎝⎭, 2,33ππθ⎡⎤∈⎢⎥⎣⎦,当2πθ=时,max112GP GQ π⎛⎫+== ⎪⎝⎭【点睛】本题考查利用正余弦定理求解三角形中的最值问题,涉及三角函数最值的求解,第三天学习及训练【题型】五、化角为边判断三角形的形状例17.(2023·全国·高三专题练习)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且()2cos cos a b c A B +=+,则角C 的大小为( )A .π2B .π3C .π4D .π6【答案】B【分析】利用余弦定理进行边化角222222222b c a a c b a b c bc ac ⎛⎫+-+-+=+ ⎪⎝⎭,整理可得()()2220a b c a b ab +--+=即2220c a b ab --+=,再用余弦定理可得1cos 2C =. 【详解】因为()2cos cos a b c A B +=+,则222222222b c a a c b a b c bc ac ⎛⎫+-+-+=+ ⎪⎝⎭,整理得()()2220a b c a b ab +--+=,所以2220c a b ab --+=即222a b c ab +-=, 则2221cos 222a b c ab C ab ab +-===, ∵()0,πC ∈,所以π3C =. 故选:B.例18.(2023·全国·高三专题练习)设△ABC 的三边长为BC a =,=CA b ,AB c =,若tan2A a b c =+,tan 2B ba c=+,则△ABC 是( ). A .等腰三角形B .直角三角形C .等腰三角形或直角三角形D .等腰直角三角形【答案】B【分析】若三角形各边长为a 、b 、c 且内切圆半径为r , 法一:由内切圆的性质有tan2A a b c =+、tan 2B ba c=+,根据边角关系可得a b =或222+=a b c ,注意讨论所得关系验证所得关系的内在联系;法二:由半角正切公式、正弦定理可得A B =或π2A B +=,结合三角形内角的性质讨论所得关系判断三角形的形状. 【详解】设()12P a b c =++,△ABC 的内切圆半径为r ,如图所示,法一: ∴tan2A r a p a b c ==-+①;tan 2B r b p b a c==-+②. ①÷②,得:p b a a cp a b c b -+=⋅-+,即()()()()22p b a a c p a b b c -+=-+. 于是()()()()b b c c a b a a c b c a ++-=++-,232232ab b bc a b a ac -+=-+,()()2220a b a b c -+-=,从而得a b =或222+=a b c ,∴A B ∠=∠或90C ∠=︒.故△ABC 为等腰三角形或直角三角形, (1)当a b =时,内心I 在等腰三角形CAB 的底边上的高CD 上,12ABCS AB CD c =⋅△,从而得2S r a b c ==++又()1122p a b c a c -=+-=,代入①式,()22a abc a ca c c==+++⋅,a a c =+, 上式两边同时平方,得:()2222a c a a c a c -=++,化简2220c a -=,即c =.即△ABC 直角三角形,∴△ABC 为等腰直角三角形.(2)当222+=a b c 时,易得()12r a b c =+-.代入②式,得()()1212a b c b a c a c b +-=++-,此式恒成立, 综上,△ABC 为直角三角形. 法二: 利用sin tan21cos A A A =+,sin tan 21cos B B B =+及正弦定理和题设条件,得sin sin 1cos sin sin A A A B C=++①,sin sin 1cos sin sin B B B A C=++②.∴1cos sin sin A B C +=+③;1cos sin sin B A C +=+④.由③和④得:1cos sin 1cos sin A B B A +-=+-,即sin cos sin cos A A B B +=+,ππsin sin 44A B ⎛⎫⎛⎫+=+ ⎪ ⎪⎝⎭⎝⎭,因为,A B 为三角形内角, ∴ππ44A B +=+或πππ44A B +=--,即A B =或π2A B +=. (1)若A B =,代入③得:1cos sin sin A B C +=+⑤又ππ2C A B A =--=-,将其代入⑤,得:1cos sin sin 2A A A +=+. 变形得()()2sin cos sin cos 0A A A A ---=, 即()()sin cos sin cos 10A A A A ---=⑥,由A B =知A 为锐角,从而知sin cos 10A A --≠. ∴由⑥,得:sin cos 0A A -=,即π4A =,从而π4B =,π2C =.因此,△ABC 为等腰直角三角形. (2)若π2A B +=,即π2C =,此时③④恒成立,综上,△ABC 为直角三角形. 故选:B例19.(2023·全国·高三专题练习)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若cos c B a =,则这个三角形的形状为( ) A .直角三角形 B .等腰三角形 C .锐角三角形 D .等腰或直角三角形【答案】A【解析】由条件和余弦定理可得2222a c b a acc +-=⋅,然后化简可得答案. 【详解】因为cos c B a =,所以由余弦定理可得2222a c b a acc +-=⋅,即22222a c b a +-= 所以222+c a b ,所以三角形的形状为直角三角形故选:A例20.(2022·江苏·高邮市第一中学高三阶段练习)在ABC ,下列说法正确的是( ) A .若cos cos a A b B =,则ABC 为等腰三角形 B .若40,20,25a b B ===︒,则ABC 必有两解 C .若ABC 是锐角三角形,则sin cos A B >D .若cos2cos2cos21A B C +-<,则ABC 为锐角三角形 【答案】BC【分析】利用正弦定理结合正弦函数的性质可判断A ;根据边角关系判断三角形解的个数可判断B ; 由已知得022A B ππ>>->,结合正弦函数性质可判断C ;利用二倍角的余弦公结合余弦定理可判断D.【详解】对于A ,由正弦定理可得sin cos sin cos A A B B =,sin 2sin 2A B ∴=,A B ∴=或22180A B +=即90A B +=,ABC ∴为等腰或直角三角形,故A 错误;对于B ,1sin 40sin 2540sin3040202a B =<=⨯=,即sin a Bb a <<,ABC ∴必有两解,故B 正确; 对于C ,ABC 是锐角三角形,2A B π∴+>,即022A B ππ>>->,由正弦函数性质结合诱导公式得sin sin cos 2A B B π⎛⎫>-= ⎪⎝⎭,故C 正确;对于D ,利用二倍角的余弦公式知22212sin 12sin 12sin 1A B C -+--+<,即222sin sin sin 0A B C +->,即2220a b c +->,cos 0C ∴>,即C 为锐角,不能说明ABC 为锐角三角形,故D 错误. 故选:BC【点睛】方法点睛:在解三角形题目中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则常用: (1)若式子含有sin x 的齐次式,优先考虑正弦定理,“角化边”; (2)若式子含有,,a b c 的齐次式,优先考虑正弦定理,“边化角”; (3)若式子含有cos x 的齐次式,优先考虑余弦定理,“角化边”;例21.(2022·全国·高三专题练习)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,下列命题正确的是( ) A .若a b >,则cos2cos2A B <B .若cos cos a B b A c -=,则ABC 一定为直角三角形C .若4a =,5b =,6c =,则ABCD .若()()()cos cos cos 1A B B C C A ---=,则ABC 一定是等边三角形 【答案】ABD【分析】对于A ,利用正弦定理和三角函数恒等变换公式化简判断,对于B ,利用余弦定理统一成边化简进行判断,对于C ,先利用余弦定理求出cos A ,从而可求出sin A ,再利用正弦定理可求出ABC 外接圆半径,对于D ,利用三角函数的性质结合三角形内角进行判断 【详解】解:对于A ,因为a b >,所以由正弦定理得sin sin 0A B >>,所以22sin sin A B >,所以1cos 21cos 222A B-->,所以cos2cos2A B <,所以A 正确, 对于B ,因为cos cos a B b A c -=,所以22222222a c b b c a a b c ac bc+-+-⋅-⋅=,即22222222a c b b c a c +---+=,所以222a b c =+,所以ABC 一定为直角三角形,所以B 正确,对于C ,由余弦定理得2222536163cos 22564+-+-===⨯⨯b c a A bc ,因为(0,)A π∈,所以sin A ==2sin a R A ===ABCC 错误, 对于D ,因为在ABC 中,()()()cos ,cos ,cos (1,1]A B B C C A ---∈-,()()()cos cos cos 1A B B C C A ---=,所以()()()cos cos cos 1A B B C C A -=-=-=,所以0A B B C C A -=-=-=,所以A B C ==,所以ABC 一定是等边三角形,所以D 正确,故选:ABD【题型】六、化边为角判断三角形的形状例22.(2023·全国·高三专题练习)在ABC 中,A ∠,B ∠,C ∠的对边分别为a ,b ,c ,2cos 22A b cc+=,则ABC 的形状一定是( ) A .正三角形 B .直角三角形 C .等腰三角形 D .等腰直角三角形【答案】B【分析】根据降幂公式,先得到1cos 22A c bc+=+,化简整理,再由正弦定理,得到sin cos 0A C =,推出cos 0C =,进而可得出结果. 【详解】因为2cos22A b c c +=,所以1cos sin sin sin 122sin 2sin 2A B C B C C ++==+,所以sin cos sin B A C= 即()cos sin sin sin sin cos cos sin A C B A C A C A C ==+=+,所以sin cos 0A C =,因为sin 0A ≠, 所以cos 0C =,因为()0,C π∈,所以2C π=,即ABC 是直角三角形.故选:B例23.(2023·全国·高三专题练习)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,满足cos cos a A b B =,则ABC 的形状为( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形 D .等腰或直角三角形【答案】D【分析】利用正弦定理得到A B =或2A B π+=,即可判断.【详解】在ABC 中,对于 cos cos a A b B =,由正弦定理得:sin cos sin cos A A B B =,即sin 2sin 2A B =, 所以22A B =或22A B π+= 即A B =或2A B π+=.所以ABC 为等腰三角形或直角三角形. 故选:D例24.(2023·全国·高三专题练习)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若cos sin cos b A c B a B =-,则ABC 是( ) A .等腰三角形 B .等边三角形 C .直角三角形 D .等腰直角三角形【答案】C【分析】利用正弦定理化边为角,逆用两角和的正弦公式、结合诱导公式求出sin B 的值,结合角B 的范求得角B ,即可求解.【详解】因为cos sin cos b A c B a B =-由正弦定理化边为角可得:sin cos sin sin sin cos B A C B A B =-, 所以()()sin sin sin cos sin cos sin sin πsin C B A B B A A B C C =+=+=-=, 因为sin 0C ≠,所以sin 1B =, 因为0πB <<,所以π2B =, 所以ABC 是直角三角形, 故选:C.例25.(2022·江苏·海安市立发中学高三阶段练习)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,则下列的结论中正确的是( ) A .若cos cos A B >,则sin sin A B <B .若sin cos sin cos A A B B =,则ABC 一定是等腰三角形C .若ABC 是锐角三角形,则sin sin sin cos cos cos A B C A B C ++>++D .已知ABC 不是直角三角形,则tan tan tan tan tan tan A B C A B C =++ 【答案】ACD【分析】结合正弦定理以及三角函数与三角形的性质、三角恒等变换以及两角和与差的三角函数公式逐项判断即可.【详解】解:因为A ,0πB ∈(,),且cos y x =在0π(,)上单调递减,故由cos cos A B >,得A B <,故a b <,结合正弦定理得sin sin A B <,故A 正确;sin cos sin cos A A B B =⇒ sin 2sin 2A B =,故22A B =,或22πA B +=,即=A B ,或π2A B +=,故三角形ABC 是等腰三角形或直角三角形,故B 错误; 若三角形ABC 为锐角三角形,则π2A B +>π02A B ⇒>->,故πsin sin()cos 2A B B >-=, 同理可得sin cos B C >,sin cos C A >,三式相加得sin sin sin cos cos cos A B C A B C ++>++,故C 正确;ABC 不是直角三角形,即A ,B ,C 都不是直角,因为tan tan[π()]tan()C B C B C =-+=-+=tan tan tan tan 1A BA B +⋅-,整理得tan tan tan tan tan tan A B C A B C =++,故D 正确. 故选:ACD .第四天学习及训练【题型】七、利用不等式求范围问题例26.(2023·江苏·苏州中学高三阶段练习)已知△ABC 中,sin A =3sin C cos B ,且AB =2,则△ABC 的面积的最大值为( )A .3B .C .9D .【答案】A【分析】法一:根据正弦定理,将角化边,从而利用三角形面积公式,半角公式及三角函数有界性求出面积的最大值;法二:根据正弦定理,将边化角,得到tan =2tan B C ,画出图形,作出辅助线,设,AD h BD x ==,得到22+=4x h ,利用基本不等式求出三角形面积的最大值. 【详解】法一:由正弦定理得:=3cos =6cos a c B B , ()11=sin =6cos 2sin =3sin2322ABCSac B B B B ⋅⋅≤ 法二:由正弦定理得:sin cos +cos sin =3sin cos B C B C C B , 所以sin cos =2cos sin B C B C故tan =2tan B C ,如图所示:过点A 作AD ⊥BC 于点D , 设,AD h BD x ==,则2CD x =, 由勾股定理得:22+=4x h , 所以()2213313=3=+=4=322224ABCSx h xh x h ⋅⋅⋅≤⨯当且仅当=x h 故选:A.例27.(2023·全国·高三专题练习)在等腰ABC 中,AB =AC ,若AC 边上的中线BD 的长为3,则ABC 的面积的最大值是( ) A .6 B .12 C .18 D .24【答案】A【分析】利用余弦定理得到边长的关系式,然后结合勾股定理和基本不等式即可求得ABC 面积的最大值.【详解】设2AB AC m ==,2BC n =, 由于ADB CDB π∠=-∠,在ABD △和BCD △中应用余弦定理可得:2222949466m m m n m m+-+-=-,整理可得:2292m n =-,结合勾股定理可得ABC 的面积:112322S BC n =⨯224362n n +-=⨯=,。

高考数学解三角形中的最值专题

高考数学解三角形中的最值专题
(2)由已知结合正弦定理将边转化角,再利用三角形内角和定理、辅助角公式转化为求 的取值范围.
【详解】
(1)由 ,可得 ,
整理得 ,
所以 .
(2)由(1)得 , , ,,
, ,
由正弦定理得 ,


∵ ,∴ , ,
,∴
∴ 的取值范围是 .
【点睛】
本题主要考查正弦定理和余弦定理的应用,属于中档题.
3.(1) ;(2) .
【详解】
(1)
原式
(2) ,
时等号成立.
周长的最大值为
【点睛】
本题考查了三角恒等变换,余弦定理,均值不等式,周长的最大值,意在考查学生解决问题的能力.
14.(1) ;(2) .
【解析】
试题分析:(1)根据题意,由正弦定理得到关于角的三角函数关系
利用: ,得到 ,再利用两角和的正弦定理,化简为: ,利用辅助角公式得到: ,进而求得: ;(2)根据余弦定理得到关于 的关系式: ,利用基本不等式得 ,所以三角形的周长的取值范围为 .
12.(1) ;(2)
【解析】
【分析】
(1)利用正弦定理,并结合 ,可将原式转化为 ,由 ,可求出 ,进而可求出 ;
(2)由 ,可求出 ,再结合余弦定理,可求得 的值,结合 ,可求出 的值,进而可求出 的周长.
【详解】
(1)由正弦定理可得, ,
由 ,则 ,
因为 ,所以 ,
又 ,所以 .
(2)由题意, ,解得 ,
(2)根据向量数量积的定义可得 ,再利用余弦定理以及基本不等式可得 ,由三角形的面积公式即可求解.
【详解】
解:(1)因为 ,所以 ,
由正弦定理, ,即
(2)若 ,则 ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

I.题源探究·黄金母题
【例1】海中一小岛,周围错误!未找到引用源。

内有暗礁,海轮由西向东航行,望见该岛在北偏东70°,航行错误!未找到引用源。

以后,望见这岛在北偏东60°,如果这艘轮船不改变航向继续前进,有没有触礁的危险?
【解析】根据题意作出如图所示,其中设错误!未找到引用源。

为岛所在位置,错误!未找到引用源。

是该轮船航行前后的位置,过错误!未找到引用源。

作错误!未找到引用源。

于错误!未找到引用源。

,根据题意知,在△ABC中,错误!未找到引用源。

,错误!未找到引用源。

,错误!未找到引用源。


∴错误!未找到引用源。

=10°,∠CBD=30°,
由正弦定理得,错误!未找到引用源。


∴错误!未找到引用源。

=错误!未找到引用源。

≈15.7560,∴错误!未找到引用源。

≈7.878>3.8,
∴没有触礁的危险.
答:没有触礁的危险.
精彩解读
【试题来源】人教版A版必修5第24页复习参考题A组第2题.
【母题评析】本题考查利用正余弦定理解与三角形有关的综合问题,是常考题型.
【思路方法】根据题意画出图形,错误!未找到引用源。

为岛所在位置,错误!未找到引用源。

是该轮船航行前后的位置,过错误!未找到引用源。

作错误!未找到引用源。

于错误!未找到引用源。

,根据题意知,在△ABC 中,错误!未找到引用源。

,错误!未找到引用源。

,错误!未找到引用源。

,要判断是否触礁,即需要计算C点到直线AB的距离CD,在△ABC中利用正弦定理计算出BC,在通过解直角三角形即可求出CD.
II.考场精彩·真题回放
【例2】【2015高考湖南,理17】设错误!未找到引用源。

的内角错误!未找到引用源。

,错误!未找到引用源。

,错误!未找到引用源。

的对边分别为错误!未找到引用源。

,错误!未找到引用源。

,错误!未找到引用源。

,错误!未找到引用源。

,且
错误!未找到引用源。

为钝角.
(1)证明:错误!未找到引用源。


(2)求错误!未找到引用源。

的取值范围.
(2)由(1)知,错误!未找到引用源。

错误!未找到引用源。

,∴错误!未找到引用源。


于是错误!未找到引用源。

=错误!未找到引用源。

=错误!未找到引用源。


∵错误!未找到引用源。

,∴错误!未找到引用源。


因此错误!未找到引用源。

,由此可知错误!未找到引用源。

的取值范围是错误!未找到引用源。

.
【例3】【2014重庆高考理第10题】已知错误!未找到引用源。

的内角错误!未找到引用源。

满足错误!未找到引用源。

=错误!未找到引用源。

,面积错误!未找到引用源。

满足错误!未找到引用源。

所对的边,则下列不等式成立的是()
A.错误!未找到引用源。

B.错误!未找到引用源。

C.错误!未找到引用源。

D.错误!未找到引用源。

【答案】A
【解析】由题设得:错误!未找到引用源。

错误!未找到引用源。

错误!未找到引用源。

错误!未找到引用源。

错误!未找到引用源。

错误!未找到引用源。

错误!未找到引用源。

错误!未找到引用源。

错误!未找到引用源。

(1)
由三角形面积公式错误!未找到引用源。

及正弦定理得:错误!未找到引用源。

所以错误!未找到引用源。

,又为错误!未找到引用源。

,所以错误!未找到引用源。

,
所以因错误!未找到引用源。

恒成立,所以错误!未找到引用源。

【例4】【2016高考山东理数】在△ABC中,角A,B,C的对边分别为a,b,c,已知
错误!未找到引用源。

(Ⅰ)证明:a+b=2c;
(Ⅱ)求cos C的最小值.
,
错误!未找到引用源。

由错误!未找到引用源。


错误!未找到引用源。


所以
错误!未找到引用源。

错误!未找到引用源。

当且仅当错误!未找到引用源。

时,等号成立.
.
故错误!未找到引用源。

的最小值为
错误!未找到引用源。

【例5】【2014全国1高考理第16题】已知错误!未找到引用源。

分别为错误!未找到引用源。

三个内角错误!未找到引用源。

的对边,错误!未找到引用源。

,且错误!未找到引用源。

,则错误!未找到引用源。

面积。

相关文档
最新文档