连续介质力学讲义
连续介质力学(固体力学)讲解
连续介质力学 连续介质力学(Continuum mechanics)是物
理学(特别的,是力学)当中的一个分支,是处 理包括固体和流体的在内的所谓“连续介质”宏
观 性质的力学。
3
固体:固体不受外力时,具有确定的形状。固体包括不可变形的 刚体 和可变形固体。刚体在 一般力学 中的 刚体力学 研究;连续介 质力学中的 固体力学 则研究可变形固体,在应力,应变等外在因素 作用下的变化规律,主要包括 弹性 和 塑性 问题。
9
二、现代力学的发展及其特点
1、现代力学的发展
材料与对象: 金属、土木石等 新型复合材料、 高分子材料、 结构陶瓷、功能材料。
尺 度:宏观、连续体 含缺陷体,细、微观、 纳米尺度。
实验技术: 电、光测试实验技术 全息、超声、 光纤测量,及实验装置的大型化。
10
应用领域:航空、土木、机械、材料生命、微电 子技术等。
使工程结构分析技术;(结合CAD技术) 监测、控制技术(如振动监测、故障诊断); 工程系统动态过程的计算机数值仿真技术; 广泛应用至各工程领域。
材料设计:按所要求的性能设计材料。(90年代)
13
智能结构: 90年代开始,力学与材料、控制(包括 传感与激励)、计算机相结合,研究发展面向21世纪 的、具有“活”的功能的智能结构。
塑性 :应力作用后,不能恢复到原来的形状,发生永久形变。 弹性 :应力作用后,可恢复到原来的形状。 流体 :流体包括 液体 和 气体 ,无确定形状,可流动。流体最重 要的性质是 粘性 (viscosity,流体对由剪切力引起的形状的抵抗 力,无粘性的 理想气体 ,不属于流体力学的研究范围)。从理论研 究的角度,流体常被分为 牛顿流体 和 非牛顿流体 牛顿流体 :满足 牛顿粘性定律 的流体,比如水和空气。 非牛顿流体 :不满足 牛顿粘性定律 的流体,介乎于固体和牛顿 流体之间砄物质形态。
清华大学计算固体力学第三次课件_连续介质力学
当参考构形与初始构形一致时,在 t = 0 时刻任意点处 的位置矢量 x 与其材料坐标一致
X x X , 0 Φ X , 0
一致映射
X Φ ,t
材料坐标 X i 为 常 数 值 的 线 被 蚀 刻 在 材 料 中 , 恰 似 Lagrangian网格;它们随着物体变形,当在变形构形中观察时, 这些线就不再是 Cartesian 型。这种观察方式下的材料坐标被 称为流动坐标。但是,当我们在参考构形中观察材料坐标时, 它们不随时间改变。建立的方程,是在参考构形上观察材料坐 标,因此以固定的 Cartesian 坐标系推导方程。另一方面无论 怎样观察,空间坐标系都不随时间变化。
T Ω R R
角速度张量或角速度矩阵 偏对称张量也称作反对称张量
二维问题
0 0 3 12 Ω 0 3 12 0
动力学教材中的刚体运动方程
v x ω x x v T T
2 变形和运动
推导并解释极分解原理,检验Cauchy应力张量的 客观率,也称作框架不变率。解释了率型本构方程要 求客观率的原因,然后表述了几种非线性有限元中常 用的客观率。
2 变形和运动
连续介质力学的目的就是提供有关流体、固体和组织结 构的宏观行为的模型。 它们的属性和响应可以用空间变量的平滑函数来表征, 至多具有有限个不连续点。它忽略了非均匀性,诸如分子、
面积坐标
y y x y x 1 23 x 23 x 2 3 3 2 1 y ξ y x x y x y 2 3 1 1 3 3 1 1 3 2 A y y x y 1 3 12 x 21 x 1 2 2 1
第7章连续介质热力学讲义
第7章 连续介质热力学连续介质热力学是连续力学与经典力学的交叉或结合。
热力学构造→连续介质热力学§7.1 连续介质力学与热力学连续介质力学:受力物体的变形和运动 热力学:力现象和热现象两者关系的科学 热力学定律:自然界的普遍定律Newton(1642-1727)于1686年提出运动定律 Carnot 卡诺(1796-1832) 热功转换 Joule 焦耳(1818-1889) 热功当量 Mayor 迈尔(1814-1878) 第一定律 Clausius 克劳修斯(1850) 第二定律 热力学的研究方法:1.热力学系统及其环境——热力学的研究对象系统:被研究的若干物体组成的集合; 环境:系统周围物体形成的集合。
孤立系统:系统与环境之间既无能量交换,又无物质交换。
封闭系统:只交换能量,而不交换物质。
开放系统:既有能量交换,又有物质交换。
绝热系统:系统与环境之间没有热量交换。
2.热平衡状态:经典热力学便是研究均匀系的平衡热力学系统在不受外界影响下能处于这个状态而永久不变(一定是均匀状态)3.状态参数:p (压力)、v (体积)、T (温度)、(对于气体来说) 4.状态方程:T nR pv M = (对于气体)本构属性只有两个状态参数是独立的,相当于力学中的本构方程。
其中:*mM n =,*m 为分子量,n 为摩尔数(单位为mol ),M R 为气体普适常数(mol 3144.81⋅⋅=-K J R m ),T 为绝对温度。
5.热力学过程:A 由一个状态经过一系列中间状态,最后到达一个终点状态,构成一个热力学过程。
6.过程分类:可逆过程和不可逆过程。
§7.2 热力学第一定律1.热功当量(将功与热建立了联系)焦耳实验:闭合过程系统的静止状态,返回到静止状态 系统的初始温度与结束时温度相同。
JA Q = (当时闭合过程成立)其中:Q 为热量,A 为功,J 为热功率当量1卡186.4=焦耳2.热力学第一定律设Q 以传入系统为正,输出为负,为系统作功为正,则上式应改为:JA Q =- (Q 本身为负)第一过程①:从状态A 到状态B 对应于11,Q A第二过程②:从状态A 到状态B对应于22,Q A若有过程○r :从状态B 到状态A 对应于r r Q A ,过程①+过程○r 为另一闭合过程,于是有 )(11r r Q Q J A A +-=+两式相减,有:)(2121Q Q J A A --=-于是有:2211JQ A JQ A +=+JQ A +∴与过程无关,只决定于起点和终点的状态,当然是状态参数。
力学讲义第六章连续介质力学
第六章 连续介质力学连续介质模型:物质(气,液,固)连续地分布在它们所占有的区域内连续介质质元: 宏观小, 微观大物质讨论宏观力: 包括外力以及外力作用下形变or 运动引起内部的弹性恢复力 讨论内力的一般方法:假想将其切开,切下部分的作用由内力代表;由平衡条件求力.例: (不计重力)连续介质是比质点、刚体更普遍的经典力学模型,应用也最普遍。
物理状态量在连续介质模型下成为点函数. 不计微观内力 §6.1 应力和应变6.1.1 应力固体为例截面π , 方位 n ; P 处邻域 ∆S 上 张力∆TP 处应力σ = lim ∆∆ TS = d T /dS =σ(P, n ) =σt +σn正应力(法向应力, 张力) σn 单位:P a (压强)(>0为拉应力 ; <0为压应力) 剪应力 (or 切应力) σt应力状态:对同一点P 处,方位不同的截面上应力σ不同。
函数关系σ=σP ( n)叫P 处的应力状态. 由平衡方程可以证明,互相垂直的三个截面上的6个应力(正,切应力)就可以完全决定一点处的应力状态 (由此6个应力可以计算出该处任意方位截面上的应力)应力主面: 该面上只有正应力, 称为主应力. 一点处必有三个互相垂直的应力主面6.1.2 应变固体有两种基本的应变形式:线(拉,压)应变 ;剪应变1. 线应变 ε均匀形变 : 长度l , 总形变∆l (截面法向x ) 则 εx = ∆l / l形变不均匀:一点处位移uAB 段形变=∆u x =u x (x+∆x) -u x (x)=∂∂u xx∆x A 处x 方向线应变εx = lim (∆u x /∆x) = ∂u x / ∂x类似: y 方向线应变 εz =∂u y / ∂y z 方向线应变 εz =∂u z / ∂z 一般情况下应变也是点函数, 不均匀形变时各处应变也不相同.应变是位移的空间变化率(位移的偏导数)2. 剪应变以xy 平面为例, 矩形 → 菱形定义:A 点剪应变(xy 平面上,小变形)为 εt = lim (δ1+δ2)= ∂u x /∂x + ∂u y /∂y δ1 ≈tan δ1=B’B’’/A’B’’=[u y (x+∆x) -u y (x)]/∆x → ∂u y /∂x 类似, 当 ∆x →0 , ∆y →0时 , δ2 → ∂u x /∂y3. 体应变均匀形变时, 体应变 εV = 体积增量/体积 =∆V / V不均匀形变时, 讨论一点处体应变一点附近小长方体(∆x,∆y,∆z) 小形变后为[(1+εx )∆x ,(1+εy )∆y, (1+εz )∆z] V=∆x ∆y ∆z ∆V ≈(εx +εy +εz )∆x ∆y ∆z 小变形 εV =εx +εy +εz 剪应变引起的体应变为高阶小量.自然状态无内力内力与外力平衡F F 内∆S →0 ∆x →0∆x →0∆y →0 y+∆侧平面)∆ll x∆x)6.1.3 胡克定律——应力和应变的关系 1678年胡克提出单向拉伸时 ε ∝ σ , 后来推广到三维 (实验定律) 1. 单一正应力引起的线应变 σx 引起 纵向线应变 εx = σx /Y 横向线应变εy =εz = -μεx = -μσx /Y Y —杨氏模量(压强量纲)μ ——泊松比(无量纲) 0≤ μ ≤ 0.5 σy , σz 的贡献类似 2. 总线应变与正应力的关系——广义胡克定律(在一定的形变范围内—比例极限) εx =1Y [σx -μ(σy +σz )] εy =1Y [σy -μ(σx +σz )] εz =1Y [σz -μ(σx +σy )] 3. 体应变与正应力εV =εx +εy +εz =(1-2μ)(εx +εy +εz )/Y ≡ σ0/K σ0≡(σx +σy +σz )/3 K=Y/[3(1-2μ)] K —体弹性模量 由4. 剪应变与剪应力εt =σt /G G —剪切弹性模量5. 各向同性固体只有两个独立的弹性模量, Y 、G 、K 、μ中只有两个独立K= Y / [3(1-2μ)] G=Y /2(1+μ) < Y一般 μ ≈ 0.35 G 、K 、Y 的量级为1010 —1011 P a , 差别不太大部分材料的弹性模量材料 铝 铜 金 电解铁 铅 铂 银 熔融石英 聚苯乙烯 K 7.8 16.1 16.9 16.7 3.6 14.2 10.4 3.7 0.41 G 2.5 4.6 2.85 8.2 0.54 6.4 2.7 3.12 0.133 Y 6.8 12.6 8.1 21 1.51 16.8 7.5 7.3 0.36 μ 0.355 0.37 0.42 0.29 0.43 0.30 0.38 0.17 0.353 说明: K 、G 、Y 的单位 为1010P a补充题4. 矩形截面杆在轴向拉应力σz =2.0⨯105 P a作用下变形,已知Y=19.6⨯1010 P a , μ=0.3 .求:εV 补充题5. 矩形悬臂梁的一端有作用力P.已知l =2 m, h=20cm,梁宽b=5 cm ,P=1000kg 力, 求梁内最大正应力§6.2 固体拉伸.弯曲.扭转讨论三种情况下的应力状态,计算应力与应变 6.2.1等截面直杆的拉压 圆形截面直杆;两端均匀压强p (拉>0;压<0)横截面 σz =p σt =0 应力状态: 与z 轴互垂两面上 σR =σφ=0 ——单向应力状态 ∴ σz =p= Y εz = Y ∆l / l 均匀形变 弹性形变势能: E P = ⎰ F 外du = ⎰0∆lSY u ldu=YS ∆l 2 / 2l u 为z 方向位移, S 为横截面积(近似不变) 弹性形变势能密度 e P =E P /V=12Y εz 2 =12σz εz (也适于不均匀形变) 说明:其他均匀截面直杆σR ≈0 σφ≈0 可以近似按圆杆处理6.2.2 矩形梁纯弯曲矩形梁(高h,宽b) 力偶矩M纵向画线弯曲:上短—压; 中不变—中性面; 下长—拉横截面上 σx , σt =0应力状态: σy =σz =0——单向应力状态M ⇒ 应力σx , 形变θ0P 处:εx= lim (PP’-oo’)/oo’= lim[(ρ+y)∆θ-ρ ∆θ]/ρ ∆θ=y/ρ σx =Y εx =Yy / ρ ∝ y 下面求ρ 横截面上:∑F =0 (∴中性面正在中点)∆θ→0 ∆θ→0 p z φM 内= ⎰y σx dS = Y ⎰ y 2 dS /ρ ≡YρI z =(应该)= M ——柏努力. 欧勒定律∴ Y/ρ = M/I z σx =M I z y σx max =M I z 2h ρ=YI z /M θ0 = l /ρ(θ0 为转角,代表形变;l 为中性面的长度) 定义对z 轴惯性矩 I z ≡ ⎰y 2 dS 对矩形截面 I z =2b ⎰02h /y 2dy =112bh 3 为节约材料:h ↑ , b ↓ ; 减少中性层还有鸟骨、麦杆…说明:(1)其他形状截面的梁在力偶矩作用下弯曲时,σy ≠ 0 σz ≠0, 非单向应力状态,但σy ≈0 σz ≈0 ,与单向应力状态偏差不大,可以近似按单向应力状态计算(2)非力偶矩作用时,一般可以忽略剪应力,近似按纯弯曲处理:(不计重力) 悬臂梁M 内=M(x)=P(l -x)简支梁 x ∈(0,l /2) M 内=M(x)= P x/2仍有: σx (x)=M(x) y/I z ρ(x) =YI z / M(x) 注意:σx (x),ρ(x),M(x)不再是常数 (3)仍有:e P =12Y εz 2 =12σz εz6.2.3 圆柱扭转表面画上圆周和母线圆周线不变, 横截面保持平面——横截面上 σtR =0应力状态: 横截面上 σt =σt φ σz =0 (只有M) σR =σφ=0 横截面上形变:圆周处εt (R)=R φ /h r 处εt (r)=r φ /h ∴ σt (r)=Gr φ /h ∝ r下面求φ M 内= ⎰ σt r dS = ⎰0R σt r 2πrdr=12h πGR 4φ ≡D φ =(应该)=M ∴G φ/h=2M/(πR 4) σt (r)= G φr/h M=D φ ∴ σt (r)=24M R πr σt max (r)=2M /πR 3 φ=M/D 扭转弹性系数 D=πGR 4/2h (悬丝扭矩 M=D φ D ∝ R 4/h ) 扭转弹性势能E P = ⎰0φM d φ=D φ2 /2 可证e P =12G εt 2 =12σt εt6.2.4 允许应力.强度计算1. 只有正应力or 剪应力材料极限应力(正or 剪)σj , 许可应力[σ]=σj /K 安全系数=1.4—3.0 — 14材料 屈服极限σs 强度极限σb 许可应力 [σ] (kg/cm 2)A 3 2200—2400 3800—4700 1700 16Mn 2900—3500 4800—5200 2300 300#水泥 拉21,压210 拉6,压105 红松(顺纹) 拉981,压328 拉65, 压100 注:A 3—普通低碳钢 16 Mn —低合金钢 常温、静态、一般工作条件材料中最大应力(正or 剪) 应满足 σmax ≤ [σ] 2. 复杂应力情况——按相应的强度理论计算§6.3 流体静力学——流体力平衡下内应力的分布 流体:液,气; 具流动性; 主要讨论液体; 设: 连续、均匀6.3.1 静止流体内应力δσt1. 一点处应力状态σt≡0 只有正应力σ , 且正应力大小与截面无关σ( n)≡σ证: 因为可流动流体静摩擦力=0 ∴σt≡0如图四面体受力平衡设S面上正应力为σ ,x向Sσ⋅x -σx S x=0σ=σ n S=S n S x=S ⋅ x∴σx S x=Sσ⋅x =σS⋅x= σS xσx=σ类似σy=σ=σzx,y,z任选, ∴任意截面上的正应力的大小皆为σ由四面体受力平衡, 从三个坐标平面的应力⇒任意截面S上的应力. 注意:忽略了体积力2. 流体内压强定义:流体内压强为P= -σ(流体中一般没有拉应力,∴σ<0 P>0)说明:(1)压强为标量,严格定义P= -σ0 = (σx+σy+σz) /3(2) 由一点处应力状态, σ与方位无关∴P与方位无关(3) 从证明知,关键σt=0 . 所以对理想流体(无内摩擦)在流动(包括加速流动)时结论也对(4)对粘滞性流体流动时有剪应力,各截面σ不相同.但若σt较小可以忽略,各截面正应力近似相等为σ , P ≈-σ(5) 流体中负压强(拉应力).特定条件(稳定,缓慢过程)下,流体中可出现负压. 水的负压可以达到300atm6.3.2 静止流体平衡方程——临近点处压强关系取小段柱状流体f—单位质量..上的体积外力x向: [P(x) - P(x+∆x)] ∆S + ρ∆S ∆x f x =0∴∂P /∂x = ρf x类似: ∂P /∂y = ρf y ∂P /∂z = ρf z合起来:∇P = (∂P/∂x) x +(∂P/∂y) y +(∂P/∂z) z = ρf 6.3.3 重力场中静流体1. 流体中压强随高度分布小范围g为常矢量f = (∆m g) /∆m =g = g y ∂P/∂x =∂P/∂z = 0 ⇒P与x,z无关, 在同一高度上P相等∂P/∂y = ρg若ρ为常数(液体or高度差不大的气体)积分得:P(y)=P0+ρgy P0=P(0)不同密度液体(鸡尾酒)的稳定分界面为水平面2. 帕斯卡定律定律:加在密闭液体中的压强等值地传到液体中各处以及壁上.解释: 设压强加在o处,使P0等值地改变,但ρgy 保持不变,所以P(y)随P0同样增加.3. 阿基米德定律定律:浸在流体中物体所受浮力等于物体排开的流体的重量证明:设物体外表面为S .流体对物体作用通过压强体现.∴浮力=⎰-Pd S保持S不变,则浮力不变. 将物体换成流体,该流体应处于平衡,即外界对S的压力之和等于流体重量:⎰-Pd S +m g =0∴浮力= -m g 浮力作用点即该流体重心(一般情况下不是物体的重心)附: 等温理想气体压强随高度的分布已知其密度ρ=cP (c为常数)解: dP/dy = -ρg = -cgP ⎰PPdPP= ⎰y-cg dy 得:P(y)=P0e-cgy又例: 以ω匀速转动的水平试管,内部充满流体. 以试管为参考系, 则惯性离心力为体积力,产生径向压强差.§6.4 流体的定常流动6.4.1 描述流体运动的两种方法1. 两种方法拉格郎日法: 认准各个质元,分别描述其运动状态(r i,v i,a i)及其变化规律r i,v i,a i只是t的函数, v=d r/dt , a=d v/dt ; 应用牛顿定律必须用拉格郎日法. 困难:如何认准?如何跟踪?描述不便欧拉法: 讨论流体场(流体性质场)的场分布∆x)主要是流速场v=v(r,t) . 还有a=a(r,t)P=P(r,t) 压强场……2. 欧拉法中质元的加速度质元加速度a = d v/dt (速度全导数or实质导数)是对一个确定质元速度v(即拉格郎日法中的速度v)的导数.流速场v(r,t)在地点不变下对t的偏导数∂v/∂t ≠a (流速场中同一地点不同时刻的v是不同质点的速度)认准m i :a=d v(x,y,z,t)/dt=∂v/∂t+[∂∂vxdx +∂∂vydy+∂∂vzdz]/dt=∂∂vt+v x∂∂vx+v y∂∂vy+v z∂∂vz=∂∂vt+ v ⋅∇v3. 流体流动的图象表示拉格郎日法: 流体质元的实际运动轨迹——迹线流管——流线围成的细管;流束——流管中流体6.4.2定常流动: v与t无关,v=v(r) ;不定常流动: v与t有关定常流动特点:∂v/∂t =0 a = v⋅∇v≠ 0流线不变,与迹线重和∴迹线也不变P,ρ与t无关是否为定常流与参考系有关设迹线如图. V1,2,3为t1,2,3时刻同一质点的速度.若v与t无关,则v也是速度场中1,2,3点的速度,迹线也是流线. 迹线不变则场中质元数不变,∴ρ不变圆柱在理想流体在匀速直线运动. 在静系中流体为非定常流动,在圆柱参考系中为定常流动§6.6 粘滞流体的流体长时间、长距离、相对速度很大时,粘滞性不可忽略主要讨论层流. 层流:流体分层流动,彼此不混淆流体粘滞性的体现:固、液相对运动时出现摩擦力;液体内部流速不同,各层之间出现摩擦力6.6.1流体的粘滞性板A匀速直线运动引起层流,各层之间粘滞力fz层假想剖面∆S, 两侧粘滞力∆f牛顿摩擦定律:(实验定律) ∆f ∝ (dv/dz) ∆S 即∆f = ηdvdz∆Sdv/dz : z方向速度(空间)变化率(速度梯度)η: 粘滞系数(黏度)温度T↑⇒η↓ (液体) η↑(气体)(f本质: 液体主要来自层之间分子力;气体是通过该层交换宏观定向动量)[η]=ML-1T -1SI(MKS)制为Pa ⋅s CGS制为“泊”1泊=0.1 Pa⋅s η/ρ——运动黏度(比黏度)满足牛顿摩擦定律的流体——牛顿流体(否则叫非牛顿流体—少数如血液)6.6.2 粘滞流体的运动规律1. 动力学方程(介绍) 纳维—斯托克斯方程(Nevier,M. , Stokes,G.G.)-∇P+ρf+η∇2 v = ρ (d v/dt)2. 修改后的伯努力方程定常流动,不可压缩,沿流管(有粘滞性) 由功能原理dW粘1→2 +(P1-P2)dV = dE= (dm v22/2+dm gz2)-(dm v12/2+dm gz1)dm=ρdV∴ P1+ρv12/2+ρgz1=P2+ρv22/2+ρgz2 +w12——修正后的伯努力方程∆t)∆t)m i运动轨迹m质点t2t时刻:3流线w 12 = -w 粘1→2 = dW 粘1→2 /dV >0 为单位体积..流体克服..粘滞阻力做的功水平均匀细管中: v,z 相同, P 1 -P 2=w 12=P 2 -P 3=…=P 0’-P 1=ρg(H 1-H 2)=…=ρg ∆H=ρg(H 0’-H 1) ∴P 0’-P B =P 0’-P 0=ρgH 0’=w 细管 将液面A 与出口B 联系:P 0+ρgH 0+0=P 0+0+ρv 2/2+w 细管+w 粗管∴ρv 2/2=ρg(H 0-H 0’) -w 粗管=ρgh 0-w 粗管≈ρgh 0 v ≈(2gh 0)1/2w 细管, w 粗管分别是单位体积流体在细管和粗管中流动克服阻力做的功∴粘滞流体水平均匀流动必有压强差——流水水面不水平 , 熔岩流动高度差很大3. 哈根—泊肃叶(Hagen,G. , Poiseuille, J.L.M.)方程——水平圆管层流哈—泊定律由哈根1839年实验证实, 后为泊肃叶1842年独立发现水平圆管, 定常流动柱坐标(r,φ,z)v z 与r,φ无关v =v z (r)z d v /dt=0忽略体积力f =0 , 流线平行直线, ∴同一横截面上P 相同对小圆柱, 1、2两横截面上对应处速度相同 ∴合外力为零 即 (P 1-P 2)πr 2 + ηdv drz⋅2πr l =0 (f 粘为-z 方向, dv z /dr<0 ∴取 “+”)⎰0v r z ()dv z = ⎰R r -12ηl(P 1-P 2)r drv z (r)= (P 1-P 2)(R 2 -r 2) / (4ηl ) Q V = ⎰ v ⋅ d S = ⎰0Rv z 2πr dr = π(P 1 -P 2)R 4 / (8ηl ) ——哈—泊公式由此可以讨论石油、天然气、水输送问题(管径、压差与流量);隧道、河流的流量…平均流速 v =Q V /S= (P 1 -P 2)R 2 / (8ηl ) P 1 -P 2=8ηv l R -2 ∝ l R -2,l光滑金属管光滑同心环缝滑阀口Re C2000—2300 1100 260例. 日常生活. 水管d=0.025m Re C =2000 1atm 20︒C时η=1.0⨯10 -3Pa⋅ s 则临界水流速v C = ηRe C /ρd = 0.079 m/s∴一般管流为湍流。
《连续介质力学》课件
动量矩守恒定律
描述物质系统动量矩变化规律的定律。
动量矩守恒定律也是连续介质力学中的基本定律之一。它指出在一个没有外力矩作用的封闭系统中,系统的总动量矩保持不 变。动量矩是系统动量和位置矢量的乘积,因此这个定律说明系统的旋转运动状态只与系统的初始状态有关,而与时间无关 。
能量守恒定律
描述物质系统能量变化规律的定律。
金属材料的疲劳和断裂 研究
01
02
03
复合材料的细观结构和 力学行为分析
04
无损检测和结构健康监 测技术
环境科学
01
土壤和岩石的力学性质研究
02
地质工程和地震工程中的稳定性分析
03
生态系统和自然资源的可持续性发展研究
04
环境流体力学的模拟和分析
06
连续介质力学的未来发展
新材料与新结构的挑战
新材料特性
能量守恒定律是物理学中的基本定律之一,它在连续介质力学中也有重要应用。这个定律指出在一个 封闭系统中,系统的总能量保持不变。能量的形式可以包括动能、势能、内能等,但不论能量的形式 如何转化,总量始终保持不变。
熵增原理
描述系统无序程度变化规律的定律。
熵增原理是热力学中的基本定律之一,它指出在一个 封闭的热力学系统中,系统的熵(表示系统无序程度 的物理量)总是趋向于增加。也就是说,系统总是倾 向于向更加混乱和无序的状态发展,而不是向更加有 序和有组织的状态发展。这个原理在连续介质力学中 也有重要的应用,例如在研究流体和热传导等问题时 需要考虑熵增原理的影响。
THANKS
感谢观看
《连续介质力学》ppt课 件
• 连续介质力学概述 • 连续介质力学的基本概念 • 连续介质力学的物理定律 • 连续介质力学的数学模型 • 连续介质力学的应用领域 • 连续介质力学的未来发展
连续介质力学讲义
2 预备数学知识
本章介绍有关张量分析的一些基本内容,这些知识是本课程的基础。
Equation Chapter 2 Section 0
2.1 向量分析初步................................................................................................... 2 2.1.1 向量 ................................................................................................... 2 2.1.2 向量的初等运算 ............................................................................... 2 2.1.3 直角坐标系中的向量 ....................................................................... 2 2.1.3.1 Kronecker 符号(ij) ............................................................. 3 2.1.3.2 Permutation 符号(ijk)......................................................... 3 2.1.4 直角坐标系中的向量初等运算 ....................................................... 3 2.1.5 坐标旋转矩阵 ................................................................................... 3 2.1.6 坐标变换 ................................................................................................................................................... 4 2.1.7.1 梯度(grad)............................................................................ 5 2.1.7.2 散度(div) ............................................................................. 6 2.1.7.3 旋度(curl) ............................................................................ 6 2.1.8 向量场的积分运算 ........................................................................... 6 2.1.8.1 Gauss 定理 ................................................................................ 6 2.1.8.2 Stokes 定理 ............................................................................... 6
连续介质力学-四章1ppt课件
[(e
V
2
)V ]
F
V
(V
)
q
(T
)
t
2
2
通常可以增加状态方程: p p(,T ) e e(T )
★(标量)方程的个数:1+3+1+2=5+2
★ 因变量个数:密度1+速度3+内能1+温度1+ 应力张量(6)=12;
所以一般情况下方程不封闭。要解决此问题需下 一章讨论本构关系
位时间内外界对系统所作的动和传人系统的热
量之和.
DE
Dt
D Dt
V*
2
(e
V 2
)dV* W
Q
W
F
VdV
P
V dA
V
A
Q
V
qdV
A
T dA n
6
q :单位时间,单位质量吸收的外界的热量;
(体积热源,如:辐射热,生成热) 规定热量从 系统外传入系统内为正,否则热量从系统内
[ (e
V
2
)]
[(e
V
2
)V ]
t
2
2
F V (V ) q (T )
25
(二)微分型方程组的封闭性讨论
(V )
0
t
(V )
(VV ) NhomakorabeaF
连续介质力学课件
第五章 内容提要
7.位移变分法
⑴瑞利-里茨法:设定位移试函数,
u u (x, y) A u (x, y),
0
mm
m
v v (x, y) B v (x, y),
0
mm
预先满足 su上的约束m边界条件,再满足
瑞利-里茨变分方程,
U
Am
U
B m
A fxum d x d y
sσ
f
u
xm
d
s,
(m 1,2)
f v d x d y f v d s.
A ym
sσ y m
第五章 内容提要
⑵伽辽金法:设定位移势函数预先满足su 上的约束边界条件和sσ 上的应力边界
条
件,再满足伽辽金变分方程,
E 2u 1 μ 2u 1 μ 2v
A
[ 1
μ2
E
A
[ 1
μ2
( x2 2v ( y 2
xy
x
f
y
0.
第二章 内容提要
(2)几何方程
x
u x
,
y
v y
,
(3)物理方程
xy
u y
xv.
x
1 E
(σ x
σ y ), y
1 E
(σ y
σx ),
xy
2(1 E
) xy .
第二章 内容提要
和边界条件: (1)应力边界条件
(lσ x m yx )s f x ,
(mσ y l xy )s f y .
(3)若为多连体,还须满足位移单值条件。 当不记体力时,应力分量的表达式为
σ
ρ
1 ρ
Φ ρ
连续介质力学2-1
§1-2 内蕴导数与物质导数 1. 矢量的内蕴导数 是场方程( 显函数) 设曲线l:x i = x i (s )。矢量a ( x )是场方程(只是 x显函数) 则a 沿l方向的导数为 dx da ∂a dx i = = ak , i i e k ds ∂x i ds ds
δak dx i 的内蕴导数(内禀、 称 = ak , i 为ak 对s的内蕴导数(内禀、绝 对) δs ds
2. 连续介质的物质描述 XⅢ b(t)是B运动、 是 运动 运动、 变形的结果, 变形的结果, 故点与点之 间一一对应, 间一一对应, 存在映射
B P p
b(t)
E3 O
R
E2
XⅡ
E1
XⅠ
e3
r(t) e2
x k = x k (X , t )
e1
说明1. 说明 此映射的意义 说明2. 说明 此映射不涉及两坐标间的关系
2. 张量的内蕴导数
ˆ dx k dT δTij e i e j = Tij , k ei e j = ds δs ds
3. 矢量的物质导数 设曲线l:x i = x i (s )。矢量a ( x , s )是x和s的显函数 da ∂a = ds ∂s ∂a + ∂x i dx i ∂ak = ds ∂s ∂a k + ∂x i dx i e k ds
∫∫∫ [Q ( x , t + ∆t ) − Q ( x , t )]dΩ Ω
∂Q dΩ = ∫∫∫ ∂t Ω
1 lim ∆t ∆t → 0
∫∫∫ Q ( x , t + ∆t )dΩ
∆Ω
dS S
d 是dS作微小位移时 作微小位移时 扫过的体积,其上的Q值与 扫过的体积,其上的 值与 dS上的值充分接近。 上的值充分接近。 上的值充分接近
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
⑤ 空间的元素若为矢量,则基元素称为基矢。如前所述,不同坐标系的基矢之间存在
确定的变换关系,它是坐标变换的基础。
正交基:各基矢相互正交的基,称为正交基。
标准正交基:基矢为单位矢量的正交基,称为标准正交基。
现以欧氏空间为例,欧氏空间为三维空间。
在欧氏空间内,笛卡儿坐标系为标准正交基,记作 ei ,在 此坐标系内,任一矢量 r (位矢)为
4
第 2 章 张量分析
第 2 章 张量分析
§2.1 矢量空间
1.线性矢量空间 设有 n 个矢量 ai ,i = 1, 2,", n ,它们构成一个集合 R ,其中每个矢量 ai 称为 R 的一个
元素。若 ai + a j (i ≠ j) 唯一地确定 R 的另一个元素,及 kai( k 为标量)也给定 R 内唯一确 定的元素,则称 R 为线性(矢量)空间。 R 中的零元素记为 O ,且具有 O ⋅ ai = O .
2.空间的维数
设α i 为 m 个标量,若能选取α i ,使得
m
∑αiai = 0
i =1
(2.1.1)
且α i 不全为零,则称此 m 个矢量线性相关,否则,称为线性无关。
例 1 位于同一平面内的两个矢量 a1 和 a2 (如图
2.1.1)是线性无关的,即
a1
α1a1 + α2a2 ≠ 0 (α1 和α 2 可为任意值,
∑ ∑ r =
ξ a = (1) (1) ii
ξ a (2) (2) ii
(2.1.3)
因为
a (1) i
与
ai(
2)
间有确定的变换关系,因此,
ξ
(1) i
与
ξ
(2) i
间亦有确定的变换关系。
④ 空间的基往往与坐标系相关连,每一种坐标系有一个与之对应的确定的基,(2.1.2)
式中ξi 则是矢量 r 在基 ai 或以 ai 为坐标方向的分量值。
2
第 1 章 绪论
7.功和能
力和沿力方向位移的乘积称为功。 物体的动能等于其质量和速度平方乘积的一半。 功、能可互相转换。 能量是纯量,服从能量守恒和转化定律,不能无中生有,也不能被消灭。
8.温度和热
温度是物体冷热程度的度量。 当存在温度差时,将会形成热流,热流有大小和方向,随着热流的存在,热将从一个物 体流向另一个物体,并以能量形式表示出来。同时物体内的受力也随之变化。
§1.2 连续介质力学中的“基元”——基本名词和术语
连续介质力学以现实物体的理论模型作为研究对象,并力求使它能在本质上准确地描写 客观物体的运动。为了描写运动,需要给出一些基本的名词和术语,它们构成连续介质力学 的“基元”,通过一些定律、理论和公式,把这些名词和术语相互连系起来,便构成连续介 质力学的理论体系。我们要力求将这些名词和术语说得准确些。
学习固体力学(材料力学、弹性力学,非线性连续介质力学)容易,但应用和研究会 有很大的难度。
应用和研究是分不开的,要做好应用要做到: 1).读好书(上述教材及某一领域的专业书籍),融会贯通,深入到理论的精微之处; 2).消化文献(不仅是看文献,而且要看懂),借鉴前人的应用和研究之道; 3).实践出真知,探索独到之处,开通创造之源。 上述过程其实也是相互交错地进行,硕士或博士毕业也仅仅是应用和研究的开始。
4.运动
物体状态或各种参数随时间的变化过程称为运动。 物体的运动满足某些一般的规律,如质量、动量、能量和电荷等的守恒定律。
5.动量
动量是物体机械运动的度量。 质点的线动量等于某质量和运动速度的乘积;动量是矢量,服从矢量运动规则;物体的 总动量是各部分动量的矢量和。
6.力
物体线动量的变化率等于作用于其上的合力,力是改变物体运动的原因。 根据力存在的性质,力可分为:内力和外力; 根据力的作用形式,力可分为:集中力、线分布力、面力和体力等。 力的单位为:N 或 kN.
具体内容为:(不针对某一具体物性的物体) 1) 有限变形(变形大小不限),研究其描述; 2) 应力和应变增率; 3) 连续介质热力学; 4) 本构方程原理。
2.方法
非线性连续介质力学的基本方程含物理基本定律和材料本构方程两类: 1)物理基本定律(适用于所有材料)
动力学定律(牛顿定律);
3
第 1 章 绪论
正交基。
正交曲线坐标系的基亦为正交基,记作 gi ,用θ i 表示坐 标值,则基矢 gi 定义为
x2 r = xiei
x1 x3
图 2.1.4 空间笛卡儿坐标中位矢的表示
6
第 2 章 张量分析
gi
=
∂r ∂θi
dr = ∑ dθi gi
① gi 随坐标位置而变化. ② gi ≠ 1 . ③ gi 之间相互正交。 因此 gi 是正交基,但不是标准正交基。
n
∑αi′ai ≠ 0 ,α i′ 为任意的不全为零的标量
i =1
但总可选取α 0 ≠ 0 及α i 不全等于零,使得
n
∑ α0r + αiai = 0 i =1
或者
5
第 2 章 张量分析
∑ ∑ r
=
n i =1
(− αi α0
ai ) =
n
ξiai
i =1
(2.1.2)
① 因为α 0 ≠ 0,α i 不全等于零,所以ξi 不全等于零,且为有限值。
② Rn 内有无限个基,但只有一个基是独立的,因为 Rn 内至多只有 n 个元素是线性无
关的。设
a (1) i
及
ai(
2
)
是
Rn
的两个基,则
a (1) i
中的每个基元素都可用
ai(
2)
的线性组合来表示;
反之亦然,因此, Rn 中的任两个基元之间存在唯一的变换关系。
③ 对于同一个元素 r ,采用不同的基时,其系数ξi 不同。
例如:在极坐标系内
dr = dθ1g1 + dθ2 g2 [0,1]
θ1 = r,θ2 = ϕ dr = drg1 + dϕ g2
dr
dϕg 2
dϕ
dϕ drg1
ϕ
图 2.1.5 极坐标中位矢及其增量的表示
Hale Waihona Puke 其中 drg1 = dr, C g1 = 1, dϕ g2 = rdϕ ,因此,
g2 = r 。令 gi = Hi (拉梅系数)及
b1
=
1 H1
g1
bi
=
1 Hi
gi
b2
=
1 H2
g2
b3
=
1 H3
g3
则 bi 为正交曲线坐标系的标准化正交基。
因此,显然有
ei
⋅ej
=
bi
⋅bj
= δij
=
⎧1 ⎨⎩0
i= j i≠ j
(2.1.4) (2.1.5)
将力学中的各个分支学科放在一起讨论,看看哪些规律是它们共有的,哪些规律互不 相同,进而在统一的基础上加以研究,这是连续介质力学研究的重要内容。所以连续介质力 学既可以看成各分支学科的出发点,也可看成是各学科分支的归宿。作为出发点,定给出了 各分支学科的骨架;而作为归宿,它却是有血有肉,用骨架支撑起来的客观有机体。
9.熵
熵是热力学第二定律的数学表述中引进一个态函数。 熵是可加函数,系统的熵等于各部分熵的和。 特性:系统的熵的变化永不小于系统由环境得到的热量与得到(或放出)此一热量时的 热力学温度的比值。 理性热力学把熵看成无须用其它物理量定义的“本原量”。
§1.3 连续介质力学研究的内容和方法
1.内容
连续介质力学研究连续介质(包括固体、流体、松散介质、颗粒体等)的变形和运动, 也研究其破坏机理。
∑ r = xiei = x1ei + x2e2 + x3e3
r = x1e1 + x2e2
ei 是不因坐标位置而改变的 dr = ∑ dxiei
ei
=
∂r ∂xi
图 2.1.3 平面笛卡儿坐标中位矢的表示
当只一个坐标有变化时,例如 x1 有变化
dr = dx1e1
此时, dr = dr = dx1 ,因此, e1 为单位矢量。 ei 都等于 1,且彼此正交,故笛卡儿坐标系的基为标准
3.时空系
时间和空间是运动物体的客观存在形式,离开空间和时间来讨论物体的存在和运动是没 有意义的。空间表示物体的形状、大小和相互位置的关系;时间表示物体运动过程的顺序。
标架:作为描写物体运动的基准——时空系,称为标架。 位置变化是可逆的;时间变化是不可逆的。 但在讨论一些理想化的可逆模型时,有时时间也理想化成可逆的。 时空系之间可转换。
图 2.1.1 平面上两个矢量线性无关
a1
a3
a2
3.空间的基和基元素
图 2.1.2 平面上三个矢量线性相关
Rn 中任意 n 个线性元素无关元素的全体称为 Rn 的一个基。基的每个元素称为基元素,由于 Rn 的 n 个基元素是线性无关的。于是 Rn 内任一 个元素 r 可表示成基元素的线性组合。设 ai (i = 1, 2,", n) 为 Rn 的任选的基,则有