数学高一-2013必修一【知能演练】1.3.2全集与补集

合集下载

2024-2025年北师大版数学必修第一册1.1.3.2全集与补集(带答案)

2024-2025年北师大版数学必修第一册1.1.3.2全集与补集(带答案)

第2课时全集与补集必备知识基础练知识点一补集的运算1.已知全集U={x|x≤5},集合A={x|-3≤x<5},则∁U A=________.2.已知全集U,集合A={1,3,5,7},∁U A={2,4,6},∁U B={1,4,6},则集合B=________.知识点二集合交、并、补的综合运算3.设集合S={x|x>-2},T={x|-4≤x≤1},则(∁R S)∪T=( )A.{x|-2<x≤1} B.{x|x≤-4} C.{x|x≤1} D.{x|x≥1}4.已知全集U={1,2,3,4,5},M={1,2},N={2,5},则如图所示,阴影部分表示的集合是( )A.{3,4,5} B.{1,3,4}C.{1,2,5} D.{3,4}5.设全集为R,A={x|3≤x<7},B={x|2<x<10},则∁R(A∪B)=_________________,(∁R A)∩B=________________.知识点三利用集合的运算求参数6.已知集合A={x|x<a},B={x|1<x<3},(1)若A∪(∁R B)=R,求实数a的取值范围;(2)若A(∁R B),求实数a的取值范围.关键能力综合练1.设集合U=R,M={x|x>2或x<-2},则∁U M=( )A.{x|-2≤x≤2}B.{x|-2<x<2}C.{x|x<-2或x>2}D.{x|x≤-2或x≥2}2.已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则B∩(∁U A)=( )A.{1,6} B.{1,7}C.{6,7} D.{1,6,7}3.已知全集U={-1,1,3},集合A={a+2,a2+2},且∁U A={-1},则a的值是( ) A.-1 B.1 C.3 D.±14.已知集合A,B均为全集U={1,2,3,4}的子集,且∁U(A∪B)={4},B={1,2},则A∩(∁U B)等于( )A.{3} B.{4} C.{3,4} D.∅5.(多选题)已知全集U=R,集合M,N的关系如图所示,则( )A.N∪M=MB.(∁U M)∩N=∅C.(∁U M)⊇(∁U N)D.(∁U M)∩(∁U N)=∁U N6.(探究题)设全集U=R,集合A={x|x≤1或x≥3},集合B={x|k<x<k+1,k∈R},且B∩(∁U A)≠∅,则( )A.k<0或k>3 B.2<k<3C.0<k<3 D.-1<k<37.设全集U=R,A={x|x≤4},B={x|x<1},则∁U B=________,A∩(∁U B)=________.8.(易错题)设U为实数集,集合M={x|0<x<2},N={y|y=x2},则(∁U M)∩N=________.9.(结构不良型)已知A={x|x2-6x+5=0},B={x|ax-1=0}.(1)若a=1,求A∩(∁Z B);(2)从①A∪(∁R B)=R;②A∩B=B;③B∩(∁R A)=∅这三个条件中任选一个,补充在下面横线上,并进行解答.问题:若________,求实数a的所有取值构成的集合C.注:如果选择多个条件分别解答,按第一个解答计分.核心素养升级练1.(新定义型)(多选题)我们知道,如果集合A⊆S,那么S的子集A的补集为∁S A={x|x∈S且x∉A},类似地,对于集合A、B我们把集合{x|x∈A且x∉B},叫作集合A和B的差集,记作A-B,例如:A={1,2,3,4,5},B={4,5,6,7,8},则有A-B={1,2,3},B-A={6,7,8},下列说法正确的是( )A.已知A={4,5,6,7,9},B={3,5,6,8,9},则B-A={3,7,8}B.如果A-B=∅,那么A⊆BC.已知全集、集合A、集合B关系如图所示,则B-A=A∩∁U BD.已知A={x|x<-1或x>3},B={x|-2≤x<4},则A-B={x|x<-2或x≥4} 2.(学科素养—逻辑推理)对于集合A,B,我们把集合{(a,b)|a∈A,b∈B}记作A×B.例如,A={1,2},B={3,4},则有A×B={(1,3),(1,4),(2,3),(2,4)},B×A={(3,1),(3,2),(4,1),(4,2)},A×A={(1,1),(1,2),(2,1),(2,2)},B×B={(3,3),(3,4),(4,3),(4,4)},据此,试回答下列问题.(1)已知C={a},D={1,2,3},求C×D;(2)已知A×B={(1,2),(2,2)},求集合A,B;(3)A有3个元素,B有4个元素,试确定A×B有几个元素.第2课时全集与补集必备知识基础练1.答案:{x|x<-3,或x=5}解析:将集合U和集合A分别表示在数轴上,如图所示.由补集定义可得∁U A={x|x<-3,或x=5}.2.答案:{2,3,5,7}解析:解法一A={1,3,5,7},∁U A={2,4,6},∴U={1,2,3,4,5,6,7}.又∁U B={1,4,6},∴B={2,3,5,7}.解法二借助Venn图,如图所示.由图可知B={2,3,5,7}.3.答案:C解析:∵S={x|x>-2},∴∁R S={x|x≤-2}.而T={x|-4≤x≤1},∴(∁R S)∪T={x|x≤-2}∪{x|-4≤x≤1}={x|x≤1}.4.答案:D解析:由图可知,阴影部分表示的集合是∁U(M∪N).∵M∪N={1,2,5},又U={1,2,3,4,5},∴∁U(M∪N)={3,4}.5.答案:{x|x≤2或x≥10}{x|2<x<3或7≤x<10}解析:由题意知,A∪B={x|2<x<10},∴∁R(A∪B)={x|x≤2或x≥10}.又∁R A={x|x<3或x≥7}.∴(∁R A)∩B={x|2<x<3或7≤x<10}.6.解析:(1)∵B={x|1<x<3},∴∁R B={x|x≤1或x≥3},因而要使A∪(∁R B)=R,结合数轴分析(如图),可得a≥3.∴a的取值范围为[3,+∞).(2)∵A={x|x<a},∁R B={x|x≤1或x≥3}.要使A(∁R B),结合数轴分析(如图),可得a≤1.∴a的取值范围为(-∞,1].关键能力综合练1.答案:A解析:如图,在数轴上表示出集合M,可知∁U M={x|-2≤x≤2}.2.答案:C解析:依题意得∁U A={1,6,7},所以B∩(∁U A)={6,7}.故选C.3.答案:A解析:由A∪(∁U A)=U,可知A={1,3}.又∵a2+2≥2,∴a+2=1且a2+2=3.解得a=-1,故选A.4.答案:A解析:∁U(A∪B)={4},∴A∪B={1,2,3}.∵B={1,2},∴A={3}或{2,3}或{1,3}或{1,2,3},且∁U B={3,4},∴A∩(∁U B)={3}.5.答案:AB解析:由图可知N∪M=M,(∁U M)∩N=∅,(∁U M)⊆(∁U N),(∁U M)∩(∁U N)=∁U M.故选AB.6.答案:C解析:∵A={x|x≤1或x≥3},∴∁U A={x|1<x<3},若B∩(∁U A)=∅,则k+1≤1或k≥3,即k≤0或k≥3,所以若B∩(∁U A)≠∅,则0<k<3.7.答案:{x|x≥1}{x|1≤x≤4}解析:∁U B={x|x≥1},A∩(∁U B)={x|x≤4}∩{x|x≥1}={x|1≤x≤4}.8.答案:{x|x≥2或x=0}解析:N={y|y=x2}={y|y≥0},∁U M={x|x≤0或x≥2},则(∁U M)∩N={x|x≥2或x =0}.9.解析:(1)当a=1时,B={x|x-1=0}={1},又因为A ={x |x 2-6x +5=0}={1,5},故A ∩(∁Z B )={5}. (2)若选①,当a =0时,B =∅,则∁R B =R ,满足A ∪(∁R B )=R ,当a ≠0时,B =⎩⎨⎧⎭⎬⎫1a ,若A ∪(∁R B )=R ,则1a =1或5,解得a =1或15 .综上所述,C=⎩⎨⎧⎭⎬⎫0,15,1 ;若选②,∵A ∩B =B ,则B ⊆A . 当a =0时,B =∅,满足B ⊆A ;当a ≠0时,B =⎩⎨⎧⎭⎬⎫1a ,因为B ⊆A ,则1a =1或5,解得a =1或15 .综上所述,C =⎩⎨⎧⎭⎬⎫0,15,1 ;若选③,当a =0时,B =∅,满足B ∩(∁R A )=∅;当a ≠0时,则B =⎩⎨⎧⎭⎬⎫1a ,因为B ∩(∁R A )=∅,则1a =1或5,解得a =1或15 .综上所述,C =⎩⎨⎧⎭⎬⎫0,15,1 .核心素养升级练1.答案:BD解析:A :由B -A ={x |x ∈B 且x ∉A },故B -A ={3,8},错误; B :由A -B ={x |x ∈A 且x ∉B },则A -B =∅,故A ⊆B ,正确; C :由韦恩图知:B -A 如图阴影部分,所以B -A =B ∩∁U A ,错误;D :∁U B ={x |x <-2或x ≥4},则A -B =A ∩∁U B ={x |x <-2或x ≥4},正确.故选BD. 2.解析:(1)C ×D ={(a ,1),(a ,2),(a ,3)}. (2)∵A ×B ={(1,2),(2,2)}, ∴A ={1,2},B ={2}.(3)从以上解题过程中可以看出,A ×B 中元素的个数,与集合A 和B 中的元素个数有关,即集合A 中的任何一个元素与B 中的每一个元素对应后,得到A ×B 中的一个新元素.若A 中有m 个元素,B 中有n 个元素,则A ×B 中的元素应为(m ×n )个.因此若A 中有3个元素,B中有4个元素,则A×B中有3×4=12(个)元素.。

1.3.2 补集及集合运算的综合(解析版).pdf

1.3.2 补集及集合运算的综合(解析版).pdf

2020-2021学年高一数学同步题型学案(新教材人教版必修第一册)第一章 集合与常用的逻辑用语1.3.2 补集及集合运算的综合【课程标准】1.在具体情境中,了解全集的含义,理解补集的含义,能求给定(全集的)子集的补集.2.能用Venn 图表达集合的补集.【本节知识点】1.全集:一般地,如果一个集合含有所研究问题中涉及的所有元素,那么就称这个集合为全集,通常记作.U 2.补集【题型分类】题型一 补集的运算题型要点点拨:(1)补集是相对于全集而言的,它与全集不可分割.一方面,若没有定义全集,则不存在补集的说法;另一方面,补集的元素逃不出全集的范围.(2)补集既是集合之间的一种关系,同时也是集合之间的一种运算.求集合A 的补集的前提是A 为全集U 的子集,随着所选全集的不同,得到的补集也是不同的.文字语言对于一个集合A ,由全集U 中不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集,简称为集合A 的补集,记作∁U A 符号语言∁U A ={x |x ∈U ,且x ∉A }图形语言运算性质∁U A ⊆U ,∁U U =∅,∁U ∅=,∁U (∁U A )=,A ∪(∁U A )=,A ∩(∁U A )=U A U ∅(3)符号∁U A有三层意思:①A是U的子集,即A⊆U;②∁U A表示一个集合,且(∁U A)⊆U;③∁U A是U中不属于A的所有元素组成的集合,即∁U A={x|x∈U,且x∉A}.(4)若x∈U,则x∈A或x∈∁U A,二者必居其一.【例1】已知全集为U,集合A={1,3,5,7},∁U A={2,4,6},∁U B={1,4,6},则集合B=________.【参考答案】B={2,3,5,7}【解析】 (1)法一:∵A={1,3,5,7},∁U A={2,4,6},∴U={1,2,3,4,5,6,7}.又∁U B={1,4,6},∴B={2,3,5,7}.法二:借助Venn图,如图所示.由图可知B={2,3,5,7}.【例2】已知全集U={x|x≤5},集合A={x|-3≤x<5},则∁U A=________.【参考答案】{x|x<-3或x=5}【解析】 将集合U和集合A分别表示在数轴上,如图所示.由补集定义可得∁U A={x|x<-3或x=5}.【方法技巧】求集合补集的策略(1)如果所给集合是有限集,则先把集合中的元素一一列举出来,然后结合补集的定义来求解.另外,针对此类问题,在解答过程中也常常借助Venn图来求解,这样处理相对来说比较直观、形象,且解答时不易出错.(2)如果所给集合是无限集,在解答有关集合补集问题时,则常借助数轴,先把已知集合及全集分别表示在数轴上,然后根据补集的定义求解. 【同类练习】1.若全集U={x∈R|-2≤x≤2},A={x∈R|-2≤x≤0},则∁U A等于( )A.{x|0<x<2} B.{x|0≤x<2}C.{x|0<x≤2}D.{x|0≤x≤2}【参考答案】C【解析】:∵U={x∈R|-2≤x≤2},A={x∈R|-2≤x≤0},∴∁U A={x|0<x≤2},故选C.2.设全集S={1,2,3,4},且A={x∈S|x2-5x+m=0},若∁S A={2,3},则m=________.【参考答案】:4【解析】:因为S={1,2,3,4},∁S A={2,3},所以A={1,4},即1,4是方程x2-5x+m=0的两根,由根与系数的关系可得m=1×4=4.题型二、集合的交、并、补集的综合运算【例3】已知全集U={x|x≤4},集合A={x|-2<x<3},B={x|-3≤x≤2}.(1)求A∩B,(∁U A)∪B,A∩(∁U B);(2)求∁U(A∪B)和∁U(A∩B).【参考答案】【解析】(1)因为A={x|-2<x<3},B={x|-3≤x≤2},所以∁U A={x|x≤-2或3≤x≤4},∁U B={x|x <-3或2<x≤4},所以A∩B={x|-2<x≤2},(∁U A)∪B={x|x≤2或3≤x≤4},A∩(∁U B)={x|2<x<3}.(2)由条件知A∪B={x|-3≤x<3},所以∁U(A∪B)={x|x<-3或3≤x≤4}.又A∩B={x|-2<x≤2},所以∁U(A∩B)={x|x≤-2或2<x≤4}.【方法技巧】解决集合运算问题的方法(1)要进行集合运算时,首先必须熟练掌握基本运算法则,可按照如下口诀进行:交集元素仔细找,属于A且属于B;并集元素勿遗漏,切忌重复仅取一;全集U是大范围,去掉U中A元素,剩余元素成补集.(2)解决集合的混合运算问题时,一般先运算括号内的部分,如求(∁U A)∩B时,先求出∁U A,再求交集;求∁U(A∪B)时,先求出A∪B,再求补集.(3)当集合是用列举法表示时(如数集),可以通过列举集合的元素分别得到所求的集合;当集合是用描述法表示时(如不等式形式表示的集合),则可运用数轴求解. 【同类练习】1.设全集U=M∪N={1,2,3,4,5},M∩(∁U N)={2,4},则N=( )A.{1,2,3}B.{1,3,5}C.{1,4,5}D.{2,3,4}【参考答案】B【解析】:画出Venn图,阴影部分为M∩(∁U N)={2,4},所以N={1,3,5}.2.已知全集U=R,集合A={x|x+1<0},B={x|x-3<0},那么集合(∁U A)∩B=( )A.{x|-1≤x<3}B.{x|-1<x<3}C.{x|x<-1}D.{x|x>3}【参考答案】A【解析】:∵A={x|x+1<0}={x|x<-1},B={x|x-3<0}={x|x<3},∴∁U A={x|x≥-1},∴(∁U A)∩B={x|-1≤x<3}.题型三、与补集有关的求参数问题【例5】已知集合A={x|x2-4x+2m+6=0,x∈R},B={x|x<0,x∈R},若A∩B≠∅,求实数m的取值范围.【参考答案】m<-3【解析】∵A∩B≠∅,∴A≠∅.设全集U={m|Δ=(-4)2-4(2m+6)≥0}={m|m≤-1}.若A∩B=∅,则方程x2-4x+2m+6=0的两根x1,x2均非负,则Error!⇒-3≤m≤-1,∵{m|-3≤m≤-1}关于U的补集为{m|m<-3},∴实数m的取值范围为m<-3【方法技巧】由集合的补集求解参数的问题(1)如果所给集合是有限集,由补集求参数问题时,可利用补集定义并结合知识求解.(2)如果所给集合是无限集,与集合交、并、补运算有关的求参数问题时,一般利用数轴分析法求解. 【同类练习】1.设集合A={x|x+m≥0},B={x|-2<x<4},全集U=R,且(∁U A)∩B=∅,求实数m的取值范围.【参考答案】{m|m≥2}【解析】 由已知A={x|x≥-m},得∁U A={x|x<-m},因为B={x|-2<x<4},(∁U A)∩B=∅,所以-m≤-2,即m≥2,所以m的取值范围是{m|m≥2}.2.已知集合A={x|-2<x<3},B={x|m<x<m+9},若(∁R A)∩B=B,则实数m的取值范围为_________.【参考答案】{m|m≤-11或m≥3}【解析】:∁R A={x|x≤-2或x≥3},由(∁R A)∩B=B,得B⊆∁R A,∴m+9≤-2或m≥3.故m的取值范围是{m|m≤-11或m≥3}.【本节同步分层练习】一、夯实基础1.已知U=R,集合A={x|x<-2或x>2},则∁U A=( )A.{x|-2<x<2} B.{x|x<-2或x>2}C.{x|-2≤x≤2}D.{x|x≤-2或x≥2}【参考答案】C【解析】:根据补集的定义可得∁U A={x|-2≤x≤2}.2.已知全集U={1,2,3,4,5,6},集合A={1,2,5},∁U B={4,5,6},则A∩B=( )A.{1,2}B.{5}C.{1,2,3}D.{3,4,6}【参考答案】A【解析】:因为∁U B={4,5,6},所以B={1,2,3},所以A∩B={1,2,5}∩{1,2,3}={1,2},故选A.∁U3.设集合U={1,2,3,4,5},A={1,2,3},B={2,3,4},则(A∩B)等于( )A.{2,3} B.{1,4,5}C.{4,5} D.{1,5}【参考答案】B【解析】集合U={1,2,3,4,5},A={1,2,3},B={2,3,4},所以A∩B={2,3},∁U(A∩B)={1,4,5},故选B.∁R4.集合A={x|-1≤x≤2},B={x|x<1},则A∩(B)=( )A.{x|x>1} B.{x|x≥1}C.{x|1<x≤2}D.{x|1≤x≤2}【参考答案】D【解析】由补集的概念和已知条件可得:∁R B={x|x≥1},又根据交集的定义可知A∩(∁R B)={x|1≤x≤2},故选D.∁U5.已知全集U={1,2,a2-2a+3},A={1,a},A={3},则实数a等于( )A.0或2 B.0C.1或2 D.2【参考答案】 D【解析】 根据题意,得a2-2a+3=3,且a=2,解得a=2,故选D.6.已知全集S={(x,y)|x∈R,y∈R},A={(x,y)|x2+y2≠0},用列举法表示集合∁S A=________.【参考答案】:{(0,0)}【解析】:∁S A={(x,y)|x2+y2=0}={(0,0)}.7.已知全集U=R,M={x|-1<x<1},∁U N={x|0<x<2},那么集合M∪N=________.【参考答案】:{x|x<1或x≥2}【解析】:∵U=R,∁U N={x|0<x<2},∴N={x|x≤0或x≥2},∴M∪N={x|-1<x<1}∪{x|x≤0或x≥2}={x|x<1或x≥2}.∁U8.设全集U={2,4,-(a-3)2},集合A={2,a2-a+2},若A={-1},则实数a的值为________.【参考答案】2【解析】由已知可得Error!解得a=2.9.已知M={x|x<-2或x≥3},N={x|x-a≤0},若N∩∁R M≠∅(R为实数集),则a的取值范围是________.【参考答案】a≥-2∁R【解析】 ∵M={x|-2≤x<3},借助数轴可得a≥-2.10.设U=R,已知集合A={x|-5<x<5},B={x|0≤x<7},求:(1)A∩B;(2)A∪B;(3)A∪(∁U B);(4)B∩(∁U A).【参考答案】见解析【解析】:(1)如图①.A∩B={x|0≤x<5}.(2)如图①.A∪B={x|-5<x<7}.(3)如图②.∁U B={x|x<0或x≥7},∴A∪(∁U B)={x|x<5或x≥7}.(4)如图③.∁U A={x|x≤-5或x≥5},∴B∩(∁U A)={x|5≤x<7}.二、能力提升1.已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则B∩∁U A=( ) A.{1,6} B.{1,7}C.{6,7}D.{1,6,7}【参考答案】C【解析】: ∵U={1,2,3,4,5,6,7},A={2,3,4,5},∴∁U A={1,6,7},∴B∩∁U A={2,3,6,7}∩{1,6,7}={6,7}.2.已知U={1,2,3,4,5},A={2,m},且∁U A={1,3,5},则m等于( )A.1B.3C.4D.5【参考答案】C【解析】:由已知m∈U,且m∉∁U A,故m=2或4.又A={2,m},由元素的互异性知m≠2,故m=4.所以选C.3.设全集U={x|x≥0},集合P={1},则∁U P等于( )A.{x|0≤x<1或x>1}B.{x|x<1}C.{x|x<1或x>1}D.{x|x>1}【参考答案】A【解析】:因为U={x|x≥0},P={1},所以∁U P={x|x≥0且x≠1}={x|0≤x<1或x>1}.4.设全集U=R,集合M={x|x>1,或x<-1},N={x|0<x<2},则∁U(M∪N)=( )A.{x|-1≤x≤1}B.{x|0<x≤1}C.{x|-1≤x≤0}D.{x|x<1}【参考答案】C【解析】:因为M∪N={x|x>0或x<-1},所以∁U(M∪N)={x|-1≤x≤0}.5.设全集U=R,M={x|x<-2或x>2},N={x|1≤x≤3}.如图所示,则阴影部分所表示的集合为( )A.{x|-2≤x<1}B.{x|-2≤x≤3}C.{x|x≤2或x>3}D.{x|-2≤x≤2}【参考答案】A【解析】:阴影部分所表示的集合为∁U(M∪N)=(∁U M)∩(∁U N)={x|-2≤x≤2}∩{x|x<1或x>3}={x|-2≤x<1}.故选A.6.设全集U=R,集合A={x|0<x<9},B={x∈Z|-4<x<4},则集合(∁U A)∩B中的元素的个数为________.【参考答案】:4【解析】:∵U=R,A={x|0<x<9},∴∁U A={x|x≤0或x≥9},又∵B={x∈Z|-4<x<4},∴(∁U A )∩B ={x ∈Z|-4<x ≤0}={-3,-2,-1,0}共4个元素.7.已知全集U =A ∪B 中有m 个元素,(∁U A )∪(∁U B )中有n 个元素.若A ∩B 非空,则A ∩B 的元素个数为________.【参考答案】:m -n【解析】:因为(∁U A )∪(∁U B )=∁U (A ∩B ),所以A ∩B 中的元素个数是(m -n )个.8.设全集U =R,集合A ={x |x >1},B ={x |x >a },且(∁U A )∪B =R,则实数a 的取值范围是________.【参考答案】:{a |a ≤1}【解析】:因为A ={x |x >1},B ={x |x >a },所以∁U A ={x |x ≤1},由(∁U A )∪B =R,可知a ≤1.9.已知集合A ={x |x 2+ax +12b =0}和B ={x |x 2-ax +b =0},满足(∁R A )∩B ={2},A ∩(∁R B )={4},求实数a ,b 的值.【参考答案】a =,b =-87127【解析】:由条件(∁R A )∩B ={2}和A ∩(∁R B )={4},知2∈B ,但2∉A ;4∈A ,但4∉B .将x =2和x =4分别代入B ,A 两集合中的方程得Error!即Error!解得a =,b =-即为所求.8712710.已知全集U ={小于10的正整数},A ⊆U ,B ⊆U ,且(∁U A )∩B ={1,8},A ∩B ={2,3},(∁U A )∩(∁U B )={4,6,9}.(1)求集合A 与B ;(2)求(∁R U )∪[∁Z (A ∩B )](其中R 为实数集,Z 为整数集).【参考答案】【解析】:由(∁U A )∩B ={1,8},知1∈B,8∈B ;由(∁U A )∩(∁U B )={4,6,9},知4,6,9∉A ,且4,6,9∉B ;由A ∩B ={2,3},知2,3是集合A 与B 的大众元素.因为U ={1,2,3,4,5,6,7,8,9},所以5,7∈A .画出Venn 图,如图所示.(1)由图可知A ={2,3,5,7},B ={1,2,3,8}.(2)(∁R U )∪[∁Z (A ∩B )]={x |x ∈R,且x ≠2,x ≠3}.三、挑战高考1.设U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+m=0}.若(∁U A)∩B=∅,求m的值.【参考答案】m=1或m=2.【解析】A={-2,-1},由(∁U A)∩B=∅,得B⊆A,∵方程x2+(m+1)x+m=0的判别式Δ=(m+1)2-4m=(m-1)2≥0,∴B≠∅.∴B={-1}或B={-2}或B={-1,-2}.①若B={-1},则m=1;②若B={-2},则应有-(m+1)=(-2)+(-2)=-4,且m=(-2)×(-2)=4,这两式不能同时成立,∴B≠{-2};③若B={-1,-2},则应有-(m+1)=(-1)+(-2)=-3,且m=(-1)×(-2)=2,由这两式得m=2.经检验知m=1或m=2符合条件.综上可得m=1或m=2.2.设全集U=R,集合A={x|-5<x<4},集合B={x|x<-6或x>1},集合C={x|x-m<0},求实数m的取值范围,使其同时满足下列两个条件.①C⊇(A∩B);②C⊇(∁U A)∩(∁U B).【参考答案】【解析】:因为A={x|-5<x<4},B={x|x<-6或x>1},所以A∩B={x|1<x<4}.又∁U A={x|x≤-5或x≥4},∁U B={x|-6≤x≤1},所以(∁U A)∩(∁U B)={x|-6≤x≤-5}.而C={x|x<m},因为当C⊇(A∩B)时,m≥4,当C⊇(∁U A)∩(∁U B)时,m>-5,所以m≥4.即实数m的取值范围为{m|m≥4}.11。

高一数学全集与补集练习题

高一数学全集与补集练习题

3.2 全集与补集一、选择题(每小题5分,共20分)1.已知全集U={1,2,3,4,5,6,7,8},M={1,3,5,7},N={5,6,7},则U(M∪N)=()A.{5,7}B.{2,4}C.{2,4,8}D.{1,3,5,6,7}【解析】M∪N={1,3,5,6,7},∴U(M∪N)={2,4,8},故选C.【答案】 C2.已知U={x|-1≤x≤3},A={x|-1<x<3},B={x|x2-2x-3=0},C={x|-1≤x<3},则下列关系正确的是()A. U A=BB. U B=CC.(U B) ⊇CD.A⊇C【解析】B={-1,3},U A={-1,3},∴U A=B.【答案】A3. 设U=Z,A={1,3,5,7,9},B={1,2,3,4,5},则图中阴影部分表示的集合是()A.{1,3,5}B.{1,2,3,4,5}C.{7,9}D.{2,4}【解析】由V enn图可知阴影部分表示的集合为B∩(U A)={2,4}.【答案】D4.已知集合A={x|x<a},B={x|1<x<2},且A∪(R B)=R,则实数a的取值范围是()A.a≤2B.a<1C.a≥2D.a>2【解析】∵B={x|1<x<2},∴R B={x|x≥2或x≤1}.如下图若要A∪(R B)=R,必有a≥2.【答案】C二、填空题(每小题5分,共10分)5. 如果S={x∈N|x<6},A={1,2,3},B={2,4,5},那么(S A)∪(S B)=.【解析】∵S={x∈N|x<6}={0,1,2,3,4,5}.∴S A={0,4,5},S B ={0,1,3}.∴(S A)∪(S B)={0,1,3,4,5}.【答案】{0,1,3,4,5}6.已知A={x|x≤1或x>3},B={x|x>2},则(R A)∪B=.【解析】R A={x|1<x≤3},∴(R A)∪B={x|x>1}.【答案】{x|x>1}三、解答题(每小题10分,共20分)7.设全集U=R,集合A={x|x≥-3},B={x|2-x<0}.(1)求U A,U B;(2)判断U A与U B的关系.【解析】(1) U A=R A={x|x<-3},∵B={x|x>2},∴U B={x|x≤2}.如图所示.(2)由(1)知,U A U B,即U A是U B的真子集.8.集合S={x|x≤10,且x∈N*},A S,B S,且A∩B={4,5},(S B)∩A={1,2,3},(S A)∩(S B)={6,7,8},求集合A和B.【解析】如下图所示.因为A∩B={4,5},所以将4,5写在A∩B 中.因为(S B)∩A={1,2,3},所以将1,2,3写在A中.因为(S B)∩(S A)={6,7,8},所以将6,7,8写在S中A,B外.因为(S B)∩A与(S B)∩(S A)中均无9,10,所以9,10在B中.故A={1,2,3,4,5},B={4,5,9,10}.9.(10分)集合A={x|x≤-2或x≥3},B={x|a<x<b},若A∩B=∅,A∪B=R,求实数a,b.【解析】∵A∩B=∅,A∪B=R.∴A与B互为补集.故B=R A={x|-2<x<3},又B={x|a<x<b},∴a=-2,b=3.。

高一数学:子集、全集、补集典型例题及讲解

高一数学:子集、全集、补集典型例题及讲解

【文库独家】子集、全集、补集典型例题及讲解例1 判定以下关系是否正确(1){a}{a}⊆(2){1,2,3}={3,2,1}(3){0}∅⊂≠(4)0∈{0}(5){0}(6){0}∅∅∈=分析 空集是任何集合的子集,是任何非空集合的真子集.解 根据子集、真子集以及集合相等的概念知①②③④是正确的,后两个都是错误的.说明:含元素0的集合非空.例2 列举集合{1,2,3}的所有子集.分析 子集中分别含1,2,3三个元素中的0个,1个,2个或者3个.解含有个元素的子集有:; 0∅含有1个元素的子集有{1},{2},{3};含有2个元素的子集有{1,2},{1,3},{2,3}; 含有3个元素的子集有{1,2,3}.共有子集8个.说明:对于集合,我们把和叫做它的平凡子集.A A ∅例已知,,,,,则满足条件集合的个数为≠3 {a b}A {a b c d}A ⊆⊂________.分析 A 中必含有元素a ,b ,又A 是{a ,b ,c ,d}真子集,所以满足条件的A 有:{a ,b},{a ,b ,c}{a ,b ,d}.答 共3个.说明:必须考虑A 中元素受到的所有约束.例设为全集,集合、,且,则≠4 U M N U N M ⊂⊆[ ]分析 作出4图形.说明:考虑集合之间的关系,用图形解决比较方便.点击思维例5 设集合A ={x|x =5-4a +a 2,a ∈R},B ={y|y =4b 2+4b +2,b ∈R},则下列关系式中正确的是[ ]A AB B A BC A BD A B .=...≠≠⊇⊂⊃分析 问题转化为求两个二次函数的值域问题,事实上 x =5-4a +a 2=(2-a)2+1≥1,y =4b 2+4b +2=(2b +1)2+1≥1,所以它们的值域是相同的,因此A =B . 答 选A .说明:要注意集合中谁是元素.M 与P 的关系是[ ]A .M =U PB .M =PC M PD M P ..≠⊃⊆分析 可以有多种方法来思考,一是利用逐个验证(排除)的方法;二是利用补集的性质:M =U N =U (U P)=P ;三是利用画图的方法.说明:一题多解可以锻炼发散思维. 例7 下列命题中正确的是[ ] A .U (U A)={A}B A B B A BC A {1{2}}{2}A.若∩=,则.若=,,,则≠⊆⊂ϕD A {123}B {x|x A}A B .若=,,,=,则∈⊆分析 D 选择项中A ∈B 似乎不合常规,而这恰恰是惟一正确的选择支.∵选择支中,中的元素,,即是集合的子集,而的子D B x A x A A ⊆集有,,,,,,,,,,,,,而∅{1}{2}{3}{12}{13}{23}{123}B是由这所有子集组成的集合,集合A 是其中的一个元素. ∴A ∈B . 答 选D .说明:选择题中的选项有时具有某种误导性,做题时应加以注意.例8 已知集合A ={2,4,6,8,9},B ={1,2,3,5,8},又知非空集合C 是这样一个集合:其各元素都加2后,就变为A 的一个子集;若各元素都减2后,则变为B 的一个子集,求集合C .分析 逆向操作:A 中元素减2得0,2,4,6,7,则C 中元素必在其中;B 中元素加2得3,4,5,7,10,则C 中元素必在其中;所以C 中元素只能是4或7.答 C ={4}或{7}或{4,7}.说明:逆向思维能力在解题中起重要作用.例9 设S ={1,2,3,4},且M ={x ∈S|x 2-5x +p =0},若S M ={1,4},则p =________.分析 本题渗透了方程的根与系数关系理论,由于S M ={1,4},且,≠M S ⊂ ∴M ={2,3}则由韦达定理可解. 答 p =2×3=6.说明:集合问题常常与方程问题相结合.例10 已知集合S ={2,3,a 2+2a -3},A ={|a +1|,2},S A ={a +3},求a 的值.S 这个集合是集合A 与集合S A的元素合在一起“补成”的,此外,对这类字母的集合问题,需要注意元素的互异性及分类讨论思想方法的应用.解 由补集概念及集合中元素互异性知a 应满足()1a 3 3 |a 1|a 2a 3 a 2a 3 2 a 2a 3 3 222+=①+=+-②+-≠③+-≠④⎧⎨⎪⎪⎩⎪⎪或+=+-①+=②+-≠③+-≠④(2)a 3a 2a 3 |a 1| 3 a 2a 3 2 a 2a 3 3 222⎧⎨⎪⎪⎩⎪⎪ 在(1)中,由①得a =0依次代入②③④检验,不合②,故舍去.在(2)中,由①得a =-3,a =2,分别代入②③④检验,a =-3不合②,故舍去,a =2能满足②③④.故a =2符合题意.说明:分类要做到不重不漏.例年北京高考题集合==π+π,∈,=11 (1993)M {x|x k Z}N {k 24x|x k Z}=π+π,∈则k 42[ ] A .M =NB M NC M N..≠≠⊃⊂D .M 与N 没有相同元素分析 分别令k =…,-1,0,1,2,3,…得M {}N {}M N =…,-π,π,π,π,π,…,=…,π,π,π,π,π,…易见,.≠44345474423454⊂ 答 选C .说明:判断两个集合的包含或者相等关系要注意集合元素的无序性。

全集、补集学案(人教a版高一数学必修1).doc

全集、补集学案(人教a版高一数学必修1).doc

3.全集、补集【本课重点】补集的概念。

【预习导引】1、已知S={高一(2)班同学}, A={高一(2)班参加校运动会的同学},则CsA=.2、已知全集U=(|-l<x<9},0 CuA=(x|-l<x<a},贝U a 的取值范围是.3、已知U={0,l,2},CuA={2},则A的真子集共有个.4、已知S={二角形},B={锐角二角形},则CsB=;已知全集U=乙则CuN=,Cu © =.【典例综讲】1.(1)设全集U={小于10的自然数}, A={小于10的正偶数},B={小于10的质数},求CuA, CuB, Cu(CuA).(2)若集合A=(x|-l<x<2),当全集U分别取下列集合时,求CuA(1)U=R;(2)U=(x|x<3};(3)U=(x|-2<x<2);1、已知全集U={2,3,a2+2a-3), A={|a+7|,2}, CuA={5},求实数a 的值.2、已知集合A=(x|x<5}, B={x|l<xWa}, C R A C R B,求实数a的取值范围.3、(备选题)已知全集U={x|x<6且xeN*}, A={x|x2-5x+p=0 ,xe R),求实数p的值及相应的CuA.【随堂反馈】1、设全集U ={1,2/2-2}, A={l,x},则CuA=.设集合M={0,l,2,3}, CsM=(-l,-3,4,5},, C S B={1,-1,2),则B=.【课*则】1、下列各结论中,不正确的是( )(D) 4 (A) 0C CyM (B) CuUF (C) Cu(CuM)=M (D) <2抻邮2、已知全集17=2,集合 M={x|x=2k,ke Z ),P={x| x=2k+l,ke Z ),则有下列关系式:①M Q P ;②CuM=CuP;③CuM=P ;④CuP=M 。

其中正确的有(A) 1 个 (B) 2 个 (C) 3 个3、 已知全集 U={X |-K X <3),M={X |-1<X <3),P={X |X 2-2X -3=0},S={X |-K X <3),则有() (A) QjM=P (B) CuP=S (C) S cCuM (D) MoP4、 已知全集 U=(x| X 2-3X +2=0),A={X | x 2-px+2=0, C V A=^>,则实数 p 的值为5、 已知全集U={x|x 是至少有一组对边平行的四边形}, A=(x|x 是平行四边形},则CuA=6、已知全集U={ 1 ,3,X 3+3X 2+2X },A={ 1 ,|2X - 11},是否存在实数x,使CuA={0},若存在,求出x 的值;若不存 在,请说明理由. 7、已知全集11=11,集合A={x|x>3或xW-2},集合B= (x|2m-1 <x<m+1},且BjCuA,求m 的取值范围.(选做题)定义 A-B={x|xeA 且 x£B},若 M={1,2,3,4,5},P={2,4,6,8},求 P-M, P-(P-M).【本谦重点】交集、并集的概念与性质【预习导引】5、 已知集合A={x|x 是等腰三角形}, B={x|x 是直角三角形}, C={x|x 是锐角三角形},贝 U A n B ,B n c=L6、 已知A={x|x<5,xe N), B={x|l<x<9, xe N),则A QB 的非空了集共有 个,的真了集个数为7、 {锐角三角形} U {钝角三角形}= ; {平行四边形} U {矩形}=:8、 已知全集 U={0,l,2,3,4},M={0,l,2,3},P={2,3,4},则(C D M) U(CuP)=C u (M c P) = ___________________5、在图中将APB, AUB 用阴影表示出来 【三■讨】【蜘1练讲】1、⑴设A={x|-2〈x〈3}, B={x|xW 1 或x〉2},求Al~lB, AUB(2)设A= {(x, y) |x+y=2}, B= {(x, y) | x-y=4},求AHB2,(1)设全集U=R, A={ x|-5<x<5}, B={ x|0<x<7}.试求AUB, AHB, (QjA) U(C D B), (CuA) A (CuB), C LI (AAB), C v (AUB),山此,你能获得什么结论?(2)设全集U=(x|x<10, xeN},AnB={2},(CuA)nB= {4,6,8},(CuA) A(CuB)={0,1,9}, 求集合A,B.3、已知集合A={x|x2+4x=0}.B={x|x2+2(a+l)x+a2-l=0, xe R), (1)若AAB=B,求实数a 的取值范围.(2) 若Au B = B求实数a的值。

高中数学人教B版必修一学案:第一单元 第2课时 补集及综合应用 Word版含答案

高中数学人教B版必修一学案:第一单元 第2课时 补集及综合应用 Word版含答案

第2课时补集及综合应用学习目标 1.理解全集、补集的概念.2.准确翻译和使用补集符号和Venn图.3.会求补集,并能解决一些集合综合运算的问题.知识点一全集思考老和尚问小和尚:“如果你前进是死,后退是亡,那你怎么办?”小和尚说:“我从旁边绕过去.”在这一故事中,老和尚设定的运动方向共有哪些?小和尚设定的运动方向共有哪些?梳理知识点二补集思考实数集中,除掉大于1的数,剩下哪些数?梳理 1.补集定义2.运算性质A∪∁U A=____;A∩∁U A=____;∁U(∁U A)=____.类型一求补集例1(1)若全集U={x∈R|-2≤x≤2},A={x∈R|-2≤x≤0},则∁U A等于()A.{x|0<x<2} B.{x|0≤x<2}C.{x|0<x≤2} D.{x|0≤x≤2}(2)设U={x|x是小于9的正整数},A={1,2,3},B={3,4,5,6},求∁U A,∁U B.(3)设全集U={x|x是三角形},A={x|x是锐角三角形},B={x|x是钝角三角形},求A∩B,∁(A∪B).U反思与感悟求集合的补集,需关注两处:一是认准全集的范围;二是利用数形结合求其补集,常借助Venn图、数轴、坐标系来求解.跟踪训练1(1)设集合U={1,2,3,4,5},集合A={1,2},则∁U A=________.(2)已知集合U=R,A={x|x2-x-2≥0},则∁U A=________.(3)已知全集U={(x,y)|x∈R,y∈R},集合A={(x,y)|xy>0},则∁U A=________.类型二补集性质的应用命题角度1补集性质在集合运算中的应用例2已知A={0,2,4,6},∁U A={-1,-3,1,3},∁U B={-1,0,2},用列举法写出集合B.反思与感悟从Venn图的角度讲,A与∁U A就是圈内和圈外的问题,由于(∁U A)∩A=∅,(∁A)∪A=U,所以可以借助圈内推知圈外,也可以反推.U跟踪训练2如图所示的Venn图中,A、B是非空集合,定义A*B表示阴影部分的集合.若A ={x|0≤x≤2},B={y|y>1},则A*B=________________.命题角度2补集思想的应用例3关于x的方程:x2+ax+1=0,①x2+2x-a=0,②x2+2ax+2=0,③若三个方程至少有一个有解,求实数a的取值范围.反思与感悟运用补集思想求参数取值范围的步骤:(1)把已知的条件否定,考虑反面问题.(2)求解反面问题对应的参数的取值范围.(3)求反面问题对应的参数的取值集合的补集.跟踪训练3若集合A={x|ax2+3x+2=0}中至多有一个元素,求实数a的取值范围.类型三集合的综合运算例4(1)已知集合A,B均为全集U={1,2,3,4}的子集,且∁U(A∪B)={4},B={1,2},则A∩(∁B)等于()UA.{3} B.{4} C.{3,4} D.∅(2)已知集合A={x|x≤a},B={x|1≤x≤2},且A∪(∁R B)=R,则实数a的取值范围是________.反思与感悟解决集合的混合运算时,一般先计算括号内的部分,再计算其他部分.有限集混合运算可借助Venn图,与不等式有关的可借助数轴.跟踪训练4(1)已知集合U={x∈N|1≤x≤9},A∩B={2,6},(∁U A)∩(∁U B)={1,3,7},A∩(∁U B)={4,9},则B等于()A.{1,2,3,6,7} B.{2,5,6,8}C.{2,4,6,9} D.{2,4,5,6,8,9}(2)已知集合U={x|x≤4},集合A={x|-2<x<3},B={x|-3≤x≤2},求A∩B,(∁U A)∪B,A∩(∁B).U1.设集合U={1,2,3,4,5,6},M={1,2,4},则∁U M等于()A.U B.{1,3,5}C.{3,5,6} D.{2,4,6}2.已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)等于()A.{1,3,4} B.{3,4}C.{3} D.{4}3.设集合S={x|x>-2},T={x|-4≤x≤1},则(∁R S)∪T等于()A.{x|-2<x≤1} B.{x|x≤-4}C.{x|x≤1} D.{x|x≥1}4.设全集U=R,则下列集合运算结果为R的是()A.Z∪∁U N B.N∩∁U NC.∁U(∁U∅) D.∁U Q5.设全集U=M∪N={1,2,3,4,5},M∩(∁U N)={2,4},则N等于()A.{1,2,3} B.{1,3,5}C.{1,4,5} D.{2,3,4}1.全集与补集的互相依存关系(1)全集并非是包罗万象,含有任何元素的集合,它是对于研究问题而言的一个相对概念,它仅含有所研究问题中涉及的所有元素,如研究整数,Z就是全集,研究方程的实数解,R就是全集.因此,全集因研究的问题而异.(2)补集是集合之间的一种运算.求集合A的补集的前提是A是全集U的子集,随着所选全集的不同,得到的补集也是不同的,因此,它们是互相依存、不可分割的两个概念.(3)∁U A的数学意义包括两个方面:首先必须具备A⊆U;其次是定义∁U A={x|x∈U,且x∉A},补集是集合间的运算关系.2.补集思想做题时“正难则反”策略运用的是补集思想,即已知全集U,求子集A,若直接求A困难,可先求∁U A,再由∁U(∁U A)=A求A.答案精析问题导学知识点一思考老和尚设定的运动方向只有2个:前进,后退.小和尚偷换了前提:运动方向可以是四面八方任意方向.梳理子集U知识点二思考剩下不大于1的数,用集合表示为{x∈R|x≤1}.梳理1.不属于A∁U A{x|x∈U,且x∉A}2.U∅A题型探究例1(1)C(2)解根据题意可知,U={1,2,3,4,5,6,7,8},所以∁U A={4,5,6,7,8},∁U B={1,2,7,8}.(3)解根据三角形的分类可知A∩B=∅,A∪B={x|x是锐角三角形或钝角三角形},∁U(A∪B)={x|x是直角三角形}.跟踪训练1(1){3,4,5}(2){x|-1<x<2}(3){(x,y)|xy≤0}例2解∵A={0,2,4,6},∁U A={-1,-3,1,3},∴U={-3,-1,0,1,2,3,4,6}.而∁U B={-1,0,2},∴B=∁U(∁U B)={-3,1,3,4,6}.跟踪训练2{x|0≤x≤1或x>2}例3解假设三个方程均无实根,则有⎩⎪⎨⎪⎧ Δ1=a 2-4<0,Δ2=4+4a <0,Δ3=4a 2-8<0,即⎩⎪⎨⎪⎧ -2<a <2,a <-1,-2<a < 2. 解得-2<a <-1,∴当a ≤-2或a ≥-1时,三个方程至少有一个方程有实根, 即a 的取值范围为{a |a ≤-2或a ≥-1}.跟踪训练3 解 假设集合A 中含有2个元素,即ax 2+3x +2=0有两个不相等的实数根,则⎩⎪⎨⎪⎧a ≠0,Δ=9-8a >0,解得a <98,且a ≠0, 则集合A 中含有2个元素时,实数a 的取值范围是{a |a <98且a ≠0}. 在全集U =R 中,集合{a |a <98且a ≠0}的补集是{a |a ≥98或a =0}, 所以满足题意的实数a 的取值范围是{a |a ≥98或a =0}. 例4 (1)A (2)a ≥2跟踪训练4 (1)B(2)解 如图所示.∵A ={x |-2<x <3},B ={x |-3≤x ≤2},∴∁U A ={x |x ≤-2或3≤x ≤4},∁U B ={x |x <-3或2<x ≤4}.A ∩B ={x |-2<x ≤2},∴(∁U A )∪B ={x |x ≤2或3≤x ≤4},A∩(∁U B)={x|2<x<3}.当堂训练1.C 2.D 3.C 4.A 5.B。

子集、全集、补集

子集、全集、补集
VIP时长期间,下载特权不清零。
100W优质文档免费下 载
VIP有效期内的用户可以免费下载VIP免费文档,不消耗下载特权,非会员用户需要消耗下载券/积分获取。
部分付费文档八折起 VIP用户在购买精选付费文档时可享受8折优惠,省上加省;参与折扣的付费文档均会在阅读页标识出折扣价格。
规定:任何一个集合是它本身的子集. 如A={11,22,33},B={20,21,31},
那么有A A,B B.
例如:A={正方形},B={四边形},C={多边形}, 则从中可以看出什么规律:
AB,B C, A C
从上可以看到,包含关系具有“传递性”.
新课讲授
真子集的定义:
如果A B,并且 A ≠B,则集合A是集合B 的真子集.
服务特 权
共享文档下载特权
VIP用户有效期内可使用共享文档下载特权下载任意下载券标价的文档(不含付费文档和VIP专享文档),每下载一篇共享文
档消耗一个共享文档下载特权。
年VIP
月VIP
连续包月VIP
享受100次共享文档下载特权,一次 发放,全年内有效
赠每的送次VI的发P类共放型的享决特文定权档。有下效载期特为权1自个V月IP,生发效放起数每量月由发您放购一买次,赠 V不 我I送 清 的P生每 零 设效月 。 置起1自 随5每动 时次月续 取共发费 消享放, 。文一前档次往下,我载持的特续账权有号,效-自
问题:集合与集合之间的关系如何建立?
特权福利
特权说明
VIP用户有效期内可使用VIP专享文档下载特权下载或阅读完成VIP专享文档(部分VIP专享文档由于上传者设置不可下载只能 阅读全文),每下载/读完一篇VIP专享文档消耗一个VIP专享文档下载特权。
年VIP

数学高一-2013必修一【知能演练】映射

数学高一-2013必修一【知能演练】映射

1.下列对应法则f 中,能构成从A 到B 的函数的有( )①A ={0,2},B ={0,1},f :x →y =x 2;②A ={-2,0,2},B ={4},f :x →y =x 2;③A =R ,B ={y |y >0},f :x →y =1x2;④A =R ,B =R ,f :x →y =2x +1. A .1个 B .2个C .3个D .4个解析:选B.②中A 的元素0在B 中无像,不能构成映射,也就不能构成函数;③中A 的元素0在B 中无像,不能构成映射,也就不能构成函数.①④都能构成A 到B 的函数.2.下列对应关系是从集合M 到集合N 的一一映射的是( )A .M =N =R ,f :x →y =-1x,x ∈M ,y ∈N B .M =N =R ,f :x →y =x 2,x ∈M ,y ∈NC .M =N =R ,f :x →y =1|x |+x,x ∈M ,y ∈N D .M =N =R ,f :x →y =x 3,x ∈M ,y ∈N解析:选D.判断一个对应关系是否为一一映射,要从基本概念入手,看是否满足一一映射的条件,A 选项M 中元素0在N 中没有像与之对应,所以A 不是映射;B 选项M 中元素±1在N 中对应相同的像1,虽然B 是映射,但不是一一映射;C 选项M 中元素0及负实数在N 中没有元素与之对应,所以C 不是映射;D 选项M 中的每一个元素在N 中都有唯一元素与之对应,M 中的不同元素在N 中的像也不同,且N 中的元素在M 中都有原像,所以D 是一一映射.3.设集合A 和B 都是坐标平面上的点集{(x ,y )|x ∈R ,y ∈R},映射f :A →B 把集合A 中的元素(x ,y )映射成集合B 中的元素(x +y ,x -y ),则在映射f 下,像(2,1)的原像是________.解析:本题即为求方程组⎩⎪⎨⎪⎧x +y =2,x -y =1的解. 答案:⎝⎛⎭⎫32,124.已知映射f :A →B ,其中,集合A ={-3,-2,-1,1,2,3,4},集合B 中的元素都是A 中元素在映射f 下的像,且对任意的a ∈A ,在集合B 中和它对应的元素是|a |,则集合B 中元素的个数最少是________.解析:本题题意叙述虽长,但转换成图表语言则非常简洁.如图,即可知个数最少应为4. 答案:4[A 级 基础达标]1.(2012·九江检测)在从集合A 到集合B 的映射中,下列说法正确的是( )A .集合B 中的某一个元素b 的原像可能不止一个B .集合A 中的某一个元素a 的像可能不止一个C .集合A 中的两个不同元素所对应的像必不相同D .集合B 中的两个不同元素的原像可能相同解析:选A.由映射的概念可知,A 中的每个元素都有像,且像唯一,B 中未必每个元素都有原像且不一定唯一,故选A.2.下列对应关系f 中,不是从集合A 到集合B 的映射的是( )A .A ={x |1<x <4},B =[1,3),f :求算术平方根B .A =R ,B =R ,f :取绝对值C .A ={正实数},B =R ,f :求平方D .A =R ,B =R ,f :取倒数解析:选D.因为D 中0取倒数无意义,故选D.3.设集合A 和B 都是自然数集合N ,映射f :A →B ,把集合A 中的元素n 映射到集合B 中的元素2n +n ,则在映射f 下,像20的原像是( )A .2B .3C .4D .5解析:选C.∵20=2n +n ,分别将选择项代入检验,知当n =4时成立.4.(2012·淮北质检)已知A ={x |0≤x ≤4},B ={y |0≤y ≤2},从A 到B 的对应法则分别是: (1)f :x →y =12x ,(2)f :x →y =x -2,(3)f :x →y =x ,(4)f :x →y =|x -2| 其中能构成一一映射的是________.解析:(1)y =12x .x ∈[0,4].y ∈[0,2]=B (2)y =x -2∈[-2,2]≠B .(3)y =x ∈[0,2]=B .(4)y =|x -2|∈[0,2],但如y =1.∴x =3或x =1. 答案:(1)(3)5.已知从A 到B 的映射是x →2x +1,从B 到C 的映射是y →y 2-1,其中A ,B ,C ⊆R ,则从A 到C 的映射是________.[:]解析:x ∈A .y ∈B .z ∈C .∴y =2x +1.z =y 2-1 ∴z =12(2x +1)-1=x -12.∴x →x -12答案:x →x -126.设A =B ={a ,b ,c ,d ,e ,…,x ,y ,z }(元素为26个英文字母),作映射A →B 为:并称A 中字母拼成的文字为明文,相应B 中对应字母拼成的文字为密文,则:(1)“mathematics”的密文是什么?(2)试破译密文“ju jt gvooz”.[:]解:由明文与密文的关系可知:(1)“mathematics”对应的密文是“nbuifnbujdt”.(2)“ju jt gvooz”对应的明文是“it is funny”.[B 级 能力提升]7.(2012·汉中调研)下列对应法则是从集合A 到集合B 的映射的是( )A .A =R ,B ={x |x >0},f :x →y =|x |B .A ={x |x ≥0},B ={y |y >0},f :x →y =xC .A =N ,B =N +,f :x →y =|x -1|D .A =R ,B ={y |y ≥0},f :x →y =x 2-2x +2解析:选D.x =0,y =0∉B ,A 错.同理B 错.C 中:当x =1时,y =0∉B .C 错.8.已知集合A ={1,2,3},B ={4,5,6},f :A →B 为集合A 到集合B 的一个函数,那么该函数的值域C 的不同情况有( )A .6种B .7种C .8种D .27种解析:选B.该函数的值域C 的不同情况有{4},{5},{6},{4,5},{4,6},{5,6},{4,5,6}7种.9.已知(x ,y )在映射f 作用下的像是(x +y ,xy ),则(3,4)的像为________,(1,-6)的原像为________.解析:根据条件可知x =3,y =4,则x +y =3+4=7,xy =3×4=12,所以(3,4)的像为(7,12);设(1,-6)的原像为(x ,y ),则有⎩⎪⎨⎪⎧ x +y =1,xy =-6,解得⎩⎪⎨⎪⎧ x =-2,y =3,或⎩⎪⎨⎪⎧ x =3,y =-2.所以(1,-6)的原像为(-2,3)或(3,-2).答案:(7,12) (-2,3)或(3,-2)10.(创新题)已知集合A ={1,2,3,k },B ={4,7,a 4,a 2+3a },a ∈N +,k ∈N +,x ∈A ,y ∈B ,f :x →y =3x +1是从定义域A 到值域B 的一个函数,求a ,k ,A ,B .解:根据对应法则f ,有:f :1→4;2→7;3→10;k →3k +1.若a 4=10,则a ∉N +,不符合题意,舍去;若a 2+3a =10,则a =2(a =-5不符合题意,舍去).故3k +1=a 4=16,得k =5.综上可知,a =2,k =5, 集合A ={1,2,3,5},B ={4,7,10,16}.11.已知集合A 到集合B =⎩⎨⎧⎭⎬⎫0,1,12,13的映射f :x →1|x |-1,那么集合A 中的元素最多有几个?并写出元素个数最多时的集合A .解:∵f 是映射,∴A 中的每一个元素都应在B 中有唯一的元素对应.∵1|x |-1≠0,∴0在A 中不存在原像; 由1|x |-1=1,得x =±2,∴±2可取作1的对应元素; 由1|x |-1=12,得x =±3,∴±3可取作12的对应元素; 由1|x |-1=13,得x =±4,∴±4可取作13的对应元素; ∴A 中元素最多只能是6个,即A ={-4,-3,-2,2,3,4}.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.(2012·铜州质检)设集合U ={0,1,2,3,4,5},集合M ={0,3,5},N ={1,4,5}则M ∩∁UN =( )
A .{5}
B .{0,3}
C .{0,2,3,5}
D .{0,1,3,4,5}
解析:选B.∁U N ={0,2,3},∴M ∩(∁U N )={0,3,5}∩{0,2,3}={0,3}.
2.
(2012·六安调研)设全集U 是实数集R ,M ={x |x >2},N ={x |1<x <3},则图中阴影部分表示的集合是( )
A .{x |2<x <3}
B .{x |x <3}
C .{x |1<x ≤2}[:]
D .{x |x ≤2}
解析:选C.阴影部分表示(∁U M )∩N ={x |x ≤2}∩{x |1<x <3}={x |1<x ≤2}.
3.已知U =R ,A ={x |x >0},B ={x |x ≤-1},则[A ∩(∁U B )]∪[B ∩(∁U A )]=________. 解析:∵A ∩(∁U B )={x |x >0},
B ∩(∁U A )={x |x ≤-1}
∴[A ∩(∁U B )]∪[B ∩(∁U A )]
={x |x >0或x ≤-1}
答案:{x |x >0或x ≤-1}
4.设集合A ={|2a -1|,2},B ={2,3,a 2+2a -3}且∁B A ={5},则实数a 的值是________. 解析:由补集的性质可知:[:]
⎩⎪⎨⎪⎧ {2a -1,2}∩{5}=∅{2a -1|,2}∪{5}={2,3,a 2+2a -3},
∴⎩⎪⎨⎪⎧
|2a -1|=3
a 2+2a -3=5,解得a =2.
答案:2
[A 级 基础达标]
1.设集合A ={4,5,7,9},B ={3,4,7,8,9},全集U =A ∪B ,则集合∁U (A ∩B )中的元素共有( )
A .3个
B .4个
C .5个
D .6个
解析:选A.U =A ∪B ={3,4,5,7,8,9},
A ∩
B ={4,7,9},
∴∁U (A ∩B )={3,5,8}.
2.(2012·新余质检)设全集I ={x |-3<x <3,x ∈Z},A ={1,2},B ={-2,-1,2},则A ∪(∁I B )等于( )
A .{1}
B .{1,2}
C .{2}
D .{0,1,2}
解析:选D.I ={-2,-1,0,1,2},∁I B ={0,1},
故A ∪(∁I B )={0,1,2}.
3.已知全集U ={1,2,3,4,5},集合A ,B
U ,若A ∩B ={4},(∁U A )∩B ={2,5},则集合B 等于( )
A .{2,4,5}
B .{2,5}
C .{3,4,5}
D .{2,3,5}[:]
解析:选A.由题意可知B 中含有元素2,4,5.故选A.
4.已知全集U ={2,3,a 2+2a -3},A ={b,2},且∁U A ={5},a <0,则实数a =________,b =________.
解析:由题意,可得a 2+2a -3=5,b =3,化简可得a 2+2a -8=0,解得a =-4或a =2(舍去),故a =-4,b =3,经检验此即为所求.
答案:-4 3
5.若全集I =R ,f (x ),g (x )均为x 的一次函数,P ={x |f (x )<0},Q ={x |g (x )≥0},则不等式组⎩⎪⎨⎪⎧
f (x )<0
g (x )<0的解集可用P 、Q 表示为______. 解析:∵Q ={x |g (x )≥0},
∴g (x )<0的解集为∁I Q ,
∴不等式组⎩⎪⎨⎪⎧
f (x )<0
g (x )<0的解集为P ∩(∁I Q ). 答案:P ∩(∁I Q )
6.设全集U={1,2,x2-2},A={1,x},求∁U A.
解:由条件知A U,∴x∈U={1,2,x2-2},又x≠1,
∴x=2或x=x2-2.
若x=2,则x2-2=2,此时U={1,2,2},这与集合中元素的互异性矛盾,舍去;
若x=x2-2,则x=-1或x=2(舍去),此时U={1,2,-1},A={1,-1},∴∁U A={2}.
[B级能力提升]
7.(2010·高考辽宁卷)已知A,B均为集合U={1,3,5,7,9}的子集,且A∩B={3},(∁U B)∩A ={9},则A=()
A.{1,3} B.{3,7,9}
C.{3,5,9} D.{3,9}
解析:选D.做出表示集合U,A,B的Venn图,可知:A=(A∩B)∪((∁U B)∩A)={3}∪{9}={3,9}.故选D.
8.若U为全集,下面三个命题中真命题的个数是()
①若A∩B=∅,则(∁U A)∪(∁U B)=U
②若A∪B=U,则(∁U A)∩(∁U B)=∅
③若A∪B=∅,则A=B=∅
A.0 B.1
C.2 D.3
解析:选D.①(∁U A)∪(∁U B)=∁U(A∩B)=∁U∅=U;
②(∁U A)∩(∁U B)=∁U(A∪B)=∁U U=∅;
③∵A⊆(A∪B),即A⊆∅,而∅⊆A,[:]
∴A=∅;同理B=∅,∴A=B=∅.
所以①②③都是真命题.
9.(2012·咸阳调研)已知全集U=R,集合A={x|x<a},B={x|1<x<2},且A∪(∁U B)=R,则实数a的取值范围是________.
解析:∵A∪(∁U B)=R,即{x|x<a}∪{x|x≤1或x≥2}=R,结合数轴可知,a≥2.
答案:a≥2
10.已知全集U={x|x≤4},集合A={x|-2<x<3},B={x|-3≤x≤2},求A∩B,(∁U A)∪B,
A∩(∁U B).
解:如图所示,
∵A={x|-2<x<3},B={x|-3≤x≤2},∴∁U A={x|x≤-2,或3≤x≤4},∁U B={x|x<-3,或2<x≤4}.故A∩B={x|-2<x≤2},(∁U A)∪B={x|x≤2,或3≤x≤4},A∩(∁U B)={x|2<x<3}.11.(创新题)已知集合A={x|x2-4ax+2a+6=0},若A∩R-≠∅,求实数a的取值范围.解:设全集U={a|Δ=16a2-8a-24≥0}=






a|a≤-1或a≥
3
2.
方程x2-4ax+2a+6=0的两根均非负等价于
⎩⎪

⎪⎧a∈U
4a≥0,
2a+6≥0
⇔a≥
3
2.即A∩R-=∅(R-表示(-∞,0))时,实数a的取值范围是⎩⎨




a|a≥
3
2.
故A∩R-≠∅(R-表示(-∞,0))时,实数a的取值范围为集合






a|a≥
3
2关于集合U的补集,即{a|a≤-1}.。

相关文档
最新文档