高中数学椭圆性质92条热点结论
高中椭圆与双曲线的经典性质总结
椭圆--(必背的经典结论)1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角2.PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离.4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5.若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y ab+=.6.若000(,)P x y 在椭圆22221xy a b+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y yab+=.7. 椭圆22221x y ab+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan2F P F S b γ∆=.8.椭圆22221xya b+=(a >b >0)的焦半径公式: 10||M F a ex =+,20||M F a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).9.设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆22221x y ab+=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a⋅=-,即0202y a x b KAB-=。
12. 若000(,)P x y 在椭圆22221x y ab+=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y abab +=+.13. 若000(,)P x y 在椭圆22221x y ab+=内,则过Po 的弦中点的轨迹方程是22002222x x y y x y abab+=+.椭圆--(会推导的经典结论)1.椭圆22221x y ab+=(a >b >o )的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线交椭圆于P 1、P 2时A 1P 1与A 2P 2交点的轨迹方程是22221x y ab-=.2.过椭圆22221x y ab+= (a >0, b >0)上任一点00(,)A x y 任意作两条倾斜角互补的直线交椭圆于B,C 两点,则直线BC 有定向且2020B C b x k a y =(常数).3. 若P 为椭圆22221x y ab+=(a >b >0)上异于长轴端点的任一点,F 1, F 2是焦点, 12PF F α∠=,21PF F β∠=,则tant22a c co a cαβ-=+.4. 设椭圆22221x y ab+=(a >b >0)的两个焦点为F 1、F 2,P (异于长轴端点)为椭圆上任意一点,在△PF 1F 2中,记12F PF α∠=,12PF F β∠=,12F F P γ∠=,则有s i n s i n s i n ce a αβγ==+.5. 若椭圆22221x y ab+=(a >b >0)的左、右焦点分别为F 1、F 2,左准线为L ,则当0<e 1时,可在椭圆上求一点P ,使得PF 1是P 到对应准线距离d 与PF 2的比例中项.6. P 为椭圆22221x y ab+=(a >b >0)上任一点,F 1,F 2为二焦点,A 为椭圆内一定点,则2112||||||2||a AF PA PF a AF -≤+≤+,当且仅当2,,A F P 三点共线时,等号成立.7.椭圆220022()()1x x y y a b--+=与直线0A x B y C ++=有公共点的充要条件是2222200()A a B b A x B y C +≥++.8. 已知椭圆22221x y ab+=(a >b >0),O 为坐标原点,P 、Q 为椭圆上两动点,且OP OQ ⊥.(1)22221111||||OP OQ ab+=+;(2)|OP|2+|OQ|2的最大值为22224a ba b+;(3)O P Q S ∆的最小值是2222a ba b+.9. 过椭圆22221x y ab+=(a >b >0)的右焦点F 作直线交该椭圆右支于M,N 两点,弦MN 的垂直平分线交x 轴于P ,则||||2PF e M N =.10. 已知椭圆22221x y ab+=( a >b >0) ,A 、B 、是椭圆上的两点,线段AB 的垂直平分线与x 轴相交于点0(,0)P x , 则22220a b a b x a a---<<.11. 设P 点是椭圆22221x y ab+=( a >b >0)上异于长轴端点的任一点,F 1、F 2为其焦点记12F PF θ∠=,则(1)2122||||1cos bPF PF θ=+.(2) 122tan2P F F S b γ∆=.12. 设A 、B 是椭圆22221xya b+=( a >b >0)的长轴两端点,P 是椭圆上的一点,P A B α∠=,PBA β∠=,BPA γ∠=,c 、e 分别是椭圆的半焦距离心率,则有(1)22222|cos |||s ab PA a c co αγ=-.(2) 2tan tan 1e αβ=-.(3) 22222cot PAB a bS b aγ∆=-.13. 已知椭圆22221x y ab+=( a >b >0)的右准线l 与x 轴相交于点E ,过椭圆右焦点F 的直线与椭圆相交于A 、B 两点,点C 在右准线l 上,且BC x ⊥轴,则直线AC 经过线段EF 的中点. 14. 过椭圆焦半径的端点作椭圆的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.15. 过椭圆焦半径的端点作椭圆的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直.16. 椭圆焦三角形中,内点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率).(注:在椭圆焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点.) 17. 椭圆焦三角形中,内心将内点与非焦顶点连线段分成定比e.双曲线--(必背的经典结论)1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角.2.PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相交.4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支)5.若000(,)P x y 在双曲线22221x y ab-=(a >0,b >0)上,则过0P 的双曲线的切线方程是00221x x y y ab-=.6.若000(,)P x y 在双曲线22221x y ab-=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y ab-=.7. 双曲线22221x y ab-=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=,则双曲线的焦点角形的面积为122t2F P F S b co γ∆=.8.双曲线22221x yab-=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c当00(,)M x y 在右支上时,10||M F ex a =+,20||M F ex a =-.当00(,)M x y 在左支上时,10||M F ex a =-+,20||M F ex a =-- 9.设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF.10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是双曲线22221x y ab-=(a >0,b >0)的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则0202y a x b KK AB OM =⋅,即0202y a x b KAB=。
椭圆与双曲线性质有关性质推论归纳共92条-(1)
椭圆与双曲线的对偶性质92条椭 圆1.12||||2PF PF a +=2.标准方程:22221x y a b+=3.11||1PF e d =< 4.点P 处的切线PT 平分△PF 1F 2在点P 处的外角.5.PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.6.以焦点弦PQ 为直径的圆必与对应准线相离.7.以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.8.设A 1、A 2为椭圆的左、右顶点,则△PF 1F 2在边PF 2(或PF 1)上的旁切圆,必与A 1A 2所在的直线切于A 2(或A 1).9.椭圆22221x y a b+=(a >b >o )的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线交椭圆于P 1、P 2时A 1P 1与A 2P 2交点的轨迹方程是22221x y a b-=.10.若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y ya b +=.11.若000(,)P x y 在椭圆22221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b +=.12.AB 是椭圆22221x y a b +=的不平行于对称轴且过原点的弦,M 为AB 的中点,则22OM AB b k k a⋅=-.13.若000(,)P x y 在椭圆22221x y a b+=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b+=+. 14.若000(,)P x y 在椭圆22221x y a b +=内,则过Po 的弦中点的轨迹方程是22002222x x y yx y a b a b +=+.15.若PQ 是椭圆22221x y a b+=(a >b >0)上对中心张直角的弦,则122222121111(||,||)r OP r OQ r r a b +=+==. 16.若椭圆22221x y a b+=(a >b >0)上中心张直角的弦L 所在直线方程为1Ax By +=(0)AB ≠,则(1) 222211A B a b+=+;(2) L =17.给定椭圆1C :222222b x a y a b +=(a >b >0), 2C :222222222()a b b x a y ab a b -+=+,则(i)对1C 上任意给定的点000(,)P x y ,它的任一直角弦必须经过2C 上一定点M(2222002222(,)a b a b x y a b a b---++. (ii)对2C 上任一点'''000(,)P x y 在1C 上存在唯一的点'M ,使得'M 的任一直角弦都经过'0P 点. 18.设000(,)P x y 为椭圆(或圆)C:22221x y a b+= (a >0,. b >0)上一点,P 1P 2为曲线C 的动弦,且弦P 0P 1, P 0P 2斜率存在,记为k 1, k 2, 则直线P 1P 2通过定点00(,)M mx my -(1)m ≠的充要条件是212211m b k k m a+⋅=-⋅-.19.过椭圆22221x y a b+= (a >0, b >0)上任一点00(,)A x y 任意作两条倾斜角互补的直线交椭圆于B,C 两点,则直线BC 有定向且2020BC b x k a y =(常数).20.椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2F PF S b γ∆=,2tan )2b P c γ . 21.若P 为椭圆22221x y a b +=(a >b >0)上异于长轴端点的任一点,F 1, F 2是焦点, 12PF F α∠=,21PF F β∠=,则tan t 22a c co a c αβ-=+.22.椭圆22221x y a b+=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).23.若椭圆22221x y a b+=(a >b >0)的左、右焦点分别为F 1、F 2,左准线为L ,则当0<e 1时,可在椭圆上求一点P ,使得PF 1是P 到对应准线距离d 与PF 2的比例中项.24.P 为椭圆22221x y a b+=(a >b >0)上任一点,F 1,F 2为二焦点,A 为椭圆内一定点,则2112||||||2||a AF PA PF a AF -≤+≤+,当且仅当2,,A F P 三点共线时,等号成立.25.椭圆22221x y a b +=(a >b >0)上存在两点关于直线l :0()y k x x =-对称的充要条件是22220222()a b x a b k -≤+.26.过椭圆焦半径的端点作椭圆的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.27.过椭圆焦半径的端点作椭圆的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直.28.P 是椭圆cos sin x a y b ϕϕ=⎧⎨=⎩(a >b >0)上一点,则点P 对椭圆两焦点张直角的充要条件是2211sin e ϕ=+. 29.设A,B 为椭圆2222(0,1)x y k k k a b +=>≠上两点,其直线AB 与椭圆22221x y a b+=相交于,P Q ,则AP BQ =.30.在椭圆22221x y a b+=中,定长为2m (o <m ≤a )的弦中点轨迹方程为2222222221()cos sin x y a b m a bαα-+=+,其中2222tan b x a y α=-,当0y =时, 90α=.31.设S 为椭圆22221x y a b+=(a >b >0)的通径,定长线段L 的两端点A,B 在椭圆上移动,记|AB|=l ,00(,)M x y 是AB 中点,则当l S ≥Φ时,有20max ()2a l x c e =-222(c a b =-,ce a=);当l S <Φ时,有0max ()x =0min ()0x =. 32.椭圆22221x y a b+=与直线0Ax By C ++=有公共点的充要条件是22222A aB bC +≥.33.椭圆220022()()1x x y y a b --+=与直线0Ax By C ++=有公共点的充要条件是2222200()A a B b Ax By C +≥++.34.设椭圆22221x y a b+=(a >b >0)的两个焦点为F 1、F 2,P (异于长轴端点)为椭圆上任意一点,在△PF 1F 2中,记12F PF α∠=, 12PF F β∠=,12F F P γ∠=,则有sin sin sin ce aαβγ==+. 35.经过椭圆222222b x a y a b +=(a >b >0)的长轴的两端点A 1和A 2的切线,与椭圆上任一点的切线相交于P 1和P 2,则212||||PA PA b ⋅=.36.已知椭圆22221x y a b+=(a >b >0),O 为坐标原点,P 、Q 为椭圆上两动点,且OP OQ ⊥.(1)22221111||||OP OQ a b+=+;(2)|OP|2+|OQ|2的最大值为22224a b a b +;(3)OPQ S ∆的最小值是2222a b a b +.37.MN 是经过椭圆222222b x a y a b +=(a >b >0)过焦点的任一弦,若AB 是经过椭圆中心O 且平行于MN 的弦,则2||2||AB a MN =.38.MN 是经过椭圆222222b x a y a b +=(a >b >0)焦点的任一弦,若过椭圆中心O 的半弦OP MN ⊥,则2222111||||a MN OP a b +=+.39.设椭圆22221x y a b+=(a >b >0),M(m,o) 或(o, m)为其对称轴上除中心,顶点外的任一点,过M 引一条直线与椭圆相交于P 、Q 两点,则直线A 1P 、A 2Q(A 1 ,A 2为对称轴上的两顶点)的交点N在直线l :2a x m =(或2b y m=)上.40.设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.41.过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.42.设椭圆方程22221x y a b+=,则斜率为k(k ≠0)的平行弦的中点必在直线l :y kx =的共轭直线'y k x =上,而且2'2b kk a=-.43.设A 、B 、C 、D 为椭圆22221x y a b+=上四点,AB 、CD 所在直线的倾斜角分别为,αβ,直线AB 与CD 相交于P ,且P 不在椭圆上,则22222222||||cos sin ||||cos sin PA PB b a PC PD b a ββαα⋅+=⋅+. 44.已知椭圆22221x y a b+=(a >b >0),点P 为其上一点F 1, F 2为椭圆的焦点,12F PF ∠的外(内)角平分线为l ,作F 1、F 2分别垂直l 于R 、S ,当P 跑遍整个椭圆时,R 、S 形成的轨迹方程是222x y a +=(2222222{[()()]}()[()]b y a ce x c x y cx ce x c +-+⋅++=+).45.设△ABC 内接于椭圆Γ,且AB 为Γ的直径,l 为AB 的共轭直径所在的直线,l 分别交直线AC 、BC 于E 和F ,又D 为l 上一点,则CD 与椭圆Γ相切的充要条件是D 为EF 的中点.46.过椭圆22221x y a b+=(a >b >0)的右焦点F 作直线交该椭圆右支于M,N 两点,弦MN 的垂直平分线交x 轴于P ,则||||2PF eMN =. 47.设A (x 1 ,y 1)是椭圆22221x y a b +=(a >b >0)上任一点,过A 作一条斜率为2121b x a y -的直线L ,又设d 是原点到直线 L 的距离, 12,r r 分别是Aab =.48.已知椭圆22221x y a b +=( a >b >0)和2222x y a bλ+=(01λ<< ),一直线顺次与它们相交于A 、B 、C 、D 四点,则│AB │=|CD │.49.已知椭圆22221x y a b+=( a >b >0) ,A 、B 、是椭圆上的两点,线段AB 的垂直平分线与x 轴相交于点0(,0)P x , 则22220a b a b x a a ---<<. 50.设P 点是椭圆22221x y a b+=( a >b >0)上异于长轴端点的任一点,F 1、F 2为其焦点记12F PF θ∠=,则(1)2122||||1cos b PF PF θ=+.(2) 122tan 2PF F S b γ∆=.51.设过椭圆的长轴上一点B (m,o )作直线与椭圆相交于P 、Q 两点,A 为椭圆长轴的左顶点,连结AP 和AQ 分别交相应于过B 点的直线MN :x n =于M ,N 两点,则90MBN ∠=222()a m a a m b n a -⇔=++. 52.L 是经过椭圆22221x y a b+=( a >b >0)长轴顶点A 且与长轴垂直的直线,E 、F 是椭圆两个焦点,e 是离心率,点P L ∈,若EPF α∠=,则α是锐角且sin e α≤或sin arc e α≤(当且仅当||abPH c=时取等号).53.L 是椭圆22221x y a b+=( a >b >0)的准线,A 、B 是椭圆的长轴两顶点,点P L ∈,e 是离心率,EPF α∠=,H 是L 与X 轴的交点c 是半焦距,则α是锐角且sin e α≤或sin arc e α≤(当且仅当||abPH c=时取等号).54.L 是椭圆22221x y a b+=( a >b >0)的准线,E 、F 是两个焦点,H 是L 与x 轴的交点,点P L ∈,EPF α∠=,离心率为e ,半焦距为c ,则α为锐角且2sin e α≤或2sin arc e α≤(当且仅当||PH =.55.已知椭圆22221x y a b+=( a >b >0),直线L 通过其右焦点F 2,且与椭圆相交于A 、B 两点,将A 、B 与椭圆左焦点F 1连结起来,则2222112(2)||||a b b F A F B a -≤⋅≤(当且仅当AB ⊥x 轴时右边不等式取等号,当且仅当A 、F 1、B 三点共线时左边不等式取等号).56.设A 、B 是椭圆22221x y a b+=( a >b >0)的长轴两端点,P 是椭圆上的一点,PAB α∠=,PBA β∠=,BPA γ∠=,c 、e 分别是椭圆的半焦距离心率,则有(1)22222|cos |||s ab PA a c co αγ=-.(2)2tan tan 1e αβ=-.(3) 22222cot PAB a b S b a γ∆=-.57.设A 、B 是椭圆22221x y a b+=( a >b >0)长轴上分别位于椭圆内(异于原点)、外部的两点,且A x 、B x 的横坐标2A B x x a ⋅=,(1)若过A 点引直线与这椭圆相交于P 、Q 两点,则PBA QBA ∠=∠;(2)若过B 引直线与这椭圆相交于P 、Q 两点,则180PBA QBA ∠+∠=.58.设A 、B 是椭圆22221x y a b+=( a >b >0)长轴上分别位于椭圆内(异于原点),外部的两点,(1)若过A 点引直线与这椭圆相交于P 、Q 两点,(若B P 交椭圆于两点,则P 、Q 不关于x 轴对称),且PBA QBA ∠=∠,则点A 、B 的横坐标A x 、B x 满足2A B x x a ⋅=;(2)若过B 点引直线与这椭圆相交于P 、Q 两点,且180PBA QBA ∠+∠=,则点A 、B 的横坐标满足2A B x x a ⋅=.59.设',A A 是椭圆22221x y a b+=的长轴的两个端点,'QQ 是与'AA 垂直的弦,则直线AQ 与''AQ 的交点P 的轨迹是双曲线22221x y a b-=.60.过椭圆22221x y a b+=( a >b >0)的左焦点F 作互相垂直的两条弦AB 、CD 则2222282()||||ab a b AB CD a b a+≤+≤+. 61.到椭圆22221x y a b +=( a >b >0)两焦点的距离之比等于a cb-(c 为半焦距)的动点M的轨迹是姊妹圆222()x a y b ±+=.62.到椭圆22221x y a b +=( a >b >0)的长轴两端点的距离之比等于a cb-(c 为半焦距)的动点M 的轨迹是姊妹圆222()()a b x y e e±+=.63.到椭圆22221x y a b +=( a >b >0)的两准线和x 轴的交点的距离之比为a cb-(c 为半焦距)的动点的轨迹是姊妹圆22222()()a b x y e e ±+=(e 为离心率).64.已知P 是椭圆22221x y a b+=( a >b >0)上一个动点,',A A 是它长轴的两个端点,且AQ AP ⊥,''AQ A P ⊥,则Q 点的轨迹方程是222241x b y a a+=.65.椭圆的一条直径(过中心的弦)的长,为通过一个焦点且与此直径平行的弦长和长轴之长的比例中项.66.设椭圆22221x y a b+=( a >b >0)长轴的端点为',A A ,11(,)P x y 是椭圆上的点过P 作斜率为2121b x a y -的直线l ,过',A A 分别作垂直于长轴的直线交l 于',M M ,则(1)''2||||AM A M b =.(2)四边形''MAA M 面积的最小值是2ab .67.已知椭圆22221x y a b+=( a >b >0)的右准线l 与x 轴相交于点E ,过椭圆右焦点F 的直线与椭圆相交于A 、B 两点,点C 在右准线l 上,且BC x ⊥轴,则直线AC 经过线段EF 的中点.68.OA 、OB 是椭圆2222()1x a y a b-+=( a >0,b >0)的两条互相垂直的弦,O 为坐标原点,则(1)直线AB 必经过一个定点2222(,0)ab a b +.(2) 以O A 、O B 为直径的两圆的另一个交点Q 的轨迹方程是222222222()()ab ab x y a b a b-+=++(0)x ≠.69.(,)P m n 是椭圆2222()1x a y a b-+=(a >b >0)上一个定点,P A 、P B 是互相垂直的弦,则(1)直线AB 必经过一个定点2222222222()()(,)ab m a b n b a a b a b+--++.(2)以P A 、P B 为直径的两圆的另一个交点Q 的轨迹方程是22224222222222222[()]()()()ab a m b n a b n a b x y a b a b a b ++--+-=+++(x m ≠且y n ≠).70.如果一个椭圆短半轴长为b ,焦点F 1、F 2到直线L 的距离分别为d 1、d 2,那么(1)212d d b =,且F 1、F 2在L 同侧⇔直线L 和椭圆相切.(2)212d d b >,且F 1、F 2在L 同侧⇔直线L 和椭圆相离,(3)212d d b <,或F 1、F 2在L 异侧⇔直线L 和椭圆相交.71.AB 是椭圆22221x y a b+=(a >b >0)的长轴,N 是椭圆上的动点,过N 的切线与过A 、B的切线交于C 、D 两点,则梯形ABDC 的对角线的交点M 的轨迹方程是22241(0)x a y y +=≠. 72.设点00(,)P x y 为椭圆22221x y a b +=( a >b >0)的内部一定点,AB 是椭圆22221x y a b+=过定点00(,)P x y 的任一弦,当弦AB 平行(或重合)于椭圆长轴所在直线时22222200max 2()(||||)a b a y b x PA PB b -+⋅=.当弦AB 垂直于长轴所在直线时,22222200min 2()(||||)a b a y b x PA PB b -+⋅=.73.椭圆焦三角形中,以焦半径为直径的圆必与以椭圆长轴为直径的圆相内切. 74.椭圆焦三角形的旁切圆必切长轴于非焦顶点同侧的长轴端点. 75.椭圆两焦点到椭圆焦三角形旁切圆的切线长为定值a+c 与a-c. 76.椭圆焦三角形的非焦顶点到其内切圆的切线长为定值a-c. 77.椭圆焦三角形中,内点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率). 注:在椭圆焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点.78.椭圆焦三角形中,内心将内点与非焦顶点连线段分成定比e. 79.椭圆焦三角形中,半焦距必为内、外点到椭圆中心的比例中项.80.椭圆焦三角形中,椭圆中心到内点的距离、内点到同侧焦点的距离、半焦距及外点到同侧焦点的距离成比例.81.椭圆焦三角形中,半焦距、外点与椭圆中心连线段、内点与同侧焦点连线段、外点与同侧焦点连线段成比例.82.椭圆焦三角形中,过任一焦点向非焦顶点的外角平分线引垂线,则椭圆中心与垂足连线必与另一焦半径所在直线平行.83.椭圆焦三角形中,过任一焦点向非焦顶点的外角平分线引垂线,则椭圆中心与垂足的距离为椭圆长半轴的长.84.椭圆焦三角形中,过任一焦点向非焦顶点的外角平分线引垂线,垂足就是垂足同侧焦半径为直径的圆和椭圆长轴为直径的圆的切点.85.椭圆焦三角形中,非焦顶点的外角平分线与焦半径、长轴所在直线的夹角的余弦的比为定值e.86.椭圆焦三角形中,非焦顶点的法线即为该顶角的内角平分线. 87.椭圆焦三角形中,非焦顶点的切线即为该顶角的外角平分线.88.椭圆焦三角形中,过非焦顶点的切线与椭圆长轴两端点处的切线相交,则以两交点为直径的圆必过两焦点.89. 已知椭圆22221(0,0)x y a b a b+=>>(包括圆在内)上有一点P ,过点P 分别作直线b y x a =及by x a=-的平行线,与直线OP 分别交于,R Q ,O 为原点,则:. (1)222||||OM ON a +=;(2)222||||OQ OR b +=.90. 过平面上的P 点作直线1:b l y x a =及2:bl y x a=-的平行线,分别交x 轴于,M N ,交y轴于,R Q .(1)若222||||OM ON a +=,则P 的轨迹方程是22221(0,0)x y a b a b+=>>.(2)若222||||OQ OR b +=,则P 的轨迹方程是22221(0,0)x y a b a b+=>>.91. 点P 为椭圆22221(0,0)x y a b a b+=>>(包括圆在内)在第一象限的弧上任意一点,过P 引x 轴、y 轴的平行线,交y 轴、x 轴于,M N ,交直线by x a=-于,Q R ,记 OMQ ∆与ONR∆的面积为12,S S ,则:122abS S +=.92. 点P 为第一象限内一点,过P 引x 轴、y 轴的平行线,交y 轴、x 轴于,M N ,交直线b y x a =-于,Q R ,记 OMQ ∆与ONR ∆的面积为12,S S ,已知122abS S +=,则P 的轨迹方程是22221(0,0)x y a b a b +=>>.双曲线1.12||||||2PF PF a -=2.标准方程:22221x y a b-=3.11||1PF e d => 4.点P 处的切线PT 平分△PF 1F 2在点P 处的内角.5.PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.6.以焦点弦PQ 为直径的圆必与对应准线相交.7.以焦点半径PF 1为直径的圆必与以实轴为直径的圆外切.8.设A 1、A 2为双曲线的左、右顶点,则△PF 1F 2在边PF 2(或PF 1)上的旁切圆,必与A 1A 2所在的直线切于A 2(或A 1).9.双曲线22221x y a b-=(a >0,b >0)的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线交双曲线于P 1、P 2时A 1P 1与A 2P 2交点的轨迹方程是22221x y a b+=.10.若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)上,则过0P 的双曲线的切线方程是00221x x y ya b-=.11.若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b-=.12.AB 是双曲线22221x y a b -=(a >0,b >0)的不平行于对称轴且过原点的弦,M 为AB 的中点,则22OM AB b k k a⋅=.13.若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b-=-. 14.若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)内,则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b-=-. 15.若PQ 是双曲线22221x y a b-=(b >a >0)上对中心张直角的弦,则122222121111(||,||)r OP r OQ r r a b +=-==. 16.若双曲线22221x y a b-=(b >a >0)上中心张直角的弦L 所在直线方程为1Ax By +=(0)AB ≠,则(1) 222211A B a b -=+;(2) 2222||L a A b B =-. 17.给定双曲线1C :222222b x a y a b -=(a >b >0), 2C :222222222()a b b x a y ab a b+-=-,则(i)对1C 上任意给定的点000(,)P x y ,它的任一直角弦必须经过2C 上一定点M(222202222(,)a b a b x y a b a b++---. (ii)对2C 上任一点'''000(,)P x y 在1C 上存在唯一的点'M ,使得'M 的任一直角弦都经过'0P 点. 18.设000(,)P x y 为双曲线22221x y a b-=(a >0,b >0)上一点,P 1P 2为曲线C 的动弦,且弦P 0P 1,P 0P 2斜率存在,记为k 1, k 2, 则直线P 1P 2通过定点00(,)M mx my -(1)m ≠的充要条件是212211m b k k m a +⋅=⋅-.19.过双曲线22221x y a b-=(a >0,b >o )上任一点00(,)A x y 任意作两条倾斜角互补的直线交双曲线于B,C 两点,则直线BC 有定向且2020BC b x k a y =-(常数).20.双曲线22221x y a b -=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=,则双曲线的焦点角形的面积为122t2F PF S b co γ∆=,2cot )2b Pc γ . 21.若P 为双曲线22221x y a b-=(a >0,b >0)右(或左)支上除顶点外的任一点,F 1, F 2是焦点,12PF F α∠=, 21PF F β∠=,则tan t 22c a co c a αβ-=+(或tan t 22c a co c a βα-=+).22.双曲线22221x y a b-=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-.当00(,)M x y 在左支上时,10||MF ex a =-+,20||MF ex a =--.23.若双曲线22221x y a b-=(a >0,b >0)的左、右焦点分别为F 1、F 2,左准线为L ,则当1<e1时,可在双曲线上求一点P ,使得PF 1是P 到对应准线距离d 与PF 2的比例中项.24.P 为双曲线22221x y a b-=(a >0,b >0)上任一点,F 1,F 2为二焦点,A 为双曲线内一定点,则21||2||||AF a PA PF -≤+,当且仅当2,,A F P 三点共线且P 和2,A F 在y 轴同侧时,等号成立. 25.双曲线22221x y a b -=(a >0,b >0)上存在两点关于直线l :0()y k x x =-对称的充要条件是22220222()a b x a b k +>-.26.过双曲线焦半径的端点作双曲线的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.27.过双曲线焦半径的端点作双曲线的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直.28.P 是双曲线sec tan x a y b ϕϕ=⎧⎨=⎩(a >0,b >0)上一点,则点P 对双曲线两焦点张直角的充要条件是2211tan e ϕ=-. 29.设A,B 为双曲线2222x y k a b-=(a >0,b >0,0,1k k >≠)上两点,其直线AB 与双曲线22221x y a b -=相交于,P Q ,则AP BQ =. 30.在双曲线22221x y a b-=中,定长为2m (m )0)的弦中点轨迹方程为2222222221()cos sin x y a b m a bαα--=-,其中2222tan b x a yα=-,当0y =时, 90α=.31.设S 为双曲线22221x y a b-=(a >0,b >o )的通径,定长线段L 的两端点A,B 在双曲线上移动,记|AB|=l ,00(,)M x y 是AB 中点,则当l S ≥Φ时,有20min ()2a l x c e =+222(c a b =+,ce a=);当l S <Φ时,有0min ()x =32.双曲线22221x y a b-=(a >0,b >0)与直线0Ax By C ++=有公共点的充要条件是22222A a B b C -≤.33.双曲线220022()()1x x y y a b---=(a >0,b >0)与直线0Ax By C ++=有公共点的充要条件是2222200()A a B b Ax By C -≤++.34.设双曲线22221x y a b-=(a >0,b >0)的两个焦点为F 1、F 2,P (异于长轴端点)为双曲线上任意一点,在△PF 1F 2中,记12F PF α∠=, 12PF F β∠=,12F F P γ∠=,则有sin (sin sin )ce aαγβ==±-.35.经过双曲线22221x y a b-=(a >0,b >0)的实轴的两端点A 1和A 2的切线,与双曲线上任一点的切线相交于P 1和P 2,则212||||PA PA b ⋅=.36.已知双曲线22221x y a b-=(b >a >0),O 为坐标原点,P 、Q 为双曲线上两动点,且OP OQ ⊥.(1)22221111||||OP OQ a b +=-;(2)|OP|2+|OQ|2的最小值为22224a b b a -;(3)OPQ S ∆的最小值是2222a b b a-. 37.MN 是经过双曲线22221x y a b-=(a >0,b >0)过焦点的任一弦(交于两支),若AB 是经过双曲线中心O 且平行于MN 的弦,则2||2||AB a MN =.38.MN 是经过双曲线22221x y a b -=(a >b >0)焦点的任一弦(交于同支),若过双曲线中心O的半弦OP MN ⊥,则2222111||||a MN OP a b -=-. 39.设双曲线22221x y a b-=(a >0,b >0),M(m,o)为实轴所在直线上除中心,顶点外的任一点,过M 引一条直线与双曲线相交于P 、Q 两点,则直线A 1P 、A 2Q(A 1 ,A 2为两顶点)的交点N 在直线l :2a x m=上.40.设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF.41.过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.42.设双曲线方程22221x y a b -=,则斜率为k(k ≠0)的平行弦的中点必在直线l :y kx =的共轭直线'y k x =上,而且2'2b kk a=.43.设A 、B 、C 、D 为双曲线22221x y a b-=(a >0,b >o )上四点,AB 、CD 所在直线的倾斜角分别为,αβ,直线AB 与CD 相交于P ,且P 不在双曲线上,则22222222||||cos sin ||||cos sin PA PB b a PC PD b a ββαα⋅-=⋅-.44.已知双曲线22221x y a b-=(a >0,b >0),点P 为其上一点F 1, F 2为双曲线的焦点,12F PF ∠的外(内)角平分线为l ,作F 1、F 2分别垂直l 于R 、S ,当P 跑遍整个双曲线时,R 、S 形成的轨迹方程是222x y a +=(322224223222{()[()]}[()]()a b x c a b x b c a c x c y ab c y -+-+-=).45.设△ABC 三顶点分别在双曲线Γ上,且AB 为Γ的直径,l 为AB 的共轭直径所在的直线,l 分别交直线AC 、BC 于E 和F ,又D 为l 上一点,则CD 与双曲线Γ相切的充要条件是D 为EF 的中点.46.过双曲线22221x y a b-=(a >0,b >0)的右焦点F 作直线交该双曲线的右支于M,N 两点,弦MN 的垂直平分线交x 轴于P ,则||||2PF eMN =. 47.设A (x 1 ,y 1)是双曲线22221x y a b -=(a >0,b >0)上任一点,过A 作一条斜率为2121b x a y 的直线L ,又设d 是原点到直线 L 的距离, 12,r r 分别是Aab =.48.已知双曲线22221x y a b -=(a >0,b >0)和2222x y a bλ-=(01λ<< ),一条直线顺次与它们相交于A 、B 、C 、D 四点,则│AB │=|CD │.49.已知双曲线22221x y a b-=(a >0,b >0),A 、B 是双曲线上的两点,线段AB 的垂直平分线与x 轴相交于点0(,0)P x , 则220a b x a +≥或220a b x a+≤-.50.设P 点是双曲线22221x y a b-=(a >0,b >0)上异于实轴端点的任一点,F 1、F 2为其焦点记12F PF θ∠=,则(1)2122||||1cos b PF PF θ=-.(2) 122cot 2PF F S b γ∆=.51.设过双曲线的实轴上一点B (m,o )作直线与双曲线相交于P 、Q 两点,A 为双曲线实轴的左顶点,连结AP 和AQ 分别交相应于过B 点的直线MN :x n =于M ,N 两点,则90MBN ∠=222()a m a a mb n a -⇔=-++.52.L 是经过双曲线22221x y a b-=(a >0,b >0)焦点F 且与实轴垂直的直线,A 、B 是双曲线实轴的两个焦点,e 是离心率,点P L ∈,若EPF α∠=,则α是锐角且1sin e α≤或1sinarc eα≤(当且仅当||abPH c=时取等号).53.L 是经过双曲线22221x y a b-=(a >0,b >0)的实轴顶点A 且与x 轴垂直的直线,E 、F 是双曲线的准线与x 轴交点,点P L ∈,e 是离心率,EPF α∠=,H 是L 与X 轴的交点c 是半焦距,则α是锐角且1sin e α≤或1sin arc e α≤(当且仅当||abPA c =时取等号).54.L 是双曲线22221x y a b-=(a >0,b >0)焦点F 1且与x 轴垂直的直线,E 、F 是双曲线准线与x 轴交点,H 是L 与x 轴的交点,点P L ∈,EPF α∠=,离心率为e ,半焦距为c ,则α为锐角且21sin e α≤或21sin arc e α≤(当且仅当1||PF =.55.已知双曲线22221x y a b-=(a >0,b >0),直线L 通过其右焦点F 2,且与双曲线右支交于A 、B 两点,将A 、B 与双曲线左焦点F 1连结起来,则222112(2)||||a b F A F B a +⋅≥(当且仅当AB ⊥x轴时取等号).56.设A 、B 是双曲线22221x y a b-=(a >0,b >0)的长轴两端点,P 是双曲线上的一点,PAB α∠=,PBA β∠=,BPA γ∠=,c 、e 分别是双曲线的半焦距离心率,则有(1)22222|cos ||||s |ab PA a c co αγ=-.(2) 2tan tan 1e αβ=-.(3) 22222cot PAB a b S b a γ∆=+.57.设A 、B 是双曲线22221x y a b-=(a >0,b >0)实轴上分别位于双曲线一支内(含焦点的区域)、外部的两点,且A x 、B x 的横坐标2A B x x a ⋅=,(1)若过A 点引直线与双曲线这一支相交于P 、Q 两点,则PBA QBA ∠=∠;(2)若过B 引直线与双曲线这一支相交于P 、Q 两点,则180PBA QBA ∠+∠=.58.设A 、B 是双曲线22221x y a b-=(a >0,b >0)实轴上分别位于双曲线一支内(含焦点的区域),外部的两点,(1)若过A 点引直线与双曲线这一支相交于P 、Q 两点,(若B P 交双曲线这一支于两点,则P 、Q 不关于x 轴对称),且PBA QBA ∠=∠,则点A 、B 的横坐标A x 、B x 满足2A B x x a ⋅=;(2)若过B 点引直线与双曲线这一支相交于P 、Q 两点,且180PBA QBA ∠+∠=,则点A 、B 的横坐标满足2A B x x a ⋅=.59.设',A A 是双曲线22221x y a b-=的实轴的两个端点,'QQ 是与'AA 垂直的弦,则直线AQ与''AQ 的交点P 的轨迹是双曲线22221x y a b+=.60.过双曲线22221x y a b-=(a >0,b >0)的右焦点F 作互相垂直的两条弦AB 、CD,则2228||||||ab AB CD a b ≤+-. 61.到双曲线22221x y a b -=(a >0,b >0)两焦点的距离之比等于c ab-(c 为半焦距)的动点M 的轨迹是姊妹圆222()()x ec y eb ±+=.62.到双曲线22221x y a b -=(a >0,b >0)的实轴两端点的距离之比等于c ab-(c 为半焦距)的动点M 的轨迹是姊妹圆222()x a y b ±+=.63.到双曲线22221x y a b -=(a >0,b >0)的两准线和x 轴的交点的距离之比为c ab-(c 为半焦距)的动点的轨迹是姊妹圆222()()b x a y e±+=(e 为离心率).64.已知P 是双曲线22221x y a b-=(a >0,b >0)上一个动点,',A A 是它实轴的两个端点,且AQ AP ⊥,''AQ A P ⊥,则Q 点的轨迹方程是222241x b y a a-=.65.双曲线的一条直径(过中心的弦)的长,为通过一个焦点且与此直径平行的弦长和实轴之长的比例中项.66.设双曲线22221x y a b-=(a >0,b >0)实轴的端点为',A A ,11(,)P x y 是双曲线上的点过P作斜率为2121b x a y 的直线l ,过',A A 分别作垂直于实轴的直线交l 于',M M ,则(1)''2||||AM A M b =.(2)四边形''MAA M 面积的最小值是2ab .67.已知双曲线22221x y a b-=(a >0,b >0)的右准线l 与x 轴相交于点E ,过双曲线右焦点F的直线与双曲线相交于A 、B 两点,点C 在右准线l 上,且BC x ⊥轴,则直线AC 经过线段EF 的中点.68.OA 、OB 是双曲线2222()1x a y a b--=(a >0,b >0,且a b ≠)的两条互相垂直的弦,O 为坐标原点,则(1)直线AB 必经过一个定点2222(,0)ab b a-.(2) 以O A 、O B 为直径的两圆的另一个交点Q 的轨迹方程是222222222()()ab ab x y b a b a -+=--(0)x ≠.69.(,)P m n 是双曲线2222()1x a y a b--=(a >0,b >0)上一个定点,P A 、P B 是互相垂直的弦,则(1)直线AB 必经过一个定点2222222222()()(,)ab m b a n a b b a b a+-+--.(2)以P A 、P B 为直径的两圆的另一个交点Q 的轨迹方程是22224222222222222[()]()()()ab a m b n a b n a b x y b a b a b a -++-+-=---(x m ≠且y n ≠). 70.如果一个双曲线虚半轴长为b ,焦点F 1、F 2到直线L 的距离分别为d 1、d 2,那么(1)212d d b =,且F 1、F 2在L 同侧⇔直线L 和双曲线相切,或L 是双曲线的渐近线.(2)212d d b >,且F 1、F 2在L 同侧⇔直线L 和双曲线相离,(3)212d d b <,或F 1、F 2在L 异侧⇔直线L 和双曲线相交.71.AB 是双曲线22221x y a b-=(a >0,b >0)的实轴,N 是双曲线上的动点,过N 的切线与过A 、B 的切线交于C 、D 两点,则梯形ABDC 的对角线的交点M 的轨迹方程是22241(0)x a y y -=≠.72.设点00(,)P x y 为双曲线22221x y a b-=(a >0,b >0)的内部((含焦点的区域))一定点,AB 是双曲线过定点00(,)P x y 的任一弦.(1)如a b ≥,则当弦AB 垂直于双曲线实轴所在直线时22222200min 2()(||||)b x a y a b PA PB a --⋅=.(2)如a b <,则当弦AB 平行(或重合)于双曲线实轴所在直线时,22222200min 2()(||||)b x a y a b PA PB b --⋅=.73.双曲线焦三角形中,以焦半径为直径的圆必与以双曲线实轴为直径的圆相外切. 74.双曲线焦三角形的内切圆必切长轴于非焦顶点同侧的实轴端点. 75.双曲线两焦点到双曲线焦三角形内切圆的切线长为定值a+c 与a-c. 76.双曲线焦三角形的非焦顶点到其内切圆的切线长为定值a-c.77.双曲线焦三角形中,外点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率).注:在双曲线焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点.78.双曲线焦三角形中,其焦点所对的旁心将外点与非焦顶点连线段分成定比e. 79.双曲线焦三角形中,半焦距必为内、外点到双曲线中心的比例中项.80.双曲线焦三角形中,双曲线中心到内点的距离、内点到同侧焦点的距离、半焦距及外点到同侧焦点的距离成比例.81.双曲线焦三角形中,半焦距、外点与双曲线中心连线段、内点与同侧焦点连线段、外点与同侧焦点连线段成比例.82.双曲线焦三角形中,过任一焦点向非焦顶点的内角平分线引垂线,则双曲线中心与垂足连线必与另一焦半径所在直线平行.83.双曲线焦三角形中,过任一焦点向非焦顶点内角平分线引垂线,则双曲线中心与垂足的距离为双曲线实半轴的长.84.双曲线焦三角形中,过任一焦点向非焦顶点的内角平分线引垂线,垂足就是垂足同侧焦半径为直径的圆和双曲线实轴为直径的圆的切点.85.双曲线焦三角形中,非焦顶点的内角平分线与焦半径、实轴所在直线的夹角的余弦的比为定值e.86.双曲线焦三角形中,非焦顶点的法线即为该顶角的外角平分线. 87.双曲线焦三角形中,非焦顶点的切线即为该顶角的内角平分线.88.双曲线焦三角形中,过非焦顶点的切线与双曲线实轴两端点处的切线相交,则以两交点为直径的圆必过两焦点.89. 已知双曲线22221(0,0)x y a b a b-=>>上有一点P ,过P 分别引其渐近线的平行线,分别交x 轴于,M N ,交y 轴于,R Q , O 为原点,则:(1)2||||OM ON a ⋅=; (2)2||||OQ OR b ⋅=.90. 过平面上的P 点作直线1:b l y x a =及2:bl y x a=-的平行线,分别交x 轴于,M N ,交y轴于,R Q .(1)若2||||OM ON a ⋅=,则P 的轨迹方程是22221(0,0)x y a b a b-=>>.(2)若2||||OQ OR b ⋅=,则P 的轨迹方程是22221(0,0)x y a b a b-=>>.91. 点P 为双曲线22221(0,0)x y a b a b-=>>在第一象限的弧上任意一点,过P 引x 轴、y 轴的平行线,交y 轴、x 轴于,M N ,交直线by x a=-于,Q R ,记 OMQ ∆与ONR ∆的面积为12,S S ,则:12||2abS S -=.92. 点P 为第一象限内一点,过P 引x 轴、y 轴的平行线,交y 轴、x 轴于,M N ,交直线b y x a =-于,Q R ,记 OMQ ∆与ONR ∆的面积为12,S S ,已知12||2abS S -=,则P 的轨迹方程是22221(0,0)x y a b a b -=>>或22221(0,0)y x a b b a-=>>.。
椭圆的92条神仙级结论
椭圆的92条神仙级结论
椭圆是高中数学的重要内容,以下是椭圆的92条神仙级结论:
1. 若P是椭圆上一点,F1,F2是椭圆的两个焦点,则|PF1|+|PF2|=2a。
2. 椭圆的焦点三角形面积公式:$\underline{S=b^2\tan\frac{\theta}{2}}$。
3. 椭圆的准线方程:$\underline{x=±a^2\frac{c}{a}}$。
4. 椭圆的焦半径公式:$\underline{|PF1|=a+ex}$,$\underline{|PF2|=a-ex}$(F1为左焦点,F2为右焦点,P为椭圆上任意一点)。
5. 椭圆的切线方程:$\underline{椭圆上一点P(x_0,y_0)处的切线方程是x_0x+y_0y=1}$。
6. 椭圆的焦准距:$\underline{椭圆的焦准距指的是椭圆的焦点到相应准线的距离,其数值为离心率的倒数,即$p={\frac{1}{e}}$。
$0\lt e\lt1$。
椭圆的性质还有很多,同学们可以在学习中不断总结和积累。
双曲线椭圆的92条经典性质及证明
AB
是经过双曲线中心
O
且平行于
MN
的
弦,则 | AB |2 2a | MN | .
38.MN
是经过双曲线
x2 a2
y2 b2
1(a>b>0)焦点的任一弦(交于同支),若过双曲线中心
O
的半弦 OP
MN
,则
2 a | MN
|
|
1 OP
|2
1 b2
1 a2
.
39.设双曲线
x2 a2
y2 b2
1(a>0,b>0),M(m,o)为实轴所在直线上除中心,顶点外的任一点,过
关注公众号“品数学”,获取更多干货!
双曲线的 92 条经典性质及证明
1. PF1 PF2 2a
2.标准方程
x2 a2
y2 b2
1
3. PF1 e 1 d1
4.点 P 处的切线 PT 平分△PF1F2 在点 P 处的内角.
5.PT 平分△PF1F2 在点 P 处的内角,则焦点在直线 PT 上的射影 H 点的轨迹是以实轴为直径的圆,除去实轴的两个端点.
,coth t bx , y 0时t 0,弦两端点在同支上 ay
31.设
S
为双曲线
x2 a2
y2 b2
1(a>0,b>0)的通径,定长线段
L 的两端点
A,B
在双曲线右支上移动,记|AB|= l ,M (x0 , y0 )
是
AB
中点,则当 l
S
时,有 ( x0 )min
a2 c
l 2e
(c2
30.在双曲线
x2 a2
y2 b2
1中,定长为
2m( m
0 )的弦中点轨迹方程为
高中数学椭圆中的经典结论
高中数学中椭圆的经典结论(一)1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相离.4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b+=. 6. 若000(,)P x y 在椭圆22221x y a b+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y a b+=. 7. 椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2F PF S b γ∆=.8. 椭圆22221x y a b+=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11. AB 是椭圆22221x y a b+=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a⋅=-, 即0202y a x b K AB -=。
12. 若000(,)P x y 在椭圆22221x y a b+=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b+=+. 13. 若000(,)P x y 在椭圆22221x y a b+=内,则过Po 的弦中点的轨迹方程22002222x x y y x y a b a b+=+.高中数学中椭圆的经典结论(二) 1. 椭圆22221x y a b+=(a >b >o )的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线交椭圆于P 1、P 2时A 1P 1与A 2P 2交点的轨迹方程是22221x y a b -=.2. 过椭圆22221x y a b+= (a >0, b >0)上任一点00(,)A x y 任意作两条倾斜角互补的直线交椭圆于B,C 两点,则直线BC 有定向且2020BC b x k a y =(常数). 3. 若P 为椭圆22221x y a b+=(a >b >0)上异于长轴端点的任一点,F 1, F 2是焦点, 12PF F α∠=, 21PF F β∠=,则tan t 22a c co a c αβ-=+. 4. 设椭圆22221x y a b+=(a >b >0)的两个焦点为F 1、F 2,P (异于长轴端点)为椭圆上任意一点,在△PF 1F 2中,记12F PF α∠=, 12PF F β∠=,12F F P γ∠=,则有sin sin sin c e aαβγ==+.5. 若椭圆22221x y a b+=(a >b >0)的左、右焦点分别为F 1、F 2,左准线为L ,则当0<e 1时,可在椭圆上求一点P ,使得PF 1是P 到对应准线距离d 与PF 2的比例中项.6. P 为椭圆22221x y a b+=(a >b >0)上任一点,F 1,F 2为二焦点,A 为椭圆内一定点,则2112||||||2||a AF PA PF a AF -≤+≤+,当且仅当2,,A F P 三点共线时,等号成立.7. 椭圆220022()()1x x y y a b --+=与直线0Ax By C ++=有公共点的充要条件是2222200()A a B b Ax By C +≥++.8. 已知椭圆22221x y a b+=(a >b >0),O 为坐标原点,P 、Q 为椭圆上两动点,且OP OQ ⊥.则(1)22221111||||OP OQ a b+=+; (2)|OP|2+|OQ|2的最大值为22224a b a b +; (3)OPQ S ∆的最小值是2222a b a b+.。
高中数学椭圆中的经典结论
高中数学中椭圆的经典结论(一)1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相离.4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5. 若000(,)P x y 在椭圆22221x y a b+=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22221x y a b+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y a b+=. 7. 椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2F PF S b γ∆=. 8. 椭圆22221x y a b+=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11. AB 是椭圆22221x y a b+=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ⋅=-,即0202y a x b K AB -=。
12. 若000(,)P x y 在椭圆22221x y a b+=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b+=+. 13. 若000(,)P x y 在椭圆22221x y a b +=内,则过Po 的弦中点的轨迹方程22002222x x y y x y a b a b+=+.高中数学中椭圆的经典结论(二) 1. 椭圆22221x y a b+=(a >b >o )的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线交椭圆于P 1、P 2时A 1P 1与A 2P 2交点的轨迹方程是22221x y a b-=. 2. 过椭圆22221x y a b+= (a >0, b >0)上任一点00(,)A x y 任意作两条倾斜角互补的直线交椭圆于B,C 两点,则直线BC 有定向且2020BC b x k a y =(常数). 3. 若P 为椭圆22221x y a b+=(a >b >0)上异于长轴端点的任一点,F 1, F 2是焦点, 12PF F α∠=, 21PF F β∠=,则tan t 22a c co a c αβ-=+. 4. 设椭圆22221x y a b+=(a >b >0)的两个焦点为F 1、F 2,P (异于长轴端点)为椭圆上任意一点,在△PF 1F 2中,记12F PF α∠=, 12PF F β∠=,12F F P γ∠=,则有sin sin sin c e aαβγ==+. 5. 若椭圆22221x y a b+=(a >b >0)的左、右焦点分别为F 1、F 2,左准线为L ,则当0<e 1时,可在椭圆上求一点P ,使得PF 1是P 到对应准线距离d 与PF 2的比例中项.6. P 为椭圆22221x y a b+=(a >b >0)上任一点,F 1,F 2为二焦点,A 为椭圆内一定点,则2112||||||2||a AF PA PF a AF -≤+≤+,当且仅当2,,A F P 三点共线时,等号成立.7. 椭圆220022()()1x x y y a b --+=与直线0Ax By C ++=有公共点的充要条件是2222200()A a B b Ax By C +≥++.8. 已知椭圆22221x y a b+=(a >b >0),O 为坐标原点,P 、Q 为椭圆上两动点,且OP OQ ⊥.则(1)22221111||||OP OQ a b +=+; (2)|OP|2+|OQ|2的最大值为22224a b a b +; (3)OPQ S ∆的最小值是2222a b a b +.。
高中数学椭圆常结论及其结论(完全版)
⾼中数学椭圆常结论及其结论(完全版)2椭圆常⽤结论⼀、椭圆的第⼆定义:⼀动点到定点的距离和它到⼀条定直线的距离的⽐是⼀个)1,0(内常数e ,那么这个点的轨迹叫做椭圆其中定点叫做焦点,定直线叫做准线,常数e 就是离⼼率(点与线成对出现,左对左,右对右)对于12222=+by a x ,左准线c a x l 21:-=;右准线c a x l 22:=对于12222=+bx a y ,下准线c a y l 21:-=;上准线c a y l 22:=椭圆的准线⽅程有两条,这两条准线在椭圆外部,与短轴平⾏,且关于短轴对称焦点到准线的距离cb c c a c c a p 2222=-=-=(焦参数)⼆、焦半径圆锥曲线上任意⼀点M 与圆锥曲线焦点的连线段,叫做圆锥曲线焦半径。
椭圆的焦半径公式:焦点在x 轴(左焦半径)01ex a r +=,(右焦半径)02ex a r -=,其中e 是离⼼率焦点在y 轴 1020,MF a ey MF a ey =+=-其中21,F F 分别是椭圆的下上焦点焦半径公式的两种形式的区别只和焦点的左右有关,⽽与点在左在右⽆关可以记为:左加右减,上减下加()c a PF c a PF -≥-≥21,推导:以焦点在x 轴为例如上图,设椭圆上⼀点()00,y x P ,在y 轴左边. 根据椭圆第⼆定义,e PMPF =1,则 02020201ex a c a x a c c a x e c c x e PM e PF +=+= += ???--== xO F 1F 2Py A 2A 1B 1B 2同理可得02ex a PF -=三、通径:圆锥曲线(除圆外)中,过焦点并垂直于轴的弦,以焦点在x 轴为例,弦AB 坐标:-a b c A 2,,a b c B 2,弦AB 长度: ab AB 22=四、若P 是椭圆:上的点.为焦点,若,则的⾯积为. 推导:如图θsin 212121??=PF PF S F PF 根据余弦定理,得θcos =21221222PF PF F F PF PF ?-+=2122121242)PF PF c PF PF PF PF ?-?-+=2122122424PF PF c PF PF a ?-?-=21212224PF PF PF PF b ??-得θcos 12221+=?b PF PFθsin 212121??=?PF PF S F PF =θθsin cos 12212?+?b =θθcos 1sin 2+?b =2tan 2θb12222=+b y a x 21,F F θ=∠21PF F 21F PF ?2tan2θb xO F 1F 2 P y A 2A 1B 1B 2五、弦长公式直线与圆锥曲线相交所得的弦长直线具有斜率k ,直线与圆锥曲线的两个交点坐标分别为1122(,),(,)A x y B x y ,则它的弦长12AB x =-==注:实质上是由两点间距离公式推导出来的,只是⽤了交点坐标设⽽不求的技巧⽽已(因为1212()y y x x -=-k ,运⽤韦达定理来进⾏计算.当直线斜率不存在是,则12AB y y =-. 六、圆锥曲线的中点弦问题: (1)椭圆中点弦的斜率公式:设00(,)M x y 为椭圆22221x y a b +=弦AB (AB 不平⾏y 轴)的中点,则有:22AB OMb k k a=-证明:设11(,)A x y ,22(,)B x y ,则有1212ABy y k x x -=-,22112222222211x y a b x y a b ?+=+=?? 两式相减得:22221212220x x y y a b --+=整理得:2221222212y y b x x a-=--,即2121221212()()()()y y y y b x x x x a+-=-+-,因为00(,)M x y 是弦AB 的中点,所以0012001222OMy x y y k x y x x +===+,所以22AB OM b k k a=-(2)遇到中点弦问题常⽤“韦达定理”或“点差法”求解。
椭圆92个二级结论及证明
椭圆1.122PF PF a += 2.标准方程22221x y a b += 3.111PF e d =< 4.点P 处的切线PT 平分△PF 1F 2在点P 处的外角.5.PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点. 6.以焦点弦PQ 为直径的圆必与对应准线相离. 7.以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.8.设A 1、A 2为椭圆的左、右顶点,则△PF 1F 2在边PF 2(或PF 1)上的旁切圆,必与A 1A 2所在的直线切于A 2(或A 1).9.椭圆22221x y a b+=(a >b >0)的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线交椭圆于P 1、P 2时A 1P 1与A 2P 2交点的轨迹方程是22221x y a b-=.10.若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=.11.若000(,)P x y 在椭圆22221x y a b+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b+=. 12.AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M 为AB 的中点,则22OM AB b k k a⋅=-.13.若000(,)P x y 在椭圆22221x y a b+=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b +=+.14.若000(,)P x y 在椭圆22221x y a b+=内,则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b +=+.15.若PQ 是椭圆22221x y a b +=(a >b >0)上对中心张直角的弦,则122222121111(||,||)r OP r OQ r r a b +=+==.16.若椭圆22221x y+=(a >b >0)上中心张直角的弦L 所在直线方程为1Ax By +=(0)AB ≠,则(1) 222211A B a b +=+;(2)L =17.给定椭圆1C :222222b x a y a b +=(a >b >0), 2C :222222222()a b b x a y ab a b-+=+,则(i)对1C 上任意给定的点00(,)P x y ,它的任一直角弦必须经过2C 上一定点M 222202222(,)a b a b x y a b a b---++. (ii)对2C 上任一点'''00(,)P x y 在1C 上存在唯一的点'M ,使得'M 的任一直角弦都经过'P 点.18.设00(,)P x y 为椭圆(或圆)C:22221x y a b+= (a >0,. b >0)上一点,P 1P 2为曲线C 的动弦,且弦PP 1, PP 2斜率存在,记为k 1, k 2, 则直线P 1P 2通过定点00(,)M mx my -(1)m ≠的充要条件是212211m b k k m a+⋅=-⋅-. 19.过椭圆22221x y a b += (a >0, b >0)上任一点00(,)A x y 任意作两条倾斜角互补的直线交椭圆于B,C 两点,则直线BC 有定向且2020BC b x k a y =(常数).20.椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点三角形的面积为122tan 2F PF S b γ∆=,2(tan )2b P c γ± . 21.若P 为椭圆22221x y a b+=(a >b >0)上异于长轴端点的任一点,F 1, F 2是焦点, 12PF F α∠=, 21PF F β∠=,则tan tan 22a c a c αβ-=+. 22.椭圆22221x y a b +=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c ,00(,)M x y ).23.若椭圆22221x y a b+=(a >b >0)的左、右焦点分别为F 1、F 2,左准线为L ,则当11e ≤<时,可在椭圆上求一点P ,使得PF 1是P 到对应准线距离d 与PF 2的比例中项.24.P 为椭圆22221x y a b+=(a >b >0)上任一点,F 1,F 2为二焦点,A 为椭圆内一定点,则2122||||||2||a AF PA PF a AF -≤+≤+,当且仅当2,,A F P 三点共线时,等号成立.25.椭圆22221x y a b +=(a >b >0)上存在两点关于直线l :0()y k x x =-对称的充要条件是22220222()a b x a b k -≤+.26.过椭圆焦半径的端点作椭圆的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.27.过椭圆焦半径的端点作椭圆的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直. 28.P 是椭圆cos sin x a y b ϕϕ=⎧⎨=⎩(a >b >0)上一点,则点P 对椭圆两焦点张直角的充要条件是2211sin e ϕ=+. 29.设A,B 为椭圆2222(0,1)x y k k k a b +=>≠上两点,其直线AB 与椭圆22221x y a b+=相交于,P Q ,则AP BQ =.30.在椭圆22221x y a b +=中,定长为2m (o <m ≤a )的弦中点轨迹方程为()2222222221()cos sin x y m a b a b αα⎡⎤=-++⎢⎥⎣⎦,其中tan bxayα=-,当0y =时, 90α=. 31.设S 为椭圆22221x y a b+=(a >b >0)的通径,定长线段L 的两端点A,B 在椭圆上移动,记|AB|=l ,00(,)M x y 是AB中点,则当l S ≥Φ时,有20max ()2a l x c e =-222(c a b =-,c e a =);当l S <Φ时,有0max ()x =0min ()0x =.32.椭圆22221x y a b+=与直线0Ax By C ++=有公共点的充要条件是22222A aB bC +≥.33.椭圆220022()()1x x y y a b --+=与直线0Ax By C ++=有公共点的充要条件是2222200()A a B b Ax By C +≥++. 34.设椭圆22221x y a b+=(a >b >0)的两个焦点为F 1、F 2,P (异于长轴端点)为椭圆上任意一点,在△PF 1F 2中,记12F PF α∠=,12PF F β∠=,12F F P γ∠=,则有sin sin sin ce aαβγ==+.35.经过椭圆222222b x a y a b +=(a >b >0)的长轴的两端点A 1和A 2的切线,与椭圆上任一点的切线相交于P 1和P 2,则21122||||P A P A b ⋅=.36.已知椭圆22221x y a b +=(a >b >0),O 为坐标原点,P 、Q 为椭圆上两动点,且OP OQ ⊥.(1)22221111||||OP OQ a b +=+;(2)|OP|2+|OQ|2的最小值为22224a b a b +;(3)OPQS ∆的最小值是2222a ba b +. 37.MN 是经过椭圆222222b x a y a b +=(a >b >0)焦点的任一弦,若AB 是经过椭圆中心O 且平行于MN 的弦,则2||2||AB a MN =.38.MN 是经过椭圆222222b x a y a b +=(a >b >0)焦点的任一弦,若过椭圆中心O 的半弦OP MN ⊥,则2222111||||a MN OP a b +=+.39.设椭圆22221x y a b+=(a >b >0),M(m,o) 或(o, m)为其对称轴上除中心,顶点外的任一点,过M 引一条直线与椭圆相交于P 、Q 两点,则直线A 1P 、A 2Q(A 1 ,A 2为对称轴上的两顶点)的交点N 在直线l :2a x m =(或2b y m=)上.40.设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.41.过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.42.设椭圆方程22221x y a b +=,则斜率为k(k≠0)的平行弦的中点必在直线l :y kx =的共轭直线'y k x =上,而且2'2b kk a=-.43.设A 、B 、C 、D 为椭圆22221x y a b+=上四点,AB 、CD 所在直线的倾斜角分别为,αβ,直线AB 与CD 相交于P,且P 不在椭圆上,则22222222cos sin cos sin PA PB b a PC PD b a ββαα⋅+=⋅+. 44.已知椭圆22221x y a b+=(a >b >0),点P 为其上一点F 1, F 2为椭圆的焦点,12F PF ∠的外(内)角平分线为l ,作F 1、F 2分别垂直l 于R 、S ,当P 跑遍整个椭圆时,R 、S 形成的轨迹方程是222x y a +=(()()2222222222a y b x x c c y a y b x c ⎡⎤+±⎣⎦=+±).45.设△ABC 内接于椭圆Γ,且AB 为Γ的直径,l 为AB 的共轭直径所在的直线,l 分别交直线AC 、BC 于E 和F ,又D 为l 上一点,则CD 与椭圆Γ相切的充要条件是D 为EF 的中点.46.过椭圆22221x y a b+=(a >b >0)的右焦点F 作直线交该椭圆右支于M,N 两点,弦MN 的垂直平分线交x 轴于P ,则||||2PF eMN =.47.设A (x 1 ,y 1)是椭圆22221x y a b +=(a >b >0)上任一点,过A 作一条斜率为2121b x a y -的直线L ,又设d 是原点到直线 L的距离, 12,r r 分别是Aab =.48.已知椭圆22221x y a b +=( a >b >0)和2222x y a bλ+=(01λ<< ),一直线顺次与它们相交于A 、B 、C 、D 四点,则│AB│=|CD│.49.已知椭圆22221x y a b+=( a >b >0) ,A 、B 、是椭圆上的两点,线段AB 的垂直平分线与x 轴相交于点0(,0)P x , 则22220a b a b x a a---<<.50.设P 点是椭圆22221x y a b +=( a >b >0)上异于长轴端点的任一点,F 1、F 2为其焦点记12F PF θ∠=,则(1)2122||||1cos b PF PF θ=+.(2) 122tan 2PF F S b θ∆=.51.设过椭圆的长轴上一点B (m,o )作直线与椭圆相交于P 、Q 两点,A 为椭圆长轴的左顶点,连结AP 和AQ 分别交相应于过H 点的直线MN :x n =于M ,N 两点,则()222290()a n m a m MBN a mb n a --∠=⇔=++.52.L 是经过椭圆22221x y a b+=( a >b >0)长轴顶点A 且与长轴垂直的直线,E 、F 是椭圆两个焦点,e 是离心率,点P L ∈,若EPF α∠=,则α是锐角且sin e α≤或sin arc e α≤(当且仅当||PH b =时取等号).53.L 是椭圆22221x y a b+=( a >b >0)的准线,A 、B 是椭圆的长轴两顶点,点P L ∈,e 是离心率,EPF α∠=,H 是L与X 轴的交点c 是半焦距,则α是锐角且sin e α≤或sin arc e α≤(当且仅当||abPH c=时取等号).54.L 是椭圆22221x y a b+=( a >b >0)的准线,E 、F 是两个焦点,H 是L 与x 轴的交点,点P L ∈,EPF α∠=,离心率为e ,半焦距为c ,则α为锐角且2sin e α≤或2sin arc e α≤(当且仅当||PH =.55.已知椭圆22221x y a b+=( a >b >0),直线L 通过其右焦点F 2,且与椭圆相交于A 、B 两点,将A 、B 与椭圆左焦点F 1连结起来,则2222112(2)||||a b b F A F B a -≤⋅≤(当且仅当AB ⊥x 轴时右边不等式取等号,当且仅当A 、F 1、B 三点共线时左边不等式取等号).56.设A 、B 是椭圆22221x y a b+=( a >b >0)的长轴两端点,P 是椭圆上的一点,PAB α∠=, PBA β∠=,BPA γ∠=,c 、e 分别是椭圆的半焦距离心率,则有(1)22222|cos |||s ab PA a c co αα=-.(2) 2tan tan 1e αβ=-.(3) 22222cot PAB a b S b a γ∆=-. 57.设A 、B 是椭圆22221x y a b+=( a >b >0)长轴上分别位于椭圆内(异于原点)、外部的两点,且A x 、B x 的横坐标2A B x x a ⋅=,(1)若过A 点引直线与这椭圆相交于P 、Q 两点,则PBA QBA ∠=∠;(2)若过B 引直线与这椭圆相交于P 、Q 两点,则180PAB QAB ∠+∠=.58.设A 、B 是椭圆22221x y a b+=( a >b >0)长轴上分别位于椭圆内(异于原点),外部的两点,(1)若过A 点引直线与这椭圆相交于P 、Q 两点,(若B P 交椭圆于两点,则P 、Q 不关于x 轴对称),且PBA QBA ∠=∠,则点A 、B 的横坐标A x 、B x 满足2A B x x a ⋅=;(2)若过B 点引直线与这椭圆相交于P 、Q 两点,且180PAB QAB ∠+∠=,则点A 、B 的横坐标满足2A B x x a ⋅=.59.设',A A 是椭圆22221x y a b+=的长轴的两个端点,'QQ 是与'AA 垂直的弦,则直线AQ 与''AQ 的交点P 的轨迹是双曲线22221x y a b -=. 60.过椭圆22221x y a b+=( a >b >0)的左焦点F 作互相垂直的两条弦AB 、CD 则2222282()||||ab a b AB CD a b a +≤+≤+. 61.到椭圆22221x y a b +=( a >b >0)两焦点的距离之比等于a c b -(c 为半焦距)的动点M 的轨迹是姊妹圆222()x a y b ±+=.62.到椭圆22221x y a b +=( a >b >0)的长轴两端点的距离之比等于a cb -(c 为半焦距)的动点M 的轨迹是姊妹圆222()()a b x y e e±+=.63.到椭圆22221x y a b +=( a >b >0)的两准线和x 轴的交点的距离之比为a cb -(c 为半焦距)的动点的轨迹是姊妹圆22222()()a bx y e e±+=(e 为离心率).64.已知P 是椭圆22221x y a b +=( a >b >0)上一个动点,',A A 是它长轴的两个端点,且AQ AP ⊥,''AQ A P ⊥,则Q 点的轨迹方程是222241x b y a a+=.65.椭圆的一条直径(过中心的弦)的长,为通过一个焦点且与此直径平行的弦长和长轴之长的比例中项.66.设椭圆22221x y a b +=( a >b >0)长轴的端点为',A A ,11(,)P x y 是椭圆上的点过P 作斜率为2121b x a y -的直线l ,过',A A 分别作垂直于长轴的直线交l 于',M M ,则(1)''2||||AM A M b =.(2)四边形''MAA M 面积的最小值是2ab .67.已知椭圆22221x y a b+=( a >b >0)的右准线l 与x 轴相交于点E ,过椭圆右焦点F 的直线与椭圆相交于A 、B 两点,点C 在右准线l 上,且//BC x 轴,则直线AC 经过线段EF 的中点.68.OA 、OB 是椭圆2222()1x a y a b-+=( a >0,b >0)的两条互相垂直的弦,O 为坐标原点,则(1)直线AB 必经过一个定点2222(,0)ab a b +.(2) 以O A 、O B 为直径的两圆的另一个交点Q 的轨迹方程是222222222()()ab ab x y a b a b-+=++(0)x ≠. 69.(,)P m n 是椭圆2222()1x a y a b-+=(a >b >0)上一个定点,P A 、P B 是互相垂直的弦,则(1)直线AB 必经过一个定点2222222222()()(,)ab m a b n b a a b a b +--++.(2)以P A 、P B 为直径的两圆的另一个交点Q 的轨迹方程是 22224222222222222[()]()()()ab a m b n a b n a b x y a b a b a b ++--+-=+++(x m ≠且y n ≠). 70.如果一个椭圆短半轴长为b ,焦点F 1、F 2到直线L 的距离分别为d 1、d 2,那么(1)212d d b =,且F 1、F 2在L 同侧⇔直线L 和椭圆相切.(2)212d d b >,且F 1、F 2在L 同侧⇔直线L 和椭圆相离,(3)212d d b <,或F 1、F 2在L 异侧⇔直线L 和椭圆相交.71.AB 是椭圆22221x y a b+=(a >b >0)的长轴,N 是椭圆上的动点,过N 的切线与过A 、B 的切线交于C 、D 两点,则梯形ABDC 的对角线的交点M 的轨迹方程是222241(0)x y y a b+=≠.72.设点00(,)P x y 为椭圆22221x y a b +=( a >b >0)的内部一定点,AB 是椭圆22221x y a b+=过定点00(,)P x y 的任一弦,当弦AB 平行(或重合)于椭圆长轴所在直线时22222200max 2()(||||)a b a y b x PA PB b -+⋅=.当弦AB 垂直于长轴所在直线时,22222200min 2()(||||)a b a y b x PA PB a-+⋅=. 73.椭圆焦三角形中,以焦半径为直径的圆必与以椭圆长轴为直径的圆相内切. 74.椭圆焦三角形的旁切圆必切长轴于非焦顶点同侧的长轴端点. 75.椭圆两焦点到椭圆焦三角形旁切圆的切线长为定值a+c 与a-c. 76.椭圆焦三角形的非焦顶点到其内切圆的切线长为定值a-c.77.椭圆焦三角形中,内点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率). (注:在椭圆焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点.)78.椭圆焦三角形中,内心将内点与非焦顶点连线段分成定比e. 79.椭圆焦三角形中,半焦距必为内、外点到椭圆中心的比例中项.80.椭圆焦三角形中,椭圆中心到内点的距离、内点到同侧焦点的距离、半焦距及外点到同侧焦点的距离成比例. 81.椭圆焦三角形中,半焦距、外点与椭圆中心连线段、内点与同侧焦点连线段、外点与同侧焦点连线段成比例.82.椭圆焦三角形中,过任一焦点向非焦顶点的外角平分线引垂线,则椭圆中心与垂足连线必与另一焦半径所在直线平行. 83.椭圆焦三角形中,过任一焦点向非焦顶点的外角平分线引垂线,则椭圆中心与垂足的距离为椭圆长半轴的长. 84.椭圆焦三角形中,过任一焦点向非焦顶点的外角平分线引垂线,垂足就是垂足同侧焦半径为直径的圆和椭圆长轴为直径的圆的切点.85.椭圆焦三角形中,非焦顶点的外角平分线与焦半径、长轴所在直线的夹角的余弦的比为定值e. 86.椭圆焦三角形中,非焦顶点的法线即为该顶角的内角平分线. 87.椭圆焦三角形中,非焦顶点的切线即为该顶角的外角平分线.88.椭圆焦三角形中,过非焦顶点的切线与椭圆长轴两端点处的切线相交,则以两交点为直径的圆必过两焦点.89. 已知椭圆22221(0,0)x y a b a b +=>>(包括圆在内)上有一点P ,过点P 分别作直线b y x a =及by x a=-的平行线,与x 轴于,M N ,与y 轴交于,R Q .,O 为原点,则:(1)222||||2OM ON a +=;(2)222||||2OQ OR b +=.90. 过平面上的P 点作直线1:b l y x a =及2:bl y x a=-的平行线,分别交x 轴于,M N ,交y 轴于,R Q .(1)若222||||2OM ON a +=,则P 的轨迹方程是22221(0,0)x y a b a b+=>>.(2)若222||||2OQ OR b +=,则P 的轨迹方程是22221(0,0)x y a b a b +=>>. 91. 点P 为椭圆22221(0,0)x y a b a b+=>>(包括圆在内)在第一象限的弧上任意一点,过P 引x 轴、y 轴的平行线,交y 轴、x 轴于,M N ,交直线b y x a =-于,Q R ,记 OMQ ∆与ONR ∆的面积为12,S S ,则:122abS S +=.92. 点P 为第一象限内一点,过P 引x 轴、y 轴的平行线,交y 轴、x 轴于,M N ,交直线by x a=-于,Q R ,记 OMQ∆与ONR ∆的面积为12,S S ,已知122abS S +=,则P 的轨迹方程是22221(0,0)x y a b a b +=>>.椭圆性质92条证明1.椭圆第一定义。
92个椭圆典型结论
23.若椭圆
x2 y2 1 (a>b>0)的左、右焦点分别为 F1、F2,左准线为 L,则当 a2 b2
0<e≤ 2 1 时,可在椭圆上求一点 P,使得 PF1 是 P 到对应准线距离 d 与 PF2 的比例中项.
x2 y2 1 ( a > b > 0 )上任一点 ,F1,F2 为二焦点, A 为椭圆内一定点,则 a2 b2 2a | AF2 || PA | | PF1 | 2a | AF1 | ,当且仅当 A, F2 , P 三点共线时,等号成立.
x2 y2 9.椭圆 2 2 1(a>b>o)的两个顶点为 A1 ( a,0) , A2 ( a, 0) ,与 y 轴平行的直线交椭圆 a b x2 y2 于 P1、P2 时 A1P1 与 A2P2 交点的轨迹方程是 2 2 1 . a b 2 2 xx y y x y 10.若 P0 ( x0 , y0 ) 在椭圆 2 2 1 上,则过 P0 的椭圆的切线方程是 02 02 1 . a b a b 2 2 x y 11.若 P0 ( x0 , y0 ) 在椭圆 2 2 1 外 ,则过 Po 作椭圆的两条切线切点为 P1、P2,则切点 a b x0 x y0 y 弦 P1P2 的直线方程是 2 2 1 . a b 2 2 x y 12 . AB 是 椭 圆 2 2 1 的 不 平 行 于 对 称 轴 且 过 原 点 的 弦 , M 为 AB 的 中 点 , 则 a b 2 b kOM k AB 2 . a x2 y2 13 . 若 P0 ( x0 , y0 ) 在 椭 圆 2 2 1 内 , 则 被 Po 所 平 分 的 中 Байду номын сангаас 弦 的 方 程 是 a b 2 2 x0 x y0 y x0 y 2 2 02 . 2 a b a b x2 y2 x2 y2 x x y y 14. 若 P0 ( x0 , y0 ) 在椭圆 2 2 1 内, 则过 Po 的弦中点的轨迹方程是 2 2 02 02 . a b a b a b 2 2 x y 15 . 若 PQ 是 椭 圆 2 2 1 ( a > b > 0 ) 上 对 中 心 张 直 角 的 弦 , 则 a b 1 1 1 1 2 2 2 (r1 | OP |, r2 | OQ |) . 2 r1 r2 a b
椭圆性质92条及其证明_20210727165849
45由两直线夹角公式1212tan 1k k k k θ-=+得:(20022222220000122222001000000021b x y b a y x c b x b x c a b b cx b x y kk a x y b x y c x y a cy cy a y x c +++====+-⋅78如图,两圆圆心距为2222PF PF d OM a a r ===-=-,故两圆内切。
如图,由切线长定理:111222F S FT F F a c +=+=+,11F S FT a c ==+12a c F A +=,T 与2A 重合,故旁切圆与x 轴切于右顶点,同理可证P 在其他位置情况。
)20=⎤⎦)0kn=2730()22222cos cos cos ,sin ,sin b b ab ab FA a c b b b c c c ϕϕϕϕϕ⎛=-⋅=-+- ⎝)2cos ,sin ,:a b b ϕϕ由射影定理有23135当此式成立时22222220max 0max 0max 0max 2422l l a l a e x mx a e x cx a x e e c -+=⇒--=-⇒=-=当20max22a l a l x c e e c e =-=-=时:2l =x c ≤22=b l =l 02222a b a b +3822222221cos 1cos 1cos sin cos p p ab e e a b θθθθθ=+==+--+4041如图,A 为左顶点时,设,PFH MFH θ∠=∠,AFP PFM πθθϕ=-∠=-222,cos a b b p p FH c FM c c ae e e ϕ⎛=-==== 对F-APM 由张角定理:l cos sin 1cos sin x y b a a bϕϕϕϕ+=⇒+-sin cos 0ϕϕ=,1:cos sin l b x a y bc ϕϕ++cos 0ϕ=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学椭圆性质92条热点结论!高一到高三掌握,还愁没有方法?
“椭圆”是什么?小时候,我将它直观地理解成一个“压扁”或“拉长”的圆。
因此,当我第一次在解析几何课本中看到椭圆的定义的时候,感觉世界观被颠覆了:平面上到两个定点的距离之和为一定值的点的轨迹……这是什么鬼?
接下来,课本就从这个定义出发,推出了椭圆的方程:我们熟悉的。
这个方程和圆的方程很像,非常符合“拉长的圆”的感觉。
方程推出来,自然是对的,但推导的过程不太直观,结果也有点反直觉。
今天清北学霸的师哥师姐给同学们整理了高中数学关于椭圆性质的92条结论,相信肯定会对同学们有所帮助!
建议同学家长打印出来,方便学习!
高中数学,对大部分同学,无疑是一大难关,同学们一定要攻克的!
毕竟,“短板效应”在学习甚至是高考中,都是很关键的。
其实,对于高中生而言,掌握学习方法,明显要比"题海战术"的提分效果明显的多!
微信
2475026381
即刻添加就可免费领本文电子版,高考提分题型汇总记及思维导图!更多高效学习方法、快速解题技巧等着你哦!
清北学霸从实战中总结高考潜规则,解读出题规律,带你了解高考潜规则,学会逆向思维,一体化学习,掌握高分攻略,快速攻克考点、难点、易错点、薄弱点!
小编所有分享的资料都是免费的呦。