常见曲线的参数方程PPT课件

合集下载

曲线的参数方程 课件

曲线的参数方程 课件
(为参数).
= 2sin
故点M的轨迹是以点(6,0)为圆心、2为半径的圆.
反思利用圆的参数方程求动点的轨迹方程是常见的题型,是圆的
参数方程的主要应用之一.
参数方程与普通方程的互化
= 1 + 4cos,
【例 3】 指出参数方程 = -2 + 4sin (为参数)表示什么曲线.
解:(x-1)2+(y+2)2=16cos2t+16sin2t=16,
(2)在参数方程与普通方程的互化中,必须使x,y的取值范围保持
一致.
= 1 + 2cos,
【做一做 3-1】 将参数方程
(为参数)
= 2sin
化为普通方程为
.
-1 = 2cos,
解析:由
= 2sin,
两式平方相加,得(x-1)2+y2=4.
答案:(x-1)2+y2=4
【做一做3-2】 已知圆的方程为x2+y2-6y=0,将它化为参数方程.
解:由x2+y2-6y=0,
得x2+(y-3)2=9.
令x=3cos θ,y-3=3sin θ,
= 3cos,
所以圆的参数方程为
(为参数).
= 3 + 3sin
1.曲线参数方程的特点
剖析曲线的普通方程直接反映了一条曲线上的点的横、纵坐标
之间的联系,而参数方程是通过参数间接反映坐标变量x,y间的联系.
= (),
通方程,求出另一个变数与参数的关系 y=g(t),那么
= ()
就是所求的曲线的参数方程.
(3)消参的常用方法
①代入法.先由一个方程求出参数的表达式(用直角坐标变量表

曲线的参数方程 课件

曲线的参数方程 课件

【解】 如图,设 OQ 是经过原点的任意一条弦,
OQ 的中点是 M(x,y),设弦 OQ 和 x 轴的夹角为 θ,取 θ 作
为参数,已知圆的圆心是 O′,O′(a,0)⊥OO′,那么|OM|=acos θ,
所以xy==||OMMM′′||==||OOMM||csoins
名师点评
(1)消去参数的常用方法. ①如果参数方程是整式方程,常用的消元法有代入消元法、 加减消元法. ②如果参数方程是分式方程,在运用代入消元或加减消元之 前要做必要的变形.
③另外,熟悉一些常见的恒等式至关重要,如 sin2α+cos2α =1,(ex+e-x)2-(ex-e-x)2=4,11+-kk222+1+2kk22=1 等.
θ=acos2θ, θ=acos θsin
θ,
(θ 为参数)
这就是所求轨迹的参数方程.
名师点评
引入参数 θ 后,根据圆的中点弦的性质结合变量 x,y 的几何 意义,用半径 a 及参数 θ 表示坐标 x,y 即可得出曲线的参数方程.
要点二 圆的参数方程的应用 1.圆的参数方程
(1)圆心在原点,半径为 r 的圆的参数方程为
标是(x,y),那么 θ=ωt(ω 为角速度).设|OM|=r,那么由三角
函数定义,有 cos ωt=xr,sin ωt=yr,即圆心在原点 O,半径为 r
的圆的参数方程为xy==rrcsions
ωt, ωt
(t 为参数),其中参数 t 的物理
意义是__质___点__作__匀__速__圆__周__运__动__的__时__刻_____.
特别提醒
参数 t 是联系 x,y 的桥梁,它可以有物理意义或几何意义, 也可以是没有明显实际意义的变数.
问题探究 1:参数方程与普通方程有什么区别和联系? 提示:

圆锥曲线的参数方程 课件

圆锥曲线的参数方程  课件

已知圆 O1:x2+(y-2)2=1 上一点 P 与双曲线 x2 -y2=1 上一点 Q,求 P、Q 两点距离的最小值.
【分析】 圆具有对称性,可转化为用参数法求 Q 到圆心的 距离的最小值.
【解】 设 Q(sec θ,tan θ), 易知 O1(0,2), 则|O1Q|2=sec2θ+(tan θ-2)2 =(tan2θ+1)+(tan2θ-4tan θ+4) =2tan2θ-4tan θ+5=2(tan θ-1)2+3. 当 tan θ=1,即 θ=4π时,|O1Q|2 取最小值 3, 此时有|O1Q|min= 3. ∴|PQ|min= 3-1.
圆锥曲线的参数方程
1.椭圆的参数方程 普通方程 ax22+by22= 1(a>b>0)
ay22+bx22= 1(a>b>0)
参数方程 x=acos φ, y=bsin φ (φ
为参数) x=bcos φ, y=asin φ (φ
为参数)
问题探究:椭圆的参数方程xy==abcsions
φ, φ
中的参数 φ 与圆的

曲线ax22

y2 b2

1(a>0
,b>0)的参数
方程为
x=asec y=btan
φ, φ.

为参数)
3.抛物线的参数方程 普通方程
参数方程
y2=2px(p>0)
x=2pt2, y=2pt
(t 为参数)
y2=-2px(p>0)
x=-2pt2, y=2pt
(t 为参数)
x2=2py(p>0)
x=2pt, y=2pt2
示同一个椭圆.同样对于双曲线、抛物线也可以用其他形式的参

曲线的参数方程课件

曲线的参数方程课件

(1)x=12sin2θ, (θ为参数); y=sinθ+cosθ
x=1t , (2)y=1t t2-1
(t为参数).
【分析】 观察题目的特点.(1)可用代入消元法.(2)可用加 减消元法,在转化过程中要保证等价性.
【解】 (1)由y2=(sinθ+cosθ)2 =1+sin2θ=1+2x, ∵-12≤12sin2θ≤12,
2.圆的参数方程 (1)圆 x2+y2=r2 的参数方程通常写为________(θ 为参数). (2) 圆 (x - a)2 + (y - b)2 = r2 的 参 数 方 程 通 常 写 为
x=a+rcosθ, y=b+rsinθ
(θ 为参数).
3.曲线的普通方程和参数方程的互相转化 (1)曲线的参数方程和普通方程是曲线方程的不同形式.一般 地,可以通过________而从参数方程得到普通方程. (2)如果知道变数 x,y 中的一个与参数 t 的关系,例如________, 把它代入普通方程,求出另一个变数与参数的关系________,那么 ________,就是曲线的参数方程.在参数方程与普通方程的互化中, 必须使 x,y 的________保持一致.
往往需要消去参数,化为普通方程,消参的主要方法有代入消元
法,利用三角恒等式消参法两种.
(2)由普通方程化为参数方程
有时为了求变量的范围或求最值我们还需要把曲线的普通方
程化为参数方程.如:椭圆
x2 a2

y2 b2
=1就可以化为参数方程
x=acosθ, y=bsinθ
(θ为参数).
应注意:普通方程化为参数方程时,由于选参不同,参数方
2.圆的参数方程
(1)圆x2+y2=r2的参数方程中参数θ的几何意义 圆x2+y2=r2的参数方程为

参数方程12 PPT

参数方程12 PPT

课前自助餐
授人以渔
自助餐
联立方程 xy522+=y452x=,1,
得 x=1 或 x=-5(舍去).
把 x=1 代入 y2=45x,得 y=255或 y=-255(舍去),所以交 点坐标为(1,2 5 5).
课前自助餐
授人以渔
自助餐
课前自助餐
授人以渔
自助餐
例 1 把下列参数方程化为普通方程.
x=1+12t,
【答案】 (1) 3x-y+5- 3=0 (2)y=1-x2(|x|≤1)
课前自助餐
授人以渔
自助餐
探究 1 将曲线的参数方程化为普通方程的关键是消去其中 的参数,此时要注意其中的 x,y(它们都是参数的函数)的取值范 围,即在消去参数的过程中一定要注意普通方程与参数方程的等 价性.参数方程化普通方程常用的消参技巧有:代入消元、加减 消元、平方后相加减消元、整体消元等.
课前自助餐
授人以渔
自助餐
思考题 1 将下列参数方程化成普通方程.
x=tt+ -11, (1)
y=t3-2t 1;
x=tp2+pt2, (2)y=pt -pt.
【解析】 (1)由 x=tt+-11,得 t=xx-+11,代入 y=t3-2t 1,化简
得 y=x+31x2+x-1 12(x≠1).
课前自助餐
课前自助餐
授人以渔
自助餐
参数方程
课前自助餐
授人以渔
自助餐
1.参数方程的概念 如果曲线 C 上任意一点 P 的坐标 x 和 y 都可以表示为某个
变量 t 的函数xy= =fgtt,. 反过来,对于 t 的每个允许值,由函数式xy= =fgtt,, 所确定
的点 P(x,y)都在曲线 C 上,那么方程xy= =fgtt,, 叫做曲线 C 的

曲线的参数方程资料课件

曲线的参数方程资料课件

曲线类型及特点概述
直线 圆 椭圆
实际应用场景举例
01
物理学
02
工程形式 几何意义 举例
圆和椭圆参数方程
圆的标准形式
椭圆的标准形式
几何意义
举例
双曲线与抛物线参数方程
双曲线的标准形式
抛物线的标准形式
几何意义
举例
螺旋线与其他特殊曲线
手绘技巧分享
01
02
基础绘图工具使用
参数方程是通过引入一个或多个参数 来表示曲线上点的坐标的一种方程形 式。
常见的曲线参数方程
包括直线的参数方程、圆的参数方程、 椭圆的参数方程等。
参数方程中参数的几何意义
参数在参数方程中通常具有几何意义, 如角度、时间等,反映了曲线上点的 位置或运动状态。
参数方程与普通方程的互化
掌握参数方程与普通方程之间的互化 方法,便于不同问题之间的转换和解 决。
拓展延伸:三维空间曲线参数方程简介
三维空间曲线参数方程的概念
01
三维空间曲线参数方程的表示方法
02
三维空间曲线参数方程的应用
03
THANKS
感谢观看
曲线绘制要点
03 细节处理技巧
计算机辅助绘图软件介绍
常用绘图软件简介
01
软件在参数方程绘图中的应用
02
绘图软件使用技巧
03
典型错误分析及避免方法
曲线绘制中的常见错误
错误原因分析及解决方法
物理学中运动轨迹描述
抛物线运动
圆周运动
振动与波动
工程设计中优化问题求解
最短路径问题
结构优化问题 参数化建模
计算机图形学中模型构建
三维曲线绘制
利用参数方程在计算机图形学中 绘制三维曲线,如螺旋线、贝塞

参数方程 课件(共29张PPT)

参数方程  课件(共29张PPT)

解:根据题意,作出如图所示的单位圆.所要求的函数 f(θ)=
sin cos
θθ--12的最大值与最小值,就转化为求动点
P
与定点(2,1)
连线的斜率的最大值与最小值.从图可以得知,当直线 PM
和圆相切时,分别得到其最大值与最小值.设直线 PM 的斜
率为 k,所以,其方程为:y-1=k(x-2),即 kx-y+1-2k=0.
2α(0<α<2π),M 为 PQ 的中点.
(1)求 M 的轨迹的参数方程;
(2)将 M 到坐标原点的距离 d 表示为 α 的函数,并判断 M 的
轨迹是否过坐标原点.
【解】 (1)依题意有 P(2cos α,2sin α),Q(2cos 2α,2sin 2α),
因此 M(cos α+cos 2α,sin α+sin 2α).
2π).
(1)x2+y2=(-1+2cos θ)2+( 3+2sin θ)2 =4( 3sin θ-cos θ)+8=8sin(θ-π6)+8, ∴当 θ-π6=π2,即 θ=23π时,(x2+y2)max=16. (2)x+y=2(sin θ+cos θ)+ 3-1 =2 2sin(θ+π4)+ 3-1, ∴当 θ+π4=32π,即 θ=54π时, (x+y)min= 3-2 2-1.
变式训练
1.(2013·高考江苏卷)在平面直角坐标系 xOy 中,直线 l 的参 数方程为yy==2t+t 1, (t 为参数),曲线 C 的参数方程为
x=2tan2θ, y=2tan θ
(θ 为参数).试求直线 l 和曲线 C 的普通方程,
并求出它们的公共点的坐标.
解:因为直线 l 的参数方程为xy==2t+t 1 (t 为参数),由 x=t+ 1,得 t=x-1,代入 y=2t,得到直线 l 的普通方程为 2x-y-2 =0. 同理得到曲线 C 的普通方程为 y2=2x. 联立方程组yy=2=22xx-1 ,解得公共点的坐标为(2,2),(12,- 1).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2a
x
.
6
y
o
Mt a
A
C
x
x AC OMsint y OCOMcost
a(t sint)
a(1cost)
这就是旋轮线的参数方程。
7
2. 旋轮线也叫摆线(单摆)
将旋轮线的一拱一分为二,并倒置成挡板
8
.
9
10
两个旋轮线形状的挡板, 使摆动周期与摆幅完全无关。 在17世纪,旋轮线即以此性质出名,所以旋轮线又称摆线。
a
o
a
xHale Waihona Puke 16y.a
o
来看动点的慢动作
a
x
17
y
a
o 来看动点的慢动作
a
x
2a
.
18
参数方程
y
r = a (1+cosθ) r
o
P
x
2a
.
19
y
5.星形线(圆内旋轮线)
一圆沿另一圆
内缘无滑动地
滚动,动圆圆
周上任一点
所画出的曲线。
–a
o
a 4
ax
20
y
.
–a
o
来看动点的慢动作
ax
21
y
–a
o
问答
问题提问与解答
HERE COMES THE QUESTION AND ANSWER SESSION 45
添加
添加
添加 标题
标题
标题
添加
标题
此处结束语
点击此处添加段落文本 . 您的内容打在这里,或通过 复制您的文本后在此框中选择粘贴并选择只保留文字
46
谢谢您的观看与聆听
Thank you for watching and listening
0
r
.
38
阿基米德螺线 r =a 这里 从 0 +
每两个螺形卷间沿射线的距离是定数
0
r
.
39
阿基米德螺线 r =a 当 从 0 –
0
r
40
.
10 双曲螺线 r a 这里 从 0 +
limr 0 θ
极点是曲线的渐近点
yrsin a sin
l i my a θ0
y a是曲线的渐近线
0
a
.
r
47
.
.
.
43
例3.求曲r线 sinθ及r2 cosθ分别所围成的共 图形
部分的面积
y
令 cos2 = 0, θ k
由 sin > 0, θ
联立后得交点坐标
θ ,
θ
[ S = 2
π 6
1
2s
i
n2θ

02
θ π 4 θ π 6
]
π
4 π
6
1co 2
s


0
1x
44
.
来看动点的慢动作
ax
.
22
直角坐标方程为:
2
2
2
x3 y3 a3
. .–a
极坐标方程为
x a cos 3
y
a
sin3
0 2
y
P
o
ax
.
23
6. 圆的渐伸线
一直线沿圆周滚转(无滑动) y 直线上一个定点的轨迹
参数方程为
xa(cotstsint) ya(sint tcots)
0
a
x
常见曲线的参数方程
1
标题添加
点击此处输入相 关文本内容
标题添加
点击此处输入相 关文本内容
总体概述
点击此处输入 相关文本内容
点击此处输入 相关文本内容
2
主 目 录(1–10 )
1 旋轮线 2 旋轮线也叫摆线 3 旋轮线是最速降线 4 心形线 5 星形线 6 圆的渐伸线 7 笛卡儿叶形线 8 双纽线 9 阿基米德螺线 10 双曲螺线
由对称性
S
r()d
acosd
2a2
y
4
0
2a x
.
32
. .
.
9. 阿基米德螺线 r =a
曲线可以看作这种点的轨迹: 从极点射出半射线 动点在射线上作等速运动 同时此射线又绕极点作等速转动
0
r
33
0
r
.
34
0
请问:动点的轨迹什么样?
r
.
再看一遍
35
0
r
.
36
0
r
.
37
阿基米德螺线 r =a
r22a2co2s
co2s0 (0,) (3,5) (7,2)
y
4 4 4 .4
直角系方程
(x 2y2)2 2 a 2(x 2y2)
P
F(a,0)
0
r
F(a,0)
2a . x
. . . . .
.
.
3 5 7
曲线在极点自己相交,与此对应的角度为 =
, 4
, 4
, 4
4
31
. .
例1 求双纽线 r22a2co2s所围面积
3. 令 y = t x, 得参数式
当t, (x,y) (0,0) 当t 0, 也(有 x,y)(0,0)
故在原点,曲线自身相交.
x
3 at t3 1
y
3 at 2 t3 1
( -t, t-1)
4. 当 t由 , 动(点 0 ,由 0 (), -) 当t由 , 动点 ( 由 ,) (0,0)
3
1. 旋轮线
一圆沿直线无滑动地滚动,圆上任一点所画出的 曲线,是一条极其迷人的曲线,在生活中应用广泛。
a
x
4
.
x
来看动点的慢动作
5
参数方程
x = a (t – sint) y = a (1– cost)
y
t 的几何意义如图示
当 t 从 0 2,x从 0 2a 即曲线走了一拱
2a
at
0
a
a
当t 由 ,
动点(0由 , 0)(0,0) 依逆时针方向画出叶形 线.
29
y
0
x
曲线关于 y= x 对称
曲线有渐近线 x+y+a=0
.
30
8.双纽线 FF2a, 到F与F 距离之积为a2的点的轨迹 ( a2)
22 rr22 a a 2 2 2 2 r ra c c ao o s s ( ) 2 ( r 2 a 2 ) 2 4 r 2 a 2 c2 o a 4 s 即
24
再看一遍
.
y
0
a
x
25
y
0
a
x
.
26
y
0
a
x
.
27
参数方程为
xa(cotstsint) ya(sint tcots)
y
M (x,y)
a
t
0
a
试由这些关系推出曲线的方程
t x
.
28
7.狄卡儿叶形线 x 3y3 3 ax 0y (a0 )
分析 1. 曲线关于 y= x 对称
2. 曲线有渐进线 x+y+a = 0
.
. 41
双曲螺线
r a 当 从 0 –
0
a
.
r
.
42
例2 求曲r线 coθs及rcoθs分别所围成的 共图形
部分的面积
由 3cos =1+cos
r =3cos
y
得交点的坐标 θ
S = 2
π 3
1(1coθs)2dθ
02
π
o3
S
2
π
2 π
3
9cos2θ dθ 2
x
3
=1+cos
.
.
11
3. 旋轮线是最速降线 最速降线问题: 质点在重力作用下沿曲线从固定点A滑到固定点B, 当曲线是什么形状时所需要的时间最短?
A
B
答案是:当这曲线是一条翻转的旋轮线。
生活中见过这条曲线吗?
12
A B
13
A B
14
A
B
滑板的轨道就是这条曲线
.
15
y
4. 心形线(圆外旋轮线)
一圆沿另一圆外缘无滑 动地滚动,动圆圆周上 任一点所画出的曲线。
相关文档
最新文档