趋势外推预测法(精)
人力需要预测之趋势外推预测法

人力需要预测之趋势外推预测法将人力资源需求量的历史数据按时间顺序排列,即可形成一个时间数列。
时间数列分为绝对数时间数列、相对数时间数列和平均数时间数列三种,人力资源需求量是绝对数,因而其数列是绝对数时间数列。
按数列反映的现象性质不同,又可分为时期数列和时点数列,人力资源需求量是期末时点上的数据,因而其数列是时点数列。
在明确人力资源需求时点数列的性质后,考虑采用恰当的预测方法。
针对时点数列,一般可选用三种方法:方法一,当时点数列不存在长期趋势和季节变动时,宜采用平滑方法预测;方法二,当时点数列存在长期趋势但不含季节变动时,宜采用趋势外推方法预测;方法三,当时点数列存在长期趋势和季节变化时,宜采用趋势季节模型方法预测。
当人力资源需求时点数列不存在长期趋势,但中短期内有一定规律可循时,可采用方法一。
但是当随时间变化的趋势不明显时,一般最好不要采用该类数量方法预测,所以方法一在人力资源需求预测方面运用较少。
当人力资源需求呈现长期发展趋势,又随季节变化时,采用方法三。
在组织中,一般人员是较为固定的,不会轻易随季节变化而变动,否则会严重地影响员工的忠诚度,甚至有些企业提倡经济萧条时也不裁员,因随便增减人员对企业危害巨大。
也有符合该要求的人力资源需求数列,比如有淡旺季之分的产品促销员,这些促销员是临时招聘,而非正式员工,市场上供给充分,不需要过早预测,所以方法三更少运用。
事实上,当正式员工需求呈现长期发展趋势时,不会考虑季节变动,一般选用方法二,所以趋势外推预测法(trend analysis)是人力资源需求预测中运用最广泛的时点数列预测方法。
趋势外推预测法中,最重要的是找出趋势线。
找出趋势线的方法有多种,一般有绘图法、分段平均法、最小二乘法、指数平滑法等。
最简单、最直观的方法是绘图法。
以人力资源需求量为纵轴,以时间为横轴,在坐标图上描出各年的历史数据。
观察这些点是否有一定的发展规律,如果有,尝试在图上画出一条直线或曲线,使得大多数点尽可能地与这条线重合或接近。
第3章 趋势外推预测法讲解

年份
利润 额
1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 200 300 350 400 500 630 700 750 850 950 1020
第3章 趋势外推预测法
利润额 1200 1000
800 600 400 200
0 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
1189.26万元。
第3章 趋势外推预测法
4.
比较例3.1与例3.2的预测结果,可以发现,由于时间 序列数据的线性趋势比较明显,又由于加权拟合直线法 的加权系数取值比较大(α=0.8),使得加权与不加权两 种拟合直线法的预测结果很接近。但就一般而言,由于 加权拟合直线法按重近轻远的赋权原则,使其预测结果 更接近于实际观察值。而且α取值越小,对近期数据所 赋权数就越大,因此近期预测值就越接近于实际观察值。 但是,要选择一个比较合适的α值也是一个比较困难的 事,一般要经过若干次试探,
xt*yt
1 200 4 600 9 1050 16 1600 25 2500 36 3780 49 4900 64 6000 81 7650 100 9500 121 11220 506 49000
191 273.7 356.4 439.1 521.8 604.5 687.2 769.9 852.6 935.3 1018
yt为时间序列第t期实际观察值(t=1, 2, …, n),
其yˆ预t 测为值趋的势离直差线,的e第t t期yt预 测yˆt 值 ,yett为 a第ˆ t期bˆx实t 际观察值与
第3章 趋势外推预测法
第7章趋势外推预测方法

趋势外推法的假设条件: (1)假设事物发展过程没有跳跃式变化,即事物的发展变化是渐进型的。 (2)假设所研究系统的结构、功能 等基本保持不变,即假定根据过去资料 建立的趋势外推模型能适合未来,能代 表未来趋势变化的情况。
第1节 指数曲线法
指数曲线模型 (7.1.1) 对式(7.1.1)两端取对数,得 令 则 这样就把指数曲线 模型转化为直线模型
在利用包络曲线预测时首先要建立包络曲线,具体步骤为: 第一步:分析各类预测对象的预测参数的发展趋势; 第二步:求出各技术单元功能相对增长速度最快的点(xi,yi),i=1,2,…,m; 第三步:绘制包络曲线,即在点( xi,yi )处与i(i=1,2,…,m)技术单元曲线相切的曲线。
二、应用范围 某项技术发展的前期阶段,采用包络曲线对技术发展进行深入研究,可以外推出新的远景技术,从而可以未雨绸缪,提前完成技术贮备,以便及时进行技术更新。 当某一技术的发展趋于极限时,采用包络曲线外推可能出现的新技术。 用包络曲线外推未来某一时刻的特性参数水平,借以推测将会出现那种新技术。 验证决策中制定的技术参数是否合理。如果拟定的参数在包络曲线之上,则可能有些冒进,如在其下则可能偏于保守。合理的技术参数应与包络曲线相吻合,偏高偏低皆需调整。
0
y
a
t
表7.1.1 指数曲线模型差分计算表
第2节 修正指数曲线法
修正指数曲线预测模型 (7.2.1) 式中:a、b、c为待定参数。 为求出a、b和c三个参数,可应用分组法。通常的做法是先把整个时间序列数据分成三组,使每组数据个数相等,然后通过各组数据之和求出参数的具体数值。
表7.2.1 修正指数曲线模型差分计算表
第3节 生长曲线法
生物的生长过程一般经历发生、发展、成熟到衰老几个阶段。发生初期成长速度较慢;发展时期生长速度则较快;成熟时期,生长速度由达到最快而后逐渐变慢,到衰老期则几乎停止生长。 指数曲线模型不能预测接近极限值时生物生长的特性值,因为趋近极限值时,生物生长特性值已不按指数规律增长。描述生物生长过程可以考虑运用形状近似于S型的曲线(称为S曲线)。 本节主要介绍两种最为常用的生长曲线 龚珀兹曲线 皮尔曲线。
第四讲趋势外推法

于是得A、B、K的估计式为
B
S3 S2
S2 S1
n
A
B
1
S
2
S1
B
n
1
2
K
1 n
S1
A
n
B
1
B 1
1 n
S
1
S 2 S 1 n B 1
其中,参数L、a、b为正数。
修正指数曲线预测模型 指数曲线预测模型:
发展、成熟、衰落的过程。
一次(线性)预测模型:
这种方法是通过绘制散点图来进行的,即将时间序列的数据绘制成以时间t为横轴,时序观察值为纵轴的图形,观察并将其变化曲线与
1999 73.2 0.4
一阶差分 _ 比率
_ 0.8 0.2 0.94 0.4 1.0 0.83 0.8
解:描散点图,初步确定模型;
计算一阶差分比率,进一步验证选用修正指数曲线模型是否合适; 估计模型参数。
所求修正指数曲线预测模型:
yt 7.3 17328.2710.5 95t56
预测2000年的社会总需求量:
差分特性使用模型一阶差分相等或大致相等一次线性模型二阶差分相等或大致相等二次线性模型三阶差分相等或大致相等三次线性模型环比相等或大致相等指数曲线模型一阶差分比率相等或大致相等修正指数曲线模型多项式趋势预测模型及应用特别模型参数估计的简捷算法套用参数估计公式注意到y一般都是等间隔的时期或时点指标值它与时间t并无严格的因果关系
例5:某商品1991年投放市场以来,社会总需求量统计资料如下表
所列,试预测2000年的社会总需求量。
年份 总需求量 一阶差分
1991 50.0
_
1992 1993 60.0 68.0 10 8
趋势外推法

根据上表,将年度作为横坐标,人数作为纵坐标,绘制出散 点图。
由散点图可知,应建立直线趋势方程: Y =a +bX 其中:Y — 人数 X — 年度 利用最小二乘法,可以得出a、b的计算公式:
可得:a = 390.7,b = 41.3
Y = 390.8 + 41.3X
所以,未来第三年的人力资源需求量为:
• 当时点数列不存在长期趋势和季节性变动时,采用平滑方法 预测; • 当时点数列存在长期趋势但不含季节变动时,宜采用趋势外 推方法预测; • 当时点数列存在长期趋势和季节变化时宜采用趋势季节模型 方法预测。
步骤:
• 运用定性方法确定因变量是否适合运用趋势外推法。如果适 合,则搜集y的历史数据,对其进行初步处理。(画出趋势 线) • 对y 的历史数据和X进行回归分析,求出a,b,得到趋势外推 模型。 • 运用趋势外推模型预测y值。
Y = 390.8 + 41.3×15 = 1010(人)
满足两个前提: 1、企业要有历史数据(一般使用过去五年的数据进 行预测); 2、是这些数据要有一定的发展趋势可循。 • 比较简单,只能预测大概走势,作为初步预测时比 较有价值。源需求量在时间上
表现出明显的均等趋势时才使用的。
• 根据历史数据,在坐标轴上绘出散点图;然后根据
图形可以直观地判断拟合哪种趋势线,从而建立相 应的趋势方程; • 根据趋势方程可以对未来某一时间的人力资源需求 进行预测。
表1 某企业过去12年的人力资源数量
年度 1 2 3 4 5 6 7 8 9 10 11 12 人数 510 480 490 540 570 600 640 720 770 820 840 930
趋势外推法
趋势外推法
经济预测与决策第四章趋势外推法

2.拟合直线法的原理
这种方法是基于最小二乘法原理,通过对时间序列数据拟 合得出一条直线,使得该直线上的预测值与实际观察值之 间的离差平方和为最小。
3.拟合直线方程法的数学模型
4.加权拟合直线法的数学模型
在拟合直线法中,计算离差平方和时对近期误差和远期误差 赋予的权重是一样的。实际中,近期数据对预测结果的影响 更有意义,也就是说,对于预测精确度而言,近期误差比远 期误差更为重要。因此,在计算离差平方和时,对离差平方 项按照近大远小的原则赋予不同权值,即离差平方项对应的 时间点距离现在越近,其赋权值越大。对加权离差平方和再 按照最小二乘法原理,使离差平方和达到最小,进而求出加 权拟合直线方程。这种方法称为加权拟合直线法。
4.2.2 线性趋势外推预测法的应用举例
【实例4-1】
已知A公司1998~2008年销售利润,详见表4-1。试预测该公 司2009年的销售利润。
【实例4-2】
仍以表4-1对应的数据来说明加权拟合直线方程法的应用。 表4-4给出了各期对应的权值。
【解】 首先,基于表4-1中数据绘制趋势图,如图4-1所示。 从图4-1可知,公司销售利润呈现直线上升趋势。因此采 取线性趋势外推预测法进行预测。 其次,基于表4-1中数据计算线性趋势外推预测法模型的 参数a、b。
4.4 生长曲线预测法 4.4.1 生长曲线预测法基本原理 4.4.2 生长曲线预测法的应用举例
4.5 习题
本章学习目标
4.1 趋势外推预测法概述
4.1.1 趋势外推预测法含义 4.1.2 常用趋势外推预测法简介
4.1.1 趋势外推预测法含义
趋势外推预测法(Trend extra polation)是根据事物过 去和现在的发展趋势推断未来发展趋势的一类方法的总称 。这类方法的基本假设是事物的未来发展趋势系过去和现 在连续发展的结果。
第三章_趋势外推法

基本思想 拟合直线法 曲线趋势外推法
1
某家用电器厂1993~2003年利润额数据资料 某家用电器厂1993~2003年利润额数据资料 1993
年份 利润额 yt
1200 1000 800 600 400 200 0
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
某家用电器厂1993 2003年利润额数据资料如 1993~ 例3.1 某家用电器厂1993~2003年利润额数据资料如 所示。试预测2004 2005年该企业的利润 2004、 年该企业的利润。 表3.1所示。试预测2004、2005年该企业的利润。
年份 利润额
利润额 1 20 0 1 00 0 80 0 60 0 40 0 20 0 0 1 99 3 19 94 19 95 1 996 1 99 7 1 99 8 19 99 20 00 2 001 2 00 2 2 00 3 20 04 20 05
xt 1 2 3 4 5 6 7 8 9
xt2 1 4 9 16 25 36 49 64 81
xt*yt 200
预测 值y 191
1 n 1 n a = ∑ yt − b ∑ xt n t =1 n t =1 b= n∑ xt yt − (∑ xi )(∑ yt )
t =1 t =1 t =1 n n n
年份 利润额 yt 1993 1994 200 300 1995 1996 350 400 1997 1998 1999 2000 2001 2002 2003 500 630 700 750 850 950 1020
1200 1000 800 600 400 200 0
趋势外推法

趋势外推法
趋势外推法(Trendextrapolation)是根据过去和现在的发展趋势推断未来的一类方法的总称,用于 科技、经济和社会发展的预测,是情报研究法体系的重要部分。 趋势外推的基本假设是未来系过去和现在连续发展的结果。当预测对象依时间变化呈现某种上升或下 降趋势,没有明显的季节波动,且能找到一个合适的函数曲线反映这种变化趋势时,就可以用趋势外推法 进行预测。 趋势外推法的基本理论是:决定事物过去发展的因素,在很大程度上也决定该事物未来的发展,其变 化,不会太大;事物发展过程一般都是渐进式的变化,而不是跳跃式的变化掌握事物的发展规律,依据这 种规律推导,就可以预测出它的未来趋势和状态。
运用一:预测未来的销售量或需求量等 【例 4-2】品种销售量如表 1 所示 表1 产品销售量资料(单位:万件) 2003 10 2004 18 2005 25 2006 30.5 2007 15 2008 38 2009 40 2010 39.5 2011 38
试预测 2012 年的销售量,并要求在 90%的概率保证程度下给出预测的置信区间。 【实验步骤】 : 1.确定预测模型; 2.模型参数估计; 3.预测结果的置信区间估计。 注:Matlab 软件在数据计算方面比较容易,而 SAS 软件更体现在数据的整理和统计方面 第一步,确定预测模型,利用 Matlab 软件画出产品销售量与年份之间的关系图,结果 见图 1。 >> t=[2003 2004 2005 2006 2007 2008 2009 2010 2011]' >> y=[10 18 25 30.5 35 38 40 39.5 38]' >> plot(t,y)
SE
( y yi^)
趋势外推预测法

趋势外推预测法摘要:电力负荷预测是电力系统规划的重要组成部分,也是电力系统经济运行的基础,任何时候,电力负荷预测对电力系统规划和运行都极其重要。
近年来,随着我国电力供需矛盾的突出及电力工业市场化营运机制的推进,电力负荷预测的准确性有待进一步提高;然而,由于社会运转速度的不断加快和信息量的膨胀,使准确的负荷预测变得愈加困难。
关键字:电力;负荷预测;预测方法;趋势外推。
负荷预测方法可分为确定性负荷预测方法和不确定性负荷预测方法。
确定性负荷预测方法是把电力负荷预测用一个或者一组方程来描述,电力负荷与变量之间有明确的一一对应的关系。
其中又可分为经验技术预测法、经典技术预测法、经济模型预测法、时间序列预测法、相关系数预测法和饱和曲线预测法等。
不确定性预测方法基于类比对应等关系进行推理预测的,包括灰色理论预测法、专家系统法、模糊预测法、神经网络法、小波分析预测法等。
常用到的确定性负荷预测方法主要有:回归分析法;时间序列预测法;趋势外推预测法。
本文主要介绍和分析趋势外推预测法。
一、回归分析法回归分析法就是通过对历史数据的分析、研究,并考虑和电力负荷有关的各种影响因素,建立起适当的回归预测模型,用数理统计中的回归分析方法对变量的观测数据统计分析,从而预测未来的电力负荷。
回归预测模型可以是线性的也可以是非线性的,可以是一元的也可以是多元的,其中一元线性回归预测是最基本的、最简单的预测方法。
回归分析法适用于中、短期预测,它的预测精度依赖于模型的准确性和影响因子(如国民生产总值、工农业生产总值、人口、气候等)预测值的准确度,该方法只能预测出综合用电负荷的发展水平,无法预测出各供电区的负荷发展水平,无法进行具体的电网建设规划。
二、时间序列法时间序列预测方法就是根据到目前为止的历史资料数据,即时间序列所呈现出来的发展趋势和规律,设法建立一个数学模型,在该数学模型的基础上用数学方法进行延伸、外推,预测出今后各时期的指标值。
第3章 趋势外推预测法讲解

xt*yt
1 200 4 600 9 1050 16 1600 25 2500 36 3780 49 4900 64 6000 81 7650 100 9500 121 11220 506 49000
191 273.7 356.4 439.1 521.8 604.5 687.2 769.9 852.6 935.3 1018
a
Q
b
n
nt xt
t 1
yt
n
a nt xt
t 1
n
b nt xt2
t 1
0
b
第3章0.8时,试用加权拟合直 线方程法预测2004年与2005年的利润额。
解 (1) 列表,分别计算各年的n-t, αn-t, αn-tyt,αntxtyt,αn-txt,αn-tx2t,并加总求和
第3章 趋势外推预测法
线性趋势预测的基本思想就是假定影响时间序列的 项值的主要因素过去、现在和将来都大体相同,因而只要 将其趋势直线加以延伸,便可预测未来的项值。一般而言, 这种预测方法只适用于短期或经济平稳发展时期的预测。 常用的预测方法有拟合直线方程法和加权拟合直线方程 法(又称折扣最小平方法)。
当有理由相信这种趋势可能会延伸到未来时,对 于未来时点的某个值(经济指标未来值)就可由上述 变化趋势模型(曲线方程)给出。这就是趋势外推的 基本思想。
第3章 趋势外推预测法
3.基本假设 趋势外推法的两个前提假设是: (1)假设事物的发展过程没有跳跃式发展。这一
前提假设实际上是指质的稳定性。 (2)假定事物的发展因素也决定事物未来的发展,
分别为e1, e2, …, en。其中在AB直线上方一侧的离差为
正离差,下方一侧为负离差。如果简单地以离差代数和
趋势外推预测法

• 式中N---跨度,依数据的具体情况而定,其值越大则滑动平均的 平滑作用越大。
0 1, (3)一次指数平滑法。取定参数 , 预测模型为
初值
s 0 x1,
s t x t (1 ) st 1 ˆ x s t 1 t
二、线性预测外推
(1)二次滑动平均法。二次滑动平均法就是对一次滑动平均序 列再做一次滑动平均,取跨度为N,二次滑动平均预测模型为
(2)二次指数平滑法。二次指数平滑法也是在一 次指数平滑基础上再次进行指数平滑后得到的 外推结果,预测公式为
1 1 s s ( 1 ) s t t t( -1 t 1,2,...,T) 2 1 1 2 x ˆ t 1 st s t t 1,2,...,T 1 1 1
三、多项式趋势外推 在负荷预测中常用二次多项式趋势的三次指数 平滑等进行预测,预测公式为
3 2 3 s s 1 s t t 1 t x 2 ˆ lc ˆt b ˆ ˆt a l t t 1 2 3 ˆ t 3s 3 s s a t t t 1 2 3 ˆ b [ 6 5 s 2 5 4 s 4 3 s t t t t ] 2 21 2 1 2 3 c ˆt s 2 s s t t t 2 2 1
一、水平趋势外推
..., x T },负荷水平趋 假定负荷变化的历史数据序列为{ x 1, x 2, 势变化规律,则可以由这组数据出发利用水平趋势外推法,求出负 荷的预测值序列{ x ˆ 1, x ˆ 2, ˆ T, x ˆ T 1, x ˆ T 2, ..., x ... } 。 (1)全平均法。预测模型为
第三章-趋势外推预测法

❖ 第二步:确定参数。 ❖ 方法一: ❖ 直接计算公式里面的各个系数。
第五十页,编辑于星期二:二十点 五十七分。
❖ 方法二:添加趋势线。
12000 10000 8000
y = 56.72x2 + 352.13x + 2762.6 R2 = 0.9988
6000
4000
2000
0
1
2
3
4
5
6
7
8
9
第t+1期的预测值。 因此,上式可写成:Ft+1= aYt+(1-a)Ft
T=1,2,3,4….n。
第二十五页,编辑于星期二:二十点 五十七分。
模型关键:确定平滑系数和初始值 平滑系数a的确定: (1)当时间序列呈现较稳定的水平趋势时,a
应取小一些,如0.1~0.3,以减小修正幅度。 (2)当时间序列的波动较大时,应选择居中 的a值,如0.3-0.5。
第十页,编辑于星期二:二十点 五十七分。
const 可选。一个逻辑值,用于指定是否将常量 b 强 制设为 0。如果 const 为 TRUE 或被省略,b 将按通 常方式计算。如果 const 为 FALSE,b 将被设为 0, 并同时调整 m 值使 y = mx。stats 可选。一个逻辑 值,用于指定是否返回附加回归统计值。如果 stats 为 TRUE,则 LINEST 函数返回附加回归统计值。
第二页,编辑于星期二:二十点 五十七分。
1、最小二乘法确定直线方程
最小二乘法:通过对时间序列拟合直线,使得直线 上的预测值与实际观察值之间的离差平方和最小。
n
2
Q (yt aˆ bˆxt )
t 1
第三页,编辑于星期二:二十点 五十七分。
趋势外推法法

第四节 趋势外推法趋势外推法,也称趋势延伸法,是根据预测目标的历史时间序列所揭示的变动趋势外推到未来以确定预测值的时序预测法。
可分为随手作图法,拟合直线方程法、拟合曲线方程法。
一、随手作图法这种方法是选定时间作为横轴,预测目标量作为纵轴,先按时间序列数据作出散点图。
然后根据备散在点所显示的趋势走向图形(直线或某种曲线),运用直尺或曲线板随手画出一条沿各个点拟合度最佳的直线或曲线,并加以延伸,得出待预测时间对应的预测值。
该方法简便易行,不用建立数学模型,预测效果良好。
但这种方法全凭预测者的观察力和作图技巧,它直接影响到预测的精度。
二、拟合直线方程法这种方法是根据呈线性变动趋势的时间序列,拟合出直线方程bx a Y +=∧,再利用方程进行预测外推,得出预测结果。
直线方程bx a Y +=中,x 为按整数序编号的时间序列,Y 为预测目标量,a 、b 为参数。
设时刻为i x 时,对应的观察值为i Y ,n i ,,2,1 =。
根据这些数据我们要利用最小二乘法拟合出一条直线方程bx a Y +=∧即确定参数a 、b ,使拟合偏差i i Y Y ∧-的平方和∑∧-=22)(i i Y Y S 最小。
由微分法,令02=∂∂a S ,02=∂∂bS ,解之可得到∑∑---=-=x b Y x nb Y n a i i 11 (4-13) ∑∑∑∑∑--=22)())((i i i i i i x x n Y x Y x n b (4-14)当时间序列是整数项时,我们取i x 的中间项为0,其余按下列取值 …,-5,-4,-3,-2,-1,0,1,2,3,4,5,… (中间项)例如 n=7时,i x 分别取为-3,-2,-l ,0,1,2,3七个数值。
这样规定i x 取值后,n 为奇数时有∑=0i x ,则计算参数a 、b 的公式可以简化为∑==-i Y nY a 1(4-15)∑∑=2ii i xY x b (4-16) 例8 某市五金公司1978年到l984年销售额资料为 年份 l978 1979 1980 1981 1982 1983 1984 销售额 4923 5811 7171 8248 8902 9860 l0800(万元)试预测l985、1986两年的销售额。
5预测与决策-趋势外推法

利润额yt 200 300 350 400 500 630 700 750 850 950 1020
1200 1000
利润额 yt
1200 1000
利润额 yt
??
800
800
600
600
400
400
200
200
0
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
45
销售量(万件)
40
35
30
25
10000 9000 8000 7000 6000 5000
总需求量(件)
20
4000
15
3000
10
2000
5
1000
0 0 1 2 3 4 5 6 7 8 9 10
0
0
1
2
3
4
5
6
7
8
9 10
某商场某种商品过去9个月的销量
某商场过去9年投入市场,市场需求量统计资料
加权拟合直线方程法的数学模型
Q n t(y t a b t)2
(tt)(yy) (tt)2
利润额 1200
1000
800
yc abt
600
400
200
0 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
……………… T= 1 2 3 4 5 6 7 8 9 10 11 12 13
由近及远,按 比例 递减。
各期权重衰减的速度取决于 的取值。
趋势外推法

Q 2 ( yt a bt) a a 2 ( yt a bt) 0
y
t
na bt 0
(2)
Q 2 ( yt a bt) b b 2t ( yt a bt) 0
2 ty a t b t t 0
二、二次曲线外推法(Twice curve extension)
在实际预测中,常常碰到的是其他的曲线 形式。在这样的情况下,就要用到曲线外推 趋势法。这种方法仍然是利用最二乘法来拟 合曲线方程。介绍如下: 设曲线预测模型为:
(一)model
ˆt a bx cx2 y
( 1)
利用最小二乘法得:
t
a 直线方程的截距,b 斜率,ei 离差 现对yt 作n次观察(t 1, 2, , n), ˆt yt a bt 则有:ei yt y Q e ( yt y t ) 2 [ yt (a bt )]2 最小值
2 i
为了使误差最小,即Q为最小值;可分别对a,b求偏 导,并令其为0.则有:
-4 -3 -2 -1
25
16 9 4 1
-1000
-2000 -1050 -800 -500
191.0
273.7 356.4 439.1 521.8
0
1 2 3 4
0
1 4 9 16
0
300 700 1200 2000
1999
2000 2001
630
700 750
0
1 2
0
1 4
0
700 1500
Q e ( yt y t ) 2 ( yt a bx cx2 ) 2 最小值
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
惯性原理的两个前提:周围没有引力场吸引;前方没有障碍物阻挡。
假设条件: 1. 技术(或经济)发展的因素,不但决定了过去技术的发展,而且在很 大程度上决定了其未来的发展。即某项技术在其过去、现在、未来的 发展过程中,内、外因相对保持不变。 其变化属渐进式变化,而不属于跳跃式变化。
2.
三个例子:预测未来两期的指标水平
ˆt ) 2 离差平方和 et ( yt y
2 t 1 t 1
n
n
2 ˆ ( y y ) ( y a bx ) Q ( a, b) t t t t 2 t 1 t 1
某商场过去9年市场需求量序列数据
3.1 直线趋势外推法
• 适用条件:时间序列数据(观察值)呈直线上升或 下降的情形。 该预测变量的长期趋势可以用关于时间的直线 描述,通过该直线趋势的向外延伸(外推),估计 其预测值。
• 两种处理方式:
拟合直线方程与加权拟合直线方程
例3.1 某家用电器厂 1993~2003 年利润额数据资料如表 3.1所 示。试预测2004、2005年该企业的利润。
y f (t ) ● 当有理由相信这种趋势可能会延伸到未来时,对于未来 时点的某个 Y 值(经济指标未来值)就可由上述变化趋势 模型(直线方程)给出。这就是趋势外推的基本思想。
可建其变化趋势模型(曲线方程):
● 趋势外推的条件有2:变化趋势的时间稳定性、 曲线方程存在。
某家用电器厂1998~2008年利润额数据
年份 1993 199 4 1995 1996 1997 1998 1999 2000 2001 2002 2003
利润额yt
1200 1000 800 600 400 200 0
200
300
350
利润额 yt
400
500
630
700
750
850
950 1020
y a bx
1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
1200
利润额 yt
1000 800 600 400 200 0
利润额 yt
?
?
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
A 拟合直线方程法
1200 1000 800 600 400 200 0
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
y a ebt
10000
总需求量(件)
9000 8000
y a bx cx2
45 45 40 40 35 35 30 30 25 25 20 20 15 15 10 10 55 00
00 11 22 33 44 55 66 77 88 10 9 9 10
销售量(万件) 销售量(万件)
第3章 趋势外推预测法
• • 基本思想 拟合直线(方程)法
•
•
加权拟合直线(方程)法
曲线趋势外推法的引入
一、趋势外推法的基本思想
● 某些客观事物的发展变化相对于时间推移,常表现出一定 的规律性:
如:经济现象(指标)随着时间的推移呈现某种上升或下降趋势,这时,若作 为预测对象的该经济现象(指标)变化又没有明显的季节性波动迹象,理论上就 可以找到一条合适的函数曲线反映其变化趋势。
• 概念:离差与离差平方
12
y6
10 8
e
ˆt ) 2 离差平方和 ei 2 ( yt y
t 1 t 1
n
n
ˆ6 y
6
e
最小 拟合程度最好
4 2
0 1 2 3 4 5 6 7
★
最小二乘法原理 ★
• 本 质:使历史数据到拟合直线上的离差平方和最小,从而求 得模型参数的方法。
• 演 进:法国数学家勒让ቤተ መጻሕፍቲ ባይዱ于1806年首次发表最小二乘理论。 事实上,德国的高斯于1794年已经应用这一理论推算了谷神 星的轨道,但直至1809年才正式发表。 • 应 用:最小二乘法也是数理统计中一种常用的方法,在工业 技术和其他科学研究中有广泛应用。 • 运算过程:
年份 利润额 yt 1993 1994 200 300 1995 1996 350 400 1997 1998 1999 2000 2001 2002 2003 500 630 700 750 850 950 1020
1200 1000 800 600 400 200 0
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
1400 1200
y2005预测
利润额 yt 系列2 线性 (利润额 yt)
1000 800 600 400 200 0
y2004预测
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
某家用电器厂1998~2008年利润额序列数据
7000 6000 5000 4000 3000 2000 1000 0 0 1 2 3 4 5 6 7 8 9 10
某商场过去9年市场需求量统计数据
某商场某种商品过去9个月的销量数据
二、趋势外推法:原理与假设
● 基于2大条件(趋势的时间稳定性、曲线方程存在) 趋势曲线:
y f (t )
惯性原理:一切物体在没有受到外力作用时,总保持匀速直线运动状态或者 静止状态。但匀速直线运动状态或者静止状态是相对的:
45 40
Y10预测 y11预测
35 30 25 20 15 10 5 0
0 1 2 3 4 5 6 7 8 9 10 11 12
某商场某种商品过去9个月的销量序列数据
30000
y2005预测
25000
20000
15000
y2004预测
10000
5000
0 0 1 2 3 4 5 6 7 8 9 10 11 12
利润额 yt 系列2 线性 (利润额 yt)
y a2 b2 x
y a1 b1x
y a3 b3 x
使用最小二乘法拟合直线
y a1 b1x
?
★
最小二乘法原理 ★
ˆt 离差:et yt y
ˆt ) 离差和: et ( yt y
t 1 t 1 n n