高一数学单元测试题(附答案)
高一数学(必修二)立体几何初步单元测试卷及答案
![高一数学(必修二)立体几何初步单元测试卷及答案](https://img.taocdn.com/s3/m/0e5d437af11dc281e53a580216fc700abb6852fe.png)
高一数学(必修二)立体几何初步单元测试卷及答案一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图所示,己知正方形O A B C ''''的边长为1,它是水平放置的一个平面图形的直观图,则其原图形的周长为( )A.8B.22C.4D.223+2.下列说法正确的是( ) A.三点确定一个平面B.圆心和圆上两个点确定一个平面C.如果两个平面相交有一个交点,则必有无数个公共点D.如果两条直线没有交点,则这两条直线平行3.正方体1111ABCD A B C D -中,P ,Q ,R 分别是AB ,AD ,11B C 的中点,那么正方体中过P ,Q ,R 的截面图形是( ) A.三角形B.四边形C.五边形D.六边形4.某圆柱的高为2,其正视图如图所示,圆柱上下底面圆周及侧面上的点A ,B ,D ,F ,C 在正视图中分别对应点A ,B ,E ,F ,C ,且3AE EF =,2BF BC =,异面直线AB ,CD 所成角的正弦值为45,则该圆柱的外接球的表面积为( )A.20πB.16πC.12πD.10π5.在《九章算术·商功》中将正四面形棱台体(棱台的上、下底面均为正方形)称为方亭.在方亭1111ABCD A B C D -中,1124AB A B ==,四个侧面均为全等的等腰梯形且面积之和为122( ) 282B.283142D.1436.异面直线是指( ) A.空间中两条不相交的直线B.分别位于两个不同平面内的两条直线C.平面内的一条直线与平面外的一条直线D.不同在任何一个平面内的两条直线7.如图,在正方体1111ABCD A B C D -中,E ,F 分别是11A D ,11B C 的中点,则与直线CF 互为异面直线的是( )A.1CCB.11B CC.DED.AE8.下列说法中正确的是( ) A.三点确定一个平面 B.四边形一定是平面图形 C.梯形一定是平面图形D.两个不同平面α和β有不在同一条直线上的三个公共点二、多选题(本题共4小题,每小题5分,共20分。
【高一】高一数学上册第一章集合单元测试题(附答案)
![【高一】高一数学上册第一章集合单元测试题(附答案)](https://img.taocdn.com/s3/m/0a84f6dfdb38376baf1ffc4ffe4733687e21fca6.png)
【高一】高一数学上册第一章集合单元测试题(附答案)第一单元集合1、头衔1.集合{1,2,3}的真子集共有______________。
(a) 5(b)6(c)7(d)82.已知集合a={}b={}则a=______________。
3.如果a={1,2,a2-3a-1},B={1,3},a{3,1},那么。
(a)-4或1(b)-1或4(c)-1(d)44.设u={0,1,2,3,4},a={0,1,2,3},B={2,3,4},然后(CUA)(cub)=。
5.设s、t是两个非空集合,且st,ts,令x=s那么sx=____________。
6.设a={x}和B={x}。
如果AB={2,3,5},那么a和B是。
7.设一元二次方程ax2+bx+c=0(a<0)的根的判别式,则不等式ax2+bx+c0的解集为____________。
8.如果={},n={Z},那么n=_______;。
9.已知u=n,a={},则cua等于_______________。
10.如果二次函数的图像与x轴不相交,则的值范围为______。
11.不等式<x2-4的解集是_______________。
12.将整组设为,并使用集合a、B和C的交集、并集和补集在表中阴影部分签名。
(1)(2)(3)13.若方程8x2+(k+1)x+k-7=0有两个负根,则k的取值范围是14.设a={},B={x},AB,则实数k的取值范围为。
三、解答题15.让完整的集合u={1,2,3,4},和={x2-5x+=0,Xu}如果CUA={1,4},则找到的值。
16.已知集合a={a关于x的方程x2-ax+1=0,有实根},b={a不等式ax2-x+1>0对一切xr成立},求ab。
17.如果你知道集合a={A2,a+1,-3},B={a-3,2a-1,A2+1},如果AB={3},找到实数a。
18.设a={x,其中xr,如果ab=b,求实数a的取值范围。
高一数学必修一集合与函数的概念单元测试题附答案解析
![高一数学必修一集合与函数的概念单元测试题附答案解析](https://img.taocdn.com/s3/m/d5905da0dc88d0d233d4b14e852458fb770b38fe.png)
高一数学必修一集合与函数的概念单元测试附答案解析时间:120分钟满分:150分一、选择题本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的1.设集合M={x|x2+2x=0,x∈R},N={x|x2-2x=0,x∈R},则M∪N=A.{0} B.{0,2} C.{-2,0} D.{-2,0,2}2.设f:x→|x|是集合A到集合B的映射,若A={-2,0,2},则A∩B=A.{0} B.{2} C.{0,2} D.{-2,0}3.fx是定义在R上的奇函数,f-3=2,则下列各点在函数fx图象上的是A.3,-2 B.3,2 C.-3,-2 D.2,-34.已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是A.1 B.3 C.5 D.95.若函数fx满足f3x+2=9x+8,则fx的解析式是A.fx=9x+8 B.fx=3x+2 C.fx=-3x-4 D.fx=3x+2或fx=-3x-4 6.设fx=错误!则f5的值为A.16 B.18 C.21 D.247.设T={x,y|ax+y-3=0},S={x,y|x-y-b=0},若S∩T={2,1},则a,b的值为A.a=1,b=-1 B.a=-1,b=1C.a=1,b=1 D.a=-1,b=-18.已知函数fx的定义域为-1,0,则函数f2x+1的定义域为A.-1,1 C.-1,09.已知A={0,1},B={-1,0,1},f是从A到B映射的对应关系,则满足f0>f1的映射有A.3个B.4个C.5个D.6个10.定义在R上的偶函数fx满足:对任意的x1,x2∈-∞,0x1≠x2,有x2-x1fx2-fx1>0,则当n∈N时,有A.f-n<fn-1<fn+1 B.fn-1<f-n<fn+1C.fn+1<f-n<fn-1 D.fn+1<fn-1<f-n11.函数fx是定义在R上的奇函数,下列说法:①f0=0;②若fx在0,+∞上有最小值为-1,则fx在-∞,0上有最大值为1;③若fx在1,+∞上为增函数,则fx在-∞,-1上为减函数;④若x>0时,fx=x2-2x,则x<0时,fx=-x2-2x.其中正确说法的个数是A.1个 B.2个 C.3个 D.4个12.fx满足对任意的实数a,b都有fa+b=fa·fb且f1=2,则错误!+错误!+错误!+…+错误!=A.1006 B.2014 C.2012 D.1007二、填空题本大题共4小题,每小题5分,共20分.把答案填在题中横线上13.函数y=错误!的定义域为________.14.fx=错误!若fx=10,则x=________.15.若函数fx=x+abx+2a常数a,b∈R是偶函数,且它的值域为-∞,4,则该函数的解析式fx=________.16.在一定范围内,某种产品的购买量y吨与单价x元之间满足一次函数关系,如果购买1000吨,每吨为800元,购买2000吨,每吨为700元,那么客户购买400吨,单价应该是________元.三、解答题本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤17.本小题满分10分已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R.1求A∪B,U A∩B;2若A∩C≠,求a的取值范围.18.本小题满分12分设函数fx=错误!.1求fx的定义域;2判断fx的奇偶性;3求证:f错误!+fx=0.19.本小题满分12分已知y=fx是定义在R上的偶函数,当x≥0时,fx=x2-2x.1求当x<0时,fx的解析式;2作出函数fx的图象,并指出其单调区间.20.本小题满分12分已知函数fx=错误!,1判断函数在区间1,+∞上的单调性,并用定义证明你的结论.2求该函数在区间1,4上的最大值与最小值.21.本小题满分12分已知函数fx的定义域为0,+∞,且fx为增函数,fx·y=fx+fy.1求证:f错误!=fx-fy;2若f3=1,且fa>fa-1+2,求a的取值范围.22.本小题满分12分某商场经销一批进价为每件30元的商品,在市场试销中发现,此商品的销售单价x元与日销售量y件之间有如下表所示的关系:1在所给的坐标图纸中,根据表中提供的数据,描出实数对x,y的对应点,并确定y与x 的一个函数关系式.2设经营此商品的日销售利润为P元,根据上述关系,写出P关于x的函数关系式,并指出销售单价x为多少元时,才能获得最大日销售利润1.解析M={x|xx+2=0.,x∈R}={0,-2},N={x|xx-2=0,x∈R}={0,2},所以M∪N={-2,0,2}.答案D2. 解析依题意,得B={0,2},∴A∩B={0,2}.答案C3. 解析∵fx是奇函数,∴f-3=-f3.又f-3=2,∴f3=-2,∴点3,-2在函数fx的图象上.答案A4. 解析逐个列举可得.x=0,y=0,1,2时,x-y=0,-1,-2;x=1,y=0,1,2时,x-y =1,0,-1;x=2,y=0,1,2时,x-y=2,1,0.根据集合中元素的互异性可知集合B的元素为-2,-1,0,1,2.共5个.答案C5. 解析∵f3x+2=9x+8=33x+2+2,∴fx=3x+2.答案B6. 解析f5=f5+5=f10=f15=15+3=18.答案B7. 解析依题意可得方程组错误!错误!答案C8. 解析由-1<2x+1<0,解得-1<x<-错误!,故函数f2x+1的定义域为错误!.答案B9. 解析当f0=1时,f1的值为0或-1都能满足f0>f1;当f0=0时,只有f1=-1满足f0>f1;当f0=-1时,没有f1的值满足f0>f1,故有3个.答案A10.解析由题设知,fx在-∞,0上是增函数,又fx为偶函数,∴fx在0,+∞上为减函数.∴fn+1<fn<fn-1.又f-n=fn,∴fn+1<f-n<fn-1.答案C11. 解析①f0=0正确;②也正确;③不正确,奇函数在对称区间上具有相同的单调性;④正确.答案C12. 解析因为对任意的实数a,b都有fa+b=fa·fb且f1=2,由f2=f1·f1,得错误!=f1=2,由f4=f3·f1,得错误!=f1=2,……由f2014=f2013·f1,得错误!=f1=2,∴错误!+错误!+错误!+…+错误!=1007×2=2014.答案B13. 解析由错误!得函数的定义域为{x|x≥-1,且x≠0}.答案{x|x≥-1,且x≠0}14. 解析当x≤0时,x2+1=10,∴x2=9,∴x=-3.当x>0时,-2x=10,x=-5不合题意,舍去.∴x=-3.答案-315. 解析fx=x+abx+2a=bx2+2a+abx+2a2为偶函数,则2a+ab=0,∴a=0,或b=-2.又fx的值域为-∞,4,∴a≠0,b=-2,∴2a2=4.∴fx=-2x2+4.答案-2x2+416. 解析设一次函数y=ax+ba≠0,把错误!和错误!代入求得错误!∴y=-10x+9000,于是当y=400时,x=860.答案86017. 解1A∪B={x|2≤x≤8}∪{x|1<x<6}={x|1<x≤8}.A={x|x<2,或x>8}.U∴U A∩B={x|1<x<2}.2∵A∩C≠,∴a<8.18. 解1由解析式知,函数应满足1-x2≠0,即x≠±1.∴函数fx的定义域为{x∈R|x≠±1}.2由1知定义域关于原点对称,f-x=错误!=错误!=fx.∴fx为偶函数.3证明:∵f错误!=错误!=错误!,fx=错误!,∴f错误!+fx=错误!+错误!=错误!-错误!=0.19. 解1当x<0时,-x>0,∴f-x=-x2-2-x=x2+2x.又fx是定义在R上的偶函数,∴f-x=fx.∴当x<0时,fx=x2+2x.2由1知,fx=错误!作出fx的图象如图所示:由图得函数fx的递减区间是-∞,-1,0,1.fx的递增区间是-1,0,1,+∞.20. 解1函数fx在1,+∞上是增函数.证明如下:任取x1,x2∈1,+∞,且x1<x2,fx-fx2=错误!-错误!=错误!,1∵x1-x2<0,x1+1x2+1>0,所以fx1-fx2<0,即fx1<fx2,所以函数fx在1,+∞上是增函数.2由1知函数fx在1,4上是增函数,最大值f4=错误!,最小值f1=错误!.21. 解1证明:∵fx=f错误!=f错误!+fy,y≠0∴f错误!=fx-fy.2∵f3=1,∴f9=f3·3=f3+f3=2.∴fa>fa-1+2=fa-1+f9=f9a-1.又fx在定义域0,+∞上为增函数,∴错误!∴1<a<错误!.22. 解1由题表作出30,60,40,30,45,15,50,0的对应点,它们近似地分布在一条直线上,如图所示.设它们共线于直线y=kx+b,则错误!错误!∴y=-3x+1500≤x≤50,且x∈N,经检验30,60,40,30也在此直线上.∴所求函数解析式为y=-3x+1500≤x≤50,且x∈N.2依题意P=yx-30=-3x+150x-30=-3x-402+300.∴当x=40时,P有最大值300,故销售单价为40元时,才能获得最大日销售利润.。
高一数学立体几何单元测试及答案
![高一数学立体几何单元测试及答案](https://img.taocdn.com/s3/m/5b78486a0975f46526d3e171.png)
立体几何综合测评(满分:150分时间:120分钟)一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.给出下列命题,其中是真命题的为()(1)若两个平面平行,那么其中一个平面内的直线一定平行于另一个平面;(2)若两个平面平行,那么垂直于其中一个平面的直线一定垂直于另一个平面;(3)若两个平面垂直,那么垂直于其中一个平面的直线一定平行于另一个平面;(4)若两个平面垂直,那么其中一个平面内的直线一定垂直于另一个平面.A.(1)(2)B.(1)(3)C.(2)(4) D.(3)(4)A[(1)因为两个平面平行,所以两个平面没有公共点,即其中一个平面内的直线与另一个平面也没有公共点,所以(1)正确.(2)因为该直线与其中一个平面垂直,那么该直线必与其中两条相交直线垂直,又两个平面平行,故另一个平面也必定存在两条相交直线与该直线垂直,所以该直线与另一个平面也垂直,故(2)正确.(3)错,反例:该直线可以在另一个平面内.(4)错,反例:其中一个平面内也存在直线与另一个平面平行.综上:(1)(2)为真命题.]2.给出以下四个命题:①不共面的四点中,其中任意三点不共线;②若点A,B,C,D共面,点A,B,C,E共面,则点A,B,C,D,E共面;③若直线a,b共面,直线a,c共面,则直线b,c共面;④依次首尾相接的四条线段必共面.其中正确命题的个数是()A.0 B.1C.2 D.3B[①假设其中有三点共线,则该直线和直线外的另一点确定一个平面,这与四点不共面矛盾,故其中任意三点不共线,所以①正确;②如图,两个相交平面有三个公共点A,B,C,但A,B,C,D,E不共面;③显然不正确;④不正确.因为此时所得的四边形的四条边可以不在一个平面上,如空间四边形.]3.在正方体ABCD-A1B1C1D1中,棱所在直线与直线BA1是异面直线的条数为()A.4 B.5C.6 D.7C[如图,在正方体ABCD-A1B1C1D1中,与直线BA1异面的直线有CD,C1D1,C1C,D1D,B1C1,AD,共6条,故选C.]4.设l为直线,α,β是两个不同的平面.下列命题中正确的是()A.若l∥α,l∥β,则α∥βB.若l⊥α,l⊥β,则α∥βC.若l⊥α,l∥β,则α∥βD.若α⊥β,l∥α,则l⊥βB[对于A,若l∥α,l∥β,则α和β可能平行也可能相交,故错误;对于B,若l⊥α,l⊥β,则α∥β,故正确;对于C,若l⊥α,l∥β,则α⊥β,故错误;对于D,若α⊥β,l∥α,则l与β的位置关系有三种可能:l⊥β,l∥β,lβ,故错误.故选B.] 5.如图,已知P A⊥矩形ABCD所在的平面,则图中互相垂直的平面有()A.1对B.2对C.3对D.5对D[∵DA⊥AB,DA⊥P A,∴DA⊥平面P AB.同理BC⊥平面P AB,又AB⊥平面P AD,∴DC⊥平面P AD,∴平面P AD⊥平面AC,平面P AB⊥平面AC,平面PBC⊥平面P AB,平面P AB⊥平面P AD,平面PDC⊥平面P AD,共5对.]6.如图,α∩β=l,点A,C∈α,点B∈β,且BA⊥α,BC⊥β,那么直线l与直线AC的关系是()A.异面B.平行C.垂直D.不确定C[∵BA⊥α,α∩β=l,lα,∴BA⊥l.同理BC⊥l.又BA∩BC=B,∴l⊥平面ABC.∵AC平面ABC,∴l⊥AC.]7.下列命题中正确的是()A.将正方形旋转不可能形成圆柱B.以直角梯形的一腰为轴旋转所得的旋转体是圆台C.圆柱、圆锥、圆台的底面都是圆面D.通过圆台侧面上一点,有无数条母线C[将正方形绕其一边所在直线旋转可以形成圆柱,所以A错误;B中必须以垂直于底边的腰为轴旋转才能得到圆台,所以B错误;通过圆台侧面上一点,只有一条母线,所以D错误,故选C.] 8.如图所示的组合体,其构成形式是()A.左边是三棱台,右边是圆柱B.左边是三棱柱,右边是圆柱C.左边是三棱台,右边是长方体D.左边是三棱柱,右边是长方体D[根据三棱柱和长方体的结构特征,可知此组合体左边是三棱柱,右边是长方体.]9.设长方体的长,宽,高分别为2a,a,a,其顶点都在一个球面上,则该球的表面积为() A.3πa2B.6πa2C.12πa2D.24πa2B[由题可知,球的直径等于长方体的体对角线的长度,故2R=4a2+a2+a2,解得R=62a,所求球的表面积S=4πR2=6πa2.]10.设三棱柱的侧棱垂直于底面,所有棱的长都为a,顶点都在一个球面上,则该球的表面积为()A.πa2 B.73πa2C.113πa2D.5πa2B[由题意知,该三棱柱为正三棱柱,且侧棱与底面边长相等,均为a.如图,P为三棱柱上底面的中心,O为球心,易知AP=23×32a=33a,OP=12a,所以球的半径R=OA满足R2=⎝⎛⎭⎪⎫33a2+⎝⎛⎭⎪⎫12a2=7 12a 2,故S球=4πR2=73πa2.]11.已知直三棱柱ABC-A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为()A.3172B.210C.132D.310C[如图所示,由球心作平面ABC 的垂线,则垂足为BC 的中点M .又AM =12BC =52,OM =12AA 1=6,所以球O 的半径为R =OA =62+⎝ ⎛⎭⎪⎫522=132.]12.已知l ,m 表示两条不同的直线,α表示平面,则下列说法正确的是( ) A .若l ⊥α,m α,则l ⊥mB .若l ⊥m ,m α,则l ⊥αC .若l ∥m ,m α,则l ∥αD .若l ∥α,m α,则l ∥m A [对于A ,若l ⊥α,m α,则根据直线与平面垂直的性质,知l ⊥m ,故A 正确;对于B ,若l ⊥m ,m α,则l 可能在α内,故B 不正确;对于C ,若l ∥m ,m α,则l ∥α或l α,故C 不正确;对于D ,若l ∥α,m α,则l 与m 可能平行,也可能异面,故D 不正确.故选A.]二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上) 13.已知正六棱柱的侧面积为72 cm 2,高为6 cm ,那么它的体积为__________cm 3. 363 [设正六棱柱的底面边长为x cm ,由题意得6x ·6=72,所以x =2 cm , 于是其体积V =34×22×6×6=36 3 cm 3.]14.圆锥的表面积是底面积的3倍,那么该圆锥的侧面展开图扇形的圆心角的度数为________. 180° [S 底+S 侧=3S 底,2S 底=S 侧,即2πr 2=πrl ,得2r =l . 设侧面展开图的圆心角为θ,则θπl 180°=2πr ,∴θ=180°.]15.如图所示,在正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是棱AA 1和AB 上的点,若∠B 1MN 是直角,则∠C1MN等于________.90°[∵B1C1⊥平面A1ABB1,MN平面A1ABB1,∴B1C1⊥MN.又∠B1MN为直角,∴B1M⊥MN.而B1M∩B1C1=B1,∴MN⊥平面MB1C1.又MC1平面MB1C1,∴MN⊥MC1,∴∠C1MN=90°.]16.棱长为1的正四面体内有一点P,由点P向各个面引垂线,垂线段分别为d1,d2,d3,d4,则d 1+d 2+d 3+d 4的值为________.63 [设四面体的高为h ,则h =12-⎝ ⎛⎭⎪⎫23×32×12=63,13Sh =13S (d 1+d 2+d 3+d 4),∴d 1+d 2+d 3+d 4=h =63.]B三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)如图,正方体ABCD -A ′B ′C ′D ′的棱长为a ,连结A ′C ′,A ′D ,A ′B ,BD ,BC ′,C ′D ,得到一个三棱锥.求:(1)三棱锥A ′BC ′D 的表面积与正方体表面积的比值; (2)三棱锥A ′BC ′D 的体积.[解] (1)∵ABCD -A ′B ′C ′D ′是正方体, ∴六个面是互相全等的正方形,∴A ′C ′=A ′B =A ′D =BC ′=BD =C ′D =2a ,∴S 三棱锥=4×34×(2a )2=23a 2,S 正方体=6a 2, ∴S 三棱锥S 正方体=33. (2)显然,三棱锥A ′ABD ,C ′BCD ,D A ′D ′C ′, B A ′B ′C ′是完全一样的, ∴V 三棱锥A ′BC ′D =V 正方体-4V 三棱锥A ′ABD =a 3-4×13×12a 2×a =13a 3.18.(本小题满分12分)如图,在三棱锥A -BCD 中,AB ⊥AD ,BC ⊥BD ,平面ABD ⊥平面BCD ,点E ,F (E 与A ,D 不重合)分别在棱AD ,BD上,且EF ⊥AD .求证:(1)EF ∥平面ABC ; (2)AD ⊥AC .[证明] (1)在平面ABD 内,因为AB ⊥AD ,EF ⊥AD , 所以EF ∥AB .又因为EF 平面ABC ,AB 平面ABC , 所以EF ∥平面ABC .(2)因为平面ABD ⊥平面BCD , 平面ABD ∩平面BCD =BD , BC 平面BCD ,BC ⊥BD , 所以BC ⊥平面ABD .因为AD 平面ABD ,所以BC ⊥AD .又AB ⊥AD ,BC ∩AB =B ,AB 平面ABC ,BC 平面ABC , 所以AD ⊥平面ABC . 又因为AC 平面ABC , 所以AD ⊥AC .19.(本小题满分12分)如图,圆锥的轴截面SAB 为等腰直角三角形,Q 为底面圆周上一点.(1)若QB的中点为C,求证:平面SOC⊥平面SBQ;(2)若∠AOQ=120°,QB=3,求圆锥的表面积.[解](1)证明:∵SQ=SB,OQ=OB,C为QB的中点,∴QB⊥SC,QB⊥OC.∵SC∩OC=C,∴QB⊥平面SOC.又∵QB平面SBQ,∴平面SOC⊥平面SBQ.(2)∵∠AOQ=120°,QB=3,∴∠BOQ=60°,即△OBQ为等边三角形,∴OB= 3.∵△SAB为等腰直角三角形,∴SB=6,∴S侧=3·6π=32π,∴S表=S侧+S底=32π+3π=(3+32)π.20.(本小题满分12分)如图所示,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,底面边长为a,E是PC的中点.(1)求证:P A∥平面BDE;(2)求证:平面P AC⊥平面BDE;(3)若二面角E-BD-C为30°,求四棱锥P-ABCD的体积.[解](1)证明:连结OE,如图所示.∵O,E分别为AC,PC的中点,∴OE∥P A.∵OE平面BDE,P A平面BDE,∴P A∥平面BDE. (2)证明:∵PO⊥平面ABCD,∴PO⊥BD.在正方形ABCD中,BD⊥AC.又∵PO∩AC=O,∴BD⊥平面P AC.又∵BD平面BDE,∴平面P AC⊥平面BDE.(3)取OC 中点F ,连结EF .∵E 为PC 中点,∴EF 为△POC 的中位线,∴EF ∥PO .又∵PO ⊥平面ABCD ,∴EF ⊥平面ABCD ,∴EF ⊥BD .∵OF ⊥BD ,OF ∩EF =F ,∴BD ⊥平面EFO ,∴OE ⊥BD ,∴∠EOF 为二面角E -BD -C 的平面角,∴∠EOF =30°.在Rt △OEF 中,OF =12OC =14AC =24a ,∴EF =OF ·tan 30°=612a ,∴OP =2EF =66a .∴V P ABCD =13×a 2×66a =618a 3.21.(本小题满分12分)如图,三棱锥P -ABC 中,P A ⊥平面ABC ,P A =1,AB =1,AC =2,∠BAC =60°.(1)求三棱锥P -ABC 的体积;(2)证明:在线段PC 上存在点M ,使得AC ⊥BM ,并求PM MC 的值.[解] (1)由题设AB =1,AC =2,∠BAC =60°,可得S △ABC =12·AB ·AC ·sin 60°=32.由P A ⊥平面ABC ,可知P A 是三棱锥P -ABC 的高.又P A =1,所以三棱锥P -ABC 的体积V =13·S △ABC ·P A =36.(2)证明:在平面ABC 内,过点B 作BN ⊥AC ,垂足为N .在平面P AC 内,过点N 作MN ∥P A 交PC 于点M ,连接BM . 由P A ⊥平面ABC 知P A ⊥AC ,所以MN ⊥AC .由于BN ∩MN =N ,故AC ⊥平面MBN .又BM 平面MBN ,所以AC ⊥BM . 在直角△BAN 中,AN =AB ·cos ∠BAC =12,从而NC =AC -AN =32.由MN ∥P A ,得PM MC =AN NC =13.22.(本小题满分12分)如图(1),在Rt △ABC 中,∠C =90°,D ,E 分别为AC ,AB 的中点,点F 为线段CD 上的一点,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1F ⊥CD ,如图(2).(1) (2)(1)求证:DE∥平面A1CB;(2)求证:A1F⊥BE;(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ.说明理由.这样的设问该怎么回答?[解](1)证明:∵D,E分别为AC,AB的中点,∴DE∥BC.又∵DE平面A1CB,BC平面A1CB,∴DE∥平面A1CB.(2)证明:由已知得AC⊥BC且DE∥BC,∴DE⊥AC,∴DE⊥A1D,DE⊥CD,A1D∩CD=D,∴DE⊥平面A1DC,而A1F平面A1DC,∴DE⊥A1F.又∵A1F⊥CD,DE∩CD=D,∴A1F⊥平面BCDE,∵BE平面BCDE,∴A1F⊥BE.(3)线段A1B上存在点Q,使A1C⊥平面DEQ.理由如下:如图,分别取A1C,A1B的中点P,Q,连接PQ,QE,则PQ∥BC.又∵DE∥BC,∴DE∥PQ,∴平面DEQ即为平面DEP.由(2)知,DE⊥平面A1DC,A1C平面A1DC,∴DE⊥A1C.又∵P是等腰三角形DA1C底边A1C的中点,∴A1C⊥DP.又DE∩DP=D,∴A1C⊥平面DEP.从而A1C⊥平面DEQ.故线段A1B上存在点Q(A1B的中点),使得A1C⊥平面DEQ.。
高一数学必修一第一单元测试题及答案
![高一数学必修一第一单元测试题及答案](https://img.taocdn.com/s3/m/11776df15122aaea998fcc22bcd126fff7055da5.png)
高一数学必修一第一单元测试题及答案一、单项选择题(5分,每小题1分)1. 在空间直角坐标系中,共线的两个非零向量()A. 必定相等B. 不一定相等C. 长度不定D. 不可能共线答案:B2. 关于两个集合A和B,下列说法正确的是()A. 如果A⊆B,那么有B⊆AB.如果A⊂B,那么有B⊂AC.A∩B=B∩AD.两个空集合A和B之间有A=B答案:C3. 若a>0,b≤1,则有()A. a+b>1B. a+b≤1C. a+b<1D. a+b≥1答案:B4. 在三棱锥P—ABC中,底面PAB的面积是9,PA的长是6,PB的长为5,AB的长为9,则该三棱锥的体积是()A. 45B. 90C. 108D. 135答案:A5. 设X=[1,3],Y=[2,4],则下列命题中正确的是()A. X∪Y=[1,4]B. X∩Y=[2,3]C. X-Y=[1]D. Y-X=[4]答案:A二、填空题(10分,每小题2分)6. 已知一个空间向量a=(1,3,1),其中张成a的两条线段长分别为p和q,则 p、q 的大小关系是()。
答案:p>q7. 已知平面内角∠A、∠B、∠C三角形的度数分别为20°、70°、90°,若三角形ABC的面积为12,则此三角形的外接圆半径是()。
答案:128. 已知集合A={1,2,3}, B={1,5,9},则A∪B={()}答案:1,2,3,5,99. 已知数列{an}的首项a1=2,公比q=3,则数列{an}的前4项和S4=()答案:6210. 设函数f(x)=sinθx,θ是未知实数,则函数f(x)的最大值为( )答案:1。
新教材人教版高一数学上册单元测试题含答案全套
![新教材人教版高一数学上册单元测试题含答案全套](https://img.taocdn.com/s3/m/7e39fd049b6648d7c0c7464f.png)
新教材人教版高一数学上册单元测试题含答案全套人教版高中数学必修第一册第一章测试题集合与常用逻辑用语注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合,,则等于( )A .B .C .D .【答案】B【解析】集合,,.2.是的( )条件 A .充分不必要 B .必要不充分 C .充要 D .既不充分也不必要 【答案】B【解析】由不能推得,反之由可推得, 所以是的必要不充分条件. 3.已知集合,,若,则实数的值为( )A .B .C .D .【答案】B【解析】∵集合,,且,∴,因此. 4.下列命题中正确的是( ){}1,2,3,4,5A ={}21,B y y x x A ==-∈A B {2,4}{1,3,5}{2,4,7,9}{1,2,3,4,5,7,9}{}1,2,3,4,5A ={}{}21,1,3,5,7,9B y y x x A ==-∈={}1,3,5A B =1x >4x >1x >4x >4x >1x >1x >4x >{1,3}A =-2{2,}B a ={1,2,3,9}A B =-a 1±3±1-3{1,3}A =-2{2,}B a ={1,2,3,9}A B =-29a =3a =±A .任何一个集合必有两个以上的子集B .空集是任何集合的子集C .空集没有子集D .空集是任何集合的真子集 【答案】B【解析】空集只有一个子集,故A 错;B 正确; 空集是本身的子集,故C 错;空集不能是空集的真子集,故D 错. 5.已知集合,则中元素的个数为( )A .B .C .D .【答案】A【解析】因为集合,所以满足且,的点有,,,,,,,,共个.6.已知,则( )A .B .C .D .【答案】B 【解析】,故A 错,B 对,显然,所以C 不对,而,所以D 也不对,故本题选B .7.命题“存在实数,使”的否定是( ) A .对任意实数,都有 B .对任意实数,都有 C .不存在实数,使 D .存在实数, 【答案】B【解析】命题“存在实数,使”的否定是“对任意实数,都有”. 8.集合中的不能取的值的个数是( ) A .B .C .D .【答案】B【解析】由题意可知,且且, 故集合中的不能取的值的个数是个. 9.下列集合中,是空集的是( ) A . B .C .D .【答案】B(){}22,3,,A x y xy x y =+≤∈∈Z Z A 9854(){}22,3,,A x y xy x y =+≤∈∈Z Z 223x y +≤x ∈Z y ∈Z (1,1)--(1,0)-(1,1)-(0,1)-(0,0)(0,1)(1,1)-(1,0)(1,1)9a ={A x x =≥a A ∉a A ∈{}a A ={}a a ∉>a A ∈{}a A ≠{}a a ∈x 1x >x 1x >x 1x ≤x 1x ≤x 1x ≤x 1x >x 1x ≤{}22,4,0x x --x 2345222040224x x x x x -≠-≠⇒≠-≠⎧⎪⎨⎪⎩-2x ≠-1x ≠-{}22,4,0x x --x 3{}0|2x x +={}210,x x x +=∈R {}1|x x <(){}22,,,x y yx x y =-∈R【解析】对于A 选项,,不是空集, 对于B 选项,没有实数根,故为空集, 对于C 选项,显然不是空集,对于D 选项,集合为,故不是空集. 10.下列各组集合中表示同一集合的是( ) A ., B ., C ., D .,【答案】B【解析】对于A ,,表示点集,,表示数集,故不是同一集合; 对于B ,,,根据集合的无序性,集合表示同一集合; 对于C ,集合的元素是数,集合的元素是等式;对于D ,,集合的元素是点,, 集合的元素是点,集合不表示同一集合.11.学校先举办了一次田径运动会,某班共有名同学参赛,又举办了一次球类运动会,这个班有名同学参赛,两次运动会都参赛的有人.两次运动会中,这个班总共的参赛人数为( ) A . B . C . D . 【答案】B【解析】因为参加田径运动会的有名同学,参加球类运动会的有名同学,两次运动会都参加的有人,所以两次运动会中,这个班总共的参赛人数为.12.已知集合,.若, 则实数的取值范围为( ) A . B .C .D .【答案】D【解析】, 当为空集时,;当不为空集时,,综上所述得.第Ⅱ卷二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.集合,则集合的子集的个数为 个.2x =-210x +={(0,0)}{(3,2)}M ={3,2}N ={2,3}M ={3,2}N ={2,3}M ={2,3}N x y ==={(2,3)}M ={(5,4)}N ={(3,2)}M =M {3,2}N =N {2,3}M ={3,2}N =,M N M N {(2,3)}M =M (2,3){(5,4)}N =N (5,4),M N 8123201714238123812317+-={}|25A x x =-≤≤{}|121B x m x m =+≤≤-B A ⊆m 3m ≥23m ≤≤2m ≥3m ≤{}|121B x m x m =+≤≤-B 2112m m m -<+⇒<B 22152312m m m m ≥⎧⎪-≤⇒≤≤⎨⎪+≥-⎩3m ≤2{}1,A =A【答案】【解析】由已知,集合的子集个数为.14.命题“”是命题“”的 (“充分不必要,必要不充分,充要,既不充分也不必要”)条件. 【答案】必要不充分【解析】的解为或,所以当“”成立时,则“”未必成立; 若“”,则“”成立,故命题“”是命题“”的必要不充分条件.15.命题“,”的否定是 .【答案】,【解析】由全称量词命题的否定是存在量词命题可知,命题“,”的否定是“,”.16.设全集是实数集,,, 则图中阴影部分所表示的集合是 .【答案】【解析】由图可知,阴影部分为,∵,∴,∴.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)已知集合,且,求的取值集合. 【答案】.【解析】∵,∴或,即或.4A 224=220x x --=1x =-220x x --=1x =-2x =220x x --=1x =-1x =-220x x --=220x x --=1x =-x ∀∈R 23210x x -+>0x ∃∈R 2003210x x -+≤x ∀∈R 23210x x -+>0x ∃∈R 2003210x x -+≤U R {}22M x x x =<->或{}13N x x =<<{}12x x <≤Venn ()UN M {}22M x x x =<->或{}22UM x x -=≤≤(){}12UNM x x =<≤{}21,2,4M m m =++5M ∈m {}1,3{}251,2,4m m ∈++25m +=245m +=3m =1m =±当时,;当时,; 当时,不满足互异性, ∴的取值集合为{}1,3.18.(12分)已知集合,,若,求实数,的值.【答案】或.【解析】由已知,得①,解得或, 当时,集合不满足互异性, 当时,集合,集合,符合题意; ②,解得(舍)或,当时,集合,集合符合题意,综上所述,可得或.19.(12分)设集合,. (1)若,试判定集合与的关系; (2)若,求实数的取值集合.【答案】(1)是的真子集;(2).3m ={}1,5,13M =1m ={}1,3,5M =1m =-{}1,1,5M =m {,,2}A a b =2{2,,2}B b a =A B =a b 01a b =⎧⎨=⎩1412a b ⎧=⎪⎪⎨⎪=⎪⎩A B =22a a b b =⎧⎨=⎩00a b =⎧⎨=⎩01a b =⎧⎨=⎩00a b =⎧⎨=⎩{0,0,2}A =01a b =⎧⎨=⎩{0,1,2}A ={2,1,0}B =22a b b a ⎧=⎨=⎩00a b =⎧⎨=⎩1412a b ⎧=⎪⎪⎨⎪=⎪⎩1412a b ⎧=⎪⎪⎨⎪=⎪⎩11{,,2}42A =11{2,,}42B =01a b =⎧⎨=⎩1412a b ⎧=⎪⎪⎨⎪=⎪⎩{}28150A x x x =-+={}10B x ax =-=15a =A B B A ⊆a B A 110,,35⎧⎫⎨⎬⎩⎭【解析】(1),,∴是的真子集. (2)当时,满足,此时;当时,,集合,又,得或,解得或. 综上,实数的取值集合为.20.(12分)已知全集,集合,.求: (1),,;(2),;(3)设集合且,求的取值范围.【答案】(1)见解析;(2)见解析;(3). 【解析】(1),∵,,.(2),∴.(3)由(2)可知,∵,∴,解得.21.(12分)已知集合为全体实数集,,. (1)若,求;(2)若,求实数的取值范围. 【答案】(1);(2).【解析】(1)当时,,所以,所以.(2)①,即时,,此时满足.②当,即时,,由得,或, 所以.{3,5}A ={5}B =B A B =∅B A ⊆0a =B ≠∅0a ≠1B a ⎧⎫=⎨⎬⎩⎭B A ⊆13a =15a=13a =15a 110,,35⎧⎫⎨⎬⎩⎭{}6U x x =∈<N {}1,2,3A ={}2,4B =A B UA UB AB ()UA B {|21}C x a x a =-<≤-()UA CB ⊆a 3a ≥2A B ={0,1,2,3,4,5}U ={0,4,5}UA ={0,1,3,5}UB ={1,2,3,4}AB =(){0,5}UA B =(){0,5}UA B =()U A C B ⊆021521a a a a -<⎧⎪-≥⎨⎪->-⎩3a ≥U {}25M x x x =≤-≥或{}121N x a x a =+≤≤-3a =UMN N M ⊆a {}45Ux x x MN =<≥或{}24a a a <≥或3a ={}45|N x x =≤≤{}45UN x x x =<>或{}45Ux x x MN =<≥或211a a -<+2a <N =∅N M ⊆211a a -≥+2a ≥N ≠∅N M ⊆15a +≥212a -≤-4a ≥综上,实数的取值范围为.22.(12分)已知二次函数,非空集合.(1)当时,二次函数的最小值为,求实数的取值范围;(2)是否存在整数的值,使得“”是“二次函数的大值为”的充分条件, 如果存在,求出一个整数的值,如果不存在,请说明理由. 【答案】(1);(2)见解析.【解析】(1),当且仅当时,二次函数有最小值为,由已知时,二次函数的最小值为,则,所以. (2)二次函数,开口向上,对称轴为,作出二次函数图象如图所示,由“”是“二次函数的大值为”的充分条件, 即时,二次函数的最大值为,,即为,令,解得或,由图像可知,当或时,二次函数的最大值不等于,不符合充分条件, 则,即可取的整数值为,,,,任意一个.第一册第二章测试题一元二次函数、方程和不等式注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
高一数学必修1、4测试题(分单元测试_含详细答案_强烈推荐_共90页)【适合14523顺序】
![高一数学必修1、4测试题(分单元测试_含详细答案_强烈推荐_共90页)【适合14523顺序】](https://img.taocdn.com/s3/m/50b2611303d8ce2f00662349.png)
必修1 第一章 集合测试一、选择题(共12小题,每题5分,四个选项中只有一个符合要求)1.下列选项中元素的全体可以组成集合的是 ( )A.学校篮球水平较高的学生B.校园中长的高大的树木C.2007年所有的欧盟国家D.中国经济发达的城市2.方程组20{=+=-y x y x 的解构成的集合是 ( )A .)}1,1{(B .}1,1{C .(1,1)D .}1{ 3.已知集合A ={a ,b ,c },下列可以作为集合A 的子集的是 ( )A. aB. {a ,c }C. {a ,e }D.{a ,b ,c ,d }4.下列图形中,表示N M ⊆的是 ( )5.下列表述正确的是 ( )A.}0{=∅B. }0{⊆∅C. }0{⊇∅D. }0{∈∅6、设集合A ={x|x 参加自由泳的运动员},B ={x|x 参加蛙泳的运动员},对于“既参加自由泳又参加蛙泳的运动员”用集合运算表示为 ( )A.A∩BB.A ⊇BC.A ∪BD.A ⊆B7.集合A={x Z k k x ∈=,2} ,B={Z k k x x ∈+=,12} ,C={Z k k x x ∈+=,14}又,,B b A a ∈∈则有 ( )A.(a+b )∈ AB. (a+b) ∈BC.(a+b) ∈ CD. (a+b) ∈ A 、B 、C 任一个8.集合A ={1,2,x },集合B ={2,4,5},若B A ={1,2,3,4,5},则x =( )A. 1B. 3C. 4D. 59.满足条件{1,2,3}⊂≠M ⊂≠{1,2,3,4,5,6}的集合M 的个数是 ( )A. 8 B . 7C. 6D. 510.全集U = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 }, A= {3 ,4 ,5 }, B= {1 ,3 ,6 },那么集合 { 2 ,7 ,8}是 ( )A. A BB. B AC. B C A C U UD. B C A C U UM N A M N B N M C M ND11.设集合{|32}M m m =∈-<<Z ,{|13}N n n M N =∈-=Z 则,≤≤ ( )A .{}01,B .{}101-,,C .{}012,, D .{}1012-,,, 12. 如果集合A={x |ax 2+2x +1=0}中只有一个元素,则a 的值是 ( )A .0B .0 或1C .1D .不能确定 二、填空题(共4小题,每题4分,把答案填在题中横线上)13.用描述法表示被3除余1的集合 .14.用适当的符号填空:(1)∅ }01{2=-x x ; (2){1,2,3} N ;(3){1} }{2x x x =; (4)0 }2{2x x x =.15.含有三个实数的集合既可表示成}1,,{ab a ,又可表示成}0,,{2b a a +,则=+20042003b a . 16.已知集合}33|{≤≤-=x x U ,}11|{<<-=x x M ,}20|{<<=x x N C U 那么集合=N ,=⋂)(N C M U ,=⋃N M .三、解答题(共4小题,共44分,解答应写出文字说明,证明过程或演算步骤)17. 已知集合}04{2=-=x x A ,集合}02{=-=ax x B ,若A B ⊆,求实数a 的取值集合.18. 已知集合}71{<<=x x A ,集合}521{+<<+=a x a x B ,若满足 }73{<<=x x B A ,求实数a 的值.19. 已知方程02=++b ax x .(1)若方程的解集只有一个元素,求实数a ,b 满足的关系式;(2)若方程的解集有两个元素分别为1,3,求实数a ,b 的值20. 已知集合}31{≤≤-=x x A ,},{2A x y x y B ∈==,},2{A x a x y y C ∈+==,若满足B C ⊆,求实数a 的取值范围.必修1 函数的性质一、选择题:1.在区间(0,+∞)上不是增函数的函数是( ) A .y =2x +1 B .y =3x 2+1 C .y =x2 D .y =2x 2+x +1 2.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,则f (1)等于 ( )A .-7B .1C .17D .253.函数f (x )在区间(-2,3)上是增函数,则y =f (x +5)的递增区间是 ( )A .(3,8)B .(-7,-2)C .(-2,3)D .(0,5)4.函数f (x )=21++x ax 在区间(-2,+∞)上单调递增,则实数a 的取值范围是 ( ) A .(0,21) B .( 21,+∞) C .(-2,+∞) D .(-∞,-1)∪(1,+∞) 5.函数f (x )在区间[a ,b ]上单调,且f (a )f (b )<0,则方程f (x )=0在区间[a ,b ]内 ( )A .至少有一实根B .至多有一实根C .没有实根D .必有唯一的实根6.若q px x x f ++=2)(满足0)2()1(==f f ,则)1(f 的值是 ( )A 5B 5-C 6D 6-7.若集合}|{},21|{a x x B x x A ≤=<<=,且Φ≠B A ,则实数a 的集合( )A }2|{<a aB }1|{≥a aC }1|{>a aD }21|{≤≤a a8.已知定义域为R 的函数f (x )在区间(-∞,5)上单调递减,对任意实数t ,都有f (5+t )=f (5-t ),那么下列式子一定成立的是 ( )A .f (-1)<f (9)<f (13)B .f (13)<f (9)<f (-1)C .f (9)<f (-1)<f (13)D .f (13)<f (-1)<f (9)9.函数)2()(||)(x x x g x x f -==和的递增区间依次是A .]1,(],0,(-∞-∞B .),1[],0,(+∞-∞C .]1,(),,0[-∞+∞D ),1[),,0[+∞+∞ 10.若函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围 ( )A .a ≤3B .a ≥-3C .a ≤5D .a ≥3 11. 函数c x x y ++=42,则 ( )A )2()1(-<<f c fB )2()1(->>f c fC )2()1(->>f f cD )1()2(f f c <-<12.已知定义在R 上的偶函数()f x 满足(4)()f x f x +=-,且在区间[0,4]上是减函数则A .(10)(13)(15)f f f <<B .(13)(10)(15)f f f <<C .(15)(10)(13)f f f <<D .(15)(13)(10)f f f <<.二、填空题:13.函数y =(x -1)-2的减区间是___ _.14.函数f (x )=2x 2-mx +3,当x ∈[-2,+∞)时是增函数,当x ∈(-∞,-2]时是减函数,则f (1)= 。
新教材人教版高一数学上册单元测试题含答案全套
![新教材人教版高一数学上册单元测试题含答案全套](https://img.taocdn.com/s3/m/ac8d400c7f1922791788e869.png)
新教材人教版高一数学上册单元测试题含答案全套人教版高中数学必修第一册第一章测试题第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合,,则等于( )A .B .C .D .【答案】B【解析】集合,,.2.是的( )条件 A .充分不必要 B .必要不充分 C .充要 D .既不充分也不必要 【答案】B【解析】由不能推得,反之由可推得, 所以是的必要不充分条件. 3.已知集合,,若,则实数的值为( )A .B .C .D .【答案】B【解析】∵集合,,且,∴,因此.4.下列命题中正确的是( )A .任何一个集合必有两个以上的子集B .空集是任何集合的子集C .空集没有子集D .空集是任何集合的真子集 【答案】B【解析】空集只有一个子集,故A 错;B 正确; 空集是本身的子集,故C 错;空集不能是空集的真子集,故D 错. 5.已知集合,则中元素的个数为( )A .B .C .D .【答案】A【解析】因为集合,{}1,2,3,4,5A ={}21,B y y x x A ==-∈A B {2,4}{1,3,5}{2,4,7,9}{1,2,3,4,5,7,9}{}1,2,3,4,5A ={}{}21,1,3,5,7,9B y y x x A ==-∈={}1,3,5A B =1x >4x >1x >4x >4x >1x >1x >4x >{1,3}A =-2{2,}B a ={1,2,3,9}A B =-a 1±3±1-3{1,3}A =-2{2,}B a ={1,2,3,9}AB =-29a =3a =±(){}22,3,,A x y xy x y =+≤∈∈Z Z A 9854(){}22,3,,A x y xy x y =+≤∈∈Z Z所以满足且,的点有,,,,,,,,共个.6.已知,则( )A .B .C .D .【答案】B 【解析】,故A 错,B 对,显然,所以C 不对,而,所以D 也不对,故本题选B .7.命题“存在实数,使”的否定是( ) A .对任意实数,都有 B .对任意实数,都有 C .不存在实数,使 D .存在实数, 【答案】B【解析】命题“存在实数,使”的否定是“对任意实数,都有”. 8.集合中的不能取的值的个数是( ) A .B .C .D .【答案】B【解析】由题意可知,且且, 故集合中的不能取的值的个数是个. 9.下列集合中,是空集的是( ) A . B .C .D .【答案】B【解析】对于A 选项,,不是空集, 对于B 选项,没有实数根,故为空集, 对于C 选项,显然不是空集,对于D 选项,集合为,故不是空集. 10.下列各组集合中表示同一集合的是( ) A ., B ., C ., D .,【答案】B223x y +≤x ∈Z y ∈Z (1,1)--(1,0)-(1,1)-(0,1)-(0,0)(0,1)(1,1)-(1,0)(1,1)9a ={A x x =≥a A ∉a A ∈{}a A ={}a a ∉>a A ∈{}a A ≠{}a a ∈x 1x >x 1x >x 1x ≤x 1x ≤x 1x ≤x 1x >x 1x ≤{}22,4,0x x --x 2345222040224x x x x x -≠-≠⇒≠-≠⎧⎪⎨⎪⎩-2x ≠-1x ≠-{}22,4,0x x --x 3{}0|2x x +={}210,x x x +=∈R {}1|x x <(){}22,,,x y yx x y =-∈R 2x =-210x +={(0,0)}{(3,2)}M ={3,2}N ={2,3}M ={3,2}N ={2,3}M ={2,3}N x y ==={(2,3)}M ={(5,4)}N =【解析】对于A ,,表示点集,,表示数集,故不是同一集合; 对于B ,,,根据集合的无序性,集合表示同一集合; 对于C ,集合的元素是数,集合的元素是等式;对于D ,,集合的元素是点,, 集合的元素是点,集合不表示同一集合.11.学校先举办了一次田径运动会,某班共有名同学参赛,又举办了一次球类运动会,这个班有名同学参赛,两次运动会都参赛的有人.两次运动会中,这个班总共的参赛人数为( ) A . B . C . D . 【答案】B【解析】因为参加田径运动会的有名同学,参加球类运动会的有名同学,两次运动会都参加的有人,所以两次运动会中,这个班总共的参赛人数为.12.已知集合,.若, 则实数的取值范围为( ) A . B .C .D .【答案】D【解析】, 当为空集时,;当不为空集时,,综上所述得.第Ⅱ卷二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.集合,则集合的子集的个数为 个. 【答案】【解析】由已知,集合的子集个数为.14.命题“”是命题“”的 (“充分不必要,必要不充分,充要,既不充分也不必要”)条件. 【答案】必要不充分【解析】的解为或,所以当“”成立时,则“”未必成立; 若“”,则“”成立,{(3,2)}M =M {3,2}N =N {2,3}M ={3,2}N =,M N M N {(2,3)}M =M (2,3){(5,4)}N =N (5,4),M N 8123201714238123812317+-={}|25A x x =-≤≤{}|121B x m x m =+≤≤-B A ⊆m 3m ≥23m ≤≤2m ≥3m ≤{}|121B x m x m =+≤≤-B 2112m m m -<+⇒<B 22152312m m m m ≥⎧⎪-≤⇒≤≤⎨⎪+≥-⎩3m ≤2{}1,A =A 4A 224=220x x --=1x =-220x x --=1x =-2x =220x x --=1x =-1x =-220x x --=故命题“”是命题“”的必要不充分条件.15.命题“,”的否定是 .【答案】,【解析】由全称量词命题的否定是存在量词命题可知,命题“,”的否定是“,”.16.设全集是实数集,,, 则图中阴影部分所表示的集合是 .【答案】【解析】由图可知,阴影部分为,∵,∴,∴.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)已知集合,且,求的取值集合. 【答案】.【解析】∵,∴或,即或.当时,;当时,; 当时,不满足互异性, ∴的取值集合为{}1,3.18.(12分)已知集合,,若,求实数,的值.【答案】或.220x x --=1x =-x ∀∈R 23210x x -+>0x ∃∈R 2003210x x -+≤x ∀∈R 23210x x -+>0x ∃∈R 2003210x x -+≤U R {}22M x x x =<->或{}13N x x =<<{}12x x <≤Venn ()UN M {}22M x x x =<->或{}22UM x x -=≤≤(){}12UNM x x =<≤{}21,2,4M m m =++5M ∈m {}1,3{}251,2,4m m ∈++25m +=245m +=3m =1m =±3m ={}1,5,13M =1m ={}1,3,5M =1m =-{}1,1,5M =m {,,2}A a b =2{2,,2}B b a =A B =a b 01a b =⎧⎨=⎩1412a b ⎧=⎪⎪⎨⎪=⎪⎩【解析】由已知,得①,解得或, 当时,集合不满足互异性, 当时,集合,集合,符合题意;②,解得(舍)或,当时,集合,集合符合题意,综上所述,可得或.19.(12分)设集合,. (1)若,试判定集合与的关系; (2)若,求实数的取值集合.【答案】(1)是的真子集;(2). 【解析】(1),,∴是的真子集. (2)当时,满足,此时;当时,,集合,又,得或,解得或. 综上,实数的取值集合为.20.(12分)已知全集,集合,.求:A B =22a a b b =⎧⎨=⎩00a b =⎧⎨=⎩01a b =⎧⎨=⎩00a b =⎧⎨=⎩{0,0,2}A =01a b =⎧⎨=⎩{0,1,2}A ={2,1,0}B =22a b b a ⎧=⎨=⎩00a b =⎧⎨=⎩1412a b ⎧=⎪⎪⎨⎪=⎪⎩1412a b ⎧=⎪⎪⎨⎪=⎪⎩11{,,2}42A =11{2,,}42B =01a b =⎧⎨=⎩1412a b ⎧=⎪⎪⎨⎪=⎪⎩{}28150A x x x =-+=}10B =-=15a =A B B A ⊆a B A 110,,35⎧⎫⎨⎬⎩⎭{3,5}A ={5}B =B A B =∅B A ⊆0a =B ≠∅0a ≠1B a ⎧⎫=⎨⎬⎩⎭B A ⊆13a =15a=13a =15a 110,,35⎧⎫⎨⎬⎩⎭{}6U x x =∈<N {}1,2,3A ={}2,4B =(1),,;(2),;(3)设集合且,求的取值范围.【答案】(1)见解析;(2)见解析;(3). 【解析】(1),∵,,.(2),∴.(3)由(2)可知,∵,∴,解得.21.(12分)已知集合为全体实数集,,. (1)若,求;(2)若,求实数的取值范围. 【答案】(1);(2).【解析】(1)当时,,所以,所以.(2)①,即时,,此时满足.②当,即时,,由得,或, 所以.综上,实数的取值范围为.22.(12分)已知二次函数,非空集合.(1)当时,二次函数的最小值为,求实数的取值范围;(2)是否存在整数的值,使得“”是“二次函数的大值为”的充分条件, 如果存在,求出一个整数的值,如果不存在,请说明理由. 【答案】(1);(2)见解析.【解析】(1),当且仅当时,二次函数有最小值为,由已知时,二次函数的最小值为,则,所以. (2)二次函数,开口向上,对称轴为,作出二次函数图象如图所示,由“”是“二次函数的大值为”的充分条件, 即时,二次函数的最大值为,A B UA UB AB ()UA B {|21}C x a x a =-<≤-()UA CB ⊆a 3a ≥2A B ={0,1,2,3,4,5}U ={0,4,5}UA ={0,1,3,5}UB ={1,2,3,4}AB =(){0,5}UA B =(){0,5}UA B =()U A C B ⊆021521a a a a -<⎧⎪-≥⎨⎪->-⎩3a ≥U {}25M x x x =≤-≥或{}121N x a x a =+≤≤-3a =UMN N M ⊆a {}45Ux x x MN =<≥或{}24a a ≥或3a ={}45|N x x =≤≤{}45UN x x x =<>或{}45Ux x x MN =<≥或211a a -<+2a <N =∅N M ⊆211a a -≥+2a ≥N ≠∅N M ⊆15a +≥212a -≤-4a ≥a {}24a a a <≥或243y x x =-+{}|0A x x a =≤≤x A ∈1-a a x A ∈3a 2a ≥2243(2)1y x x x =-+=--2x =1-x A ∈1-2A ∈2a ≥2(2)1y x =--2x =x A ∈3x A ∈3,即为,令,解得或,由图像可知,当或时,二次函数的最大值不等于,不符合充分条件, 则,即可取的整数值为,,,,任意一个.第一册第二章测试题一元二次函数、方程和不等式注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
高一数学必修1单元试卷1及答案
![高一数学必修1单元试卷1及答案](https://img.taocdn.com/s3/m/7444e9a3b0717fd5360cdcb8.png)
高一数学(必修1)单元测试1班级________姓名________一.选择题(5’×3)1.集合S ={a,b,c}中的3个元素是△ABC 的三边长,则△ABC 一定不是 ( )A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形2.集合M ={(x,y)|xy<0,x ∈R,y ∈R}是 ( )A.第一,三象限内的点集B.第二,四象限内的点集C.负实数集D.实数集3.设S 是全集,集合M,N ⊆S,则图中阴影部分可表 示为( )A.(M ∪N)∩S (M∩N)B. (M ∪N)∩S (M ∪N)C. (M∩N)∪S (M ∪N)D. (M∩N)∪S (M∩N) 二.填空题(5’×8)4.有以下语句:①全体平行四边形;②我校的所有高个子同学;③小于2的所有整数;④高一数学课本中的所有难题;⑤所有无理数;⑥高一年级16岁以下的同学.其中不能构成一个集合的有______________.(填写所有正确的序号)5.在下列五种写法中:①{0}∈{0,1,2};②φ{0};③0∈φ;④{0,1,2}⊆{1,2,0};⑤0 ∩φ=φ.错误的写法有__个.6.已知全集I ={x|-2<x<9,x ∈N *},A ={3,4,5},B ={1,3,6},那么{2,7,8}可用I,A,B 表示为____________.7.已知下列各组集合:①M ={(1,2)},P ={(2,1)};②M ={(2,3)},P ={2,3};③M ={3,4},P ={4,3};④M ={0},P =φ,其中M =P 的是__________.8.满足关系{1}⊆B {1,2,3,4}的集合B 有_____个,9.若集合S ={x|18-x ∈N,且x ∈Z},则S = (用列举法表示). 10.若A ={x|ax 2+3x+1=0}中有且只有一个元素,则a 值为 ___ (写出所有可能值).11.设U 是全集,非空集合P,Q 满足P Q U,若求含P,Q 的一个集合运算表达式,使运算结果为空集,则这个运算表达式可以是 .12.在某班50名学生中,有篮球爱好者30人,排球爱好者32人,则既爱好篮球又爱好排球的同学最少有 人,最多有 人.三.解答题(13’×2+14’)13. 已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},且A∩B=φ,求m的取值范围.14.若全集U={x|x是不大于30的质数},A,B U,且A∩U B={5,13,23},(U A)∩B={11,19,29},(U A)∩(U B)={3,7},求集合A,B15.已知集合A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},C={x|x2+2x-8=0},若A∩B≠φ且A∩C=φ,求a的值.高一数学(必修1)单元测试1答案一.选择题: DBA二.填空题 4.②④ 5.3 6.(I A)∩(I B)或I(A∪B) 7.③8.7 9.{2,3,5,9}10.0,9411.P∩(U Q) 12.12 30三.解答题13. m<2或m>4 14.A={2,5,13,17,23} B={2,11,17,19,29} 15.a=-2。
最新人教A版高一数学必修一单元测试题全套及答案
![最新人教A版高一数学必修一单元测试题全套及答案](https://img.taocdn.com/s3/m/bef97fdf08a1284ac8504342.png)
最新人教A 版高一数学必修一单元测试题全套及答案第一章单元质量评估时限:120分钟 满分:150分一、选择题(每小题5分,共60分)1.已知全集U =R ,集合P ={x ∈N *|x <7},Q ={x |x -3>0},那么图中阴影部分表示的集合是( )A .{1,2,3,4,5,6}B .{x |x >3}C .{4,5,6}D .{x |3<x <7}2.若集合A ={x ∈R |ax 2+ax +1=0}中只有一个元素,则a 等于( ) A .4 B .2 C .0D .0或43.下表给出函数y =f (x )的部分对应值,则f (1)=( )x -1 0 1 478y2π1 -3 1A. π C .8D .04.下列四个函数中,在(-∞,0)上是增函数的为( ) A .f (x )=x 2+1B .f (x )=1-1xC .f (x )=x 2-5x -6D .f (x )=3-x5.函数f (x )=1+x +x 2+11-x 的定义域为( )A .[-1,+∞)B .(-∞,-1]C .RD .[-1,1)6.设f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=⎩⎪⎨⎪⎧1,x 为有理数,0,x 为无理数,则f (g (π))的值为( )A .1B .0C .-1D .π7.已知函数f (x )的定义域为(3-2a ,a +1),且f (x +1)为偶函数,则实数a 的值等于( )A.23 B .2 C .4D .68.已知函数y =k (x +2)-1的图象恒过定点A ,若点A 也在函数f (x )=3x +b 的图象上,则f ⎝ ⎛⎭⎪⎫-3727等于( )A.89 B.79 C.59D.299.已知函数y =f (x )在(0,2)上为增函数,函数y =f (x +2)为偶函数,则f (1),f ⎝ ⎛⎭⎪⎫52,f ⎝ ⎛⎭⎪⎫72的大小关系是( ) A .f ⎝ ⎛⎭⎪⎫52>f (1)>f ⎝ ⎛⎭⎪⎫72B .f (1)>f ⎝ ⎛⎭⎪⎫52>f ⎝ ⎛⎭⎪⎫72C .f ⎝ ⎛⎭⎪⎫72>f ⎝ ⎛⎭⎪⎫52>f (1)D .f ⎝ ⎛⎭⎪⎫72>f (1)>f ⎝ ⎛⎭⎪⎫5210.定义运算ab =⎩⎪⎨⎪⎧b ,a ≤b ,a ,a >b ,则函数f (x )=x 2|x |的图象是( )11.若函数y =f (x )为偶函数,且在(0,+∞)上是减函数,又f (3)=0,则f (x )+f (-x )2x<0的解集为( ) A .(-3,3)B .(-∞,-3)∪(3,+∞)C .(-3,0)∪(3,+∞)D .(-∞,-3)∪(0,3)12.函数f (x )=x 2-2ax +a +2在[0,a ]上的最大值为3,最小值为2,则a 的值为( )A .0B .1或2C .1D .2二、填空题(每小题5分,共20分)13.已知f (x +2)=x 2-4x ,则f (x )=________.14.设f (x )是(-∞,+∞)上的奇函数,且f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x ,则f (7.5)=________.15.已知二次函数f (x )=x 2+2ax -4,当a ________时,f (x )在[1,+∞)上是增函数,当a ________时,函数f (x )的单调递增区间是[1,+∞).答案1.C P ={1,2,3,4,5,6},Q ={x |x >3},则阴影部分表示的集合是P ∩Q ={4,5,6}.2.A 当a =0时,方程ax 2+ax +1=0无解, 这时集合A 为空集,故排除C 、D.当a =4时,方程4x 2+4x +1=0只有一个解x =-12,这时集合A 只有一个元素,故选A. 3.A4.B A ,C ,D 选项中的三个函数在(-∞,0)上都是减函数,只有B 正确.5.D 要使函数有意义,则有⎩⎪⎨⎪⎧1+x ≥0,1-x >0,解得-1≤x <1,所以函数的定义域为[-1,1). 6.B 因为π是无理数,所以g (π)=0, 所以f (g (π))=f (0)=0.故选B.7.B 因为函数f (x +1)为偶函数,所以f (-x +1)=f (x +1),即函数f (x )关于x =1对称,所以区间(3-2a ,a +1)关于x =1对称,所以3-2a +a +12=1,即a =2,所以选B.8.A 由题知A (-2,-1).又由A 在f (x )的图象上得3×(-2)+b =-1,b =5,则f (x )=3x +5,则f ⎝ ⎛⎭⎪⎫-3727=89.故选A.9.A y =f (x +2)关于x =0对称,则y =f (x )关于x =2对称,因为函数f (x )在(0,2)上单调递增,所以函数f (x )在(2,+∞)上单调递减,所以f ⎝ ⎛⎭⎪⎫52>f (1)>f ⎝ ⎛⎭⎪⎫72. 10.B 根据运算ab =⎩⎪⎨⎪⎧b ,a ≤b ,a ,a >b ,得f (x )=x 2|x |=⎩⎪⎨⎪⎧x 2,x <-1或x >1,|x |,-1≤x ≤1,由此可得图象如图所示. 11.C ∵f (x )为偶函数,∴f (-x )=f (x ),故f (x )+f (-x )2x <0可化为f (x )x <0.又f (x )在(0,+∞)上是减函数,且f (3)=0,结合图象知,当x >3时,f (x )<0,当-3<x <0时,f (x )>0,故f (x )x <0的解集为(-3,0)∪(3,+∞).12.C 二次函数y =x 2-2ax +a +2的图象开口向上,且对称轴为x =a ,所以该函数在[0,a ]上为减函数,因此有a +2=3且a 2-2a 2+a +2=2,得a =1.13.x 2-8x +12解析:设t =x +2,则x =t -2, ∴f (t )=(t -2)2-4(t -2)=t 2-8t +12. 故f (x )=x 2-8x +12. 14.-0.5解析:由题意,得f (x )=-f (x +2)=f (x +4),则f (7.5)=f (3.5)=f (-0.5)=-f (0.5)=-0.5.15.≥-1 =-1解析:∵f (x )=x 2+2ax -4=(x +a )2-4-a 2, ∴f (x )的单调递增区间是[-a ,+∞),∴当-a ≤1时,f (x )在[1,+∞)上是增函数,即a ≥-1; 当a =-1时,f (x )的单调递增区间是[1,+∞).16.定义在R 上的偶函数f (x ),当x ∈[1,2]时,f (x )<0,且f (x )为增函数,给出下列四个结论:①f (x )在[-2,-1]上单调递增; ②当x ∈[-2,-1]时,有f (x )<0; ③f (x )在[-2,-1]上单调递减; ④|f (x )|在[-2,-1]上单调递减.其中正确的结论是________(填上所有正确的序号).三、解答题(写出必要的计算步骤、解答过程,只写最后结果的不得分,共70分)17.(10分)设全集为实数集R ,集合A ={x |3≤x <7},B ={x |2<x <10},C ={x |x <a }.(1)求A ∪B 及(∁R A )∩B ;(2)若A ∩C =A ,求a 的取值范围; (3)如果A ∩C ≠∅,求a 的取值范围. 18.(12分)已知函数f (x )=1+x -|x |4. (1)用分段函数的形式表示函数f (x ); (2)在平面直角坐标系中画出函数f (x )的图象;(3)在同一平面直角坐标系中,再画出函数g (x )=1x (x >0)的图象(不用列表),观察图象直接写出当x >0时,不等式f (x )>1x 的解集.——————————————————————————答案16.②③解析:因为f (x )为定义在R 上的偶函数,且当x ∈[1,2]时,f (x )<0,f (x )为增函数,由偶函数图象的对称性知,f (x )在[-2,-1]上为减函数,且当x ∈[-2,-1]时,f (x )<0.17.解:(1)A ∪B ={x |3≤x <7}∪{x |2<x <10}={x |2<x <10},∁R A ={x |x <3或x ≥7},所以(∁R A )∩B ={x |2<x <3,或7≤x <10}.(2)由A ∩C =A 知A ⊆C ,借助数轴可知a 的取值范围为[7,+∞). (3)由A ∩C ≠∅可知a 的取值范围为(3,+∞). 18.解:(1)当x ≥0时,f (x )=1+x -x4=1; 当x <0时,f (x )=1+x +x 4=12x +1.所以f (x )=⎩⎨⎧1,x ≥0,12x +1,x <0.(2)函数f (x )的图象如图所示.(3)函数g (x )=1x (x >0)的图象如图所示,由图象知f (x )>1x 的解集是{x |x >1}.19.(12分)已知f (x )=xx -a(x ≠a ).(1)若a =-2,试证f (x )在(-∞,-2)内单调递增;(2)若a >0,且f (x )在(1,+∞)内单调递减,求a 的取值范围.20.(12分)已知函数f (x )是正比例函数,函数g (x )是反比例函数,且f (1)=1,g (1)=2.(1)求函数f (x )和g (x );(2)判断函数f (x )+g (x )的奇偶性;(3)求函数f (x )+g (x )在(0,2]上的最小值.答案19.(1)证明:任取x 1<x 2<-2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2).∵(x 1+2)(x 2+2)>0,x 1-x 2<0, ∴f (x 1)<f (x 2).故f (x )在(-∞,-2)内单调递增.(2)解:任设1<x 1<x 2,则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a (x 2-x 1)(x 1-a )(x 2-a ).∵a >0,x 2-x 1>0,∴要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0恒成立,∴a ≤1. 综上所述,a 的取值范围是(0,1].20.解:(1)设f (x )=k 1x ,g (x )=k 2x ,其中k 1k 2≠0. ∵f (1)=1,g (1)=2,∴k 1×1=1,k 21=2, ∴k 1=1,k 2=2,∴f (x )=x ,g (x )=2x . (2)设h (x )=f (x )+g (x ),则h (x )=x +2x , ∴函数h (x )的定义域是(-∞,0)∪(0,+∞). ∵h (-x )=-x +2-x=-⎝ ⎛⎭⎪⎫x +2x =-h (x ),∴函数h (x )是奇函数,即函数f (x )+g (x )是奇函数. (3)由(2)知h (x )=x +2x .设x 1,x 2是(0,2]上的任意两个不相等的实数,且x 1<x 2,则h (x 1)-h (x 2)=⎝ ⎛⎭⎪⎫x 1+2x 1-⎝ ⎛⎭⎪⎫x 2+2x 2=(x 1-x 2)+⎝ ⎛⎭⎪⎫2x 1-2x 2=(x 1-x 2)⎝ ⎛⎭⎪⎫1-2x 1x 2=(x 1-x 2)(x 1x 2-2)x 1x 2. ∵x 1,x 2∈(0,2],且x 1<x 2, ∴x 1-x 2<0,0<x 1x 2<2.∴x 1x 2-2<0,∴(x 1-x 2)(x 1x 2-2)>0.∴h (x 1)>h (x 2).∴函数h (x )在(0,2]上是减函数,函数h (x )在(0,2]上的最小值是h (2)=22,即函数f (x )+g (x )在(0,2]上的最小值是2 2.——————————————————————————21.(12分)若定义在R 上的函数f (x )对任意x 1,x 2∈R ,都有f (x 1+x 2)=f (x 1)+f (x 2)-1成立,且当x >0时,f (x )>1.(1)求证:y =f (x )-1为奇函数; (2)求证:f (x )是R 上的增函数; (3)若f (4)=5,解不等式f (3m -2)<3.22.(12分)已知f (x )是定义在R 上的奇函数,且f (x )=x +mx 2+nx +1.(1)求m ,n 的值;(2)用定义证明f (x )在(-1,1)上为增函数;(3)若f (x )≤a3对x ∈⎣⎢⎡⎦⎥⎤-13,13恒成立,求a 的取值范围.答案21.(1)证明:因为定义在R 上的函数f (x )对任意x 1,x 2∈R ,都有f (x 1+x 2)=f (x 1)+f (x 2)-1成立,所以令x 1=x 2=0,则f (0+0)=f (0)+f (0)-1, 即f (0)=1.令x 1=x ,x 2=-x ,则f (x -x )=f (x )+f (-x )-1, 所以[f (x )-1]+[f (-x )-1]=0, 故y =f (x )-1为奇函数.(2)证明:由(1)知y =f (x )-1为奇函数, 所以f (x )-1=-[f (-x )-1].任取x 1,x 2∈R ,且x 1<x 2,则x 2-x 1>0, 所以f (x 2-x 1)=f (x 2)+f (-x 1)-1 =f (x 2)-[f (x 1)-1]=f (x 2)-f (x 1)+1. 因为当x >0时,f (x )>1,所以f (x 2-x 1)=f (x 2)-f (x 1)+1>1, 即f (x 1)<f (x 2),故f (x )是R 上的增函数.(3)解:因为f (x 1+x 2)=f (x 1)+f (x 2)-1,且f (4)=5,所以f (4)=f (2)+f (2)-1=5,即f (2)=3,由不等式f (3m -2)<3,得f (3m -2)<f (2). 由(2)知f (x )是R 上的增函数,所以3m -2<2,即3m -4<0,即m <43, 故不等式f (3m -2)<3的解集为⎝⎛⎭⎪⎫-∞,43. 22.(1)解:因为奇函数f (x )的定义域为R ,所以f (0)=0. 故有f (0)=0+m02+n ×0+1=0,解得m =0.所以f (x )=xx 2+nx +1.由f (-1)=-f (1),即-1(-1)2+n ×(-1)+1=-112+n ×1+1,解得n =0.所以m =n =0. (2)证明:由(1)知f (x )=x x 2+1,任取-1<x 1<x 2<1.则f (x 1)-f (x 2)=x 1x 21+1-x 2x 22+1=x 1(x 22+1)-x 2(x 21+1)(x 21+1)(x 22+1)=x 1x 22-x 2x 21+(x 1-x 2)(x 21+1)(x 22+1) =(x 1-x 2)(1-x 1x 2)(x 21+1)(x 22+1).因为-1<x 1<1,-1<x 2<1,所以-1<x 1x 2<1,故1-x 1x 2>0,又因为x 1<x 2,所以x 1-x 2<0,故f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 所以函数f (x )在(-1,1)上为增函数. (3)解:由(2)知f (x )在(-1,1)上为增函数,所以函数f (x )在⎣⎢⎡⎦⎥⎤-13,13上为增函数,故最大值为f ⎝ ⎛⎭⎪⎫13=310.由题意可得a 3≥310,解得a ≥910.故a 的取值范围为⎣⎢⎡⎭⎪⎫910,+∞.第二章单元质量评估时限:120分钟 满分:150分一、选择题(每小题5分,共60分) 1.(lg9-1)2的值等于( ) A .lg9-1 B .1-lg9 C .8D .2 22.下列函数中,在区间(0,+∞)上不是增函数的是( ) A .y =2x B .y =log2xC .y =2xD .y =2x 2+x +13.已知函数f (x )=⎩⎪⎨⎪⎧3x ,x ≤0,log 2x ,x >0,那么f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫18的值为( )A .27 B.127 C .-27D .-1274.函数f (x )=ln(x 2+1)的图象大致是( )5.已知a =212,b =⎝ ⎛⎭⎪⎫12-0.5,c =2log 52,则a ,b ,c 的大小关系为( )A .c <b <aB .c <a <bC .b <a <cD .b <c <a6.在同一直角坐标系中,函数f (x )=x a (x ≥0),g (x )=log a x 的图象可能是( )7.一种放射性元素,每年的衰减率是8%,那么a kg 的这种物质的半衰期(剩余量为原来的一半所需的时间)t 等于( )A .lg 0.50.92B .lg 0.920.5 C.lg0.5lg0.92D.lg0.92lg0.58.下列函数中,定义域是R 且为增函数的是( ) A .y =e -x B .y =x 3 C .y =ln xD .y =|x |9.已知b >0,log 5b =a ,lg b =c,5d =10,则下列等式一定成立的是( ) A .d =ac B .a =cd C .c =adD .d =a +c10.已知f (x )是偶函数,它在(0,+∞)上是减函数,若f (lg x )>f (1),则x 的取值范围是( )A.⎝ ⎛⎭⎪⎫110,1B.⎝ ⎛⎭⎪⎫0,110∪(1,+∞)C.⎝⎛⎭⎪⎫110,10 D .(0,1)∪(1,+∞)11.函数f (x )=log 2|2x -1|的图象大致是( )12.已知f (x )是定义在R 上的偶函数,且在(-∞,0]上是减函数,设a =f (log 26),b =f (log 123),c =f ⎝ ⎛⎭⎪⎫13,则a ,b ,c 的大小关系是( )A .c <b <aB .b <c <aC .b <a <cD .a <b <c二、填空题(每小题5分,共20分) 13.已知4a =2,lg x =a ,则x =________.14.已知函数f (x )=lg x ,若f (ab )=1,则f (a 2)+f (b 2)=________.15.函数y =log a (2x -3)+4的图象恒过定点M ,且点M 在幂函数f (x )的图象上,则f (3)=________.16.已知0<x <y <1,且有以下关系:①3y>3x;②log x 3>log y 3;③⎝ ⎛⎭⎪⎫13y >⎝ ⎛⎭⎪⎫13x;④log 4x <log 4y ;⑤log 14x <log 4y .其中正确的关系式的序号是________.答案1.B 因为lg9<lg10=1,所以(lg9-1)2=|lg9-1|=1-lg9.故选B.2.C 函数y =2x 为(0,+∞)上的减函数.故选C.3.B f ⎝ ⎛⎭⎪⎫18=log 218=-3,∴f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫18=f (-3)=3-3=127. 4.A 函数过定点(0,0),排除选项B 、D ,又f (-x )=ln(x 2+1)=f (x ),所以f (x )为偶函数,排除选项C.故选A.5.A ∵a =212,b =⎝ ⎛⎭⎪⎫12-0.5=2 12=2>1.∴a >b >1.又c =2log 52=log 54<1, 因此a >b >c .6.D 若a >1,则函数g (x )=log a x 的图象过点(1,0),且单调递增,但当x ∈[0,1)时,y =x a 的图象应在直线y =x 的下方,故C 选项错误;若0<a <1,则函数g (x )=log a x 的图象过点(1,0),且单调递减,函数y =x a (x ≥0)的图象应单调递增,且当x ∈[0,1)时图象应在直线y =x 的上方,因此A ,B 均错,只有D 项正确.7.C 设t 年后剩余量为y kg ,则y =(1-8%)ta =0.92ta .当y =12a 时,12a =0.92t a ,所以0.92t =0.5,则t =log 0.920.5=lg0.5lg0.92.8.B A 项,函数y =e -x 为R 上的减函数; B 项,函数y =x 3为R 上的增函数; C 项,函数y =ln x 为(0,+∞)上的增函数;D 项,函数y =|x |在(-∞,0)上为减函数,在(0,+∞)上为增函数. 故只有B 项符合题意,应选B. 9.B 由log 5b =a ,得lg blg5=a ; 由5d =10,得d =log 510=lg10lg5=1lg5,又lg b =c ,所以cd =a .故选B.10.C 由于f (x )是偶函数且在(0,+∞)上是减函数,所以f (-1)=f (1),且f (x )在(-∞,0)上是增函数,应有⎩⎪⎨⎪⎧x >0,-1<lg x <1,解得110<x <10.选C. 11.C 当0<x <1时,f (x )=log 2(2x -1)为增函数,排除A.当x <0时,f (x )=log 2(-2x +1)<0且为减函数.故选C.12.A 由f (x )是R 上的偶函数,且在(-∞,0]上是减函数,则f (x )在[0,+∞)上是增函数,由b =f ⎝⎛⎭⎪⎫log 12 3=f (-log 23)=f (log 23),由0<13<log 23<log 26,得f ⎝ ⎛⎭⎪⎫13<f (log 23)<f (log 26),即c <b <a .故选A.13.10解析:由4a =2,可得a =log 42=12.所以lg x =12,即x =10 12=10.14.2解析:由已知可得,lg(ab )=1,故f (a 2)+f (b 2)=lg a 2+lg b 2=lg(a 2b 2)=2lg(ab )=2×1=2.15.9解析:当2x -3=1时y =4.即函数y =log a (2x -3)+4图象恒过定点M (2,4),又M 在幂函数f (x )图象上,设f (x )=x m ,则4=2m ,解得m =2,即f (x )=x 2,则f (3)=32=9.16.①②④解析:∵3>1,y >x ,∴3y >3x ,故①正确. 由对数函数的图象知②正确; 由①正确知③不正确; ∵4>1,x <y ,∴log 4x <log 4y ,故④正确;log 14x >0,log 4y <0,∴log 12x >log 4y ,故⑤不正确.————————————————————————————三、解答题(写出必要的计算步骤、解答过程,只写最后结果的不得分,共70分)17.(10分)计算: (1)⎝⎛⎭⎪⎫21412 -(-0.96)0-⎝ ⎛⎭⎪⎫338- 23 +1.5-2+[(-32)-4]- 34 ;(2)⎝ ⎛⎭⎪⎫lg 14-lg25÷100- 12+7log 72+1.18.(12分)已知函数f (x )=x m -2x 且f (4)=72. (1)求m 的值; (2)判定f (x )的奇偶性;(3)判断f (x )在(0,+∞)上的单调性,并给予证明.答案17.解:(1)原式=⎝ ⎛⎭⎪⎫94 12 -1-⎝ ⎛⎭⎪⎫278- 23 +⎝ ⎛⎭⎪⎫32-2+[(32)-4]- 34=32-1-⎝ ⎛⎭⎪⎫32-2+⎝ ⎛⎭⎪⎫32-2+(32)3=12+2=52.(2)原式=-(lg4+lg25)÷100- 12+14=-2÷10-1+14=-20+14=-6. 18.解:(1)因为f (4)=72, 所以4m-24=72,所以m =1.(2)由(1)知f (x )=x -2x ,所以函数的定义域为(-∞,0)∪(0,+∞),关于原点对称,又f (-x )=-x +2x =-⎝ ⎛⎭⎪⎫x -2x =-f (x ).所以函数f (x )是奇函数.(3)函数f (x )在(0,+∞)上是单调增函数,证明如下: 设x 1>x 2>0,则f (x 1)-f (x 2)=x 1-2x 1-⎝ ⎛⎭⎪⎫x 2-2x 2 =(x 1-x 2)⎝ ⎛⎭⎪⎫1+2x 1x 2, 因为x 1>x 2>0,所以x 1-x 2>0,1+2x 1x 2>0.所以f (x 1)>f (x 2).所以函数f (x )在(0,+∞)上为单调增函数.———————————————————————————— 19.(12分)设f (x )=log a (1+x )+log a (3-x )(a >0,且a ≠1),f (1)=2. (1)求a 的值及f (x )的定义域;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,32上的最大值和最小值.20.(12分)若函数y =f (x )=a ·3x -1-a3x -1为奇函数.(1)求a 的值; (2)求函数的定义域; (3)求函数的值域.答案19.解:(1)∵f (1)=2,∴log a 4=2, ∵a >0,且a ≠1,∴a =2.由⎩⎪⎨⎪⎧1+x >0,3-x >0,得x ∈(-1,3). 故函数f (x )的定义域为(-1,3).(2)∵由(1)知,f (x )=log 2(1+x )+log 2(3-x )=log 2(1+x )(3-x )=log 2[-(x -1)2+4],∴当x ∈(-1,1]时,f (x )是增函数; 当x ∈(1,3)时,f (x )是减函数.∴函数f (x )在⎣⎢⎡⎦⎥⎤0,32上的最大值是f (1)=log 24=2.∵函数y =-(x -1)2+4的图象的对称轴是x =1,∴f (0)=f (2)<f ⎝ ⎛⎭⎪⎫32,∴函数f (x )在⎣⎢⎡⎦⎥⎤0,32上的最小值为f (0)=log 23.20.解:∵函数y =f (x )=a ·3x -1-a 3x -1=a -13x -1.(1)由奇函数的定义,可得f (-x )+f (x )=0, 即2a -13x -1-13-x -1=0,∴a =-12.(2)∵y =-12-13x -1,∴3x -1≠0,即x ≠0.∴函数y =-12-13x -1的定义域为{x |x ≠0}.(3)∵x ≠0,∴3x -1>-1.∵3x -1≠0,∴-1<3x -1<0或3x -1>0, ∴-12-13x -1>12或-12-13x -1<-12.故函数的值域为⎩⎨⎧⎭⎬⎫y ⎪⎪⎪y >12或y <-12. ———————————————————————————— 21.(12分)已知函数f (x )=2x 2-4x +a ,g (x )=log a x (a >0且a ≠1). (1)若函数f (x )在[-1,2m ]上不具有单调性,求实数m 的取值范围; (2)若f (1)=g (1). ①求实数a 的值;②设t 1=12f (x ),t 2=g (x ),t 3=2x ,当x ∈(0,1)时,试比较t 1,t 2,t 3的大小.(12分)设函数f (x )=log 2⎝⎛⎭⎪⎫1+x 1-ax (a ∈R ),若f ⎝ ⎛⎭⎪⎫-13=-1. (1)求f (x )的解析式;(2)g (x )=log 21+x k ,若x ∈⎣⎢⎡⎦⎥⎤12,23时,f (x )≤g (x )有解,求实数k 的取值集合.答案21.解:(1)因为抛物线y =2x 2-4x +a 开口向上,对称轴为x =1, 所以函数f (x )在(-∞,1]上单调递减,在[1,+∞)上单调递增, 因为函数f (x )在[-1,2m ]上不单调, 所以2m >1,得m >12,所以实数m 的取值范围为⎝ ⎛⎭⎪⎫12,+∞.(2)①因为f (1)=g (1),所以-2+a =0, 所以实数a 的值为2.②因为t 1=12f (x )=x 2-2x +1=(x -1)2, t 2=g (x )=log 2x , t 3=2x ,所以当x ∈(0,1)时,t 1∈(0,1),t 2∈(-∞,0),t 3∈(1,2),所以t 2<t 1<t 3. 22.解:(1)f ⎝ ⎛⎭⎪⎫-13=log 21-131+a 3=-1,∴231+a 3=12,即43=1+a3,解得a =1. ∴f (x )=log 21+x1-x .(2)∵log 21+x1-x≤log21+x k=2log 21+xk =log 2⎝ ⎛⎭⎪⎫1+x k 2, ∴1+x 1-x ≤⎝ ⎛⎭⎪⎫1+x k 2. 易知f (x )的定义域为(-1,1),∴1+x >0,1-x >0,∴k 2≤1-x 2.令h (x )=1-x 2,则h (x )在⎣⎢⎡⎦⎥⎤12,23上单调递减,∴ h (x )max =h ⎝ ⎛⎭⎪⎫12=34.∴只需k 2≤34.又由题意知k >0,∴0<k ≤32.第三章单元质量评估时限:120分钟 满分:150分一、选择题(每小题5分,共60分)1.若函数y =f (x )在区间[a ,b ]上的图象为连续不断的一条曲线,则下列说法正确的是( )A .若f (a )f (b )>0,则不存在实数c ∈(a ,b )使得f (c )=0B .若f (a )f (b )<0,则只存在一个实数c ∈(a ,b ),使得f (c )=0C .若f (a )f (b )>0,则有可能存在实数c ∈(a ,b )使得f (c )=0D .若f (a )f (b )<0,则有可能不存在实数c ∈(a ,b )使得f (c )=02.函数y =f (x )在区间(-2,2)上的图象是连续的,且方程f (x )=0在(-2,2)上仅有一个实根0,则f (-1)·f (1)的值( )A .大于0B .小于0C .等于0D .无法确定3.若函数f (x )在[a ,b ]上的图象为连续不断的一条曲线,且同时满足f (a )f (b )<0,f (a )·f (a +b 2)>0,则( )A .f (x )在[a ,a +b2]上有零点B .f (x )在[a +b2,b ]上有零点 C .f (x )在[a ,a +b2]上无零点 D .f (x )在[a +b2,b ]上无零点4.函数f (x )=1-x ln x 的零点所在的区间是( ) A .(0,12) B .(12,1) C .(1,2)D .(2,3)5.设f (x )=3x +3x -8,若用二分法求方程3x +3x -8=0在区间(1,2)内的近似解的过程中得f (1)<0,f (1.5)>0,f (1.25)<0,则方程的根所在的区间为( )A .(1,1.25)B .(1.25,1.5)C .(1.5,2)D .不能确定6.若函数f (x )=x 2+3x +2,且f (a )>f (b )>0,则函数f (x )的区间(a ,b )内( ) A .一定无零点 B .一定有零点 C .可能有两个零点D .至多有一个零点7.如图所示,液体从一圆锥形漏斗漏入一圆柱形桶中,开始时,漏斗中盛满液体,经过3分钟漏完.已知圆柱中液面上升的速度是一个常量,H 是圆锥形漏斗中液面下落的高度,则H 与下落时间t (分钟)的函数关系表示的图象可能是( )8.某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况加油时间加油量(升)加油时的累 计里程(千米) 2015年5月1日 12 35 000 2015年5月15日4835 600在这段时间内,该车每100千米平均耗油量为( ) A .6升 B .8升 C .10升D .12升9.某市生产总值连续两年持续增加.第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为( )A.p +q 2B.(p +1)(q +1)-12C.pqD.(p +1)(q +1)-110.设a 是函数f (x )=2x -log 12x 的零点,若x 0>a ,则( ) A .f (x 0)=0B .f (x 0)>0C .f (x 0)<0D .f (x 0)的符号不确定11.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-3x .则函数g (x )=f (x )-x +3的零点的集合为( )A .{1,3}B .{-3,-1,1,3}C .{2,-7,1,3}D .{-2-7,1,3}12.已知函数f (x )=⎩⎪⎨⎪⎧2-|x |,x ≤2,(x -2)2,x >2,函数g (x )=b -f (2-x ),其中b ∈R .若函数y =f (x )-g (x )恰有4个零点,则b 的取值范围是( )A .(74,+∞) B .(-∞,74) C .(0,74)D .(74,2) 答案1.C 当零点在区间(a ,b )内时,f (a )f (b )>0也可能成立,因此A 不正确,C 正确;若y =f (x )满足零点存在性定理的两个条件,则在该区间内必存在零点,但个数不能确定,故B ,D 都不正确.2.D 由题意,知f (x )在(-1,1)上有零点0,该零点可能是变号零点,也可能是不变号零点,∴f (-1)·f (1)的符号不确定,如f (x )=x 2,f (x )=x .3.B 由f (a )f (b )<0,f (a )f (a +b 2)>0可知f (a +b2)f (b )<0,根据零点存在性定理可知f (x )在[a +b2,b ]上有零点.4.C 由于f (1)=1-ln1=1>0,f (2)=1-2ln2=lne -ln4<0,由零点存在性定理可知所求区间为(1,2).5.B ∵f (1)<0,f (1.5)>0,f (1.25)<0,∴f (1.5)·f (1.25)<0,因此方程的根所在的区间为(1.25,1.5).6.C 根据二次函数的图象可知选项C 正确.7.B 由于所给的圆锥形漏斗上口大于下口,当时间取12t 时,漏斗中液面下落的高度不会达到漏斗高度的12,对比四个选项的图象可知选B.8.B 因为第一次(即5月1日)把油加满,而第二次把油加满加了48升,即汽车行驶35 600-35 000=600千米耗油48升,所以每100千米的耗油量为8升,选B.9.D 设年平均增长率为x ,原生产总值为a ,则(1+p )(1+q )a =a (1+x )2,解得x =(1+p )(1+q )-1,故选D.10.B 如图所示,画出函数y =2x 与y =log 12x 的图象,可知当x 0>a 时,2x0>log 12x 0,故f (x 0)>0.11.D 当x ≥0时,函数g (x )的零点即方程f (x )=x -3的根,由x 2-3x =x -3,解得x =1或3.当x <0时,由f (x )是奇函数得-f (x )=f (-x )=x 2-3(-x ),即f (x )=-x 2-3x .由f (x )=x -3得x =-2-7(正根舍去).故选D.12.D 函数y =f (x )-g (x )恰有4个零点,即方程f (x )-g (x )=0,即b =f (x )+f (2-x )有4个不同的实数根,即直线y =b 与函数y =f (x )+f (2-x )的图象有4个不同的交点.又y =f (x )+f (2-x )=⎩⎪⎨⎪⎧x 2+x +2,x <0,2,0≤x ≤2,x 2-5x +8,x >2,作出该函数的图象如图所示,由图可得,当74<b <2时,直线y =b 与函数y =f (x )+f (2-x )的图象有4个不同的交点,故函数y =f (x )-g (x )恰有4个零点时,b 的取值范围是(74,2).———————————————————————————— 二、填空题(每小题5分,共20分)13.已知定义在R 上的函数f (x )的图象是连续不断的,且有如下部分对应值表:x 1 23456f (x )136.13515.552 -3.92 10.88 -52.488 -232.06414.用二分法求函数f (x )的一个零点,其参考数据如下:f (1.600 0)≈0.200 f (1.587 5)≈0.133 f (1.575 0)≈0.067 f (1.562 5)≈0.003f (1.556 25)≈-0.029f (1.550 0)≈-0.060. 15.某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系y =e kx +b (e =2.718…为自然对数的底数,k ,b 为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是________小时.16.设函数f (x )=⎩⎪⎨⎪⎧2x -a ,x <1,4(x -a )(x -2a ),x ≥1.若f (x )恰有2个零点,则实数a的取值范围是________.三、解答题(写出必要的计算步骤、解答过程,只写最后结果的不得分,共70分)17.(10分)(1)判断函数f (x )=x 3-x -1在区间[-1,2]上是否存在零点; (2)求函数y =x +2x -3的零点.18.(12分)若函数f (x )为定义在R 上的奇函数,且当x >0时,f (x )=ln x +2x -6,试判断函数f (x )的零点个数.答案13.3解析:由已知数据可知f (2)f (3)<0,f (3)f (4)<0,f (4)f (5)<0,所以函数在区间(2,3),(3,4),(4,5)内各至少有1个零点,则函数至少有3个零点.14.1.562 5(答案不唯一)解析:由参考数据知,f (1.562 5)≈0.003>0,f (1.556 25)≈-0.029<0,即f (1.556 25)·f (1.562 5)<0,又1.562 5-1.556 25=0.006 25<0.01,∴f (x )的一个零点的近似值可取为1.562 5.15.24解析:由题意得⎩⎪⎨⎪⎧e b=192,e 22k +b =48,即⎩⎨⎧e b=192,e 11k =12,所以该食品在33℃的保鲜时间是y =e 33k +b =(e 11k )3·e b =(12)3×192=24(小时).16.[12,1)∪[2,+∞)解析:当a ≥1时,要使f (x )恰有2个零点,需满足21-a ≤0,即a ≥2,所以a ≥2;当a <1时,要使f (x )恰有2个零点,需满足⎩⎪⎨⎪⎧a <1≤2a ,21-a >0,解得12≤a <1.综上,实数a 的取值范围为[12,1)∪[2,+∞).17.解:(1)∵f (-1)=-1<0,f (2)=5>0,f (-1)f (2)<0.∴f (x )在[-1,2]上存在零点.(2)x +2x -3=x 2-3x +2x =(x -1)(x -2)x ,解方程x +2x -3=0,即(x -1)(x -2)x =0,可得x =1或x =2.∴函数y =x +2x -3的零点为1,2.18.解:方法一:当x <0时,-x >0,f (-x )=ln(-x )-2x -6,又f (x )为奇函数,所以f (x )=-f (-x )=-ln(-x )+2x +6. 故函数f (x )的解析式为 f (x )=⎩⎪⎨⎪⎧ln x +2x -6,x >00,x =0-ln (-x )+2x +6,x <0令f (x )=0易得函数f (x )有3个零点.方法二:当x >0时,在同一坐标系中作出函数y =ln x 和y =6-2x 的图象如图所示,易知两函数图象只有1个交点,即当x >0时,函数f (x )有1个零点.由f(x)为定义在R上的奇函数,可知f(0)=0,且图象关于原点对称,则当x<0时,函数f(x)有1个零点.综上可知,f(x)在R上有3个零点.————————————————————————————19.(12分)已知二次函数f(x)=x2+bx+c,且方程f(x)+4=0有唯一解x=1.(1)求函数f(x)的解析式;(2)若函数f(x)在区间[a,a+4]上存在零点,求实数a的取值范围.(12分)某医药研究所开发的一种新药,如果成年人按规定的剂量服用,据监测:服药后每毫升血液中的含药量y(mg)与时间t(h)之间近似满足如图所示的曲线.(1)写出服药后y与t之间的函数关系式y=f(t);(2)据进一步测定:每毫升血液中含药量不少于0.25 mg时,对治疗疾病有效,求服药一次治疗疾病有效的时间.答案19.解:(1)方程f (x )+4=0有唯一解x =1,即一元二次方程x 2+bx +c +4=0有唯一解x =1,则⎩⎪⎨⎪⎧ b 2-4(c +4)=0,b +c +5=0,⇒⎩⎪⎨⎪⎧b =-2,c =-3,所以f (x )=x 2-2x -3.(2)结合(1)易知函数f (x )的零点为-1,3. 当-1∈[a ,a +4]时,-5≤a ≤-1; 当3∈[a ,a +4]时,-1≤a ≤3. 故实数a 的取值范围为[-5,3]. 20.解:(1)当0≤t <1时 ,y =4t ;当t ≥1时,y =⎝ ⎛⎭⎪⎫12t -a 此时M (1,4)在曲线上,故4=⎝ ⎛⎭⎪⎫121-a ,解得a =3,即y =⎝ ⎛⎭⎪⎫12t -3.故y =f (t )=⎩⎨⎧4t ,0≤t <1,⎝ ⎛⎭⎪⎫12t -3,t ≥1.(1)因为f (t )≥0.25,则⎩⎨⎧4t ≥0.25,⎝ ⎛⎭⎪⎫12t -3≥0.25.解得⎩⎨⎧t ≥116,t ≤5,所以116≤t ≤5,因此服药一次治疗疾病有效的时间为 5-116=41516(h).————————————————————————————21.(12分)设f (x )为定义在R 上的偶函数,当x ≥0时,f (x )=-(x -2)2+2.(1)求函数f(x)在R上的解析式;(2)在直角坐标系中画出函数f(x)的图象;(3)若方程f(x)-k=0有四个解,求实数k的取值范围.22.(12分)人们对声音有不同的感觉,这与它的强度I(单位:W/m2)有关系.但在实际测量时,常用声音的强度水平L1(单位:dB)表示,它满足公式:L1=10×lg II0 (L1≥0,其中I0=1×10-12W/m2,这是人们平均能听到的最小强度,是听觉的开端).根据以上材料,回答下列问题:(1)树叶沙沙声的强度是1×10-12W/m2,耳语声的强度是1×10-10W/m2,恬静的无线电广播声的强度是1×10-8W/m2,试分别求出它们的强度水平;(2)某一新建的安静小区规定:小区内公共场所的声音的强度水平必须保持在50 dB以下,试求声音的强度I的范围是多少?答案21.解:(1)由于f (x )为定义在R 上的偶函数,则f (-x )=f (x ),若x <0,则-x >0,f (x )=f (-x )=-(-x -2)2+2=-(x +2)2+2,则f (x )=⎩⎪⎨⎪⎧-(x -2)2+2,x ≥0,-(x +2)2+2,x <0. (2)图象如图所示:(3)由于方程f (x )-k =0的解就是函数y =f (x )的图象与直线y =k 的交点的横坐标,观察函数y =f (x )的图象可知,当-2<k <2时,函数y =f (x )的图象与直线y =k 有四个交点,即方程f (x )-k =0有四个解.22.解:(1)由题意可知,树叶沙沙声的强度是I 1=1×10-12W/m 2,则I 1I 0=1,所以LI 1=10×lg1=0,即树叶沙沙声的强度水平为0 dB.耳语声的强度是I 2=1×10-10W/m 2,则I 2I 0=102,所以LI 2=10×lg102=20,即耳语声的强度水平为20 dB.恬静的无线电广播声的强度是I 3=1×10-8W/m 2,则I 3I 0=104,所以LI 3=10×lg104=40,即恬静的无线电广播声的强度水平为40 dB.(2)由题意知,0≤L 1<50,即0≤10×lg I I 0<50,所以1≤II 0<105,即10-12≤I <10-7.所以小区内公共场所的声音的强度I 的范围为大于或等于10-12W/m 2,同时应小于10-7W/m 2.模块综合评估时限:120分钟 满分:150分一、选择题(每小题5分,共60分)1.已知集合M ={x |x <3},N ={x |log 2x >1},则M ∩N 等于( ) A .∅ B .{x |0<x <3} C .{x |1<x <3}D .{x |2<x <3}2.设U 是全集,集合A ,B 满足A B ,则下列式子中不成立的是( )A .A ∪(∁UB )=U B .A ∪B =BC .(∁U A )∪B =UD .A ∩B =A3.设f (x )=⎩⎪⎨⎪⎧2e x -1,x <2,log 3(2x-1),x ≥2,则f [f (2)]等于( ) A .0 B .1 C .2D .34.下列函数中,随x 增大而增大速度最快的是( ) A .y =2 006ln x B .y =x 2 006 C .y =e x2 006 D .y =2 006·2x5.设a =0.7 12 ,b =0.8 12,c =log 30.7,则()A .c <b <aB .c <a <bC .a <b <cD .b <a <c6.函数y =a x -2+log a (x -1)+1(a >0,a ≠1)的图象必经过点( )A .(0,1)B .(1,1)C .(2,1)D .(2,2)7.已知函数f (x )=m +log 2x 2的定义域是[1,2],且f (x )≤4,则实数m 的取值范围是( )A .(-∞,2]B .(-∞,2)C .[2,+∞)D .(2,+∞)8.已知x 2+y 2=1,x >0,y >0,且log a (1+x )=m ,log a 11-x =n ,则log a y 等于( )A .m +nB .m -n C.12(m +n )D.12(m -n )9.函数y =x 2-3在区间(1,2)内的零点的近似值(精确度0.1)是( ) A .1.55 B .1.65 C .1.75D .1.8510.已知f (x )=a x ,g (x )=log a x (a >0且a ≠1),若f (3)g (3)<0,那么f (x )与g (x )在同一坐标系内的图象可能是( )11.设函数F (x )=f (x )-1f (x ),其中x -log 2f (x )=0,则函数F (x )是( )A .奇函数且在(-∞,+∞)上是增函数B .奇函数且在(-∞,+∞)上是减函数C .偶函数且在(-∞,+∞)上是增函数D .偶函数且在(-∞,+∞)上是减函数12.已知函数f (x )的定义域为(-∞,0)∪(0,+∞),f (x )是奇函数,且当x >0时,f (x )=x 2-x +a ,若函数g (x )=f (x )-x 的零点恰有两个,则实数a 的取值范围是( )A .a <0B .a ≤0C .a ≤1D .a ≤0或a =1二、填空题(每小题5分,共20分)13.设U ={0,1,2,3},A ={x ∈U |x 2+mx =0},若∁U A ={1,2},则实数m =________.14.若函数f (x )=mx 2-2x +3只有一个零点,则实数m 的取值是________. 15.对于函数f (x )=ln x 的定义域中任意的x 1,x 2(x 1≠x 2),有如下结论: ①f (x 1+x 2)=f (x 1)·f (x 2); ②f (x 1·x 2)=f (x 1)+f (x 2); ③f (x 1)-f (x 2)x 1-x 2>0.上述结论中正确结论的序号是________. 16.已知函数f (x )=log 0.5(x +1x ),下列说法①f (x )的定义域为(0,+∞);②f (x )的值域为[-1,+∞);③f (x )是奇函数;④f (x )在(0,1)上单调递增.其中正确的是________.答案1.D N ={x |x >2},∴用数轴表示集合可得M ∩N ={x |2<x <3},选D. 2.A 依题意作出Venn 图,易知A 不成立.3.C ∵f (2)=log 3(22-1)=1,∴f [f (2)]=f (1)=2e 1-1=2.4.C 根据幂函数、指数函数、对数函数的变化趋势即得答案. 5.B ∵幂函数y =x12在[0,+∞)上是增函数,又∵0.7<0.8,∴0<0.7 12 <0.8 12. 又log 30.7<0,∴log 30.7<0.712 <0.812,即c <a <b ,选B.6.D 由指数与对数函数的图象性质即得答案.7.A 本题考查函数的定义域、函数的单调性及参数取值范围的探求.因为f (x )=m +2log 2x 在[1,2]是增函数,且由f (x )≤4,得f (2)=m +2≤4,得m ≤2,故选A.8.D 由m -n =log a (1+x )-log a 11-x =log a (1-x 2)=log a y 2=2log a y ,所以log a y =12(m -n ).故选D.9.C 经计算知函数零点的近似值可取为1.75.10.C f (x )=a x 与g (x )=log a x 有相同的单调性,排除A ,D ;又当a >1时,f (3)g (3)>0,排除B ,当0<a <1时,f (3)g (3)<0,选C.11.A 由x -log 2f (x )=0,得f (x )=2x , ∴F (x )=2x -12x =2x -2-x .∴F (-x )=2-x -2x =-F (x ),∴F (x )为奇函数,易知F (x )=2x -2-x 在(-∞,+∞)上是增函数.12.D 由于f (x )为奇函数,且y =x 是奇函数,所以g (x )=f (x )-x 也应为奇函数,所以由函数g (x )=f (x )-x 的零点恰有两个,可得两零点必定分别在(-∞,0)和(0,+∞)上,由此得到函数g (x )=x 2-2x +a 在(0,+∞)上仅有一个零点,即函数y =-(x -1)2+1与直线y =a 在(0,+∞)上仅有一个公共点,数形结合易知应为a ≤0或a =1,选D.13.-3解析:∵∁U A ={1,2},∴A ={0,3}.∴0,3是方程x 2+mx =0的两根,∴m =-3.14.0或13解析:由题意得m =0或Δ=4-12m =0,即m =0或m =13.15.②③解析:本题考查对数函数的性质.函数f (x )=ln x 满足ln(x 1·x 2)=ln(x 1)+ln(x 2);由函数f (x )=ln x 是增函数,知ln x 1-ln x 2x 1-x 2,即f (x 1)-f (x 2)x 1-x 2>0成立.故②③正确. 16.①④解析:f (x )=log 0.5(x 2+1x );∴x >0,即定义域为(0,+∞);又∵f (x )=log 0.5(x +1x ),定义域不关于原点对称,则f (x )为非奇非偶函数;又∵x +1x ≥2,∴log 0.5(x +1x )≤log 0.52=-1.∴值域为(-∞,-1],②错;又∵x +1x 在(0,1)上为递减函数,∴log 0.5(x +1x )在(0,1)上为递增函数.三、解答题(写出必要的计算步骤、解答过程,只写最后结果的不得分,共70分)17.(10分)设A ={-3,4},B ={x |x 2-2ax +b =0},B ≠∅且B ⊆A ,求a ,b .(12分)已知f (x )是R 上的奇函数,且当x >0时,f (x )=-x 2+2x +2.(1)求f (x )的表达式;(2)画出f (x )的图象,并指出f (x )的单调区间.答案17.解:由B ≠∅,B ⊆A 知B ={-3}或{4}或B ={-3,4}.当B ={-3}时,a =-3,b =9;当B ={4}时,a =4,b =16;当B ={-3,4}时,a =12,b =-12.18.解:(1)设x <0,则-x >0,∴f (-x )=-(-x )2-2x +2=-x 2-2x +2.又∵f (x )为奇函数,∴f (-x )=-f (x ).∴f (x )=x 2+2x -2.又f (0)=0,∴f (x )=⎩⎪⎨⎪⎧ x 2+2x -2, x <0,0, x =0,-x 2+2x +2, x >0.(2)先画出y =f (x )(x >0)的图象,利用奇函数的对称性可得到相应y =f (x )(x <0)的图象,其图象如图所示.由图可知,其增区间为[-1,0)和(0,1],减区间为(-∞,-1]和[1,+∞).————————————————————————————19.(12分)已知二次函数f (x )=ax 2+2x +c (a ≠0)的图象与y 轴交于点(0,1),且满足f (-2+x )=f (-2-x )(x ∈R ).(1)求该二次函数的解析式及函数的零点;(2)已知函数在(t -1,+∞)上为增函数,求实数t 的取值范围.20.(12分)已知函数f (x )=2x 2+2x +a (-2≤x ≤2).(1)写出函数f (x )的单调区间;(2)若f (x )的最大值为64,求f (x )的最小值.答案19.解:(1)因为二次函数为f (x )=ax 2+2x +c (a ≠0)的图象与y 轴交于点(0,1),故c =1.①又因为函数f (x )满足f (-2+x )=f (-2-x )(x ∈R ),故x =-22a =-2.②由①②得:a =12,c =1.故二次函数的解析式为:f (x )=12x 2+2x +1.由f (x )=0,可得函数的零点为:-2+2,-2- 2.(2)因为函数在(t -1,+∞)上为增函数,且函数图象的对称轴为x =-2,由二次函数的图象可知:t -1≥-2,故t ≥-1.20.解:(1)f (x )=2(x +1)2+a -1(-2≤x ≤2),∴在[-2,-1]上,f (x )为减函数;在[-1,2]上,f (x )为增函数.即f (x )的减区间是[-2,-1],f (x )的增区间是[-1,2].(2)设U (x )=(x +1)2+a -1(-2≤x ≤2),则U (x )的最大值为U (2)=8+a ,最小值为U (-1)=a -1.故f (x )的最大值为f (2)=28+a ,最小值为f (-1)=2a -1.∵28+a =64,∴a =-2.∴f (x )的最小值为f (-1)=2-2-1=18.————————————————————————————21.(12分)已知函数f (x )=log a ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1a -2x +1在区间[1,2]上恒为正,求实数a 的取值范围.22.(12分)定义在(0,+∞)上的函数f (x ),对于任意的m ,n ∈(0,+∞),都有f (mn )=f (m )+f (n )成立,当x >1时,f (x )<0.(1)求证:1是函数f (x )的零点;(2)求证:f (x )是(0,+∞)上的减函数;(3)当f (2)=12时,解不等式f (ax +4)>1.答案21.解:当a >1时,y =⎝ ⎛⎭⎪⎫1a -2x +1是减函数,故⎝ ⎛⎭⎪⎫1a -2·2+1>1,则a <12,矛盾.当0<a <1时,0<⎝ ⎛⎭⎪⎫1a -2x +1<1,设y =⎝ ⎛⎭⎪⎫1a -2x +1,分类讨论1a -2的取值,得12<a <23.22.解:(1)证明:对于任意的正实数m ,n 都有f (mn )=f (m )+f (n )成立,所以令m =n =1,则f (1)=2f (1).∴f (1)=0,即1是函数f (x )的零点.(2)证明:设0<x 1<x 2,∵f (mn )=f (m )+f (n ),∴f (mn )-f (m )=f (n ).∴f (x 2)-f (x 1)=f (x 2x 1).因0<x 1<x 2,则x 2x 1>1. 而当x >1时,f (x )<0,从而f (x 2)<f (x 1).所以f (x )在(0,+∞)上是减函数.(3)因为f (4)=f (2)+f (2)=1,所以不等式f (ax +4)>1可以转化为f (ax +4)>f (4).因为f (x )在(0,+∞)上是减函数,所以0<ax +4<4.当a =0时,解集为∅;当a >0时,-4<ax <0,即-4a <x <0,。
人教版数学高一第一章空间几何体单元测试精选(含答案)3
![人教版数学高一第一章空间几何体单元测试精选(含答案)3](https://img.taocdn.com/s3/m/ec6a673c960590c69ec376cc.png)
【答案】 2 1 3 4 2
评卷人 得分
三、解答题
试卷第 8页,总 11页
40.一张长为10cm ,宽为 5cm 的矩形纸,以它为侧面卷成一个圆柱,求该圆柱的体积.
125
【答案】
cm3 或 125
cm3 .
π
2π
41.如图所示,在四边形 ABCD 中, A0, 0 , B 1,0 , C 2,1 , D 0,3 ,将四边
A.等边三角形
B.直角三角形
C.三边中只有两边相等的等腰三角形
D.三边互不相等的三角形
【答案】A
8.如图所示,观察四个几何体,其中判断正确的是( ).
A.(1)是棱台 C.(3)是棱锥 【答案】C
B.(2)是圆台 D.(4)不是棱柱
试卷第 2页,总 11页
9.一个球的内接正方体的表面积为 54,则球的表面积为( )
1
PB1= A1B1,则多面体 P-BCC1B1 的体积为( )
4
A.
8 3
C.4
【答案】B
16
B.
3
D.5
评卷人 得分
二、填空题
27.圆台的上底面半径为 2,下底面半径为 3,截得此圆台的圆锥的高为 6,则此圆台
的体积为____________.
【答案】 38 π 3
28.已知在三棱锥 P ABC 中,侧面与底面所成的二面角相等,则点 P 在平面 ABC 内的射影一定是 ABC 的__________心.
所示),则其侧视图的面积是 ( )
A.4 3cm2
B.2 3 cm2
C.8 cm2
D.4 cm2
【答案】A 21.若一个圆柱的正视图与其侧面展开图相似,则这个圆柱的侧面积与全面积之比为( )
高一数学必修一集合练习题及单元测试(含答案及解析)
![高一数学必修一集合练习题及单元测试(含答案及解析)](https://img.taocdn.com/s3/m/76e6bcc09f3143323968011ca300a6c30c22f19f.png)
高一数学必修一集合练习题及单元测试(含答案及解析)1.设集合A={x|2≤x<4},B={x|3x-7≥8-2x},则A∪B等于()A。
{x|x≥3} B。
{x|x≥2} C。
{x|2≤x<3} D。
{x|x≥4}2.已知集合A={1,3,5,7,9},B={0,3,6,9,12},则A∩B=()A。
{3,5} B。
{3,6} C。
{3,7} D。
{3,9}3.已知集合A={x|x>0},B={x|-1≤x≤2},则A∪B=()A。
{x|x≥-1} B。
{x|x≤2} C。
{x|0<x≤2} D。
{x|-1≤x≤2}4.满足M⊆{1,2,3,4},且M∩{2,3}={3}的集合M的个数是()A。
1 B。
2 C。
3 D。
45.集合A={0,2,a},B={1,4},若A∪B={0,1,2,4,16},则a 的值为()A。
1 B。
4 C。
2 D。
166.设S={x|2x+1>0},T={x|3x-5<0},则S∩T=()A。
Ø B。
{x|x5/3} D。
{x|-1/2<x<5/3}7.50名学生参加甲、乙两项体育活动,每人至少参加了一项,参加甲项的学生有30名,参加乙项的学生有25名,则仅参加了一项活动的学生人数为15.8.满足{1,3}∪A={1,3,5}的所有集合A的个数是2.9.已知集合A={x|x≤1},B={x|x≥a},且A∪B=R,则实数a的取值范围是(-∞,1]。
10.已知集合A={-4,2a-1},B={a-5,1-a,9},若A∩B={9},则a的值为7.11.已知集合A={1,3,5},B={1,2,-1},若A∪B={1,2,3,5},则x=2,A∩B={1}。
12.已知A={x|2a≤x≤a+3},B={x|x5},若A∩B=Ø,则a的取值范围为(-∞,-1)∪(5,∞)。
13.(10分)某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组。
2024高一数学单元测试题及答案
![2024高一数学单元测试题及答案](https://img.taocdn.com/s3/m/bdab82470640be1e650e52ea551810a6f524c8a1.png)
2024高一数学单元测试题及答案第一部分:选择题1. 设函数f(x)=2x+3,下列哪个表达式等于f(x+h)-f(x)?A) 2h+3 B) 2h C) 2x+2h+3 D) 2x+3h+32. 已知函数y=ax^2-2x,则a的值为多少时,函数对称轴与x轴重合?A) 0 B) 1 C) 2 D) -13. 已知直线L1过点A(-1,2),L2过点B(2,3),则L1和L2的斜率之积为多少?A) -1 B) -2 C) 1 D) 24. 设集合A={1,2,3},集合B={2,3,4},则A与B的交集为:A) {1} B) {2,3} C) {2,3,4} D) 空集第二部分:填空题1. 已知直线y=2x+1与曲线y=x^2-3x-2相交于两点A和B,若点A 的横坐标为1,则点B的纵坐标为____。
2. 若集合A={1,2,3},集合B={2,3,4},则集合A的幂集和集合B的幂集的并集共有____个元素。
3. 设事件A的概率为P(A)=0.3,事件B的概率为P(B)=0.4,事件A 与事件B同时发生的概率为P(A∩B)=0.12,那么事件A与事件B互不相容的概率为____。
第三部分:解答题1. 解方程3(x-2)+2(x+1)=5(x-3)-2的结果是多少?2. 设函数y=log(a^2x)-log(ax+20),其中a为常数,若该函数的定义域为R-{20/a},求a的取值范围。
3. 已知等差数列的首项为a1=-1,公差为d=3,求该等差数列的前n项和的公式。
第四部分:解题答案选择题答案:1) D 2) B 3) D 4) B填空题答案:1) -1 2) 16 3) 0.54解答题答案:1) 解得x=5,所以方程的解为5;2) 由定义域为R-{20/a}可得ax+20≠0,即ax≠-20,得到a∈R-{-20},即a的取值范围为实数集合去除{-20};3) 等差数列的前n项和公式为Sn=(n/2)(2a1+(n-1)d),代入已知条件a1=-1,d=3,得到Sn=(n/2)(-2+3n)。
高一数学必修1《第三章 函数的应用》单元测试题(含答案)
![高一数学必修1《第三章 函数的应用》单元测试题(含答案)](https://img.taocdn.com/s3/m/8a468b135fbfc77da369b178.png)
高一数学必修1《第三章 函数的应用》单元测试题(满分150分 时间 120分钟)班级:__________ 姓名:__________ 成绩:__________第Ⅰ卷(选择题,共50分)一、选择题 (每题5分,共50分) 1. 函数223y x x =--的零点是( )A .1,3-B .3,1-C .1,2D .不存在2. 方程1lg x x -=必有一个根的区间是( )A .(0.1,0.2)B .(0.2,0.3)C .(0.3,0.4)D .(0.4,0.5)3.下列函数中增长速度最快的是( )A.1100xy e =B .y=100ln xC .y=100xD .y=1002x ⋅4.已知函数2212341,2,21,2,x y y x y x y x==--=-=其中能用二分法求出零点的函数个数是( )A .1B .2C .3D .45. 若函数()f x 唯一的零点一定在三个区间(2,16)2824、(,)、(,)内,那么下列命题中正确的是( )A .函数()f x 在区间(2,3)内有零点B .函数()f x 在区间(2,3(3,4))或内有零点C .函数()f x 在区间(3,16)内有零点D .函数()f x 在区间(4,16)内无零点6. 如图表示人的体重与年龄的关系,则( )A .体重随年龄的增长而增加B .25岁之后体重不变C .体重增加最快的是15~25岁D .体重增加最快的是15岁之前7. 世界人口已超过60亿,若按千分之一的年增长率计算,则两年增长的人口约为( )A .120万B .1100万C .1200万D .12000万8. 已知函数()24f x mx =+,若在[]2,1-上存在0x 使0()0f x =,则实数m 的取值范围是( )A .5,42⎡⎤-⎢⎥⎣⎦B.(][),21,-∞-+∞C. []1,2-D. []2,1-9. 若商品进价每件40元,当售价为50元/件时,一个月能卖出500件,通过市场调查发现,若每件商品的单价每提高1元,则商品一个月的销售量会减少10件。
高一数学函数单元测试题及答案
![高一数学函数单元测试题及答案](https://img.taocdn.com/s3/m/ca7bd3350640be1e650e52ea551810a6f524c8e3.png)
高一数学函数单元测试题及答案单元测试题一、填空题1、设全集U=Z,集合A={-1,1,2},B={-1,1,2},从A到B的一个映射为x→y=f(x)=x/|x|,其中x∈A,y∈B,P={y|y=f(x)},则B∩(C∪P)={-1,1}。
2、已知x1是方程x+lgx=3的根,x2是方程x+10=3的根,则x1+x2值为2.3、已知函数y=f(x)的图象关于直线x=-1对称,且当x>0时f(x)=x/1,则当x<-2时f(x)=-x/1.4、函数y=f(x)的反函数y=f^-1(x)的图像与y轴交于点P(0,2),则方程f(x)=0在[1,4]上的根是x=2.5、设f(x)=2log(x-1),x≥2;f(x)=3x-1,x<2,则f(f(2))的值为1.6、从甲城市到乙城市m分钟的电话费由函数f(m)=1.06×([m]+44)给出,其中[m]表示不大于m的最大整数(如[3]=3,[3.9]=3,[3.1]=3),则从甲城市到乙城市5.8分钟的电话费为7.7、函数f(x)=2-2/(x-1),x≤2;f(x)=1-x/2,x>2,则f(0)=-1.8、函数y=(1-x)/(1+x),x≠-1,的值域为(-1,1)。
9、若f(5/2x-1)=x-2,则f(125)=48.10、已知映射f:A→B,其中A=B=R,对应法则为f:x→y=x+2x+3.若对实数k∈B,在集合A中不存在原象,则k 的取值范围是(-3/2,-3)∪(-3,-2)∪(-2,-3/2)。
11、偶函数f(x)在(-∞,0)上是减函数,若f(-1)<f(lgx),则实数x的取值范围是(1,e)。
12、关于x的方程|x-4x+3|-a=0有三个不相等的实数根,则实数a的值是1/2.13、关于x的方程(2x-1)/(x+2)+a=1有正根,则实数a的取值范围是(-∞,1/2)。
二、改写后的答案1、已知集合A={-1,1,2},B={-1,1,2},全集U=Z,映射f:A→B,f(x)=x/|x|,其中x∈A,y∈B,P={y|y=f(x)},求B∩(C∪P)的值。
高一数学必修一第一单元测试题及答案
![高一数学必修一第一单元测试题及答案](https://img.taocdn.com/s3/m/58957f1eec630b1c59eef8c75fbfc77da26997e3.png)
高一数学必修一第一单元测试题及答案高一年级数学第一单元质量检测试题一、选择题(每小题5分,共50分)1.已知全集$U=\{1,2,3,4,5,6,7\}$,$A=\{2,4,5\}$,则$C\cup A=$()A.$\varnothing$B.$\{2,4,6\}$C.$\{1,3,6,7\}$D.$\{1,3,5,7\} $2.已知集合$A=\{x|-1\leq x<3\}$,$B=\{x|x^2<x\leq 5\}$,则$A\cap B=$()A.$\{x|2<x<3\}$B.$\{x|-1\leq x\leq 5\}$C.$\{x|-1<x<5\}$ D.$\{x|-1<x\leq 5\}$3.图中阴影部分表示的集合是()A.$A\cap C$B.$C\cup A\cap B$C.$C\cup (A\capB)$ D.$(C\cup A)\cap (C\cup B)$4.方程组$\begin{cases}x-2y=3\\2x+y=11\end{cases}$的解集是()A.$\{5,-1\}$B.$\{1,5\}$C.$\{(-1,2)\}$D.$\{(5,-1)\}$5.已知集合$A=\{x|x=3k,k\in Z\}$,$B=\{x|x=6k,k\in Z\}$,则$A$与$B$之间最适合的关系是()XXX6.下列集合中,表示方程组$\begin{cases}x+y=1\\x-y=3\end{cases}$的是()A.$\{(x,y)|x=2,y=-1\}$B.$\{(x,y)|x=2,y=1\}$C.$\{(x,y)|x=-2,y=-1\}$D.$\{(x,y)|x=-2,y=1\}$7.设$\begin{cases}x+y=1\\x-y=2\end{cases}$,$\begin{cases}x-y=1\\2x+y=3\end{cases}$,则实数的取值范围是()A.$\{1\}$B.$\{2\}$C.$\{1,2\}$D.$\varnothing$8.已知全集$U=\{x|x\in R\}$,$A=\{x|x^2-4x+3=0\}$,那么$A=$()A.$\{1,3\}$B.$\{1,-3\}$C.$\{2,3\}$D.$\{2,-1\}$9.已知集合$A=\{x|x^2-2x+1<0\}$,那么$A=$()A.$\{x|02\}$ D.$\{x|1<x<2\}$10.设$\oplus$是$R$上的一个运算,$A$是$R$上的非空子集,若对任意的$a,b\in A$,有$a\oplus b\in A$,则称$A$对运算$\oplus$封闭,下列数集对加法、减法、乘法和除法(除数不等于0)四则运算都封闭的是()A.自然数集B.整数集C.有理数集D.无理数集二、填空题(每小题5分,共25分)11.已知集合$A=\{a,b,c\}$,写出集合$A$的所有真子集。
(完整版)高一数学必修一集合练习题及单元测试(含答案及解析)
![(完整版)高一数学必修一集合练习题及单元测试(含答案及解析)](https://img.taocdn.com/s3/m/13355acfbe1e650e52ea99c3.png)
集合练习题1.设集合A={x|2≤x<4},B={x|3x-7≥8-2x},则A∪B等于()A.{x|x≥3}B.{x|x≥2} C.{x|2≤x<3} D.{x|x≥4}2.已知集合A={1,3,5,7,9},B={0,3,6,9,12},则A∩B=()A.{3,5} B.{3,6} C.{3,7} D.{3,9}3.已知集合A={x|x>0},B={x|-1≤x≤2},则A∪B=()A.{x|x≥-1} B.{x|x≤2 } C.{x|0<x≤2}D.{x|-1≤x≤2} 4. 满足M⊆{,,,},且M∩{,,}={,}的集合M的个数是() A.1 B.2 C.3 D.45.集合A={0,2,a},B={1,}.若A∪B={0,1,2,4,16},则a的值为()A.0 B.1 C.2 D.46.设S={x|2x+1>0},T={x|3x-5<0},则S∩T=()A.ØB.{x|x<-1/2} C.{x|x>5/3} D.{x|-1/2<x<5/3} 7.50名学生参加甲、乙两项体育活动,每人至少参加了一项,参加甲项的学生有30名,参加乙项的学生有25名,则仅参加了一项活动的学生人数为________.8.满足{1,3}∪A={1,3,5}的所有集合A的个数是________.9.已知集合A={x|x≤1},B={x|x≥a},且A∪B=R,则实数a的取值范围是________.10.已知集合A={-4,2a-1,},B={a-5,1-a,9},若A∩B={9},求a的值.11.已知集合A={1,3,5},B={1,2,-1},若A∪B={1,2,3,5},求x及A∩B. 12.已知A={x|2a≤x≤a+3},B={x|x<-1或x>5},若A∩B=Ø,求a的取值范围.13.(10分)某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组.已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有多少人?集合测试一、选择题:本大题共10小题,每小题5分,共50分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
17.(1)1;(2)-3
18.增函数
【解析】任取 , ,且 ,则 .
又 是奇函数,
于是 .
由已知 , ,
,即 ,
在 上是增函数.
19.(1) ;(2) 或 。
试题分析:(1) ,变形为 ,
由已知其两根分别为 ,由韦达定理可知: ;
解出:
(2)由已知方程 有唯一根 ,所以 ,
考点:函数的奇偶性和单调性.
11.C
【解析】
试题分析:由题意可知函数的定义域为 ..又有函数 在 上递增,所以函数 在区间 上是递减的.故选C.本小题主要是考查复合函数的单调性同增异减.另外要关注定义域的范围.这也是本题的关键.
考点:1.函数的定义域.2.复合函数的单调性.
12.D
【解析】
试题分析:设 是已知函数定义域的子集, , 或 ,故函数 在 上单调递增,则 ,故 是方程 的同号的相异实数根,即 的同号的相异实数根. 因为 ,所以 同号,只需 ,所以 或 , , 取得最大值为 ,此时 ,故应选 .
21.略
【解析】略
22.(1) ;……………………………………5分
(2) ;………………………………………………10分
(3) ………………………………………15分
【解析】略
A B C D
6.下列选项中的两个函数具有相同值域的有( )个
① , ;② , ;
③ , ;④ ,
A.1个 B.2个 C.3个 D.4个
7.化简: ( )
A.2B. C. D.
8.函数 的图像的大致形状是( )
A B C D
9.函数 与. 在同一平面直角坐标系内的大致图象为()
10.在 、 、 这三个函数中,当 时,使 恒成立的函数个数是:( )
(2)证明 ;
(3)若 , ,求 的值.
参考答案
1.D
2.C
3.D
4.C
【解析】试题分析:依题意,可求得集合B={﹣2,﹣1,0,1,2},从而可得答案.
,
∴当x=0,y分别取0,1,2时,x﹣y的值分别为0,﹣1,﹣2;
当x=1,y分别取0,1,2时,x﹣y的值分别为1,0,﹣1;
当x=2,y分别取0,1,2时,x﹣y的值分别为2,1,0;
考点:1、函数的定义域;2、函数的值域;
13.
【解析】
试题分析: ,故答案为 .
考点:分段函数的应用.
14.
【解析】
试题分析:先求定义域: 或 再根据复合函数单调性确定单调区间.因为 在区间 上单调递增,在 上单调递减,又函数 在定义区间上单调递减,所以函数 在区间 上单调递减.
考点:复合函数单调性
∴B={﹣2,﹣1,0,1,2},
∴集合 中元素的个数是5个.
考点:集合中元素个数
5.B
【解析】
试题分析:根据函数的定义给自变量x一个值,y必须有唯一的值与之相对应,对于B给自变量x一个正值,y两个值与之相对应,所以不能作为函数图象
考点:函数的概念
6.C
【解析】① , 两函数值域均为 ;
② , 两函数值域均为 ;
解出 ,函数 ,其对称轴为 。下面分两种情况讨论:
若 时, ,解出
若 时, ,解出 所以 或
20.(1) ;(2)
【解析】
试题分析:(1)根据表达式,分母不为零,偶次格式下被开方数为非负数,得到结论。
(2)根据换元法思想,得到二次函数的最值的求解。
(1)函数 有意义,故:
解得:
(2) ,令 ,
可得: ,讨论对称轴可得:
19.设函数 ,集合 .
(1)若 ,求 解析式。
(2)若 ,且 在 时的最小值为 ,求实数 的值。
20.已知函数 的定义域为 ,
(1)求 ;
(2)当 时,求函数 的最大值。
21.已知 .
(1)求函数 的定义域;
(2)判断函数 的奇偶性,并予以证明;
(3)求使 的 的取值范围.
22.已知函数 , .
(1)求 的值;
高一数学单元测试题
一、选择题
1.已知 , ,则 =( )
A. B. C. D.
2.已知全集 =N,集合 Q= 则 ( )
A. B. C. D
3.若集合 则A∩B是 ( )
(A) (B)
(C) (D)
4.已知集合 =0,1,2},则集合 中元素的个数是()
(A) 1 (B)3(C)5 (D)9
5.下列图象中不能作为函数图象的是( )
③ 的值域为 , 的值域为 ;
因为 , ④ =1- ,值域为 , 值域为 ,故选C。
7.C
8.C
由函数的表达式知:
9.C
试题分析:两函数均为偶函数,图象关于y轴对称,函数 在x>0时,为减函数,而 值域为{y|y -1},故选C。
10.B
【解析】
试题分析:画出三个函数的图像,从图像上知,对 和 来说,在它们的图象上取任意两点,函数图象在这两点之间的部分总在连接这两点的线段的下方,所以不满足题意.而 的图像正好相反,满足题意.
16.设 是 的两个非空子集,如果存在一个从 到 的函数 满足:(i) ;(ii)对任意 ,当 时,恒有 .那么称这两个集合“保序同构”.现给出以下4对集合.
① ;
② ;
③ ;
④ ,其中,“保序同构”的集合对的序号是.
三、解答题
17.化简求值。
(1) ;
(2)
18.已知 是定义在 上的奇函数,且 ,若 , , ,有 ,判断函数 在 上的单调性,并证明你的结论.
15.-4
【解析】略
16.②③④.
【解析】
试题分析:“保序同构”的集合是指存在一函数 满足:(1).S是 的定义域,T是值域,(2). 在S上递增.对于①,若任意 ,当 时,可能有 ,不是恒有 成立,所以①中的两个集合不一定是保序同构,对于②,取 符合保序同构定义,对于③,取函数 符合保序同构定义,对于④,取 符合保序同构定义,故选②③④.
A. 0 B.1 C.2 D.3
11.函数 的单调递减区间是( )
A、 B、 C、 D、
12.定义区间 的长度为 ,函数 的定义域与值域都是 ,则区间 取最大长度时实数 的值为( )
A. B.-3 C.1 D.3
二、填空题
13.函数 则 的值为.
14.函数 的单调递减区间是.
15.如图,点 在反比例函数 的图像上, 轴于点 ,且 的面积 ,则 ;