【随堂练习与检测】2013版九年级数学上册 第二十一章 21.1二次根式(基础训练+能力提升)试题

合集下载

人教版九年级数学上册 第二十一章练习题含答案

人教版九年级数学上册 第二十一章练习题含答案

人教版九年级数学上册 第二十一章练习题含答案21.1一元二次方程一、选择题1.若n 是方程x 2+mx+n=0的根,n≠0,则m+n 等于( )A .-12B .12C .1D .-12.下列叙述正确的是( )A .形如ax 2+bx+c=0的方程叫一元二次方程B .方程4x 2+3x=6不含有常数项C .(2)x)2=0是一元二次方程D .一元二次方程中,二次项系数一次项系数及常数项均不能为03.下列方程中,关于x 的一元二次方程有( )①x 2=0 ②ax 2+bx+c=0 x 2-2+a -x=0 ⑤(m-1)x 2+4x+2m =0 ⑥1x +1x =13⑧(x+1)2=x 2-9A .2个B .3个C .4个D .5个 4.如果(a -1)x 2+ax +a 2-1=0是关于x 的一元二次方程,那么必有( )A .a≠0B .a≠1C .a≠-1D .a =±-15.已知方程(x +m)(x -4)=0和方程x 2-2x -8=0的两根分别相等,则m 等于( )A .1B .-1C .2D .-26.方程 -12x 2+4x =3 的二次项系数、一次项系数和常数项的乘积为( ) A .-6 B .6 C .12 D .-127.下列哪一个选项是一元二次方程( )A .10x=9B .2(y-1)=3yC .2x 2-3x+1=0D .2120x x-=8.方程x 2)x 化为一般形式,它的各项系数之和可能是))A B . C D .19.下列方程中是关于x 的一元二次方程的是( )A .2430x x -+=B .20ax bx c ++=C .220x x -+=D .223250x xy y --= 10.方程(m+2)m x +mx-8=0是关于x 的一元二次方程,则( )A .m=2±B .m=2C .m=-2D .m ≠2±二、填空题11.已知x=2是关于x 的一元二次方程x 2)4x+m=0的一个根,则m=__________)12.已知m 是方程x 2﹣2018x+1=0的一个根,则代数式m 2﹣2017m+220181m ++3的值等于_____. 13.请构造一个一元二次方程,使它能满足下列条件:①二次项系数不为1;②有一个根为﹣2.则你构造的一元二次方程是_____.14.方程(x–3)2+5=6x 化成一般形式是________,其中一次项系数是________.15.如果(a+2)x 2+4x+3=0是一元二次方程,那么a 所满足的条件为___________.三、解答题16.先化简,再求值:211(1)21+1m m m m m m --÷-+++,其中m 是关于x 的一元二次方程2330x x +-=的根17.把关于x 的方程()()()23x x x -=化成一元二次方程的一般形式,并写出方程中各项与各项的系数.18.一元二次方程()2(1)10a x b x c -+-+=化为一般形式后为22310x x --=,试求a b c+的值. 19.把下列方程化成一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项.(1)2(5)36x -=;(2)3(1)2(1)y y y +=+.20.观察以下方程:①237150x x --=;②221090x x +-=;③2560x x ++=;④243110x x -+=,解答下列问题: ()1上面的四个方程有三个方程的一次项系数有共同特点,请你用代数式表示出这个特点;()2请你写出符合这个条件的一元二次方程的一般形式.21.根据题意列出方程,化为一般式,不解方程.(1)一个大正方形的边长比一个小正方形边长的3倍多1,若两正方形面积和为53,求这两正方形的边长.(2)2014年某超市销售一种品牌童装,平均每天可售出30件,每件盈利40元.面对下半年市场竞争激烈,超市采用降价措施,每件童装每降价2元,平均每天就多售出6件.要使平均每天销售童装利润为1 000元,那么每件童装应降价多少元?22.已知关于x 的一元二次方程m(x -1)2=-3x 2+x 的二次项系数与一次项系数互为相反数,则m 的值为多少?23.)))))))(1)若n(n ≠0)是关于x )))x 2+mx −2n =0的根,求m +n )))(2)已知x ,y 为实数,且y =2√x −5+3√5−x −2,))))【参考答案】1.D 2.C 3.A 4.B 5.C 6.B 7.C 8.D 9.A. 10.B 11.412.202013.2x 2﹣8=014. x 2–12x+14=0 –1215.a≠)216.211,325m m --++17.22690x x 二次项22x ,二次项系数2;一次项6x -,一次项系数6-;常数项9-18.32-19.(1)210110x x --=,1,10-,11- (2)2320y y +-=,3,1,2-20.()1一次项系数为奇数21n +(n 是整数);()()22210ax n x c +++=.21.)1)10x 2+6x -52=0))2)3x 2-90x-200=0.22.223.)1)-2))2)1621.2解一元二次方程一.选择题1.解一元二次方程(x -1)2=2(x -1)最适宜的方法是( )A .直接开平方B .公式法C .因式分解法D .配方法2.利用配方法解一元二次方程x 2-6x+7=0时,将方程配方为(x -m )2=n ,则m 、n 的值分别为( )A .m=9,n=2B .m=-3,n=-2C .m=3,n=0D .m=3,n=23.一元二次方程x 2-6x+5=0的两根分别是x 1、x 2,则x 1•x 2的值是( )A .5B .-5C .6D .-64.关于x 的方程x 2-mx+6=0有一根是-3,那么这个方程的另一个根是( )A .-5B .5C .-2D .25.设方程x 2+x -2=0的两个根为α,β,那么α+β-αβ的值等于( )A .-3B .-1C .1D .36.一元二次方程(2x+1)(2x -1)=8x+15的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根7.如果a 、b 是关于x 的方程(x+c )(x+d )=1的两个根,那么(a+c )(b+c )等于( )A .1B .-1C .0D .c 28.已知关于x 的一元二次方程x 2-2(k -1)x+k 2+2=0的两个实数根为x 1和x 2,设t=,则t 的最大值为( )A .-4B .4C .-6D .69.关于x 的一元二次方程ax 2+5x+3=0有两个不相等的实数根,则实数a 的取值范围是( )A.a<且a≠0B.a>C.a≤且a≠0 D.a≥10.关于x的一元二次方程x2+(a2-3a)x+a=0的两个实数根互为倒数,则a的值为()A.-3B.0C.1D.-3 或011.定义新运算:对于两个不相等的实数a,b,我们规定符号max{a,b}表示a,b中的较大值,如:max{2,4}=4.因此,max{-2,-4}=-2;按照这个规定,若max{x,−x}=,则x的值是()A.-1B.-1或C.D.1或12.定义:如果一个一元二次方程的两个实数根的比值与另一个一元二次方程的两个实数根的比值相等,我们称这两个方程为“相似方程”,例如,(x-3)(x-6)=0的实数根是3或6,x2-3x+2=0的实数根是1或2,3:6=1:2,则一元二次方程(x-3)(x-6)=0与x2-3x+2=0为相似方程.下列各组方程不是相似方程的是()A.x2-16=0与x2=25B.(x-6)2=0与x2+4x+4=0C.x2-7x=0与x2+x-6=0D.(x+2)(x+8)=0与x2-5x+4=0二.填空题13.一元二次方程(x+1)2=x+1的根是.14.若关于x的一元二次方程ax2-x+1=0有实数根,则a的最大整数值是.15.关于x的一元二次方程mx2-(3m-1)x+2m-1=0.其根的判别式的值为1,则该方程的根为.16.若关于x的一元二次方程x2+kx+1=0有两个相等的实数根,则k的值为.17.设m、n是方程x2+x-1001=0的两个实数根,则m2+2m+n的值为.三.解答题18.解下列方程:(1)(y-2)(y-3)=12;(2)4(x+3)2=25(x-1)2;(3)2x2+3x-1=0(请用配方法解).19.已知:关于x的一元二次方程x2+mx=3(m为常数).(1)证明:无论m为何值,该方程都有两个不相等的实数根;(2)若方程有一个根为2,求方程的另一个根.20.已知关于x的一元二次方程x2-4x-2k+8=0有两个实数根x1,x2.(1)求k的取值范围;(2)若x13x2+x1x23=24,求k的值.21.已知关于x的一元二次方程x2+2x-k=0有两个不相等的实数根.(1)求k的取值范围;(2)若方程的两个不相等的实数根是a,b,的值.22.已知关于x的方程x2-4x+k+1=0有两实数根.(1)求k的取值范围;(2)设方程两实数根分别为x1、x2,且,求实数k的值.参考答案1-5:CDACC 6-10:ABDAC 11-12:BC13、14、-115、16、±217、100018、19、(1)证明:x2+mx-3=0,∵a=1,b=m,c=-3∴△=b2-4ac=m2-4×1×(-3)=m2+12,∵m2≥0,∴m2+12>0,∴△>0,∴无论m为何值,该方程都有两个不相等的实数根;(2)设方程的另一个根为-1.520、:(1)k≥2.(2)k=3.21、(1)k的取值范围为k>-1;(2)1.22、:(1)k≤3.(2)k=-3.21.3实际问题与一元二次方程一.选择题1.某市一楼盘准备以每平方米8000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方米7220元的均价开盘销售,则平均每次下调的百分率是()A.4.875%B.5%C.5.4%D.10%2.两个相邻自然数的积是132.则这两个数中,较大的数是()A.11B.12C.13D.143.原价196元的某商品经过两次降价后,现售价100元,如果两次降价的百分数都为x,那么下列各式中正确的是()A.196(1﹣2x)=100B.196(1﹣x)2=100C.100(1+2x)=196D.100(1+x)2=1964.为迎接春节促销活动,某服装店从1月份开始对冬装进行“折上折”(两次打折数相同)优惠活动,已知一件原价1000元的冬装,优惠后实际仅需640元,设该店冬装原本打x折,则有()A.1000(1﹣2x)=640B.1000(1﹣x)2=640C.1000()2=640D.1000(1﹣)2=6405.宾馆有50间房供游客居住,当每间房每天定价为180元时,宾馆会住满;当每间房每天的定价每增加10元时,就会空闲一间房.如果有游客居住,宾馆需对居住的每间房每天支出20元的费用.设房价定为x元,宾馆当天利润为8640元.则可列方程()A.(180+x﹣20)(50﹣)=8640B.(x+180)(50﹣)﹣50×20=8640C.x(50﹣)﹣50×20=8640D.(x﹣20)(50﹣)=86406.某种服装的成本在两年内从300元降到243元,那么平均每年降低成本的百分率为()A.5%B.10%C.15%D.20%7.如图,某中学计划靠墙围建一个面积为80m2的矩形花圃(墙长为12m),围栏总长度为28m,则与墙垂直的边x为()A.4m或10m B.4m C.10m D.8m8.由于受猪瘟的影响,今年9月份猪肉的价格两次大幅上涨瘦肉价格由原来每千克23元,上升到每千克40元,设平均每次上涨a%,则下列方程中正确的是()A.23(1+a%)2=40B.23(1﹣a%)2=40C.23(1+2a%)=40D.23(1﹣2a%)=409.《九章算术》是我国古代数学名著,有题译文如下:今有门,不知其高宽;有竿,不知其长短.横放,竿比门宽长出4尺;竖放,竿比门高长出2尺;斜放,竿与门对角线长恰好相等.问门高、宽和对角线的长各是多少?设门对角线的长为x尺,下列方程符合题意的是()A.2=x2B.2=x2C.x2+(x﹣2)2=(x﹣4)2D.210.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角DA和DC(两边足够长),再用28m长的篱笆围成一个面积为192m2矩形花园ABCD(篱笆只围AB、BC两边),在P处有一棵树与墙CD、AD的距离分别是15m和6m,现要将这棵树也围在花园内(含边界,不考虑树的粗细),则AB的长为()A.8或24B.16C.12D.16或12二.填空题11.“国庆节”和“中秋节”双节期间,某微信群规定,群内的每个人都要发一个红包,并保证群内其他人都能抢到且自己不能抢自己发的红包,若此次抢红包活动,群内所有人共收到156个红包,则该群一共有人.12.如图,有一块矩形铁皮,长为100cm,宽50cm,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒,如果要制作的无盖方盒的底面积为1400cm2,那么铁皮各角切去的正方形的边长为cm.13.准备在一块长为30米,宽为24米的长方形花圃内修建四条宽度相等,且与各边垂直的小路,(如图所示)四条小路围成的中间部分恰好是一个正方形,且边长是小路宽度的4倍,若四条小路所占面积为80平方米,则小路的宽度为米.14.某学习小组全体同学都为本组其他人员送了一张新年贺卡,若全组共贺卡78张,设这个小组的同学共有x人,可列方程:.15.要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x个队参赛,则可列一元二次方程为.(化用一般式表示)三.解答题16.某果农2017年的年收入为5万元,由于党的惠农政策的落实,2019年年收入增加到7.2万元,求平均每年年收入的增长率.17.要在一个8cm×12cm的照片外侧的四周镶上宽度相同的银边.并且要使银边的面积和照片的面积相等.那么银边的宽应该是多少?18.如图,用长为22米的篱笆,一面利用墙(墙的最大可用长度为14米),围成中间隔有一道篱笆的长方形花圃,为了方便出入,在建造篱笆花圃时,在BC上用其他材料做了宽为1米的两扇小门.若花圃的面积刚好为45平方米,则此时花圃的AB段长为多少?19.受新型冠状病毒的影响,口罩成为最紧缺的物资之一,因此在2020年初.星星服装厂快速转型生产一次性医用口罩和N95口罩.一次性医用口罩和N95口罩的成本分别为1元/个、8元/个.星星服装厂3月份共生产两种口罩80万个并售完,其中N95口罩单个售价是一次性医用口罩单个售价的12倍,一次性医用口罩的销售额为90万元,N95口罩的销售额为360万元.(1)3月份星星服装厂两种口罩的单个售价分别是多少元?(2)由于国内口罩不再紧缺,而国外疫情逐渐爆发,从4月份起,星星服装厂将生产的口罩全部远销国外.因为将口罩出口销售,所以一次性医用口罩和N95口罩每个的成本均增加50%.4月份该厂生产并销售一次性医用口罩50万个,N95口罩25万个,两种口罩的总利润为425万元,一次性医用口罩和N95口罩的单个售价之比为1:6,5月份两种口罩的单个成本与4月份相同,总利润比4月份增加了25万元,一次性医用口罩的单个售价比4月份增加1元,N95口罩的单个售价比4月份降低a%,同时一次性医用口罩和N95口罩的数量与3月份相比,分别增加a%、a%.求a的值.参考答案与试题解析一.选择题1.【解答】解:设平均每次下调的百分率是x,根据题意可得:8000(1﹣x)2=7220,解得:x1==5%,x2=(不合题意舍去),故选:B.2.【解答】解:设这两个数中较大的数为x,则较小的数为(x﹣1),依题意,得:x(x﹣1)=132,解得:x1=12,x2=﹣11(不合题意,舍去).故选:B.3.【解答】解:设两次降价的百分数都为x,根据题意,得:196(1﹣x)2=100,故选:B.4.【解答】解:设该店冬装原本打x折,依题意,得:1000()2=640.故选:C.5.【解答】解:设房价定为x元,由题意得:(x﹣20)(50﹣)=8640.故选:D.6.【解答】解:设平均每次降价的百分率为x,则第一次降价后每件300(1﹣x)元,第二次降价后每件300(1﹣x)2元,由题意得:300(1﹣x)2=243解得:x1=0.1,x2=1.9(不符合题意舍去)所以平均每次降价的百分率为:10%.故选:B.7.【解答】解:∵与墙垂直的边为xm,∴与墙平行的边为(28﹣2x)m.依题意,得:x(28﹣2x)=80,整理,得:x2﹣14x+40=0,解得:x1=4,x2=10.当x=4时,28﹣2x=20>12,不合题意,舍去;当x=10时,28﹣2x=8.故选:C.8.【解答】解:当猪肉第一次提价a%时,其售价为23+23a%=23(1+a%);当猪肉第二次提价a%后,其售价为23(1+a%)+23(1+a%)a%=23(1+a%)2.∴23(1+a%)2=40.故选:A.9.【解答】解:设门对角线的长为x尺,由题意得:2=x2,故选:B.10.【解答】解:设AB=xm,则BC=(28﹣x)m,依题意,得:x(28﹣x)=192,解得:x1=12,x2=16.∵P处有一棵树与墙CD、AD的距离分别是15m和6m,∴x2=16不合题意,舍去,∴x=12.故选:C.二.填空题(共5小题)11.【解答】解:设该群一共有x人,依题意有x(x﹣1)=156,解得:x=﹣12(舍去)或x=13,答:这个群一共有13人.故答案为13.12.【解答】解:设切去的正方形的边长为xcm,则盒底的长为(100﹣2x)cm,宽为(50﹣2x)cm,根据题意得:(100﹣2x)(50﹣2x)=1400,展开得:x2﹣75x+900=0,解得:x1=15,x2=60(不合题意,舍去),则铁皮各角应切去边长为15cm的正方形.故答案是:15.13.【解答】解:设小路的宽度为x米,则小正方形的边长为4x米,依题意得:(30+4x+24+4x)x=80整理得:4x2+27x﹣40=0解得x1=﹣8(舍去),x2=.故答案为:.14.【解答】解:设这个小组的同学共有x人,则每人送(x﹣1)张贺卡,根据题意得:x(x﹣1)=78.故答案为:x(x﹣1)=78.15.【解答】解:设比赛组织者应邀请x个队参赛,则可列一元二次方程为:x(x﹣1)=28,整理得:x2﹣x﹣56=0.故答案为:x2﹣x﹣56=0.三.解答题(共4小题)16.【解答】解:设平均每年年收入的增长率为x,依题意得:5(1+x)2=7.2,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:平均每年年收入的增长率为20%.17.【解答】解:设银边的宽为xcm,依题意,得:(12+2x)(8+2x)﹣12×8=12×8,整理,得:x2+10x﹣24=0,解得:x1=2,x2=﹣12(不合题意,舍去).答:银边的宽应该是2cm.18.【解答】解:设AB=x米,则BC=(22﹣3x+2)米,依题意,得:x(22﹣3x+2)=45,整理,得:x2﹣8x+15=0,解得:x1=3,x2=5.当x=3时,22﹣3x+2=15>14,不合题意,舍去;当x=5时,22﹣3x+2=9,符合题意.答:若花圃的面积刚好为45平方米,则此时花圃的AB段长为5米.19.【解答】解:(1)设3月份星星服装厂生产一次医用口罩x万个,则生产N95口罩(80﹣x)万个,依题意,得:=,解得:x=60,经检验,x=60是原方程的解,且符合题意,∴==1.5,1.5×12=18(元).答:3月份星星服装厂生产的一次医用口罩的单个售价为1.5元,生产的N95口罩的单个售价为18元.(2)设4月份星星服装厂生产的一次医用口罩的单个售价为y元,则生产的N95口罩的单个售价为6y元,∵4月份两种口罩的总利润为425万元,∴[y﹣(1+50%)×1]×50+[6y﹣(1+50%)×8]×25=425,∴y=4,6y=24.又∵5月份总利润比4月份增加了25万元,∴[4+1﹣(1+50%)×1]×60(1+a%)+[(1﹣a%)×24﹣(1+50%)×8]×(80。

新人教版九年级上册数学书练习册的答案作业本答案课本习题答案

新人教版九年级上册数学书练习册的答案作业本答案课本习题答案

新人教版九年级上册数学书练习册的答案作业本答案课本习题答案《新课程课堂同步练习册•数学(人教版九年级上册)》参考答案第二十一章二次根式§21.1二次根式(一)一、1. C 2. D 3. D二、1. ,9 2. , 3. 4. 1三、1.50m 2.(1)(2)>-1 (3)(4)§21.1二次根式(二)一、1. C 2.B 3.D 4. D二、1. ,2.13.;三、1. 或-32.(1);(2)5;(3);(4);(5);(6);3.原式=§21.2二次根式的乘除(一)一、1.C 2. D 3.B二、1.<2. (为整数)3.12s 4.三、1.(1)(2)(3)(4)–108 2.10cm23、cm§21.2二次根式的乘除(二)一、1.C 2.C 3.D二、1. >3 2. 3.(1) ; (2) ; 4.6三、1.(1) (2) (3)5 2.(1)(2)(3)3. ,因此是倍.§21.2二次根式的乘除(三)一、1.D 2.A 3.B二、1.2. , , 3.1 4.三、1.(1)(2)10 2. 3.( ,0) (0, );§21.3二次根式的加减(一)一、1.C 2.A 3.C二、1.(答案不唯一,如:、)2. <<3.1三、1.(1)(2)(3)2 (4)2.§21.3二次根式的加减(二)一、1.A 2.A 3.B 4.A二、1.1 2. , 3.三、1.(1)(2)(3)4 (4)22.因为>45所以王师傅的钢材不够用.《新课程课堂同步练习册•数学(人教版九年级上册)》参考答案第二十一章二次根式§21.1二次根式(一)一、1. C 2. D 3. D二、1. ,9 2. , 3. 4. 1三、1.50m 2.(1)(2)>-1 (3)(4)§21.1二次根式(二)一、1. C 2.B 3.D 4. D二、1. ,2.13.;三、1. 或-32.(1);(2)5;(3);(4);(5);(6);3.原式=§21.2二次根式的乘除(一)一、1.C 2. D 3.B二、1.<2. (为整数)3.12s 4.三、1.(1)(2)(3)(4)–108 2.10cm23、cm§21.2二次根式的乘除(二)一、1.C 2.C 3.D二、1. >3 2. 3.(1) ; (2) ; 4.6三、1.(1) (2) (3)5 2.(1)(2)(3)3. ,因此是倍.§21.2二次根式的乘除(三)一、1.D 2.A 3.B二、1.2. , , 3.1 4.三、1.(1)(2)10 2. 3.( ,0) (0, );§21.3二次根式的加减(一)一、1.C 2.A 3.C二、1.(答案不唯一,如:、)2. <<3.1三、1.(1)(2)(3)2 (4)2.§21.3二次根式的加减(二)一、1.A 2.A 3.B 4.A二、1.1 2. , 3.三、1.(1)(2)(3)4 (4)22.因为>45所以王师傅的钢材不够用.《新课程课堂同步练习册•数学(人教版九年级上册)》参考答案第二十一章二次根式§21.1二次根式(一)一、1. C 2. D 3. D二、1. ,9 2. , 3. 4. 1三、1.50m 2.(1)(2)>-1 (3)(4)§21.1二次根式(二)一、1. C 2.B 3.D 4. D二、1. ,2.13.;三、1. 或-32.(1);(2)5;(3);(4);(5);(6);3.原式=§21.2二次根式的乘除(一)一、1.C 2. D 3.B二、1.<2. (为整数)3.12s 4.三、1.(1)(2)(3)(4)–108 2.10cm23、cm§21.2二次根式的乘除(二)一、1.C 2.C 3.D二、1. >3 2. 3.(1) ; (2) ; 4.6三、1.(1) (2) (3)5 2.(1)(2)(3)3. ,因此是倍.§21.2二次根式的乘除(三)一、1.D 2.A 3.B二、1.2. , , 3.1 4.三、1.(1)(2)10 2. 3.( ,0) (0, );§21.3二次根式的加减(一)一、1.C 2.A 3.C二、1.(答案不唯一,如:、)2. <<3.1三、1.(1)(2)(3)2 (4)2.§21.3二次根式的加减(二)一、1.A 2.A 3.B 4.A二、1.1 2. , 3.三、1.(1)(2)(3)4 (4)22.因为>45所以王师傅的钢材不够用.。

(人教版数学)初中9年级上册-同步练习-21.1 一元二次方程-九年级数学人教版(上)(解析版)

(人教版数学)初中9年级上册-同步练习-21.1 一元二次方程-九年级数学人教版(上)(解析版)

第二十一章一元二次方程21.1一元二次方程一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列方程是一元二次方程的是A.x2﹣y=1 B.x2+2x﹣3=0C.x2+1x=3 D.x﹣5y=6【答案】B2.关于x的一元二次方程(m﹣1)x2+2x+m2﹣1=0,常数项为0,则m值等于A.1 B.﹣1C.1或﹣1 D.0【答案】B【解析】由题意,得m2﹣1=0,且m﹣1≠0,解得m=﹣1,故选B.3.若关于x的一元二次方程x2﹣x﹣m=0的一个根是x=1,则m的值是A.1 B.0C.−1 D.2【答案】B【解析】把x=1代入x2﹣x﹣m=0得1﹣1﹣m=0,解得m=0.故选B.4.若px2-3x+p2-p=0是关于x的一元二次方程,则A.p=1 B.p>0C.p≠0 D.p为任意实数【答案】C【解析】∵方程px2-3x+p2-p=0是关于x的一元二次方程,∴二次项系数p≠0.故选C.5.方程2x2﹣6x﹣5=0的二次项系数、一次项系数、常数项分别为A.6、2、5 B.2、﹣6、5C.2、﹣6、﹣5 D.﹣2、6、5【答案】C【解析】一元二次方程ax2+bx+c=0(a,b,c是常数且a≠0)的a、b、c分别是二次项系数、一次项系数、常数项.方程2x2﹣6x﹣5=0的二次项系数、一次项系数、常数项分别为2、﹣6、﹣5.故选C.【名师点睛】本题考查了一元二次方程的一般形式:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.6.已知a﹣b+c=0,则一元二次方程ax2+bx+c=0(a≠0)必有一个根是A.1 B.﹣2C.0 D.﹣1【答案】D【名师点睛】本题考查的是一元二次方程的根,即方程的解的定义.解题的关键是要掌握一元二次方程ax2+bx+c=0(a≠0)中几个特殊值的特殊形式:x=1时,a+b+c=0;x=﹣1时,a﹣b+c=0.7.若关于x的一元二次方程ax2﹣b x+4=0的解是x=2,则2020+2a﹣b的值是A.2016 B.2018C.2020 D.2022【答案】B【解析】∵关于x的一元二次方程ax2﹣bx+4=0的解是x=2,∴4a﹣2b+4=0,则2a﹣b=﹣2,∴2020+2a ﹣b=2020+(2a﹣b)=2020+(﹣2)=2018.故选B.【名师点睛】本题考查了一元二次方程的解定义.解题时,利用了“整体代入”的数学思想.二、填空题:请将答案填在题中横线上.8.若x=﹣1是关于x的一元二次方程x2+3x+m+1=0的一个解,则m的值为__________.【答案】1【解析】将x=﹣1代入方程得:1﹣3+m+1=0,解得:m=1.9.已知(m﹣1)x|m|+1﹣3x+1=0是关于x的一元二次方程,则m=__________.【答案】-1【解析】∵方程(m−1)x|m|+1−3x+1=0是关于x的一元二次方程,∴|m|=1,m−1≠0,解得:m=−1.故答案为:−1.10.若是方程的一个根,则的值为__________.【答案】2018【解析】由题意可知:2m2-3m-1=0,∴2m2-3m=1,∴原式=3(2m2-3m)+2015=2018,故答案为2018.【名师点睛】本题考查一元二次方程的解,解题的关键是正确理解一元二次方程的解的定义,本题属于基础题型.11.已知关于x的方程(m+2)x²+4mx+1=0是一元二次方程,则m的取值范围是__________.【答案】m≠−2【名师点睛】本题考查了一元二次方程的定义,解题的关键是掌握判断一个方程是否是一元二次方程需注意几个方面:化简后;一个未知数;未知数的最高次数是2;二次项的系数不为0;整式方程. 12.若关于x的方程的常数项为0,则m的值等于__________.±【答案】32【解析】由题意知,方程(m-3)x2 +5x+m2 -18=0的常数项为m2−18,所以m2−18=0,±,解得:m=32±.故答案为:32【点睛】本题考查了方程的一般式,本题常数项为0时方程可为一元一次方程也可为一元二次方程,不论哪一种情况,都符合题意,这是解题的关键所在,也是易错点.13.一元二次方程2x2+4x﹣1=0的一次项系数及常数项之和为__________.【答案】3【解析】由题意,得:4+(﹣1)=3.故答案为3.【名师点睛】本题考查了一元二次方程的一般形式:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a ,b ,c 分别叫二次项系数,一次项系数,常数项.14.已知一个一元二次方程的一个根为3,二次项系数是1,则这个一元二次方程可以是__________.(只需写出一个方程即可)【答案】x 2﹣3x =0【解析】一元二次方程的一个根为3,二次项系数是1,这个一元二次方程可以为x 2-3x =0.故答案为x 2−3x =0.【名师点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.灵活应用整体代入的方法计算.三、解答题:解答应写出文字说明、证明过程或演算步骤.15.已知关于x 的方程(m 2 -1)x 2 -(m +1)x +m =0.(1)m 为何值时,此方程是一元一次方程?(2)m 为何值时,此方程是一元二次方程?并写出一元二次方程的二次项系数、一次项系数及常数项. 【答案】(1)m =1;(2)m ≠±1,二次项系数为m 2-1、一次项系数为-(m +1),常数项为m .16.已知x 是一元二次方程x 2+3x ﹣1=0的实数根,求代数式 2352362x x x x x -⎛⎫÷+- ⎪--⎝⎭的值. 【答案】13【解析】原式=()()()333322x x x x x x +--÷-- ()()()()321323333x x x x x x x x --=⨯=-+-+. ∵x 2+3x ﹣1=0.∴x 2+3x =1.∴x (x +3)=1.∴原式=()11333x x ==+. 17.已知x =1是关于x 的一元二次方程x 2﹣4mx +m 2=0的根,求代数式()()()2233m m m m --+-的值.【答案】2. 18.已知实数a 是方程的根. (1)计算的值;(2)计算的值.【答案】(1)2015;(2)5.【解析】(1)∵实数a 是方程的根,∴. ∴,即 . ∴; (2).∵,∴..。

九年级上册数学第二十一章(21.1-21.2)检测题(含答案及解析)

九年级上册数学第二十一章(21.1-21.2)检测题(含答案及解析)

九年级上册数学第二十一章( 21.1~21.2)检测题一、选择题.1.下列方程中,为一元二次方程的是 ( ) A .x²+21x B .a x²+bx C .(x-1)(x+2)=1 D .3x²-2xy-5y ²=0 2.若关于x 的一元二次方程(m-1)x²+2x+m²-1=0的常数项为0,则m 的值是( ) A .1 B .-1 C .±1 D .±23. 3x ²ᵐ⁻¹+10x-1=0是关于x 的一元二次方程,则m 的值为 ( )A .m=2B .m=21C .m=23D .无法确定4.若x ²+mx+251是一个完全平方式,则m 为 ( )A .51B .52C .51-51或D .52-52或5.将方程x²-12x+1=0配方,写成(x+n)²=p 的形式,则n ,p 的值分别为 ( ) A .12, 143 B.-12, 143 C.6,35 D .-6, 356.已知关于x 的方程m²x²+(4m-1)x+4=0的两个实数根互为倒数,那么m 的值为( )A .2B .-2C .±2D .±27.若x ₁,x ₂是方程x²+2x-k=0的两个不等的实数根,则2221x x +-2是 ( ) A .正数 B .零 C .负数 D .不大于零的数8.已知关于x 的一元二次方程x²+2x+k=0有实数根,则k 的取值范围是 ( )A .k ≤1B .k ≥1C .k <1D .k >19.在一元二次方程a x²+bx+c=0(a ≠0)中,若a 与c 异号,则方程 ( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .根的情况无法确定10.下面是李刚同学在一次测验中解答的填空题,其中答对的是 ( ) A .若x²=4,则x=2B .方程x(2x-1)=2x-1的解为x-1C .若方程-0.5x²+x+k=0的一根等于1,则k=-0.5D .若分式1232-+-x x x 的解为零,则x=1或x=211.如果a 是一元二次方程x²-3x+m=0的一个根,a 的相反数是方程x²+3x-m=0的—个根,那么a 的值等于 ( )A .OB .1 C. 21D .0或3 二、填空题1.方程(a-b)x²+ax+b-c=0,(a-b ≠0)的二次项系数为_________,一次项系数为_________,常数项为_________.2.关于x 的方程(a-1)x ²-3ax+5=0是一元二次方程,则a 的取值范围是_________.3.如果关于x 的方程(a+3)1-a x -5x+1=0是一元二次方程,则a=_________.4.当a=_________时,方程x²-ax=7+a 的一个根是2.5.已知实数x 满足4x²-4x+1=0,则代数式2x+x21的值为_________. 6.把一元二次方程(x+1)(1-x)=2x 化成二次项系数大于零的一般式是_________.7.已知一元二次方程x²-(4k-2)x+4k ²=0有两个不相等的实数根,则k 的最大整数值为_________.8.已知a ²+b ²-2b+4a+5=0,则a+b=_________.三、解答题1.解下列方程.(1)用配方法解方程:3x²-6x+1=0; (2) 用因式分解法解方程:3x(x-2)=2-x ; (3) 用公式法解方程:2x(x-3)=x-3.2.已知(a ²+b²)²-(a²+b²)-6=0,求a²+b²的值.3.证明关于x 的方程x²-(m-2)x-42m =0有两个不相等的实数根.4.若a²-5ab-14b²=0,求bba 532+的值.5.当a >b >0且a²+b²-6ab=0时,求ba ba -+的值.6.已知x ₁,x ₂是关于x 的一元二次方程x²-6x+k=0的两个实数根,且115212221=--x x x x . (1)求k 的值;(2)求82221++x x 的值.7.阅读下面的解题过程,请参照它解方程x²-|x-1|-1=0.解方程x²-|x|-2=0.解:(1)当x ≥0时,原方程化为x ²-x-2=0. 解得x ₁=2,x ₂=﹣1(不合题意,舍去). (2)当x <0时,原方程化为x²+x-2=0,解得x ₁=-2,x ₂=1(不合题意,舍去).所以原方程的根是x ₁=2,x ₂=-2.8.数学老师在讲一元二次方程的解法的时候,没有看讲义,不假思索地在黑板 上写出了一组题目:①x²+5x-2=0;②x ²-7x-3=0;③-x²+5x+6=0;④-223x +8x+65=0;⑤2x²+36-x =0;⑥-3x²+8x+9=0.让同学们解这些方程,说也奇怪,没有出现一个方程无实数根的情况.(1)请仔细观察上述方程的特征,想一想为什么数学老师能“不看讲义”,又“不假思索”地写出了这组一定有实根的一元二次方程; (2)请你也学着老师写几个这样的方程来.参考答案一、1.C 2.B 3.C 4.D 5.D 6.B 7.A 8.A 9.A 10.C 11.D二、1.(a-b) a (b-c) 2.a ≠1 3.3 4.-1 5.2 6.x²+2x-1=0 7.0 8.-1三、1.(1)解:x ²-2x+31=0.移项,得x ²-2x=-31.配方,得(x-1)²=32,解得x ₁=36+1,x ₂=-36+1. (2)解:3x(x-2)+x-2=0. (x-2)(3x+1)=0. 解得x ₁=2,x ₂=-31.(3)解:原方程变形为2x²-7x+3=0.∴a=2,b=-7,c=3.b²-4ac=(-7)²-4×2×3=25>0.∴x=45722257±=⨯±. 解得x ₁=3,x ₂=21.2.解:由题意,得(a ²+b ²-3)(a²+b ²+2)=0.a ²+b²=3或a ²+b²=-2(舍去),即a ²+b²的值为3.3.解:△=b²-4ac=[-(m-2)]²+4·42m=(2-m)²+m ²=m²-4m+4+m²=2m²-4m+4=2(m²-2m)+4=2(m-1)²+2即△≥2,故方程有两个不相等的实数根.4.解:由a ²-5ab-14b²=O ,得(a-7b)(a+2b)=0,即a=7b 或a=-2b .将a=7b 代入b b a 532+,得5175175372==+⨯b b b b b ,将a=-2b 代入b b a 532+,得51534--=+b b b .即b b a 532+的值为51-或517.5.解:先求出ba的值,∵b ≠0,∴等式两边同时除以b ²,得⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛b a b a 62+1=0.∴22324662±=-±=b a . 考虑到a >b >0,∴ba>1.故ba=3+22,a=(3+22)b . ∴212)12(22122)223()223(=++=++=-+++=-+b b b b b a b a . 6.解:(1)由根与系数关系,可知x ₁+x ₂=6,x ₁x ₂=k .∵115)(212221=+-x x x x , ∴k ²-6=115.解得k=±11.当k=11时,原方程无实数根.所以k=-11.(2)82)(8212212221+-+=++x x x x x x =6²-2×(-11)+8=66. 7.解:(1)当x ≥1时,原方程化为x²-x=0. 解得x ₁=1,x ₂=0(不合题意,舍去).(2)当x <1时,原方程化为x²+x-2=0.解得x ₁=1(不合题意,舍去),x ₂=-2.所以原方程的根是x ₁=1,x ₂=-2.8.解:(1)通过观察,可以发现老师给出的这些方程有一个共同特征:方程的二次项系数与常数项的符号相反,由求根公式可知,对于一元二次方程a x²+bx+c=0 (a ≠0),当b²-4ac >0时,方程有两个不相等的实根,这里老师给出的方案a ,c 异号,所以b ²-4ac >O ,这些方程总有两个不相等的实根就不奇怪了.(2)还可以写出许多符合这一特点的方程,如:-x ²+2x+5=0,21x²-5x-12=0,…。

人教版九年级上册数学 21.1--21.3基础检测题含答案

人教版九年级上册数学 21.1--21.3基础检测题含答案

人教版九年级数学上册 21.1--21.3基础检测含答案21.1 一元二次方程1.下列方程中,是关于x的一元二次方程的是( )(A)ax2+bx+c=0 (B)++2=0(C)3y2+x=1 (D)3(x+1)2=2(x+1)2.把一元二次方程x(x+1)=3x+2化为一般形式,正确的是( )(A)x2-2x-2=0 (B)x2-2x+2=0(C)x2-3x-1=0 (D)x2+4x+3=03.关于x的一元二次方程(m-2)x2+5x+m2-4=0的常数项是0,则( )(A)m=4 (B)m=2(C)m=2或m=-2 (D)m=-24.已知一元二次方程x2+kx-3=0有一个根为1,则k的值为( )(A)-2 (B)2 (C)-4 (D)45.(2019新疆)在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场.设有x个队参赛,根据题意,可列方程为( )(A)x(x-1)=36 (B)x(x+1)=36(C)x(x-1)=36 (D)x(x+1)=366.为创建“国家生态园林城市”,某小区在规划设计时,在小区中央设置一块面积为1 200平方米的矩形绿地,并且长比宽多40米.设绿地宽为x米,根据题意,可列方程为.7.(2019宜宾)某产品每件的生产成本为50元,原定销售价65元,经市场预测,从现在开始的第一季度销售价格将下降10%,第二季度又将回升5%.若要使半年以后的销售利润不变,设每个季度平均降低成本的百分率为x,根据题意可列方程是 .8.把下列方程化成一元二次方程的一般形式,并指出其中的二次项系数、一次项系数和常数项.(1)2x 2=1-3x;(2)5x(x-2)=-3(x 2+1).9.已知关于x 的方程(m 2+2)x 2+(m-1)x-4=3x 2.(1)当m 是何值时原方程是一元二次方程;(2)当m 是何值时原方程是一元一次方程.10.已知实数a,b 满足a 2-3a+1=0,b 2-3b+1=0,则关于一元二次方程x 2-3x+1=0的根的说法中正确的是( )(A)x=a,x=b 都不是该方程的解(B)x=a 是该方程的解,x=b 不是该方程的解(C)x=b 是该方程的解,x=a 不是该方程的解(D)x=a,x=b 都是该方程的解的值是2a -24a 则代数式,的一个根=x+422x 是方程)a 资阳11.(2019 .的值是a 则,是一元二次方程=11)-(a 的方程x 若关于12. .13.已知关于x 的一元二次方程x 2+mx+2=0与x 2+2x+m=0有一个公共根,则此公共根是x= ,m= .14.已知关于x的一元二次方程(m+1)x|m-1|+2x-n=0的一个根是1,求m,n的值.15.(核心素养—运算能力)如图,请作答以下三个房间的问题.第二十一章21.1 一元二次方程1.(2020东营期中)下列方程中,是关于x的一元二次方程的是( D )(A)ax2+bx+c=0 (B)++2=0(C)3y2+x=1 (D)3(x+1)2=2(x+1)2.把一元二次方程x(x+1)=3x+2化为一般形式,正确的是( A )(A)x2-2x-2=0 (B)x2-2x+2=0(C)x2-3x-1=0 (D)x2+4x+3=03.关于x的一元二次方程(m-2)x2+5x+m2-4=0的常数项是0,则( D )(A)m=4 (B)m=2(C)m=2或m=-2 (D)m=-24.已知一元二次方程x2+kx-3=0有一个根为1,则k的值为( B )(A)-2 (B)2 (C)-4 (D)45.(2019新疆)在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场.设有x个队参赛,根据题意,可列方程为( A )(A)x(x-1)=36 (B)x(x+1)=36(C)x(x-1)=36 (D)x(x+1)=366.为创建“国家生态园林城市”,某小区在规划设计时,在小区中央设置一块面积为1 200平方米的矩形绿地,并且长比宽多40米.设绿地宽为x米,根据题意,可列方程为x(x+40)=1 200 .7.(2019宜宾)某产品每件的生产成本为50元,原定销售价65元,经市场预测,从现在开始的第一季度销售价格将下降10%,第二季度又将回升5%.若要使半年以后的销售利润不变,设每个季度平均降低成本的65根据题意可列方程是百分率为×x,--(1+5%)×(110%)50(1-x)2=65-50 .8.把下列方程化成一元二次方程的一般形式,并指出其中的二次项系数、一次项系数和常数项.(1)2x2=1-3x;(2)5x(x-2)=-3(x2+1).解:(1)移项,得2x2+3x-1=0.二次项系数为2,一次项系数为3,常数项为-1.(2)去括号,得5x2-10x=-3x2-3.移项,合并同类项,得8x2-10x+3=0.二次项系数为8,一次项系数为-10,常数项为3.9.已知关于x的方程(m2+2)x2+(m-1)x-4=3x2.(1)当m是何值时原方程是一元二次方程;(2)当m是何值时原方程是一元一次方程.解:原方程可化为(m2-1)x2+(m-1)x-4=0,(1)当m2-1≠0,即m≠±1时,原方程是一元二次方程.(2)当m2-1=0且m-1≠0,即m=-1时,原方程是一元一次方程.10.已知实数a,b 满足a 2-3a+1=0,b 2-3b+1=0,则关于一元二次方程x 2-3x+1=0的根的说法中正确的是( D )(A)x=a,x=b 都不是该方程的解(B)x=a 是该方程的解,x=b 不是该方程的解(C)x=b 是该方程的解,x=a 不是该方程的解(D)x=a,x=b 都是该方程的解的值是2a -24a 则代数式,的一个根=x+422x 是方程)a 资阳11.(2019 8 .的值是a 则,方程是一元二次=11)-(a 的方程x 若关于12. -1 .13.已知关于x 的一元二次方程x 2+mx+2=0与x 2+2x+m=0有一个公共根,则此公共根是x= 1 ,m= -3 .14.已知关于x 的一元二次方程(m+1)x |m-1|+2x-n=0的一个根是1,求m,n 的值.解:由一元二次方程的定义得解得m=3,所以原方程为4x 2+2x-n=0,把x=1代入,得4+2-n=0,解得n=6,所以m=3,n=6.15.(核心素养—运算能力)如图,请作答以下三个房间的问题.21.2解一元二次方程一.选择题(共12小题)1.用配方法解一元二次方程x2-4x-9=0,可变形为()A.(x-2)2=9 B.(x-2)2=13 C.(x+2)2=9D.(x+2)2=132.下列方程中,没有实数根的是()A.x2-2x-3=0 B.(x-5)(x+2)=0 C.x2-x+1=0 D.x2=1 3.一元二次方程y2+y−0.75=0配方后可化为()A.(y+0.5)2=1 B.(y-0.5)2=1 C.(y+0.5)2=0.5 D.(y-0.5)2=0.754.已知关于x的一元二次方程x2-(2m-1)x+m2=0有实数根,则m的取值范围是()A.m≠0B.m≤0.25 C.m<0.25 D.m>0.255.关于x的方程ax2+(1-a)x-1=0,下列结论正确的是()A.当a=0时,方程无实数根B.当a=-1时,方程只有一个实数根C.当a=1时,有两个不相等的实数根D.当a≠0时,方程有两个相等的实数根6.已知a,b是方程x2+3x-5=0的两个实数根,则a2-3b+2020的值是()A.2016 B.2020 C.2025 D.20347.α、β是方程2x2-2x-3=0的两根,则(α+1)(β+1)的值为()A.-0.5 B.0.5 C.3.5 D.1.58.定义运算:a*b=2ab,若a、b是方程x2+x-m=0(m>0)的两个根,则(a+1)*b+2a 的值为()A.m B.2-2m C.2m-2 D.-2m-29.已知实数x满足(x2-2x+1)2+2(x2-2x+1)-3=0,那么x2-2x+1的值为()A.-1或3 B.-3或1 C.3 D.110.三角形两边的长是6和8,第三边满足方程x2-24x+140=0,则三角形周长为()A.24 B.28 C.24或28 D.以上都不对11.已知关于x的一元二次方程x2+(2m+1)x+m-1=0的两个根分别是x1,x2,且满足x12 +x22=3,则m的值是()A.0 B.-2 C.0 或-0.5 D.-2或012.若整数a使得关于x的一元二次方程(a+2)x2+2ax+a-1=0有实数根,且关于x的不等式组有解且最多有6个整数解,则符合条件的整数a的个数为()A.3 B.4 C.5 D.6二.填空题(共5小题)13.填空:x2-2x+3=(x- )2+2.14.关于x的一元二次方程mx2-(3m-1)x+2m-1=0.其根的判别式的值为1,则该方程的根为.15.若关于x的一元二次方程ax2-x+1=0有实数根,则a的最大整数值是.16.已知x1,x2是关于x的方程x2-(m-1)x-m=0的两个根,且x1+x2=3,则m的值是.17.对于实数a,b,定义运算“*“,a*b=例如4*2,因为4>2,所以4*2=4 2-4×2=8.若x1,x2是一元二次方程x2-8x+16=0的两个根,则x1*x2= .三.解答题(共5小题)18.解下列方程(1)x2-8x+15=0;(2)19.已知:关于x的一元二次方程x2+mx=3(m为常数).(1)证明:无论m为何值,该方程都有两个不相等的实数根;(2)若方程有一个根为2,求方程的另一个根.20.已知关于x的一元二次方程(x-m)2+2(x-m)=0(m为常数).(1)求证:不论m为何值,该方程总有两个不相等的实数根.(2)若该方程有一个根为4,求m的值.21.已知关于x的一元二次方程x2-4x-2k+8=0有两个实数根x1,x2.(1)求k的取值范围;(2)若x13x2+x1x23=24,求k的值.22.已知关于x的一元二次方程x2+2x-k=0有两个不相等的实数根.(1)求k的取值范围;(2)若方程的两个不相等的实数根是a,b,求的值.参考答案1-5:BCABC 6-10:DBDDA 11-12:CC13、114、15、-116、417、018、19、(1)证明:x2+mx-3=0,∵a=1,b=m,c=-3∴△=b2-4ac=m2-4×1×(-3)=m2+12,∵m2≥0,∴m2+12>0,∴△>0,∴无论m为何值,该方程都有两个不相等的实数根;(2)-1.520、(1)证明:(x-m)2+2(x-m)=0,原方程可化为x2-(2m-2)x+m2-2m=0,∵a=1,b=-(2m-2),c=m2-2m,∴△=b2-4ac=[-(2m-2)]2-4(m2-2m)=4>0,∴不论m为何值,该方程总有两个不相等的实数根.(2)解:将x=4代入原方程,得:(4-m)2+2(4-m)=0,即m2-10m+24=0,解得:m1=4,m2=6.故m的值为4或6.21、:(1)由题意可知,△=(-4)2-4×1×(-2k+8)≥0,整理得:16+8k-32≥0,解得:k≥2,∴k的取值范围是:k≥2.故答案为:k≥2.(2)k=322、:(1)∵方程有两个不相等的实数根,∴△=b2-4ac=4+4k>0,解得k>-1.∴k的取值范围为k>-1;(2)由根与系数关系得a+b=-2,a•b=-k,21.3 实际问题与一元二次方程一、选择题(本大题共12道小题)1.已知3是关于x的方程x2-(m+1)x+2m=0的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC的两条边的边长,则△ABC的周长为( )A. 7B. 10C. 11D. 10或112.某市2008年国内生产总值(GDP)比2007年增长了12%,由于受到国际金融危机的影响,预计今年比2008年增长7%,若这两年GDP年平均增长率为x%,则x%满足的关系是( )A. 12%+7%=x%B. (1+12%)(1+7%)=2(1+x%)C. 12%+7%=2·x%D. (1+12%)(1+7%)=(1+x%)23. 绿苑小区在规划设计时,准备在两幢楼房之间设置一块面积为900平方米的矩形绿地,并且长比宽多10米.设绿地的宽为x米,根据题意,可列方程为()A.x(x-10)=900 B.x(x+10)=900C.10(x+10)=900 D.2[x+(x+10)]=9004.随着居民经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,抽样调查显示,截止至2015年底某市汽车拥有量为16.9万辆.已知2013年底该市汽车拥有量为10万辆.设2013年底至2015年底该市汽车拥有量的年平均增长率为x.根据题意列方程得( )A. 10(1+x)2=16.9B. 10(1+2x)=16.9C. 10(1-x)2=16.9D. 10(1-2x)=16.95. 有5人患了流感,经过两轮传染后共有605人患了流感,假设每轮传染中一个人传染相同数量的人,则第一轮传染后患流感的人数为()A.10 B.50 C.55 D.456. 如图,某小区有一块长为18 m,宽为 6m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为60m2,两块绿地之间及周边留有宽度相等的人行通道.若设人行通道的宽度为x m,则可列出关于x的方程是( )A. x2+9x-8=0B. x2-9x-8=0C. x2-9x+8=0D. 2x2-9x+8=07. 某企业2018年初获利润300万元,到2020年初计划利润达到507万元.设这两年的年利润平均增长率为x.应列方程是()A.300(1+x)=507B.300(1+x)2=507C.300(1+x)+300(1+x)2=507D.300+300(1+x)+300(1+x)2=5078. 某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为扩大销售,尽快减少库存,商场决定釆取降价措施.调查发现,每件衬衫每降价1元,平均每天可多售出2件,若商场每天要盈利1200元,则每件衬衫应降价()A.5元B.10元C.20元D.10元或20元9. 在一幅长为80 cm,宽为50 cm的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图所示.如果要使整个挂图的面积是5400 cm2,设金色纸边的宽为x cm,那么x满足的方程是()A.x2+130x-1400=0 B.x2+65x-350=0C.x2-130x-1400=0 D.x2-65x-350=010. 如图,在△ABC中,∠ABC=90°,AB=8 cm,BC=6cm.动点P,Q分别从点A,B同时开始移动,点P的速度为1 cm/s,点Q的速度为2 cm/s,点Q移动到点C后停止运动,点P也随之停止运动.运动下列时间后,能使△PBQ的面积为15 cm2的是( )A.2 s B.3 sC.4 s D.5 s11. 某专卖店销售一种机床,三月份每台售价为2万元,共销售60台.根据市场调查知:这种机床每台售价每增加0.1万元,每个月就会少售出1台.四月份该专卖店想将销售额提高25%,则这种机床每台的售价应定为()A.3万元B.5万元C.8万元D.3万元或5万元12. 某市2018年GDP比2017年增长了11.5%,由于受到国际因素的影响,2019年的G DP比2018年增长了7%.若这两年GDP的年平均增长率为x,则x满足的关系式是() A.11.5%+7%=xB.(1+11.5%)×(1+7%)=2(1+x)C.11.5%+7%=2xD.(1+11.5%)×(1+7%)=(1+x)2二、填空题(本大题共6道小题)13. 中国“一带一路”给沿线国家和地区带来很大的经济效益,沿线某地区居民2016年人均年收入为20000元,到2018年人均年收入达到39200元,则该地区居民人均年收入平均增长率为.(用百分数表示)14. 某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是73,求每个支干又长出多少个小分支.如果设每个支干又长出x 个小分支,那么依题意可列方程为__________________.15. 某商场礼品柜台春节期间购进大量贺年卡,一种贺年卡平均每天可售出500张,每张盈利0.3元,为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果这种贺年卡每张的售价每降低0.1元,那么商场平均每天可多售出100张,商场要想平均每天盈利120元,设每张贺年卡应降低x个0.1元,则所列方程为__________________________________.16. 相邻的两个自然数,若它们的平方和比这两数中较小数的2倍大51,则这两个自然数分别为________.17.一个两位数,它的十位数字比个位数字大1,个位数字与十位数字的平方和比这个两位数小19,则这个两位数是________.18. 某校课外生物小组的试验园地是长32 m,宽20 m的矩形,为了便于管理,现要在试验园地开辟宽度均为x m的小道(图中的阴影部分).(1)如图①,在试验园地开辟一条纵向小道,则剩余部分的面积为________m2(用含x的代数式表示);(2)如图②,在试验园地开辟三条宽度相等的小道,其中一条是横向的,另两条互相平行.若使剩余部分的面积为570 m2,则小道的宽度为________m.三、解答题(本大题共3道小题)19. 某广告公司制作广告的收费标准是以面积为单位,在不超过规定的面积a(m2)的范围内,每张广告费1000元,如果超过a(m2),那么除了要交1000元的广告费以外,超过的部分还要按每平方米50a元交费.下表是该公司对两家用户广告的收费面积和广告费情况的记录.红星公司要制作一张大型公益广告,其材料形状是矩形,如果它的四周是空白,并且四周各空0.5 m,空白部分不收广告费,中间的矩形部分才是广告的收费面积.这张广告的长、宽之比为3∶2,并且红星公司为此支出110400元的广告费.(1)求a的值;(2)红星公司要制作的这张广告的长和宽各是多少米?解题突破(7题)利用烟草公司及食品公司的广告费建立方程求a的值,利用红星公司支出的广告费和收费标准求其广告的收费面积,利用收费面积和已知条件求这张广告的长与宽.20. 三个连续的正奇数,最大数与最小数的积比中间的一个数的6倍多3,求这三个奇数.21. 某批发商以每件50元的价格购进800件T恤,第一个月以单价80元/件销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,每件每降低1元,可多售出10件,但最低单价应高于购进的价格.第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓时单价为40元/件,设第二个月每件降低x元.(1)填表:(不需化简)(2)如果批发商希望通过销售这批T恤获利9000元,那么第二个月的单价应是多少?人教版九年级数学21.3 实际问题与一元二次方程课时训练-答案一、选择题(本大题共12道小题)1. 【答案】D【解析】∵3是方程x2-(m+1)x+2m=0的一个实数根,∴9-3(m+1)+2m=0,解得m=6,∴方程为x2-7x+12=0,解得x1=3,x2=4,若等腰△ABC的腰长为3,底边长为4,则其周长为3+3+4=10;若等腰△ABC的腰长为4,底边长为3,则周长为4+4+3=11.2. 【答案】D【解析】设2007年国内生产总值为a ,依题意得a (1+12%)×(1+7%)=a (1+x %)2,即(1+12%)(1+7%)=(1+x %)2.3. 【答案】B4. 【答案】A【解析】因为年平均增长率为x ,从2013年到2015年连续增长两年,开始量为10万辆,结束量为16.9万辆,则可列方程10(1+x )2=16.9.5. 【答案】C6. 【答案】C【解析】因为人行道的宽度为x 米,所以阴影部分的长为(18-3x )米,宽为(6-2x )米,故阴影部分面积为(18-3x )(6-2x )=60,化简得x 2-9x +8=0.故选C.7. 【答案】B8. 【答案】C [解析] 设每件衬衫降价x 元,则每天可售出(20+2x )件,根据题意,得(40-x )(20+2x )=1200,解得x 1=10,x 2=20. ∵要扩大销售,减少库存,∴x =20.9. 【答案】B10. 【答案】B[解析] 设运动时间为t s ,则BP =(8-t)cm ,BQ =2tcm ,由三角形的面积公式列方程,得12·(8-t)·2t =15, 解得t 1=3,t 2=5(当t =5时,BQ =10 cm ,不合题意,舍去). ∴动点P ,Q 运动3 s 后,能使△PBQ 的面积为15 cm 2.11. 【答案】D [解析] 设这种机床每台的售价定为x 万元,则x ⎝ ⎛⎭⎪⎫60-x -20.1=2×60×(1+25%),解得x 1=3,x 2=5.12. 【答案】D[解析] 设2017年的GDP为1,∵2018年的GDP比2017年增长了11.5%,∴2018年的GDP为1+11.5%.∵2019年的GDP比2018年增长了7%,∴2019年的GDP为(1+11.5%)×(1+7%).∵这两年GDP的年平均增长率为x,∴2019年的GDP也可表示为(1+x)2,∴可列方程为(1+11.5%)×(1+7%)=(1+x)2.二、填空题(本大题共6道小题)13. 【答案】40%[解析]设该地区居民人均年收入平均增长率为x,则20000(1+x)2=39200,解得x1=0.4,x2=-2.4(舍去),∴该地区居民人均年收入平均增长率为40%.故答案为:40%.14. 【答案】x2+x+1=73[解析] 设每个支干又长出x个小分支,根据题意,得x2+x+1=73.15. 【答案】(0.3-0.1x)(500+100x)=12016. 【答案】5,6[解析] 设较小的自然数为x,则较大的自然数为(x+1).根据题意,得x2+(x+1)2=2x+51,解得x1=5,x2=-5(舍去).则这两个自然数分别为5,6.17. 【答案】32 [解析]设这个两位数的十位数字为x,则个位数字为x-1.根据题意,得x2+(x-1)2=10x+(x-1)-19,解得x1=3,x2=3.5(舍去),∴10x+(x-1)=32.18. 【答案】(1)20(32-x ) (2)1[解析] (1)根据题意,得剩余部分的面积为20(32-x )m 2. (2)根据题意,得(32-2x )(20-x )=570, 解得x 1=1,x 2=35(不合题意,舍去). 即小道的宽度为1 m.三、解答题(本大题共3道小题)19. 【答案】解:(1)由题中表格可知3≤a <6. 根据题意,得1000+50a (6-a )=1400, 解得a 1=4,a 2=2(舍去),则a =4.(2)设这张广告的收费面积为S m 2,根据题意,得 1000+50×4(S -4)=110400,解得S =551. 设这张广告的长、宽分别为3x m ,2x m. 根据题意,得(3x -1)(2x -1)=551, 整理,得6x 2-5x -550=0, 解得x 1=10,x 2=-556(舍去), 则3x =30,2x =20.答:红星公司要制作的这张广告的长和宽分别是30 m 和20 m.20. 【答案】解:设这三个连续的正奇数分别为2n -1,2n +1,2n +3(n 为正整数). 根据题意,得(2n +3)(2n -1)-6(2n +1)=3, 解得n 1=3,n 2=-1(舍去).当n =3时,2n -1=5,2n +1=7,2n +3=9. 即这三个奇数分别为5,7,9.21. 【答案】解:(1)填表如下:(2)根据题意,得200×(80-50)+(200+10x)(80-x-50)+[800-200-(200+10x)](40-50)=9000,整理,得10x2-200x+1000=0,解得x1=x2=10.当x=10时,80-x=70>50.答:第二个月的单价应是70元/件.。

学练优九上数学答案

学练优九上数学答案

学练优九上数学答案九年级数学学练优答案学练优答案-九年级数学上册答案-2013年版-智能一对一篇一:学练优九上数学答案学练优答案-九年级数学上册答案-2013年版-智能一对一教材目录第二十一章二次根式21.1 二次根式21.2 二次根式的乘除21.3 二次根式的加减阅读与思考海伦-秦九韶公式数学活动小结复习题21第二十二章一元二次方程22.1 一元二次方程22.2 降次——解一元二次方程阅读与思考黄金分割数22.3 实际问题与一元二次方程实验与探究三角点阵中前n行的点数计算数学活动小结复习题22第二十三章旋转23.1 图形的旋转23.2 中心对称信息技术应用探索旋转的性质23.3 课题学习图案设计阅读与思考旋转对称性数学活动小结复习题23第二十四章圆24.1 圆24.2 点、直线、圆和圆的位置关系24.3 正多边形和圆阅读与思考圆周率Π24.4 弧长和扇形面积实验与探究设计跑道数学活动小结复习题24第二十五章概率初步25.1 随机事件与概率25.2 用列举法求概率阅读与思考概率与中奖25.3 用频率估计概率实验与探究П的估计25.4 课题学习键盘上字母的排列规律数学活动小结复习题25智能一对一(学练优视频答案-九年级数学全一册答案)/retype/zoom/de9f9cfea58da0116c1749 d1?pn=3&x=0&y=0&raww=200&rawh=2 00&o=png_6_0_0_135_392_187_180_89 2.979_1262.879&type=pic&aimh=200& md5sum=3cbfd99ced3b3116433bcb11e7 d122aa&sign=b1a5503884&zoom=&png =46531-89623&jpg=0-0”target=“_blank”>扫一扫加智能作业本官方微信,送30元代金券,微信号:xitibaike中学生习题网官方微博二维码官方微博地址智能作业本网站:帮助说明:安装下载习题,点击练习或下载即可。

第二十一章 二次根式训练题

第二十一章  二次根式训练题

第二十一章 二次根式训练题21.1 二次根式一、选择题1.下列各式:15,12-b ,22b a +,1202-m ,144-中,二次根式的个数是( ) A. 4个B. 3个C. 2个D. 1个 2.如果x 25-是二次根式,那么x 应满足的条件是( ) A. x ≤2.5B. x ≥2.5C. x <2.5D. x >2.5 3.()2310-等于( ) A. 30B. -300C. 300D. -304.下列各式中,一定能成立的是( )A.()()225.25.2=- B.()22a a =C.1122-=+-x x x D.3392+•-=-x x x5.下列各式中,正确的是( ) A. a a =2 B. a a ±=2C. a a =2D. 22a a =6.计算()()222112a a -+-的结果是( )A. 24-aB. 0C. a 42-D. 24-a 或a 42-7.把a a 1-的a 移入根号内,得到( )A.aB. a -C. a -D. a --8.若0<a <1则414122-⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛-a a a a ,结果为( ) A. a 2B. a 2-C. a 2D. a 2-9.实数a ,b 在数轴上对应位置如图,化简2a b a --的结果是( )A. -bB. bC. 2a -bD. b -2a 10.若2442=+--a a a ,则实数a 的取值范围是( ) A. a >2B. a <2C. a ≥2D. a ≤2二、填空题11.若11-+-x x 有意义,则x .12.已知522+-+-=x x y ,则=x y .13.()26= ,()26-= ,26= ,由此得出式子()22a a =成立的条件是 .14.当x = 时,19+x 取值最小,这个最小值为 . 15.已知011=-++b a ,那么20062006b a += .16.当-1<a <3时,()()=-++2231a a .17.x x x -=+-636122成立的条件是 .18.若a ,b ,c 为三角形三边,且满足012135=-+-+-c b a ,则△ABC 是 三角形.19.当a <-1时,=+--++2244121a a a a . 20.在实数范围内因式分解:=-44x . 三、解答题21.如果a a a --=++1122,求a 的取值范围.22.如果-3<x <5,求96251022++++-x x x x 的值.23.求231294a a a a -+-+--+的值.24.已知x ,y 满足022132=+-+--y x y x ,求y x 542-的平方根.25.设x ,y 为实数,满足y <2144+-+-x x ,化简11--y y.26.已知:1-=a ,3=b . 求22222221⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛-+ab b a ab b a 的值.27.若x <35-. 求证:12253094942922=++-+-x x x x28.已知:实数a 满足0332=++a a a . 化简:1212+++-a a a .29.已知a 、b 、c 为△ABC 三边. 化简()()()()2222b ac c a b c b a c b a --+--+--+++.30.a 、b 为实数,且b <3133+-+-a a . 化简:13442--+-b b b .21.2 二次根式的乘除一、选择题1.化简4125等于( )A.4125 B. 2101±C. 25D. 101212.下列计算错误的是( ) A.542516=B.3836427= C.232924=D. 556517-=-3.计算227818⨯÷得( )A. 649B.66 C. 618D. 6344.若a <0,b <0,下列命题错误的是( ) A. ab 的算术平方根是ab B. b a ab •=C.b a ab •=D.b a ab -•-=5.下列等式成立的是( ) A. b a b a +=+22 B. ab a b a --=-C.ba b a =D.ab b a -=-226.下列式中计算错误的是( )A.2065946.292223.1983.181x x x x x ==••=⨯B. 70514707014141457014570==⨯⨯⨯=C. y x xy y x y x y x xy 22221111-=⎪⎪⎭⎫ ⎝⎛-=- D. ()()()()()()n m n m n m n m n m n m n m n m n m 222-=--+-=-+-7.化简:()xy y x --1得( ) A. y x - B. x y -C. y x --D. x y --8.331++x x 分母有理化,得( )A. 131+xB. 3331+xC. 1+xD. 33-x9.当3323+-=+x x x x 时,x 取值范围是( ) A. x ≤0B. x ≤-3C. x ≥-3D. -3≤x ≤010.当092=-+-y x ,则()=+1x y ( ) A. 33B. 33±C. 33-D. 23二、填空题11.二次根式x 12,a 35,y x 315,24x x +中,最简二次根式是 .12.=⨯1219 ,()()=-⨯-94 ,222425-= .13.12= ,714⨯= .14.化简=⨯83332 ,=-1973 .15.已知一个长方体的长a =6,宽b =15,高c =35,那么这个长方体的体积是 . 16.化简=⨯33832ab b a .17.下列二次根式:①21、②224041-、③28x -、④()1122 x x x +-、⑤5x 、⑥38、⑦22259y x +、⑧()()()b a b a b a +-2中最简二次根式有 (填序号). 18.若根式()y x b a --+86为最简二次根式时,x = ,y = . 19.若3<a <4,化简()()=--2243a a .20.计算=33155 ,=÷4.0324 ,=÷4312122 .三、解答题21.计算下列是中式.(1)⎪⎭⎫ ⎝⎛-••102132531(2)n m n m n m 3233•••(3)1012655÷(4)32643a a ÷22.比较下列各组中两个数的大小. (1)112-和53-(2)7232和32723.已知5=+y x ,3=xy ,求代数式yx x y +的值.24.已知实数a 满足a a a =-+-19931992,求21992-a 的值.25.已知长方形的长是π140(cm ),宽是π35(cm ),求与长方形面积相等的圆的半径.26.已知⎩⎨⎧=+=++13053y x y x 化简:x y -23.27.已知:x =1,先化简再求值334312x x xx +-.28.已知:1011+=+a a . 求221a a +及a a 1-的值.29.已知:3121122+-+-=x x y . 求yx y y x x -++的值.30.设()1123-+++=+++c b a c b a . 求222c b a ++的值.21.3 二次根式的加减一、选择题1.下列计算正确的是( ) A. 2222=+ B. 743=+ C.752863=+D.942188+=+ 2.计算47548213123-+的结果是( )A. 2B. 0C. -3D. 33.计算)93()34(3ab a b a b a a b a b +-+的结果是( )A.abB. 7abC. 0D. 13ab4.若103-=a ,则代数式262--a a 的值为( ) A. 0B. 1C. -1D. 105.若2=a ,则a a a a -+的值是( )A. 223+B. 223-C. 223+-D. 223--6.=--994411( ) A. 114B. 114-C. 0D. 112-7.计算:⎪⎪⎭⎫⎝⎛+-⎪⎪⎭⎫ ⎝⎛+y x y y x x xy x y x 42933(其中y >0)结果等于( )A. xy 2-B. 0C. xy xyD. xy 38.下列各组中是同类二次根式是( ) A. a a 和32aB. x x 3和xx 42 C.x 2和43xD. 33a 和a 39.已知:1018222=++a a a a ,则a=( )A. 4B. 2±C. 2D. 4±10.把()4222311xy y x x y y x -++--化简的结果是( ) A. x y -34B. y x --32 C . x y -32D. x y --32二、填空题11.二次根式加减时,可以先将二次根式化成 ,再将被开方数 的二次根式合并.12.=+212 ,=+5424 ,=-813953 .13.计算:=-32x xy ;=-21a a a .14.设三角形的三边长分别为a ,b ,c ,周长是l ,已知40=a cm ,160=c cm ,109=l cm ,那么b = . 15.计算:()()=-÷⎥⎦⎤⎢⎣⎡-+303220062736 . 16.计算:=⋅+-x x x 836212739 .17.若最简二次根式14432+a 与1622-a 是同类二次根式,则a 的值是 . 18.下列二次根式①5.0,②81,③18,④243,⑤5527y x ,⑥545,⑦3281,⑧y x 26,⑨y x 3,⑩22242y xy x ++中是同类二次根式的是 .(填序号)19.计算:=---31312231 .20.223+=a ,223-=b ,则=+22ab b a . 三、解答题 21.化简并求值:()()3323472++++x x ,其中32-=x .22.当321+=m 时,求m m m m m m m -+---+-22212121的值.23.已知34+=a ,34-=b ,求代数式ba b aba a +--的值.24.已知5152522=-+-x x ,求221525x x ---的值.25.已知()()0212=-+-x x ,求x x x x x x x x 3643122+-+÷⎪⎭⎫ ⎝⎛----的值.26.化简或计算(1)21431375518132+-+-(2)xy xy y x y x y x xy 123--+(3)()()()()y x y x y x y x 22+---+27.先化简再求值⎪⎪⎭⎫ ⎝⎛--+÷⎪⎪⎭⎫ ⎝⎛-++x x x x x x x x 1111,其中22=x .28.当91,4==y x 时,求31441y y x y x x ---的值.29.求证:⎪⎩⎪⎨⎧-=+=3232y x 是方程组⎪⎩⎪⎨⎧+=-+=+35223362y x y x 的解.30.最简根式()y x y x --221与()183216+++y x x 能是同类二次根式吗?若能是求x 、y 值;若不能,说明理由.第二十一章 单元测试(一)一、选择题(每题3分,共30分) 1.下列等式中成立的是( ) A. ()32323-=⨯- B. y x y x +=+22 C.532=+D.2332=•x x2.已知a 为实数,下列四个命题中错误的是( ) A. 若1-=aa ,则a <0 B. 若a ≠1,则111-=--a aC. 若aa 112-=-,则a >0D. 若a ≥-2,则12++a a 有意义3.下列各式中,最简二次根式为( ) A. 72B.324 C.ba D. 32b a4.下式中不是二次根式的为( ) A.12+b B. a (a <0) C. 0 D.()2b a -5.当a =1时,计算a a a 7251012-+-得( ) A. 11 B. -11 C. 3D. -36.下列各组中互为有理化因式的是( ) A. x -2和2+xB. 32+x 和x 23-C.y x +与y x --D.x 与32x7.代数式⎪⎪⎭⎫⎝⎛+-⎪⎪⎭⎫ ⎝⎛+ab a b a b a a b a b 93243的值一定是( )A. 正数B. 负数C. 0D. 18.a 12的同类二次根式为( ) A.ab3 B. a 54C. a271-D.248a9.若x <2,化简()()2232x x -+-的正确结论是( )A. -1B. 1C. 52-xD. x 25-10.()()200620052323-+值为( )A. 0B. 23-C. 32-D. 无法确定二、填空题(每题3分,共30分)11.若式子121++-x x 在实数范围内有意义,则x 的取值范围是 ;xx x x --=--4343成立的条件是 . 12.计算:=+123 .13.23-的相反数与12-的倒数的和是 . 14.若a ,b ,c 表示三角形的三边,则()2c b a --= .15.()0332=-++b a ,则=-+11a b .16.=⎪⎭⎫ ⎝⎛+•--20063232 .17.625-的算术平方根是 . 18.化简=--yx y x ,当0<a <1时,=-+2122a a .19.分母有理化:=-2346,251+-的倒数是 . 20.()()=-+-2223323223.三、解答题21.计算(每题2分,共8分) (1)()7512231-(2)61312322÷⎥⎥⎦⎤⎢⎢⎣⎡++⎪⎪⎭⎫ ⎝⎛-(3)()()121923121999---⨯-+- (4)261321121824--⨯÷-22.已知等腰三角形的顶角为120°,底边长为64cm ,求这个等腰三角形的面积.(3分)23.已知:,2323,2323-+=+-=y x 求22y x x y +的值.24.化简求值.ba b b a b ab b b a a b b a -÷⎪⎪⎭⎫ ⎝⎛+--++1,其中,53-=a ,53+=b .(3分)25.已知()2234-=x ,()2322-=y ,求(1)x+y 的值;(2)()27+-y x 的值.(4分)26.已知37+=x ,37-=x . 求233++xy y x 的值.27.解方程:()x x 3123=+.(4分)28.化简:(4分)()⎪⎪⎭⎫ ⎝⎛---b a a b a b a a b b a 22329.某船在点O 处测得小岛上的电视塔A 在北偏西60°的方向上,船向西航行20海里到达B 处,测得电视塔在船的西北方向,问向西航行多少海里船离电视塔最近?(5分)30.如图,公路MN 和公路PQ 在点P 处交汇,且∠QPN=30°,点A 处有一所中学,AP=160m. 假设拖拉机行驶时,周围100m 内会受到噪声影响,那么拖拉机在公路MN 上沿PN 方向行驶时,学校是否会受到噪声影响?请说明理由. 如果受影响,已知拖拉机的速度为18km/h ,那么学校受影响的时间为多少秒?(5分)第二十一章 单元测试(二)一、选择题(每题3分,共30分)1.以下判断正确的是( )A. 无限小数是无理数B. 平方是3的数是3C. 1的平方根和立方根相等D. 27-无平方根 2.若a <-3,则()212a +-=( )A. a -1B. 1-aC. a +3D. a --3 3.651+与65-的关系是( )A. 互为相反数B. 互为倒数C. 互为有理化因式D. 相等4.把aa 1--根号外因式移到根号内,则原式=( ) A. a B. a - C. a -- D. a -5.计算:()()()2623535+-+-的值为( ) A. 7- B. 327-- C. 347-- D. 346--6.已知35-=+y x ,35+=xy ,则x+y 的值等于( )A. 2B. 5C. 1528-D. 52321528--- 7.若()x x -=-222,则x 是( ) A. x <2B. x >2C. x ≤2D. x ≥2 8.已知-1<x <2()()=--+2223x x ( ) A. 5 B. -5 C. 12--xD. 12+x 9.矩形面积为24,一边长23+,则另一边长是( ) A. ()3224+ B. ()2324- C. ()23724+ D. ()23724- 10.已知x 、y 是正数,且有()()x y y x y x-=-3,则=x y ( ) A. 9 B. 91 C. 1 D. 1或9二、填空题(每小题3分,共30分)11.当x 时,x x 2112-++有意义.12.若最简根式()2334++a b a 和452++b a 是同类根式,则a = ,b = .13.当a <-2时,化简()=++-122a a .14.若a a =2,则a . 若a a -=2,则a . 若a a =2,则a .15.比较大小:①23-,②22+,③52-53-.16.当x = 时,xx -1有意义.17.若25-=x ,25+=x ,则=+÷⎪⎪⎭⎫ ⎝⎛-xy y x y x x y . 18.使式子122---a a 有意义的a 取值范围是 .19.当a >2b >0时,=+-a b ab b a 32244 .20. ()()()=+-+÷++a b b a b ab a 2 .三、解答题21.计算(每小题2分,共6分)(1)⎪⎪⎭⎫⎝⎛----5431813225.024(2)ab b a ab b 3123235÷⎪⎭⎫ ⎝⎛-(a >0,b >0)(3)132121231+-+++22.化简求值(每小题3分,共6分)(1)已知2352+=x . 求⎪⎪⎭⎫⎝⎛-++÷⎪⎪⎭⎫ ⎝⎛-++x x x x x x x x 1111的值.(2)已知23-=x ,求4434234--++x x x x 的值.23.已知321+=a ,求aa a a a a a -+-+-+-22212121的值.(4分)24.设x a -=8,43+=x b ,2+=x b .(6分)(1)当x 取何实数时,a 、b 、c 均有意义.(2)当a 、b 、c 为直角△ABC 三边,求x 值.25.化简:424242422222-++--++--+-++n n n n n n n n (n >2).(4分)26.已知:32+=-b a ,32-=-c b . 求bc ac ab c b a ---++222的值.(4分)27.已知a a 1=,5=b ,求1025102522222222-+-++a b b a a b b a 的值.(4分)28.已知代数式333--+-x x x ,(1)试确定x 的值;(2)利用(1)的结果求32637522++-x x 的值.(6分)。

新课程课堂同步练习册(九年级数学上册人教版)答案

新课程课堂同步练习册(九年级数学上册人教版)答案

《新课程课堂同步练习册·数学(人教版九年级上册)》参考答案 第二十一章 二次根式§21.1二次根式(一)一、1. C 2. D 3. D二、1.7±,23x ≤4. 1 三、1.50m 2.(1)2x ≥ (2)x >-1 (3)0m ≤ (4)0=m §21.1二次根式(二)一、1. C 2.B 3.D 4. D二、1.3π-,3π- 2.1 3.2)4(± ;2)7(±三、1.7-或-32.(1)5;(2)5; (3)4; (4)18; (5)0.01;(6)1x +; 3. 原式=2a b b a a --+-=- §21.2二次根式的乘除(一) 一、1.C 2. D 3.B二、1.< 2.1112+⨯-=-n n n (1,n n ≥为整数) 3.12s 4.三、1.(1)(2)(3)36 (4)–108 2.10cm 23§21.2二次根式的乘除(二)一、1.C 2.C 3.D二、1.a >3 2. 3.(1; 4. 6三、1.(1) (2) 2.(1)87(2)5(3)213.258528=÷nn ,因此是2倍. §21.2二次根式的乘除(三)一、1.D 2.A 3.B二、1.2=x 2.33, 3.1 4.33三、1.(1)1 (2)10 2. 33=x 3.(26-; 423=S§21.3二次根式的加减(一)一、1.C 2.A 3.C二、1.(答案不唯一,如:20、45) 2. 3<x <33 3. 1三、1.(1)34 (2)216- (3)2 (4)332. 10 §21.3二次根式的加减(二)一、1.A 2.A 3.B 4.A二、1. 1 2. 6+, 3. n m -三、1.(1)13- (2)253- (3)(4)22.因为25.45232284242324321824≈=⨯=++=++)()(>45 所以王师傅的钢材不够用. §21.3二次根式的加减(三) 一、1. C 2.B 3.D二、 1. 32; 2. 0, 3. 1 (4)(x x三、 1.(1)6 (2)5 2.(1) (2)92第二十二章 一元二次方程§22.1一元二次方程(一)一、1.C 2.D 3.D 二、1. 2 2. 3 3. –1三、1.略 2.222(4)(2)x x x -+-= 一般形式:212200x x -+= §22.1一元二次方程(二)一、1.C 2.D 3.C 二、1. 1(答案不唯一) 2.123. 2 三、1.(1)2,221-==x x (2)1233,44x x ==-(3)12t t ==- (4)1222x x ==- 2.以1为根的方程为2(1)0x -=, 以1和2为根的方程为(1)(2)0x x --= 3.依题意得212m +=,∴1m =± .∵1m =-不合题意,∴1m =. §22.2降次-解一元二次方程(一)一、1.C 2.C 3.D 二、1. 1233,22x x ==- 2. 1m ≥ 3. -1三、1.(1)43t =±(2)x =(3)1x =-± (4)1x =2.解:设靠墙一边的长为x 米,则401922xx -⋅= 整理,得 2403840x x -+=, 解得 1216,24x x == ∵墙长为25米, ∴1216,24x x ==都符合题意. 答:略. §22.2降次-解一元二次方程(二) 一、1.B 2.D 3. C二、1.(1)9,3 (2)-5 (3)24m ,2m2.3±3. 1或32-三、1.(1)1211x x ==2)12y y ==3)21,221==x x (4)124,3x x =-= 2.证明:2211313313()61212x x x --+=-++≤§22.2降次-解一元二次方程(三) 一、1.C 2.A 3.D二、1. 9m 4≤2. 243. 0三、1.(1)121x x 12==, (2)12x x ==(3)121x 2x 3==, (4)12y 1y 2=-=,2.(1)依题意,得()222m+141m 0∆=--⨯⨯≥⎡⎤⎣⎦∴21-≥m ,即当21-≥m 时,原方程有两个实数根. (2)由题意可知()222m+141m ∆=--⨯⨯⎡⎤⎣⎦>0 ∴m >12-, 取m 0=,原方程为2x 2x 0-= 解这个方程,得12x 0x 2==,.§22.2降次-解一元二次方程(四) 一、1.B 2.D 3.B二、1.-2,2x = 2. 0或43 3. 10 三、1.(1)12305x x ==-, (2)3,2121-==x x (3)12113y y ==, (4)1,221==x x (5)1217x x == (6)19x =-,22x =2.把1x =代入方程得 ()222114132m m m +⨯+⨯+=,整理得2360m m +=∴120,2m m ==-§22.2降次-解一元二次方程(五) 一、1.C 2.A 3.A二、1.2660x x --=,1,1-,66-. 2、6或—2 3、4三、1.(1)12x 7x 3==, (2)12x x ==, (3)3121==x x (4) 12x 7x 2==-, 2.∵ 221=+x x ∴ 2=m 原方程为2230x x --= 解得 1x 3=,21x =-3.(1)()224(3)411b ac m -=--⨯⨯-944m =-+134m =->0 ∴ m <134(2)当方程有两个相等的实数根时,则1340m -=, ∴134m =, 此时方程为04932=+-x x , ∴1232x x == §22.2降次-解一元二次方程(六)一、1.B 2.D 3.B 二、1. 1 2. -3 3. -2 三、1.(1)51=x ,52-=x (2)21±=x (3)121==x x (4)没有实数根2.(1).4412,4112x x x x -=+∴=-+Θ.21=∴x 经检验21=x 是原方程的解. 把21=x 代人方程0122=+-kx x ,解得3=k . (2)解01322=+-x x ,得.1,2121==x x ∴方程0122=+-kx x 的另一个解为1=x .3.(1)()22244114b ac k k -=-⨯⨯-=+>0,∴方程有两个不相等的实数根. (2)∵12x x k +=-,121x x ⋅=-,又1212x x x x +=⋅ ∴1k -=- ∴1k =§22.3实际问题与一元二次方程(一)一、1.B 2.D二、1.2)1()1(x a x a a -+-+ 2.222)1()1(+=-+x x x 3.()21a x +三、1.解:设这辆轿车第二年、第三年平均每年的折旧率为x ,则776.7)1%)(201(122=--x ,解得%101.01==x ,9.12=x (舍去). 答:略2.解:设年利率为x ,得1320)1](1000)1(2000[=+-+x x , 解得%101.01==x ,6.12-=x (舍去).答:略§22.3实际问题与一元二次方程(二)一、1.C 2.B二、1. 15,10 2. cm 20 3. 6三、1.解:设这种运输箱底部宽为x 米,则长为)2(+x 米,得151)2(=⨯+x x ,解得5,321-==x x (舍去),∴这种运输箱底部长为5米,宽为3米.由长方体展开图知,要购买矩形铁皮面积为:)(35)23()25(2m =+⨯+,∴要做一个这样的运输箱要花7002035=⨯(元).2.解:设道路宽为x 米,得50423220232202=+-⨯-⨯x x x , 解得34,221==x x (舍去).答:略§22.3实际问题与一元二次方程(三)一、1.B 2.D二、1. 1或2 2. 24 3. 15- 三、1.设这种台灯的售价为每盏x 元,得()()[]1000040x 1060030x =---, 解得80x 50x 21==,当50x =时,()50040x 10600=--;当80x =时,()20040x 10600=-- 答:略2.设从A 处开始经过x 小时侦察船最早能侦察到军舰,得22250)3090()20(=-+x x ,解得1328,221==x x ,1328Θ>2,∴最早2小时后,能侦察到军舰. 第二十三章 旋 转§23.1图形的旋转(一)一、1.A 2.B 3.D二、1. 90 2. B 或C 或BC 的中点 3. A 60 4. 120°,30° 5 . 三、EC 与BG 相等 方法一:∵四边形ABDE 和ACFG 都是正方形 ∴AE=AB ,AC=AG∴∠EAB=∠CAG=90°∴把△EAC 绕着点A 逆时针旋转90°,可与△BAG 重合 ∴EC=BG 方法二:∵四边形ABDE 和ACFG 都是正方形 ∴AE=AB ,AC=AG ∠EAB=∠CAG=90° ∴∠EAB+∠BAC=∠CAG+∠BAC 即 ∠EAC=∠BAG ∴△EAC ≌△BAG ∴EC=BG §23.1图形的旋转(二)一、1.C 2.C 3.D 二、1. 2,120° 2. 120或240 3. 4三、1.如图 2.如图3.(1)旋转中心是时针与分针的交点; (2)分针旋转了108o.4.解:(1)HG 与HB 相等. 连接AH ∵正方形ABCD 绕着点A 旋转得到正方形AEFG ∴AG=AD=AB=AE ,∠G=∠B=90°又∵AH=AH ∴△AGH ≌△ABH ∴HG=HB (2)∵△AGH ≌△ABH ∴∠GAH = ∠BAH∴214323()233AGH ABH S S cm ∆∆==⨯=由123223GH ⨯=得:233GH cm =在Rt △AGH 中,根据勾股定理得:2223432233AH cm GH ⎛⎫=+== ⎪ ⎪⎝⎭∴∠GAH=30°∴旋转角∠DAG = 90°-2∠GAH = 90°-2×30°= 30°§23.2中心对称(一)一、1.C 2.D 3.B二、1.对称中心 对称中心 2.关于点O 成中心对称3 .△CDO 与△EFO 三、1.(略)2.(1)A 1的坐标为(1,1),B 1的坐标为(5,1),C 1的坐标为(4,4).(2)A 2()1,1--, B 2的坐标为()5,1--, C 2的坐标为()4,4-- 画图如下: 3.画图如下:BB ′=2OB =5221222222=+=+BC OC§23.2中心对称(二)一、1.D 2.C 3.二、1.矩形、菱形、正方形 2.正六边形、正八边形(边数为偶数的正多边形均正确) 三、1.关于原点O 对称(图略) 2.解:∵矩形ABCD 和矩形AB 'C 'D '关于A 点对称∴AD=AD ',AB=AB ',DD '⊥BB ' ∴四边形BDB 'D '是菱形 3.解:(1)AE 与BF 平行且相等 ∵△ABC 与△FEC 关于点C 对称∴AB 平行且等于FE ∴四边形ABFE 是平行四边形 ∴AE 平行且等于BF (2)122cm (3)当∠ACB=60°,四边形ABFE 为矩形,理由如下: ∵∠ACB=60°,AB=AC ∴AB=AC=BC ∵四边形ABFE 是平行四边形∴AF=2AC ,BE=2BC ∴AF=BE ∴四边形ABFE 为矩形B′OCBAAB C D§23.2中心对称(三)一、1.B 2.D 3.D二、1. 四 2.3y x =(任一正比例函数) 3. 三 三、1.如图2、解:由已知得212x x +=-, 244y y += 解得1x =-,2y =∴()22120x y +=⨯-+= 3.(1)D 的坐标为(3,-4)或(-7,-4)或(-1,8) (2)C 的坐标为(-1,-2),D 的坐标为(4,-2), 画图如图:§23.3 课题学习 图案设计 一、1.D 2.C二、1.72° 2.基本图案绕(2)的O 点依次旋转60°、120°、180°、240°、300°而得到. 三、1.(略)2.如图3.(1)是,6条 (2)是(3)60°、120°、180°、240°、300°第二十四章 圆§24.1.1圆一、1.A 2.B 3.A二、1. 无数 经过这一点的直径 2. 303. 半径 圆上 三、1.提示:证对角线互相平分且相等 2.提示:证明:OCD OAB ∠=∠ §24.1.2 垂直与弦的直径一、1.B 2.C 3. D二、1.平分 弧 2. 3≤OM ≤53. 63三、1. 120o2. (1)、图略 (2)、10cm §24.1.3 弧、弦、圆心角一、1. D 2. C 3. C 二、1.(1) ∠AOB=∠COD,= (2) ∠AOB=∠COD, AB=CD (3) =, AB=CD2. 15°3. 2 三、1. 略2.(1)连结OM 、ON ,在Rt △OCM 和Rt △ODN 中OM=ON ,OA=OB ,∵AC=DB ,∴OC=OD ,∴Rt △OCM ≌Rt △ODN ,∴∠AOM=∠BON , ∴AM=BN-5-4CBA65-3-2-1-6-5-4-3-2-1432174653210yxD-5-4CBA65-3-2-1-6-5-4-3-2-1432174653210yx⌒ ⌒§24.1.4圆周角一、1.B 2. B 3.C二、1.28o 2. 43.60°或120°三、1.90o提示:连接AD 2.提示:连接AD §24.2.1点和圆的位置关系 一、1.B 2.C 3. B二、1.d <r d r = ,d >r 2. OP >63. 内部, 斜边上的中点, 外部 三、1.略 2. 5cm§24.2.2直线与圆的位置关系(一) 一、1. B 2. D 3. A二、1.相离, 相切 2.相切 3. 4三、1.(1)相交, 相切 §24. 2.2直线与圆的位置关系(二) 一、1.C 2.B二、1.过切点的半径 垂直于 2.3、30°三、1.提示: 作OC ⊥AQ 于C 点 2.(1)60o(2)§24.2.2直线与圆的位置关系(三)一、1.C 2.B 3.C二、1. 115o 2. 90o 10cm 3. 1﹕2 三、1. 14cm 2. 提示:连接OP ,交AB 与点C. §24.2.3圆与圆的位置关系一、1.A 2.C 3. D二、1. 相交 2. 83. 2 3 10三、1.提示:分别连接1212,,O O O B O B ;可得1216030OO O O B O AB ∠=∴∠=2.提示:半径相等,所以有AC=CO ,AO=BO ;另通过说明∠AEO=90°,则可得AE=ED. §24.3正多边形和圆(一)一、1. B 2. C 3.C二、1.内切圆 外接圆 同心圆 2.十五3.2cm 三、1.10和5 2. 连结OM ,∵MN ⊥OB 、OE =21OB =21OM ,∴∠EMO =30°,∴∠MOB =60°,∴∠MOC =30°,∠MOB =6360︒、∠MOC =12360︒.即MB 、MC 分别是⊙O 内接正六边形和正十二边形的边长.§24.3正多边形和圆(二) 一、1.C 2. B二、1. 72 2. 四 每条弧 连接各等分点3. 2a π三、1. 22. 边长为4,面积为32 §24.4.1 弧长和扇形的面积一、1. B 2. D 3.C二、1.o 3602π, 2. π3434- 3.83π三、1. 10.5 2. 112π(2cm )§24.4.2 圆锥的侧面积和全面积一、1.A 2. B 3.B 二、1. 130π2cm 2. 215cmπ3. 2π三、1. (1)20π (2)220 2. S 48π=全第二十五章 概率初步§25.1.1随机事件(一)一、1. B 2. C 3.C二、1. 随机 2.随机 3.随机事件,不可能事件 4.不可能三、1. B ; A 、C 、D 、E ; F 2.(1)随机事件 (2)必然事件 (3)不可能事件 §25.1.1随机事件(二) 一、1.D 2.B 3. B二、1.黑色扇形 2.判断题 3. C 4.飞机三、1.(1)不一样,摸到红球的可能性大 ;(2)他们的说法正确2.事件A >事件C >事件D >事件B §25.1.2概率的意义(一) 一、 1. D 2. D二、1. 折线在0.5左右波动, 0.5 2. 0.5,稳定 3. 1,0,0<P(A)<1 三、1. (1)B,D (2)略2.(1)0.68,0.74,0.68,0.692,0.705,0.701 (2)接近0.7 (3)70% (4)2520§25.1.2概率的意义(二) 一、1. D 2. C 二、1.明 2. 75 3.1584. 16三、1.(1)不正确 (2)不一定2.(1)201 (2) 201 3.(1)0.6 (2)60%,40% (3)白球12只,黑球8只. §25.2用列举法求概率(一) 一、1.B 2. C 3.B 二、1.31 2. 72 3. 51 4.41 三、1.(1)“摸出的球是白球”是不可能事件,它的概率为0;(2)“摸出的球是黄球”是随机事件,它的概率为0.4;(3)“摸出的球是红球或黄球”是必然事件,它的概率为1. 2.50000013. 不唯一,如放3只白球,1只红球等§25.2用列举法求概率(二) 一、1.B 2.C 3.C二、1.83 2.23 3.112 4.NM L N ++ 三、1.(1)31 (2)61 (3)212.摸出两张牌和为偶数的概率是95,摸出两张牌和为奇数的概率是94,所以游戏有利于小张,不公平;可以改为,如果摸出两张牌,牌面数字之和为3,小张胜.牌面数字之和为5,则小王胜. 3.(1)16 (2)12 (3)12§25.2用列举法求概率(三) 一、1.A 2. B 3. B 二、1.3652. 1613.214.31三、1.(1)12;(22.(1)由列表(略)可得:P (数字之和为5)14=;(2)因为P (甲胜)14=,P (乙胜)34=,甲胜一次得12分,要使这个游戏对双方公平,乙胜一次的得分应为:1234÷=分.3.(1)根据题意可列表或树状图如下:从表或树状图可以看出所有可能结果共有12种,且每种结果发生的可能性相同,符合条件的结果有8种,∴P(和为奇数)23=(2)不公平.∵小明先挑选的概率是P(和为奇数)23=,小亮先挑选的概率是P(和为偶数)13=,∵2133≠,∴不公平.§25.2用列举法求概率(四)一、1.A 2.D 3. D二、(1)红、白、白,(2)923. 94.13三、1.列表或树状图略:由表或图可知,点数之和共有36种可能的结果,其中6出现5次,7出现6次,故P(和为6)536=,P(和为7)636=.∴P(和为6)<P(和为7),∴小红获胜的概率大.2.(1)31(2)31(3)31.3.(1)树状图为:(2)由图可知评委给出A选手所有可能的结果有8种.对于A选手,“只有甲、乙两位评委给出相同结论”有2种,即“通过-通过-待定”、“待定-待定-通过”,所以对于A选手“只有甲、乙两位评委给出相同结论”的概率是14.(1,2)(1,3)(1,4)2 3 41(2,1)(2,3)(2,4)1 3 42(3,1)(3,2)(3,4)1 2 43(4,1)(4,2)(4,3)1 2 34第一次摸球第二次摸球通过通过待定待定通过通过待定通过待定通过待定通过待定甲乙丙§25.3利用频率估计概率(一) 一、1. B 2. C 二、1. 常数 2.25013. 210, 270 三、1. (1)0.025,0.063,0.058,0.050,0.050,0.050 (2) 0.050 (3)20002. (1)0.75,0.8,0.8,0.85,0.83,0.8,0.78 (2)0.8(3)不一定.投10次篮相当于做10次实验,每次实验的结果都是随机的,所以投10次篮的结果也是随机的,但随着投篮次数的增加,他进球的可能性为80%. 3.(1)0.25,0.33,0.28,0.33,0.32,0.30,0.33,0.31,0.31,0.31 (2)0.31 (3)0.31§25.3利用频率估计概率(二) 一、1.A 2. B二、1. 0.98 2. 3, 2, 1 3.271 三、1. (1)92(2)略 2.先随机从鱼塘中捞取a 条鱼,在鱼上做下记号,经过一段时间饲养后,再从中捞取b 条鱼,记录下其中有记号的鱼有c 条,则池塘中的鱼估计会有ab c§25.4 课题学习 一、1.D 2. B二、1.概率 2.Z 3.31三、1.(1) 91 (2) 31 (3) 322.(1)这个游戏的结果共有四种可能:正正. 正反. 反正. 反反,所以甲赢的概率为41,因乙赢的概率为21,因此这个游戏有利于乙,不公平; (2)若要使游戏公平只需使两人赢的概率相同,我们可以改规则为“若出现两个正面或两个反面,则甲赢;若出现一正一反,则乙赢”.。

九年级上册数学书答案苏科版

九年级上册数学书答案苏科版

三一文库()/初中三年级〔九年级上册数学书答案苏科版〕
导语:数学是研究数量结构、变化、以及空间模型等概念的
科学.它是物理、化学等学科的基础,而且与我们的生活息
息相关.所以说,学好数学对于我们每个同学来说都是非常
重要的.以下是整理的九年级上册数学书答案苏科版,希望
对大家有帮助。

第二十一章二次根式§21.1二次根式(一)一、1.C2.D3.D
二、1.,92.,3.4.1三、1.50m2.(1)(2)>-1(3)
(4)§21.1二次根式(二)一、1.C2.B3.D4.D二、1.,
2.13.;三、1.或-32.(1);(2)5;(3);(4);
(5);(6);3.原式=§21.2二次根式的乘除(一)一、1.C2.
D3.B二、1.<2.(为整数)3.12s4.三、1.(1)(2)
(3)(4)–1082.10cm23、cm§21.2二次根式的乘除(二)
一、1.C2.C3.D二、1.>32.3.(1);(2);4.6三、
1.(1)(2)(3)52.(1)(2)(3)3.,因此是倍.§21.2
二次根式的乘除(三)一、1.D2.A3.B二、1.2.,,3.14.
第1页共2页
三、1.(1)(2)102.3.(,0)(0,);§21.3二次根式的加
减(一)一、1.C2.A3.C二、1.(答案不,如:、)2.<<
3.1三、1.(1)(2)(3)2(4)2.§21.3二次根式
的加减(二)一、1.A2.A3.B4.A二、1.12.,3.三、1.(1)
(2)(3)4(4)22.因为>45所以王师傅的钢材不够用.
22。

人教版数学九年级上册全册含课后练习

人教版数学九年级上册全册含课后练习

21.1 二次根式(1)(民中)第一课时一、教学目标: (a ≥0)的意义解答具体题目.二、教学重难点: 1a ≥0)的式子叫做二次根式的概念;2a ≥0)”解决具体问题.三、 教学过程:例1. 下列式子,哪些是二次根式,、1x x>0)、、、1x y+(x ≥0,y•≥0).例2. 当x 在实数范围内有意义?四、应用拓展:例3.当x +11x +在实数范围内有意义?例4(1)已知,求x y的值.(2)=0,求a 2004+b 2004的值.五、归纳小结:1(a ≥0)的式子叫做二次根式,2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.六、课后作业:(一)选择题:1.下列式子中,是二次根式的是( )A .BCD .x2.下列式子中,不是二次根式的是( )A B C D .1x3.已知一个正方形的面积是5,那么它的边长是( )A .5BC .15D .以上皆不对 (二)填空题:1.形如________的式子叫做二次根式;面积为a 的正方形的边长为_____;负数______平方根.(三)综合提高题:1.某工厂要制作一批体积为1m 3的产品包装盒,其高为0.2m ,按设计需要,•底面应做成正方形,试问底面边长应是多少?+x2在实数范围内有意义?2.当x是多少时,x3.4.x有()个.A.0 B.1 C.2 D.无数5.已知a、b=b+4,求a、b的值.21.1 二次根式(2)(民中)第二课时一、教学目标:a≥02=a(a≥0),并利用它们进行计算和化简.二、教学重难点:1a≥0)是一个非负数;)2=a(a≥0)及其运用.2.难点:a≥0)是一个非负数;用探究的方法导出)2=a (a≥0).三、教学过程:例1计算)21.22.(23.24.(2四、应用拓展:例2 计算1.2(x≥0)2.23.24.2例3在实数范围内分解下列因式:(1)x2-3 (2)x4-4 (3) 2x2-3五、归纳小结1a≥0)是一个非负数;2.2=a(a≥0);反之:a=2(a≥0).六、布置作业1.教材P8复习巩固2.(1)、(2)P9 7.七、课后作业:(一)选择题:1二次根式的个数是( ). A .4 B .3 C .2 D .12.数a 没有算术平方根,则a 的取值范围是( ).A .a>0B .a ≥0C .a<0D .a=0(二)填空题1.()2=______. 2_______数.(三)综合提高题1.计算(1)2 (2)-2 (3)(12)2(4)( 2 (5)2.把下列非负数写成一个数的平方的形式:(1)5 (2)3.4 (3)16(4)x (x ≥0)3=0,求x y 的值.4.在实数范围内分解下列因式:(1)x 2-2 (2)x 4-9 3x 2-521.1 二次根式(3)(民中)第三课时一、教学目标: (a ≥0)并利用它进行计算和化简.二、教学重难点:1a (a ≥0). 2.难点:探究结论.三、教学过程:例1 化简(1 (2 (3 (4四、应用拓展:例2、填空:当a ≥0;当a<0,•并根据这一性质回答下列问题.(1,则a 可以是什么数?(2,则a 可以是什么数?(3),则a 可以是什么数?五、归纳小结:(a ≥0)及其运用,同时理解当a<0a 的应用拓展.六、布置作业: 1.教材P 8习题21.1 3、4、6、8.七、课后作业:(一)选择题:1).A.0 B.23C.423D.以上都不对2.a≥0).A BC D.(二)填空题:1=________.2.则正整数m的最小值是________.(三)综合提高题1.先化简再求值:当a=9时,求的值,甲乙两人的解答如下:甲的解答为:原式(1-a)=1;乙的解答为:原式=a+(a-1)=2a-1=17.两种解答中,_______的解答是错误的,错误的原因是__________.2.若│1995-a│=a,求a-19952的值.(提示:先由a-2000≥0,判断1995-a•的值是正数还是负数,去掉绝对值)3. 若-3≤x≤2时,试化简│x-2│21.2 二次根式的乘除(1)(民中)第四课时一、教学目标:a≥0,b≥0)(a≥0,b≥0),并利用它们进行计算和化简二、教学重难点:(a≥0,b≥0)(a≥0,b≥0)及它们的运用.a≥0,b≥0).三、教学过程:例1.计算:(1(2(3(4例2.化简:(1(2(3(4(5四、巩固练习:教材P11练习全部五、应用拓展:例3.判断下列各式是否正确,不正确的请予以改正:(1=(2=4六、归纳小结:本节课应掌握:(1=(a≥0,b≥0)(a≥0,b≥0)及其运用.七、布置作业:1.课本P151,4,5,6.(1)(2).八、课后作业:(一)选择题1和,•那么此直角三角形斜边长是().A.B.C.9cm D.27cm2.化简)A B C.D.311x-=)A.x≥1 B.x≥-1 C.-1≤x≤1 D.x≥1或x≤-14.下列各等式成立的是().A.×B.×C.D.×(二)填空题1.2.自由落体的公式为S=12gt2(g为重力加速度,它的值为10m/s2),若物体下落的高度为720m,则下落的时间是_________.(三)综合提高题1.一个底面为30cm×30cm长方体玻璃容器中装满水,•现将一部分水例入一个底面为正方形、高为10cm铁桶中,当铁桶装满水时,容器中的水面下降了20cm,铁桶的底面边长是多少厘米?21.2 二次根式的乘除(2)(民中)第五课时一、教学目标:a ≥0,b>0(a ≥0,b>0)及利用它们进行运算. 二、教学重难点:1a ≥0,b>0)a ≥0,b>0)及利用它们进行计算和化简.2.难点关键:发现规律,归纳出二次根式的除法规定.三、教学过程:例1.计算:(1(2 (3 (4例2.化简:(1 (2 (3 (4 四、巩固练习: 教材P14 练习1.五、应用拓展:例3.=,且x 为偶数,求(1+x六、归纳小结: a ≥0,b>0a ≥0,b>0)及其运用.七、布置作业:1.教材P 15 习题21.2 2、7、8、9.八、课后作业:(一)选择题: 1.的结果是( )A .27B .27C D .723==5==数学上将这种把分母的根号去掉的过程称作“分母有理化”)A .2B .6C .13 D (二)填空题:1.分母有理化:(1)=_________;(2) =______.2.已知x=3,y=4,z=5_______.(三)综合提高题:1.有一种房梁的截面积是一个矩形,且矩形的长与宽之比为:1,•现用直径为3的一种圆木做原料加工这种房梁,那么加工后的房染的最大截面积是多少?2.计算:(1·(m>0,n>0)(2)(a>0)21.2 二次根式的乘除(3)(民中)第六课时一、教学目标:理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式.二、重难点关键:1.重点:最简二次根式的运用.2.难点关键:会判断这个二次根式是否是最简二次根式.三、教学过程:例1.(1)(2) ;(3)例2.如图,在Rt△ABC中,∠C=90°,AC=2.5cm,BC=6cm,求AB的长.四、巩固练习:教材P14练习2、3五、应用拓展:例3.观察下列各式,通过分母有理数,把不是最简二次根式的化成最简二次根式:121=--1,32=-,从计算结果中找出规律,并利用这一规律计算+)的值.六、归纳小结:本节课应掌握:最简二次根式的概念及其运用.七、布置作业:1.教材P15习题21.2 3、7、10.八、课后作业:(一)选择题:1y>0)是二次根式,那么,化为最简二次根BAC式是( ). A(y>0) B .y>0) C (y>0) D .以上都不对2.把(a-1中根号外的(a-1)移入根号内得( ).A B C . D .3.在下列各式中,化简正确的是( )A B ±12 C 2 D .4的结果是( ) A .-3 B . C . D . (二)填空题:1.化简=_________.(x ≥0) 2.a 化简二次根式号后的结果是_________.(三)综合提高题:1.已知a 确,•请写出正确的解答过程:2.若x 、y 为实数,且y x y -的值.21.3 二次根式的加减(1)(民中)第七课时一、教学目标:理解和掌握二次根式加减的方法.二、重难点关键:1.重点:二次根式化简为最简根式. 2.难点关键:会判定是否是最简二次根式.三、教学过程:例1.计算:(1 (2例2.计算:(1) (2))+ 四、巩固练习:教材P 19 练习1、2.五、应用拓展:例3.已知4x 2+y 2-4x-6y+10=0,求(23+y -(x )的值. 六、归纳小结:本节课应掌握:(1)不是最简二次根式的,应化成最简二次根式;(2)相同的最简二次根式进行合并.七、布置作业: 1.教材P 21 习题21.3 1、2、3、5.八、课后作业:(一)选择题:1.以下二次根式:;( ). A .①和② B .②和③ C .①和④ D .③和④2.下列各式:①17=1,其中错误的有( ). A .3个 B .2个 C .1个 D .0个(二)填空题:1是同类二次根式的有________.2.计算二次根式的最后结果是________.(三)综合提高题:1≈2.236-)的值.(结果精确到0.01)2.先化简,再求值.(-(,其中x=32,y=27. 21.3 二次根式的加减(2)(民中)第八课时一、教学目标:运用二次根式、化简解应用题.二、重难点关键:讲清如何解答应用题既是本节课的重点,又是本节课的难点、关键点.三、教学过程:例1.如图所示的Rt △ABC 中,∠B=90°,点P 从点B 开始沿BA 边以1厘米/•秒的速度向点A 移动;同时,点Q 也从点B 开始沿BC 边以2厘米/秒的速度向点C 移动.问:几秒后△PBQ 的面积为35平方厘米?PQ 的距离是多少厘米?(结果用最简二次根式表示)例2.要焊接如图所示的钢架,大约需要多少米钢材(精确到0.1m)?三、巩固练习:教材P19 练习3四、应用拓展:例3.若最简根式3a是同类二次根式,求a、b的值.(•同类二次根式就是被开方数相同的最简二次根式)五、归纳小结:本节课应掌握运用最简二次根式的合并原理解决实际问题.六、布置作业:1.教材P21习题21.3 7.七、课后作业:(一)选择题:1.已知直角三角形的两条直角边的长分别为5和5,那么斜边的长应为().(•结果用最简二次根式)A.BC.D.以上都不对2.小明想自己钉一个长与宽分别为30cm和20cm的长方形的木框,•为了增加其稳定性,他沿长方形的对角线又钉上了一根木条,木条的长应为()米.(结果同最简二次根式表示)A.BC.D.(二)填空题:1.某地有一长方形鱼塘,已知鱼塘的长是宽的2倍,它的面积是1600m2,•鱼塘的宽是_______m.(结果用最简二次根式)2.已知等腰直角三角形的直角边的边长为,•那么这个等腰直角三角形的周长是________.(结果用最简二次根式)(三)综合提高题:1.n是同类二次根式,求m、n21.3 二次根式的加减(3)(民中)第九课时一、教学目标:含有二次根式的式子进行乘除运算和含有二次根式的多项式乘法公式的应用.二、重难点关键:重点:二次根式的乘除、乘方等运算规律;难点:由整式运算知识迁移到含二次根式的运算.三、教学过程:例1.计算:(1)(2)()÷例2.计算:(1))((2)))四、巩固练习:课本P20练习1、2.BACQPBA C2m1m4m D五、应用拓展:例3.已知x b a -=2-x a b-,其中a 、b 是实数,且a+b ≠0, 六、归纳小结:本节课应掌握二次根式的乘、除、乘方等运算.七、布置作业: 1.教材P 21 习题21.3 1、8、9.八、课后作业:(一)选择题1.的值是( ).A .203B .23C .23D .2032 ).A .2B .3C .4D .1(二)填空题:1.(-12+2)2的计算结果(用最简根式表示)是________.2.((-()2的计算结果(用最简二次根式表示)是_______.3.若-1,则x 2+2x+1=________.4.已知,,则a 2b-ab 2=_________.(三)综合提高题: 12.当时,(结果用最简二次根式表示) 第二十二章 一元二次方程(民中)第十课时一、教学目标:了解一元二次方程的概念;一般式ax 2+bx+c=0(a ≠0)及其派生的概念。

九年级数学上册同步练习第21章二次根式(1)

九年级数学上册同步练习第21章二次根式(1)

A、 B、 C、 D、
6、下面的等式总能成立的是( )
A、 =a B、a=a2 C、·= D、=·
7、m为实数,则的值一定是(

A、整数 B、正整数 C、正数 D、负数
8、已知xy>0,化简二次根式x的正确结果为( )
A、 B、 C、- D、-
9、若代数式+的值是常数2,则a的取值范围是( )
A、a≥4 B、a≤2 C、2≤a≤4 D、a=2或a=4
10、下列根式不能与合并的是( )
A、 B、 C、 D、-
11、如果最简根式与是同类二次根式,那么使有意义的x的范围是( )
A、x≤10 B、x≥10 C、x<10 D、x>10
12、若实数x、y满足x2+y2-4x-2y+5=0,则的值是( )
A、1 B、+ C、3+2 D、3-2
二、填空题
1、要使有意义,则x的取值范围是
4、⑴ - ⑵- ⑶
------------------------- 赠予 ------------------------
【幸遇•书屋】
你来,或者不来 我都在这里,等你、盼你
等你婉转而至 盼你邂逅而遇
你想,或者不想 我都在这里,忆你、惜你
忆你来时莞尔 惜你别时依依
你忘,或者不忘 我都在这里,念你、羡你
念你袅娜身姿 羡你悠然书气
人生若只如初见 任你方便时来 随你心性而去 却为何,有人
为一眼而愁肠百转 为一见而不远千里
晨起凭栏眺 但见云卷云舒
风月乍起
春寒已淡忘 如今秋凉甚好 几度眼迷离
感谢喧嚣 把你高高卷起 砸向这一处静逸 惊翻了我的万卷 和其中的一字一句 幸遇只因这一次

【免费下载】数学九年级上册

【免费下载】数学九年级上册

(2)
≥0, ≥0)。
(3)等式
( ≥0, ≥0)可以推广为
( ≥0, ≥0);
( ≥0, ≥0)也可以倒过来使用,即
≥0, ≥0)。也称“积的算术平方根”。它与二次根式的乘法结合,可以对一些二次 根式进行化简。
2. 二次根式的除法
两个二次根式相除,把被开方数相除,根指数不变,即
说明:(1)法则中 、 可以是单项式,也可以是多项式,要注意它们的取值范围, ≥0, 在分母中,因此 >0;
第二十二章 一元二次方程
22.1 一元二次方程
在一个等式中,只含有一个未知数,且未知数的最高 次数是 2 次的整式方程 叫 做一元二次方程。
一元二次方程有四个特点 :(1)只含有一个未知数; (2)且未知数次数最高次数是
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资,配料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高与中带资负料荷试下卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并3中试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内 纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

九年级上第二十一章二次根式测试题参考答案.doc

九年级上第二十一章二次根式测试题参考答案.doc

学校班别座号姓名人教版九年级上册第二十一章二次根式测试数学试卷(时间120分满分120分)一、填空题(每小题2分,共20分)1.在a、2a b、1x+、21x+、3中是二次根式的个数有______个.2.当x= 时,二次根式1+x取最小值,其最小值为。

3.化简82-的结果是_____________4.计算:23·=5.实数a在数轴上的位置如图所示:化简:21(2)______a a-+-=.6.已知三角形底边的边长是6cm,面积是12cm2,则此边的高线长.7.若()22340a b c-+-+-=,则=+-cba.8.计算:20102010)23()23(+-=9.已知2310x x-+=,则2212xx+-=10.观察下列各式:111233+=,112344+=,113455+=,……,请你将猜想到的规律用含自然数(1)n n≥的代数式表示出来是.二、选择题(每小题3分,共24分)11.下列式子一定是二次根式的是()题号一二三总分19 20 21 22 23 24 25 26得分密线封1-012aA .2--xB .xC .22+xD .22-x12. 下列二次根式中,x 的取值范围是2≥x 的是( )A .2-xB .x+2C .x -2D .1x -213. 实数a b c,,在数轴上的对应点的位置如图所示,式子①0b c +>②a b a c +>+③bc ac >④ab ac >中正确的有( )A.1个 B.2个 C.3个 D.4个14. 下列根式中,是最简二次根式的是( ) A .0.2b B . 1212a b - C. 22x y - D . 25ab15. 下列各式中,一定能成立的是( )A .22)5.2()5.2(=- B .22)(a a = C .1122-=+-x x x D .3392-∙+=-x x x16.设42-的整数部分为a ,小数部分为b ,则1a b-的值为( ) A.212-B.2 C.212+D.2-17. 把mm 1-根号外的因式移到根号内,得( ) A .m B .m -C .m --D .m -18. 若代数式22(2)(4)a a -+-的值是常数2,则a 的取值范围是( ) A.4a ≥ B.2a ≤ C.24a ≤≤ D.2a =或4a =三、解答题(76分) 19. (12分)计算:(1) 21418122-+- (2) 2)352(-2- 1- 0 1 2 3 c b a(3) 14510811253++- (4)284)23()21(01--+-⨯-20. (8分)先化简,再求值:11212222--÷+++-+x x x x x x x ,其中23-=x .21. (8分)已知:3x 22x y --+-=,求:4y x )(+的值。

人教版数学九年级上册第二十一章 基础复习题含答案

人教版数学九年级上册第二十一章 基础复习题含答案

第二十一章 21.1一元二次方程一、单选题(每小题只有一个正确答案) 1.下列是一元一次方程的是( ) A .2230x x --= B .25x y += C .112x x+= D .10x +=2.若x=2是关于x 的一元二次方程x 2-mx+8=0的一个解.则m 的值是( ) A .6B .5C .2D .-63.一元二次方程4x 2﹣1=5x 的二次项系数、一次项系数、常数项分别为( ) A .4﹣﹣1﹣5B .4﹣﹣5﹣﹣1C .4﹣5﹣﹣1D .4﹣﹣1﹣﹣54.若方程(m ﹣1)x 2﹣4x =0是关于x 的一元二次方程,则m 的取值范围是( ) A .m ≠1B .m =1C .m ≠0D .m ≥15.已知a 是方程22430x x --=的一个根,则代数式224a a -的值等于( ) A .3B .2C .0D .16.关于x 的一元二次方程(a 2﹣1﹣x 2+x﹣2=0是一元二次方程,则a 满足( ﹣ A .a≠1B .a≠﹣1C .a≠±1D .为任意实数7.已知n 是方程2210x x --=的一个根,则2367n n --的值为( ) A .-5B .-4C .-3D .-28.把一元二次方程()2(3)31x x x +=-化成一般形式,正确的是( ﹣ A .22790x x --= B .2 2590x x --=C .24790x x ++= D .2 26100x x --=二、填空题9.请构造一个一元二次方程,使它能满足下列条件:①二次项系数不为1;②有一个根为﹣2.则你构造的一元二次方程是_____.10.已知方程ax 2+bx +c =0的一个根是﹣1,则a ﹣b +c =_____.11.已知1x =-是方程20(0)ax bx c b ++=≠=_____. 12.方程(n ﹣3)x |n |﹣1+3x +3n =0是关于x 的一元二次方程,n =_____.13.关于x 的一元二次方程220(0)ax bx a ++=≠的解是1x =,那么2020a b --的值是________________.三、解答题14.若m 是一元二次方程||120a x x ---=的一个实数根. (1)求a 的值;(2)不解方程,求代数式()221m m m m ⎛⎫-⋅-+ ⎪⎝⎭的值. 15.当k 取何值时,关于x 的方程2(5)(2)50k x k x -+++=: (1)是一元一次方程? (2)是一元二次方程?16.一元二次方程()2(1)10a x b x c -+-+=化为一般形式后为22310x x --=,试求a bc+的值.参考答案1.D 2.A 3.B 4.A 5.A 6.C 7.B 8.A 9.2x 2﹣8=0 10.0 11.1 12.-3 13. 解:一元二次方程220(0)ax bx a ++=≠的解是1x =∴ 20a b ++=,即2a b +=-()20202020a b a b --=-+∴ 20202020(2)2022a b --=--=14. 解:(1)由于||120a x x ---=是关于x 的一元二次方程, 所以||12a -=, 解得3a =±;(2)由(1)知,该方程为220x x --=, 把x m =代入,得220m m --=, 所以22m m -=,① 由220m m --=,得210m m--=, 所以21m m-=,② 把①和②代入()221m m m m ⎛⎫-⋅-+ ⎪⎝⎭, 得()2212(11)4m m m m ⎛⎫-⋅-+=⨯+= ⎪⎝⎭, 即()2214m m m m ⎛⎫-⋅-+= ⎪⎝⎭. 15. 解:(1)∵原方程是关于x 的一元一次方程, ∴k -5=0,k+2≠0, 解得:k=5;(2)∵原方程是关于x 的一元二次方程, ∴k -5≠0, 解得:k≠5.16.解:原方程可化为:ax2−(2a−b)x+a−b+c=0,由题意得,a=2,2a−b=3,a−b+c=−1,解得:a=2,b=1,c=−2,∴21322a bc++==--.21.2 解一元二次方程一.选择题1.若关于x的方程x2﹣m=0有实数根,则m的取值范围是()A.m<0 B.m≤0 C.m>0 D.m≥02.用配方法解方程x2﹣6x+1=0,方程应变形为()A.(x﹣3)2=8 B.(x﹣3)2=10 C.(x﹣6)2=10 D.(x﹣6)2=8 3.一元二次方程4x2﹣2x+=0根的情况是()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根4.若x1、x2是方程x2﹣5x+6=0的两个解,则代数式(x1+1)(x2+1)的值为()A.8 B.10 C.12 D.145.已知a、b为实数,则a2+ab+b2﹣a﹣2b的最小值为()A.﹣2 B.﹣1 C.1 D.26.方程2x2=1的解是()A.B.C.D.7.将一元二次方程x2﹣8x﹣5=0化成(x+a)2=b(a,b为常数)的形式,则a,b的值分别是()A.﹣4,21 B.﹣4,11 C.4,21 D.﹣8,698.三角形的两边长分别为4和5,第三边的长是方程x2﹣12x+20=0的根.则三角形的周长()A.19 B.11成19 C.13 D.119.一元二次方程x2=2x的根为()A.x=0 B.x=2 C.x=0或x=2 D.x=0或x=﹣2 10.方程x(x﹣5)=x﹣5的根是()A.x=5 B.x=0 C.x1=5,x2=0 D.x1=5,x2=1 11.一元二次方程x2+4x+5=0的根的情况是()A.无实数根B.有一个实根C.有两个相等的实数根D.有两个不相等的实数根12.关于方程x2﹣6x﹣15=0的根,下列说法正确的是()A.两实数根的和为﹣6 B.两实数根的积为﹣15C.没有实数根D.有两个相等的实数根二.填空题13.在实数范围内定义一种运算“*”,其运算法则为a*b=a2﹣ab.根据这个法则,下列结论中正确的是.(把所有正确结论的序号都填在横线上)①*=2﹣;②若a+b=0,则a*b=b*a;③(x+2)*(x+1)=0是一元二次方程;④方程(x+3)*1=1的根是x1=,x2=.14.已知x为实数,且满足(2x2+3)2+2(2x2+3)﹣15=0,则2x2+3的值为.三.解答题15.解下列方程.(1)x2+2x﹣35=0(2)4x(2x﹣1)=1﹣2x16.解方程:(1)﹣=2(2)2x2﹣2x﹣1=017.(1)已知:a(a+1)﹣(a2+b)=3,a(a+b)+b(b﹣a)=13,求代数式ab的值.(2)已知等腰△ABC的两边分别为a、b,且a、b满足a2+b2﹣6a﹣14b+58=0,求△ABC 的周长.18.已知关于x的一元二次方程(x﹣m)2+2(x﹣m)=0(m为常数).(1)求证:不论m为何值,该方程总有两个不相等的实数根.(2)若该方程有一个根为4,求m的值.参考答案一.选择题1.解:∵x2﹣m=0,∴x2=m,由x2﹣m=0知m≥0,故选:D.2.解:∵x2﹣6x+1=0,∴x2﹣6x+9=8,∴(x﹣3)2=8,故选:A.3.解:在方程4x2﹣2x+=0中,∵△=b2﹣4ac=(﹣2)2﹣4×4×=0,∴一元二次方程4x2﹣2x+=0有两个相等的实数根.故选:C.4.解:根据题意得x1+x2=5,x1x2=6,所以(x1+1)(x2+1)=x1x2+x1+x2+1=6+5+1=12.故选:C.5.解:a2+ab+b2﹣a﹣2b=a2+(b﹣1)a+b2﹣2b=a2+(b﹣1)a++b2﹣2b﹣=(a+)2+(b﹣1)2﹣1≥﹣1,当a+=0,b﹣1=0,即a=0,b=1时,上式不等式中等号成立,则所求式子的最小值为﹣1.故选:B.6.解:2x2=1,∴x2=,∴x=,故选:B.7.解:∵x2﹣8x﹣5=0,∴x2﹣8x=5,则x2﹣8x+16=5+16,即(x﹣4)2=21,∴a=﹣4,b=21,故选:A.8.解:∵x2﹣12x+20=0,∴x=2或x=10,当x=2时,∵2+4>5,∴能组成三角形,∴三角形的周长为2+4+5=11,当x=10时,∵4+5<10,∴不能组成三角形,故选:D.9.解:∵x2=2x,∴x2﹣2x=0,则x(x﹣2)=0,∴x=0或x﹣2=0,解得x1=0,x2=2,故选:C.10.解:∵x(x﹣5)﹣(x﹣5)=0,∴(x﹣5)(x﹣1)=0,则x﹣5=0或x﹣1=0,解得x=5或x=1,故选:D.11.解:∵△=42﹣4×5=﹣4<0,∴方程无实数根.故选:A.12.解:∵a=1,b=﹣6,c=﹣15,∴△=b2﹣4ac=(﹣6)2﹣4×1×(﹣15)=96>0,∴该方程有两个不相等的实数根.设方程x2﹣6x﹣15=0的两根分别为m,n,则m+n=﹣=6,mn==﹣15.故选:B.二.填空题13.解:*=()2﹣×=2﹣,①正确;若a+b=0,则a=﹣b,∴a*b=a2﹣ab=b2﹣ba=b*a,②正确;(x+2)*(x+1)=(x+2)2﹣(x+2)(x+1)=x+2,③错误;(x+3)*1=(x+3)2﹣(x+3)=x2+5x+6,∴(x+3)*1=1即为方程x2+5x+6=1,化简得x2+5x+5=0,解得x1=,x2=,④正确.故答案为:①②④14.解:设2x2+3=t,且t≥3,∴原方程化为:t2+2t﹣15=0,∴t=3或t=﹣5(舍去),∴2x2+3=3,故答案为:3三.解答题15.解:(1)x2+2x﹣35=0,(x+7)(x﹣5)=0,x+7=0或x﹣5=0,∴x1=﹣7,x2=5.(2)4x(2x﹣1)=1﹣2x,4x(2x﹣1)+(2x﹣1)=0,(2x﹣1)(4x+1)=0,(2x﹣1)=0或(4x+1)=0,,16.解:(1)方程两边都乘以x﹣7得:x+1=2(x﹣7),解得:x=15,检验:当x=15时,x﹣7≠0,所以x=15是原方程的解,即原方程的解是x=15;(2)2x2﹣2x﹣1=0,b2﹣4ac=(﹣2)2﹣4×2×(﹣1)=12,x=,x1=,x2=.17.解:(1)a(a+1)﹣(a2+b)=3,a2+a﹣a2﹣b=3,a﹣b=3,两边同时平方得:a2﹣2ab+b2=9①,a(a+b)+b(b﹣a)=13,a2+ab+b2﹣ab=13,a2+b2=13②,把②代入①得:13﹣2ab=9,13﹣9=2ab,∴ab=2;(2)a2+b2﹣6a﹣14b+58=0,a2﹣6a+9+b2﹣14b+49=0,(a﹣3)2+(b﹣7)2=0,∴a﹣3=0,b﹣7=0,∴a=3,b=7,当3为腰时,三边为3,3,7,因为3+3<7,不能构成三角形,此种情况不成立,当7为腰时,三边为7,7,3,能构成三角形,此时△ABC的周长=7+7+3=17.18.(1)证明:(x﹣m)2+2(x﹣m)=0,原方程可化为x2﹣(2m﹣2)x+m2﹣2m=0,∵a=1,b=﹣(2m﹣2),c=m2﹣2m,∴△=b2﹣4ac=[﹣(2m﹣2)]2﹣4(m2﹣2m)=4>0,∴不论m为何值,该方程总有两个不相等的实数根.(2)解:将x=4代入原方程,得:(4﹣m)2+2(4﹣m)=0,即m2﹣10m+24=0,解得:m1=4,m2=6.故m的值为4或6.21.3实际问题与一元二次方程一.选择题1.某小组新年互送新年贺卡共30张,则这个小组的成员个数是()A.3B.5C.6D.102.某市2015年旅游收入为2亿元.2017年旅游收入达到2.88亿元,则该市2016年、2017年旅游收入的年平均增长率为()A.2%B.4.4%C.20%D.44%3.工会组织篮球比赛庆五一,赛制为单循环形式(每两队之间都赛一场),共进行了45场比赛,则这次参加比赛的球队个数为()A.12个B.11个C.9个D.10个4.某超市一月份的营业额为24万元,三月份的营业额为36万元,设每月的平均增长率为x,则下列所列方程正确的是()A.24(1﹣x)2=36B.36(1﹣x)2=24C.24(1+x)2=36D.36(1+x)2=245.某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成,已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x 米.若苗圃园的面积为72平方米,则x为()A.12B.10C.15D.86.有一人患了流感,经过两轮传染后共有81人患了流感;设每轮传染中平均一个人传染x 个人,则所列方程正确的是()A.x(x﹣1)=81B.x(x+1)=81C.2=817.一个直角三角形的两条直角边的和是14cm,面积是24cm2,则其斜边长为()A.2cm B.10cm C.8cm D.4cm8.如图,某农场计划利用一面墙(墙的长度不限)为一条边,另三边用总长58米的篱笆围成一个面积为200平方米的矩形场地.若设该矩形的宽为x米,则可列方程为()A.x(58﹣x)=200B.x(29﹣x)=200C.x(29﹣2x)=200D.x(58﹣2x)=2009.用长为28米的铝材制成一个矩形窗框,使它的面积为25平方米.若设它的一边长为x 米,根据题意列出关于x的方程为()A.x(28﹣x)=25B.2x(14﹣x)=25C.x(14﹣x)=25D.10.在一幅长200cm,宽160cm的硅藻泥风景画的四周,增添一宽度相同的装饰纹边,制成一幅客厅装饰画,使得硅藻泥风景画的面积是整个客厅装饰画面积的78%.设装饰纹边的宽度为xcm,则可列方程为()A.×78%=200×160B.×78%=200×160C.×78%=200×160D.×78%=200×160二.填空题11.某校八年级举行足球比赛,每个班级都要和其他班级比赛一次,结果一共进行了6场比赛,则八年级共有个班级.12.某商品进价为25元,当每件售价为50元时,每天能售出100件,经市场调查发现,每件售价每降低1元,则每天可多售出5件,店里每天的利润要达到1500元.若设店主把该商品每件售价降低x元,求解可列方程为.13.某药品经过两次降价,每瓶零售价由200元降为128元.已知两次降价的百分率相同,设每次降价的百分率为x,则x的值是.(结果写成百分数的形式)14.某农机厂四月份生产零件100万个,若该厂五、六月份每月的增长率相同,第二季共生产零件365万个,设该厂每月增长率为x,那么满足的方程是.15.如图,在宽为20m,长为30m的矩形地面上修建两条同样宽且互相垂直的道路,剩余部分作为耕地为551平方米.若设道路宽为x米,则可列方程为.三.解答题16.如图是一张长10dm,宽6dm矩形纸板,将纸板四个角各剪去一个相同边长的正方形,然后将四周突出部分折起,可制成一个无盖方盒.若要制作一个底面积是32dm2的一个无盖长方体纸盒,求剪去的正方形边长.17.某商店销售甲、乙两种零食,甲零食每袋成本为5元,乙零食每袋成本为7元.甲零食现在的售价为10元,每天卖出30袋;售价每提高1元,每天少卖出2袋.乙零食现在的售价为14元,每天卖出6袋;售价每降低1元,每天多卖出4袋.假定甲、乙两种零食每天卖出的袋数的和不变(和为36袋),且售价均为整数.(1)当甲零食的售价提高2元,则甲零食每天卖出袋,乙零食的售价为元;(2)当甲零食的售价提高多少元时,销售这两种零食当天的总利润是268元?18.某生物实验室需培育一群有益菌,现有90个活体样本,经过两轮培植后,总和达36000个,其中每个有益菌每一次可分裂出若干个相同数目的有益菌.(1)每轮分裂中平均每个有益菌可分裂出多少个有益菌?(2)按照这样的分裂速度,经过三轮培植后有多少个有益菌?19.火锅是重庆人民钟爱的美食之一;解放碑某老火锅店为抓住“十一黄金周”这个商机,通过网上广告宣传和实地派发传单等一系列促销手段吸引了不少本地以及外地游客,火锅店门庭若市.据店员统计;仅“十一黄金周”前来店内就餐选择红汤火锅和清汤火锅的游客共2500人,其中红汤火锅和清汤火锅的人均消费分别为80元和60元.(1)“十一”期间,若选择红汤火锅的人数不超过清汤火锅人数的1.5倍,求至少有多少人选择清汤火锅?(2)随着“十一”的结束,前来店内就餐的人数逐渐减少,据接下来的第二周统计数据显示,与(1)选择清汤火锅的人数最少时相比,选择红汤火锅的人数下降了a%,选择清汤火锅的人数不变,但选择红汤火锅的人均消费增长了a%,选择清汤火锅的人均消费增长了,最终第二周两种火锅的销售总额与(1)中选择清汤火锅的人数最少时两种火锅的销售总额相等,求a的值.参考答案与试题解析一.选择题1.【解答】解:设这个小组有x名成员,则小组内每名成员需送出(x﹣1)张贺卡,根据题意得:x(x﹣1)=30,解得:x1=6,x2=﹣5(不合题意,舍去).故选:C.2.【解答】解:设该市2016年、2017年旅游收入的年平均增长率为x,根据题意得:2(1+x)2=2.88,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).故选:C.3.【解答】解:设这次参加比赛的球队有x个,根据题意得:x(x﹣1)=45,解得:x1=10,x2=﹣9(不合题意,舍去).故选:D.4.【解答】解:设每月的平均增长率为x,根据题意列方程得,24(1+x)2=36.故选:C.5.【解答】解:根据题意得:x×(30﹣2x)=72解得:x1=12,x2=3当x=12时,30﹣2x=6<18当x=3时,30﹣2x=24>18(不合题意舍去)故选:A.6.【解答】解:设每轮传染中平均一个人传染x个人,根据题意得:(1+x)2=81.故选:D.7.【解答】解:设这个直角三角形的两直角边为a、b,斜边为c,根据题意得a+b=14,ab=24,即ab=48,∴c2=a2+b2=(a+b)2﹣2ab=142﹣2×48=100,开平方,得c=10,即斜边长为10cm.故选:B.8.【解答】解:设该矩形的宽为x米,则可列方程为:x(58﹣2x)=200.故选:D.9.【解答】解:设它的一边长为x米,则另一边长为=14﹣x(米),根据题意,得:x(14﹣x)=25,故选:C.10.【解答】解:设装饰纹边的宽度为xcm,则装饰画的长为(200+2x)cm、宽为(160+2x)cm,根据题意得:×78%=200×160.故选:B.二.填空题(共5小题)11.【解答】解:设共有x个班级参加比赛,根据题意得:=6,整理得:x2﹣x﹣6=0,即(x﹣3)(x+2)=0,解得:x=3或x=﹣2(舍去).则共有3个班级球队参加比赛.故答案为:3.12.【解答】解:原来售价为每件50元,进价为每件25元,利润为每件25元,又每件售价降价x元后,利润为每件(25﹣x)元.每降价1元,每星期可多卖出5件,所以每件售价降低x元,每星期可多卖出5x件,现在的销量为(100+5x).根据题意得:(25﹣x)×(100+5x)=1500,故答案为:(25﹣x)×(100+5x)=1500.13.【解答】解:设每次降价的百分率为x,根据题意得:200(1﹣x)2=128,解得:x1=0.2=20%,x2=1.8(不合题意,舍去).答:每次降价的百分率为20%.故答案为:20%.14.【解答】解:设平均每月的增长率为x,则则五月份生产零件100(1+x)万个,六月份生产零件100(1+x)(1+x)万个,故可得:100+100(1+x)+100(1+x)2=365.故答案为:100+100(1+x)+100(1+x)2=365.15.【解答】解:设修建的路宽应为x米根据等量关系列方程得:30×20﹣(20x+30x﹣x2)=551,故答案是:30×20﹣(20x+30x﹣x2)=551.三.解答题(共4小题)16.【解答】解:设剪去的正方形边长为xdm,则做成的长方形纸盒的底面长为(10﹣2x)dm,宽为(6﹣2x)dm,依题意,得:(10﹣2x)(6﹣2x)=32,整理,得:x2﹣8x+7=0,解得:x1=1,x2=7.∵6﹣2x>0,∴x<3,∴x=1.答:剪去的正方形边长为1dm.17.【解答】解:(1)甲零食的售价提高2元,则甲零食每天卖出30﹣2×2=26(袋),则乙销售了10袋,乙零食的售价为14﹣4=10(元).故答案为:26,10;(2)设甲零食的售价提高x元时,销售这两种零食当天的总利润是268元,由题意得,(5+x)(30﹣2x)+(6+2x)(14﹣﹣7)=268,∴3x2﹣31x+76=0,解得x1=4,x2=,∵售价均为整数,∴x=4.答:甲零食的售价提高4元时,销售这两种零食当天的总利润是268元.18.【解答】解:(1)设每轮分裂中平均每个有益菌可分裂出x个有益菌,依题意,得:90(1+x)2=36000,解得:x1=19,x2=﹣21(不合题意,舍去).答:每轮分裂中平均每个有益菌可分裂出19个有益菌.(2)36000×(1+19)=720000(个).答:按照这样的分裂速度,经过三轮培植后有720000个有益菌.19.【解答】解:(1)设有x人选择清汤火锅,则有(2500﹣x)人选择红汤火锅,依题意,得:2500﹣x≤1.5x,解得:x≥1000.答:至少有1000人选择清汤火锅.(2)依题意,得:80(1+a%)×(2500﹣1000)(1﹣a%)+60(1+a%)×1000=8。

九年级数学上册第二十一章二次根式检测

九年级数学上册第二十一章二次根式检测

第十章 二次根式复习题【例题精选】:例1:求下列各式有意义的所有x 的取值范围。

();();();();();()13221312411521645332-++-++-----x x x x x xx x x x分析:式子a 要在a ≥0时;才被称为二次根式;即有意义;而a a 3取任意实数它均有意义;依据此概念;去解上述各题。

解:(1)要使32-x 有意义;必须320-≥x ;由320-≥x 得x ≤32;∴当x ≤32时;式子32-x 在实数范围内有意义。

(2)要使x +13有意义;x +1为任意实数均可; ∴当x 取任意实数时x +13均有意义。

(3)要使x x +-12有意义;必须x x +≥-≠⎧⎨⎩1020∴x x x x ≥-≠±=-≥-1221且,但不在的范围内。

∴当x x ≥-≠12且时;式子x x +-12在实数范围内有意义。

(4)要使x x ++-113有意义;必须x x +≥+-≠⎧⎨⎩10103 解得x x x ≥--≠-≠1113,,即∴当x x ≥-≠11,且时;x x++-113有意义。

(5)要使x x --21有意义;必须使x x ≥-≥⎧⎨⎩0210解得x ≥0且x ≥12;取公共区间∴当x ≥12时;式子x x --21在实数范围内有意义。

(6)要使x x 245--有意义;必须x x 24050-≥-≠⎧⎨⎪⎩⎪解得x x x ≤-≥≠±⎧⎨⎩225或∴当x x x x ≤-≠-≥≠2525且或且时式子x x 245--有意义。

例2:把下列各根式化为最简二次根式:()()(),()(),19600224750325121003234a b a b a b ca b ≥≥≥≥分析:依据最简二次根式的概念进行化简; (1)被开方数的因数是整数;因式是整式;(2)被开方数中不含能开得尽方的因数或因式。

解:()()·,196166460032a b a ab a ab a b ==≥≥()()()·,224750147504932527532753222710632512125121511002342242==⨯⨯==⨯⨯===≥≥a bc a b b c abcb a b例3:判断下列各组根式是否是同类根式:();;()当时,,,117531516238534202--<<+-m n n m m n n m mn分析:几个二次根式化成最简二次根式以后;如果被开方数相同;那么这几个二次根式就叫做同类二次根式;所以判断几个二次根式是否为同类二次根式;首先要将其化为最简二次根式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档