九年级数学上册25概率初步复习导学案新版新人教版07062120【精品教案】
部编版人教初中数学九年级上册《第25章(概率初步)全章导学案》最新精品优秀整章每课导学单
最新精品部编版人教初中九年级数学上册第二十五章概率初步优秀导学案(全章完整版)前言:该导学案(导学单)由多位一线国家特级教师根据最新课程标准的要求和教学对象的特点结合教材实际精心编辑而成。
实用性强。
高质量的导学案(导学单)是高效课堂的前提和保障。
(最新精品导学案)第二十五章概率初步25.1随机事件与概率25.1.1随机事件1.通过对生活中各种事件的判断,归纳出必然事件,不可能事件和随机事件的特点,并根据这些特点对有关事件作出准确判断.2.归纳出三种事件的各自的本质属性,并抽象成数学概念.3.形成对随机事件发生的可能性大小作定性分析的能力,了解影响随机事件发生的可能性大小的因素.4.总结出随机事件发生的可能性大小的特点以及影响随机事件发生的可能性大小的客观条件.阅读教材第127至128页,完成下列知识探究.知识探究1.在一定条件下,必然发生的事件,叫做________.2.在一定条件下,不可能发生的事件,叫做____________.3.在一定条件下,可能发生也可能不发生的事件,叫做________.自学反馈1.下列问题哪些是必然发生的?哪些是不可能发生的?①太阳从西边下山;②某人的体温是100 ℃;③a2+b2=-1(其中a,b都是实数);④水往低处流;⑤酸和碱反应生成盐和水;⑥三个人性别各不相同;⑦一元二次方程x2+2x+3=0无实数解.2.在一个不透明的箱子里放有除颜色外,其余都相同的4个小球,其中红球3个、白球1个.搅匀后,从中随机摸出1个小球,请你写出这个摸球活动中的一个随机事件:__________.3.一副去掉大小王的扑克牌(共52张),洗匀后,摸到红桃的可能性________摸到J、Q、K的可能性.(填“<”“>”或“=”)4.从一副扑克牌中任意抽出一张,则下列事件中可能性最大的是( ) A.抽出一张红心B.抽出一张红色老KC.抽出一张梅花J D.抽出一张不是Q的牌5.某学校的七年级(1)班,有男生23人,女生23人.其中男生有18人住宿,女生有20人住宿.现随机抽一名学生,则:a.抽到一名住宿女生;b.抽到一名住宿男生;c.抽到一名男生.其中可能性由大到小排列正确的是( ) A.cab B.acb C.bca D.cba一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同.活动1小组讨论例15名同学参加演讲比赛,以抽签方式决定每个人的出场顺序.签筒中有5根形状大小相同的纸签,上面分别标有序号1,2,3,4,5.小军首先抽签,他在看不到纸签上的数字的情况从签筒中随机(任意)地取一根纸签.请考虑以下问题:①抽到的序号是0,可能吗?这是什么事件?②抽到的序号小于6,可能吗?这是什么事件?③抽到的序号是1,可能吗?这是什么事件?④你能列举与事件③相似的事件吗?解:①不可能;不可能事件.②可能;必然事件.③可能;随机事件.④抽到的序号是2或3或4或5.必然事件和不可能事件统称为确定事件.事先不能确定发生与否的事件为随机事件.活动2跟踪训练1.下列事件中是必然事件的是( )A.早晨的太阳一定从东方升起B.北京的中秋节晚上一定能看到月亮C.打开电视机正在播少儿节目D.小红今年14岁了,她一定是初中生2.一个鸡蛋在没有任何防护的情况下,从六层楼的阳台上掉下来砸在水泥地面上没摔破( )A.可能性很小B.绝对不可能C.有可能D.不太可能3.下列说法正确的是( )A.可能性很小的事件在一次实验中一定不会发生B.可能性很小的事件在一次实验中一定发生C.可能性很小的事件在一次实验中有可能发生D.不可能事件在一次实验中也可能发生4.下列事件:①袋中有5个红球,能摸到红球;②袋中有4个红球,1个白球,能摸到红球;③袋中有2个红球,3个白球,能摸到红球;④袋中有5个白球,能摸到红球.问上述事件哪些事件是必然事件?哪些是随机事件?哪些是不可能事件?5.指出下列事件中,哪些是必然事件,哪些是不可能事件,哪些是随机事件.①两直线平行,内错角相等;②刘翔再次打破110米栏的世界纪录;③打靶命中靶心;④掷一次骰子,向上一面是3点;⑤13个人中,至少有两个人出生的月份相同;⑥经过有信号灯的十字路口,遇见红灯;⑦在装有3个球的布袋里摸出4个球;⑧物体在重力的作用下自由下落;⑨抛掷一千枚硬币,全部正面朝上.活动1小组讨论例3袋中装有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出一个球.我们把“摸到白球”记为事件A,把“摸到黑球”记为事件B.(1)事件A和事件B是随机事件吗?哪个事件发生的可能性大?(2)20个小组进行“10次摸球”的试验中,事件A发生的可能性大的有几组?“20次摸球”的试验中呢?你认为哪种试验更能获得较正确结论呢?(3)如果把刚才各小组的“20次摸球”合并在一起是否等同于“400次摸球”?这样做会不会影响试验的正确性?(4)通过上述试验,你认为,要判断同一试验中哪个事件发生的可能性较大,必须怎么做?解:(1)是随机事件,B的可能性大.(2)略.(3)不会影响.(4)进行大量的,重复的实验.活动2跟踪训练1.从一副扑克牌中,任意抽取一张,抽到的可能性较小的是( )A.黑桃B.红桃C.梅花D.大王2.小红花2元钱买了一张彩票,你认为小红( )中大奖.A.一定B.很可能。
人教新课标九年级数学上册第25章概率初步复习课教案
人教新课标九年级数学上册第25章概率初步复习课教案人教新课标版初中九上第25章概率初步复习课教案【学习目标】1.能正确指出自然和社会现象中的一些必然事件、不可能事件、不确定事件.2.能从实际问题中了解概率的意义,能用列举法计算随机事件发生的概率.3.能用大量重复试验时的频率估计事件发生的概率.【学习重点】能从实际问题中了解概率的意义,能用列举法计算随机事件发生的概率.【学习难点】如何用大量重复试验时的频率估计事件发生的概率.【学习过程】知识点1、事件的有关概念:1、必然事件:在现实生活中必然发生的事件称为必然事件。
2、不可能事件:在现实生活中必然不会发生的事件称为不可能事件。
必然事件和不可能事件统称确定事件。
3、随机事件:在现实生活中,有可能发生,也有可能不发生的事件称为随机事件。
知识点2、概率及其计算:1、定义:在随机事件中,一件事发生的可能性的大小的数值叫做这个事件的概率。
2、适用条件:(1)可能出现的结果只有有限个;(2)各种结果发生的可能性相等。
3.求法:(1)利用列表法或树形图法的方法列举出所有机会均等的结果;(2)弄清我们关注的是哪个或哪些结果;(3)求出关注的结果数与所有等可能出现的结果数的比值,即关注事件的概率.列表法一般应用于两个元素,且结果的可能性较多的题目,当事件涉及三个或三个以上元素时,用树形图列举:4、概率的应用:概率是和实际结合非常紧密的数学知识,可以对生活中的某些现象作出评判,如解释摸奖,配紫色,评判游戏活动的公平性,数学竞赛获奖的可能性等等,还可以对某些事件作出决策.跟踪练习:1、有两个事件,事件A: 367人中至少有2人生日相同;事件B :抛掷一枚均匀的骰子,朝上的面点数为偶数.下列说法正确的是( D )A .事件A 、B 都是随机事件.B .事件A 、B 都是必然事件.C .事件A 是随机事件,事件B 是必然事件.D .事件A 是必然事件,事件B 是随机事件.2、下列事件中不是必然事件的是( A )A.面积相等的两个三角形全等.B.三角形任意两边之和大于第三边.C.角平分线上的点到角两边的距离相等.D.三角形内心到三边距离相等.3、如图,有牌面数字都是2,3,4的两组牌.从每组牌中各随机摸出一张,请用画树状图或列表的方法,求摸出的两张牌的牌面数字之和为6的概率.4、把大小和形状完全相同的6张卡片分成两组,每组3张,分别标上1、2、3,将这两组卡片分别放入两个盒子中搅匀,再从中随机抽取一张.(1)试求取出的两张卡片数字之和为奇数的概率;解:画树状图如下:∵共有九种情况,数字之和为6的共有3种,∴随机摸出的两张牌的牌面数字之和为6的概率为39=13.(2)若取出的两张卡片数字之和为奇数,则甲胜;取出的两张卡片数字之和为偶数,则乙胜;试分析这个游戏是否公平?请说明理由.小结:通过本节课的学习,你有什么收获?。
人教版九年级数学上册第25章概率初步《复习课》导学案
人教版九年级数学上册第25章概率初步《复习课》导学案第二十五章复课1.能在现实情境中区分随机事件、不可能事件和必然事件,知道必然事件的概率为1,不可能事件的概率为0,随机事件的概率在和1之间.2.会灵活选用直接列举法、列表法和画树状图法求随机事件的概率.3.会用频率估计概率解决生活中的实际问题.4.重点:用列表法、画树状图法求概率,用频率估计概率.◆体系构建完成下面的知识结构图.◆核心梳理1.必然事件:在一定条件下,必然发生的事件称为必然事件.2.不可能事件:在一定条件下,必然不会发生的事件称为不可能事件.3.随机事件:在一定条件下,可能发生也可能不发生的事件,称为随机事件.4.确定性事件:必然事件和不可能事件统称为确定事件.5.几率:一般地,对于一个随机事件A,我们把刻画其发生大概性大小的数值,称为随机事件A发生的几率,记为P(A),计算公式:P(A)=.6.当一个试验具备以下两个特点时,就可以用列举法求几率:(1)每一次试验中,大概呈现的结果只有有限个;(2)在每一次试验中,各种结果呈现的大概性相称.7.列举事件的所有结果可以用列表法和画树状图法.8.一般地,在大量的重复试验中,如果事件A发生的频率稳定在某个常数p附近,那么事件A发生的几率P(A)=p.专题一:各种事件的确定1.用长为5 cm,6 cm,7 cm的三条线段围成三角形的事件是A.随机事件B.必然事件C.不可能事件D.以上都不是2.下列事件中,为必然事件的是A.购买一张彩票,中奖(B)(D)B.打开电视,正在播放广告C.抛掷一枚硬币,正面向上D.一个口袋中只装有5个黑球,从中摸出一个球是黑球专题二:随机事件发生的可能性3.从1,2,3,4,5,6,7,8,9,10这十个数中随机取出一个数,取出的数是2的倍数的几率是XXX.(C)4.如图,在两个同心圆中,四条直径把大圆分红八等份,若往圆面投掷飞镖,则飞镖落在黑色地区的大概性是.【方法归纳交流】1.对于简单的有限等可能试验,我们可以直接找出可能出现的所有结果数n和事件A包含的结果数m,然后应用公式P(A)=,求出事件A发生的概率.2.与面积有关的几率,可以用事件A所占的面积除以总面积来求得.专题三:列举法求随机事件的几率5.在x2□2xy□y2的空格□中,分别填上“+”或“-”,所得的代数式能构成完全平方式的概率是(C)XXX.6.某市体育中考现场考试内容有三项,50米短跑为必测项目,另在立定跳远、实心球(二选一)和坐位体前屈、1分钟跳绳(二选一)中选择.(1)每位考生有种选择方案;(2)用画树状图或列表的方法求XXX与XXX选择同种方案的概率.(友情提醒:各种方案用A、B、C、D来代表可简化解答过程)解:(1)4.(2)把4种方案分别列为A:立定跳远、坐位体前屈;B:实心球、1分钟跳绳; C:立定跳远、1分钟跳绳;D:实心球、坐位体前屈; ∴XXX与XXX选择同种方案的几率是=.。
人教版九年级数学上册第25章 概率初步《复习课》导学案
人教版九年级数学上册第25章概率初步《复习课》导学案Chapter 25 Review ClassIn this chapter。
XXX een random events。
impossible events。
and certain events in real-life XXX event is 1.the probability of an impossible event is 0.and the probability of a random event is een0 and 1.We can use us methods such as direct n。
listing。
XXX。
we can use frequency to XXX.Here are the key points we covered:1.XXX events are events that are XXX.2.Impossible events are events that are XXX.3.Random events are events that may or may not XXX.4.XXX.5.Probability is a numerical value that describes the likelihood of a random event A occurring。
denoted as P(A)。
and calculated using the formula P(A)=.6.We can use XXX of a random event if the experiment meets two criteria: (1) there are a limited number of possible es。
and (2) each e has an equal chance of occurring.7.We can use XXX.8.In general。
九年级数学上册第二十五章《概率初步(数学活动)》教学设计(新版)新人教版【精品教案】
概率初步一、内容及内容解析1.内容用试验估计“豆子落在区域C”“每个同学抽到黑桃”的概率.2.内容解析活动1中“豆子落在区域C”的概率可以用几何概型求得.几何概型是另一种等可能概型,它与古典概型的区别在于试验结果是无限个.只要把半径为6的圆内部所有点作为试验的全部结果,区域C内的所有点作为事件W的结果,则根据公式P(W)=构成事件W的区域面积/试验的全部结果所构成的区域面积,可求得相应事件的概率.因此,“豆子落在区域C的概率”等于半径为2的圆的面积与半径为6的圆的面积的比,但学生没有学过此概率模型.活动2“每个同学抽到黑桃”试验,是想通过频率估计概率的方法,去验证现实生活中常用的抓阄的方法是否公平.其实,把3个人都抽完一次签作为一次试验,通过古典概型可计算每个同学抽到黑桃的概率是相等的,但这里列基本事件对学生来说有点难度.由于这两种试验发生的概率,以学生现有的知识不容易通过计算获得,因此只能通过用频率估计概率.通过这两个数学活动,可以帮助学生进一步理解概率的意义,拓宽对概率的认识,并且进一步体会到频率估计概率方法应用的广泛性以及概率在实际生活中的作用.基于以上分析,确定本课的教学重点是:估计活动1与活动2的概率,体会频率估计概率应用的广泛性以及在实际生活中的作用.二、目标和目标解析1.目标(1)通过试验,获得“豆子落在区域C”“每个同学抽到黑桃”的概率.(2)通过试验,体会频率估计概率应用的广泛性以及在实际生活中的作用.2.目标解析达成目标(1)的标志是:学生分组多次重复试验,统计每次试验落在A,B,C三个区域中豆子数的比,并分析这个比与A,B,C三个区域面积的关系,得出概率与面积的关系,进而发现这个试验中概率的求法.学生通过分组进行多次重复试验,统计每次试验抽中的人,最终计算每个人抽中的频率,估计出“每个同学抽到黑桃”的概率.达成目标(2)的标志是:学生初步发现区域面积与概率的关系,并认识到用频率估计概率的方法的应用范围更广,更具有一般性,同时体会到用概率帮助解释如“抓阄是否公平”等生活实际中的疑问.三、教学问题诊断这两个活动都没有原始数据,需要学生自己首先从事收集数据的活动,然后对数据进行处理,最后运用统计知识进行分析数据,这样的活动都具有较强的实践性和综合性.因此,需要教师对如何试验,进行哪些操作给以帮助和指导.对于分析这个比与A,B,C三个区域面积的关系,得出概率与面积的关系,进而发现这个试验中概率的求法,学生没有相关的知识与经验,此时需要教师设计问题予以启发.基于以上分析,确定本节课的教学重点是:通过试验获得“豆子落在区域C”“每个同学抽到黑桃”的概率.四、教学过程设计1.完成活动1的试验问题1 在如图所示的图形中随机撒一把豆子,计算落在A,B,C三个区域中豆子数的比.多次重复这个试验,你能否发现上述比与A,B,C三个区域的面积有何关系?师生活动:学生观察思考,教师先指导学生记录试验结果,然后教师组织学生分组进行试验.每组试验20次,并将各组的试验结果统计在一起.然后提问:(1)对照多次试验的结果,落在A,B,C三个区域中豆子数的比是否具有一定的稳定性?(2)上述比与A,B,C三个区域的面积有何关系?(3)这表明落在A,B,C三个区域中豆子数的多少与什么有关?设计意图:让学生亲自动手试验,获得真实数据,并对数据收集、整理、分析,发现落在A,B,C三个区域中豆子数的多少与每个区域的面积大小有关.体会随机事件的随机性与稳定性特征.问题2 如果将“豆子落在区域C”记作事件W,请估计事件W的概率.师生活动:教师提出问题,学生思考.根据频率估计概率,落在区域C中的豆子数与落在A,B,C三个区域中豆子总数之比,可以作为“豆子落在区域C”的概率.设计意图:通过频率估计几何概型试验中的概率,使学生体会频率估计概率是求概率的一般方法.2.完成活动2的试验问题3 3张扑克牌中只有1张黑桃,3为同学依次抽取,他们抽到黑桃的概率跟抽取的顺序有关吗?他们抽到黑桃的概率各是多少?如何得到这个概率?师生活动:教师出示问题,然后组织学生进行讨论,最后发现用列举法求比较困难,于是选择用频率估计概率的方法.教师组织学生分组试验,每组记录好试验的次数,以及每次试验抽中黑桃的人数,每组试验20次,计算20次试验中,每个人抽中黑桃的次数,并计算频率,最后教师将全班同学试验次数,每个人抽中黑桃的次数进行汇总,并计算随着试验次数增加时,每个人抽中黑桃的频率,最后全班共同分析,随着试验次数的增加,每个人的频率稳定在13左右.因此,每个人抽到黑桃的概率跟抽取的顺序无关.设计意图:使学生经历用频率估计概率的过程,感受在大量重复试验中,随着试验次数的增加,频率趋于稳定性.问题4 抓阄是实际生活中常见的一种进行选择的方法,有人说这种方法公平,也有人说这种方法不公平,通过上述摸牌试验,你觉得这种方法公平吗?为什么?师生活动:教师出示问题,学生思考、讨论.设计意图:学生受到摸牌试验的启发,不难发现摸牌与抓阄是同类试验,因此每个人抽中的概率是相同的,因此抓阄是公平的.让学生体会到数学方法可以解释生活中很多现象的原因.3.小结教师与学生一起回顾本节课所学主要内容,并请学生回答以下问题:(1)本节课中两个试验的概率是通过怎样的方法得到的?(2)你觉得试验在求概率中有何作用?(3)你觉得概率在生活中对你有何帮助?设计意图:通过小结,总结本节课所学内容,体会试验在求概率中的作用,以及概率在生活实际中的作用.4.布置作业就“抓阄公平吗?”采访一下自己的父母或朋友,用你所学的数学知识和他们进行交流.五、目标检测设计1.如图,在正方形ABCD 中随机选取一点,你能设计一个试验,用频率估计概率的方法,求出此点恰在△ABO 内部的概率吗?设计意图:考查学生能否设计试验利用频率估计概率.2.4张扑克牌中只有1张黑桃,4位同学依次抽取,他们抽到黑桃的概率跟抽取的顺序有关吗?他们抽到黑桃的概率各是多少?设计意图:考查学生是否了解了这种游戏的公平性.A B D C O。
九年级数学上册25概率初步复习导学案新版新人教版
第25章概率初步复习一、知识梳理1.概率的有关概念:(1)必然事件:在一定条件下,有些事件,这样的事件称为必然事件.(2)不可能事件:在一定条件下,有些事件发生,这样的事件称为不可能事件.(3)确定事件:统称确定事件。
(4)随机事件:在一定条件下,有些事件事件,称为随机事件。
(5)不确定事件:许多事情我们无法确定它,这些事情称为不确定事件.(6)概率的定义:对于一个随机事件A,我们把刻画数值,称为随机事件A发生的概率2.概率的计算:(1)概率的计算有理论计算和实验计算两种方式.其一是当试验次数很多时,一个事件发生的频率也稳定附近.因此,我们可以通过多次试验,用一个事件概率;其二对于某些特殊类型的试验,而通过列举法进行分析就能得到事件的概率.例如掷一个骰子(骰子的构造相同,质地均匀),向上的一面的点数有6种可能,即1,2,3,4,5,6.因此每种结果的可能性相等,都是16.(2)试验的特点是:1.一次试验中,可能出现的结果有限多个;2.一次试验中,各种结果发生的可能性相等.具有这些特点的试验称为 .(3)如果一次试验中共有n种可能出现的结果,而且这些结果出现的可能性都相同,其中事件A包含的结果有m种,那么事件A发生的概率P(A)=mn,可以利用列表法或树状图来球其中的m、n,从而得到事件A的概率.(4)不可能事件发生的概率为,即P(不可能事件)= ;必然事件发生的概率为,即P(必然事件)= ;如果A为不确定事件,那么0<P(A)<1.二、题型、技巧归纳类型一、事件类型的辨别【主题训练1】(攀枝花中考)下列叙述正确的是( )A.“如果a,b是实数,那么a+b=b+a”是不确定事件B.某种彩票的中奖概率为17,是指买7张彩票一定有一张中奖C.为了了解一批炮弹的杀伤力,采用普查的调查方式比较合适D.“某班50位同学中恰有2位同学生日是同一天”是随机事件【自主解答】选D.“如果a,b是实数,那么a+b=b+a”是必然事件;某种彩票的中奖概率为 ,是指中奖的机会是 ,在7张彩票中不一定会中奖;为了了解一批炮弹的杀伤力,调查具有破坏性,应采用抽查方式比较合适;“在50位同学中恰有2位同学生日是同一天”是随机事件.归纳:判断事件类型的流程类型二、求事件的概率【主题训练2】(黄冈中考)如图,有四张背面相同的纸牌A,B,C,D,其正面分别是红桃,方块,黑桃,梅花,其中红桃、方块为红色,黑桃、梅花为黑色,小明将这4张纸牌背面朝上洗匀后,摸出一张,将剩余3张洗匀后再摸出一张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌用A,B,C,D表示).(2)求摸出的两张纸牌同为红色的概率.【自主解答】(1)树状图法:列表法:(2)一共有12种情况,符合条件的有2种,即21==P.126【主题升华】求随机事件概率的类型及策略1.有限等可能性事件:(1)事件只包含一个因素:用列举的方法,根据公式P=n求得结果.m求得结果.(2)事件包含两个因素:用列表或画树状图的方法,根据公式P=nm(3)事件包含三个因素:用画树状图的方法,根据公式P=n求得结果.m2.无限等可能性事件:与面积有关的事件的概率可以通过区域面积与总面积的比值来求解.类型三概率的应用【主题训练3】(青岛中考)小明和小刚玩摸纸牌游戏,如图,两组相同的纸牌,每组两张,纸面数字分别是2和3,将两组牌背面朝上,洗匀后从每组牌中各摸出一张,称为一次游戏.当两张牌牌面数字之和为奇数,小明得2分,否则小刚得1分,这个游戏对双方公平吗?请说明理由.【自主解答】列表得:∴P(和为奇数)=.42= 同理,P(和为偶数)=.42= 故小明所得分值=111.22⨯= 小刚所得分值为111.22⨯=∴游戏对小刚不公平.【主题升华】 关于游戏中概率的两个注意点 1.判断游戏公平的标准:游戏双方获胜的概率(或游戏得分)是否相等,是判断游戏是否公平的唯一标准;若相等,则游戏公平,若不相等,则游戏不公平.2.变非公平游戏为公平游戏的两个途径: (1)改变游戏规则,使双方获胜的概率相等.(2)不改变双方获胜的概率,改变得分情况,使双方得分相等. 典例精析:例题:甲、乙两人用手指玩游戏,规则如下:(ⅰ)每次游戏时,两人同时随机各伸出一根手指; (ⅱ)两人伸出的手指中,大拇指只胜食指,食指只胜中指,中指只胜无名指,无名指只胜小拇指,小拇指只胜大拇指,否则不分胜负,依据上述规则,当甲、乙两人同时随机地各伸出一根手指时.(1)求甲伸出小拇指取胜的概率. (2)求乙取胜的概率.【解析】(1)设A,B,C,D,E 分别表示大拇指、食指、中指、无名指、小拇指,列表如下:可能性,∴P(甲伸出小拇指取胜)= 1.25(2)由上表可知,乙取胜有5种可能性,∴P(乙取胜)= 51. 255=三、随堂检测1.(舟山中考)下列说法正确的是( )A.要了解一批灯泡的使用寿命,应采用普查的方式B.若一个游戏的中奖率是1%,则做100次这样的游戏一定会中奖C.甲、乙两组数据的样本容量与平均数分别相同,若方差s甲2=0.1,s乙2=0.2,则甲组数据比乙组数据稳定D.“掷一枚硬币,正面朝上”是必然事件2.(淄博中考)请写出一个概率小于的随机事件: .3.(梧州中考)小李是9人队伍中的一员,他们随机排成一列队伍,从1开始按顺序报数,小李报到偶数的概率是( )2411A. B. C. D.39294.(黔东南中考)从长为10 cm,7 cm,5 cm,3 cm的四条线段中任选三条能构成三角形的概率是( )1113A. B. C. D.43245.(随州中考)在一个不透明的布袋中有2个红色和3个黑色小球,它们只有颜色上的区别.(1)从布袋中随机摸出一个小球,求摸出红色小球的概率.(2)现从袋中取出1个红色和1个黑色小球,放入另一个不透明的空布袋中.甲、乙两人约定做如下游戏:两人分别从这两个布袋中各随机摸出一个小球,若颜色相同,则甲获胜;若颜色不同,则乙获胜.请用树状图(或列表)的方法表示游戏所有可能结果,并用概率知识说明这个游戏是否公平.【答案】1. 【解析】选C.①要了解一批灯泡的使用寿命,应采用抽样调查的方式;②若一个游戏的中奖率是1%,则说明中奖的概率是1%,100次这样的游戏不一定会中奖;③甲、乙两组数据的样本容量与平均数分别相同,方差越小,则数据越稳定;④“掷一枚硬币,正面朝上”是随机事件.2. 答案:在一个不透明的袋子里,有三个大小和形状完全相同的球,其中有两个红球和一个黄球,摸出一个球是黄球的概率3. 【解析】选B.1到9这9个自然数中是偶数的有2,4,6,8,共4个,所以任意报数,是偶数的概率是494. 【解析】选C.从长为10 cm,7 cm,5 cm,3 cm 的四条线段中任选三条,共有(10,7,5),(10,7,3),(7,5,3),(10,5,3)四种可能性,能构成三角形的有(10,7,5),(7,5,3)两种,所求概率为1.25. 【解析】(1)从布袋中随机摸出一个小球,一共有5种可能性,是红色的可能性是2种,即P(红色小球)=2.5(2)画树状图如下:由上可知,两次摸球的结果共6种可能,其中颜色相同的结果有3种可能,颜色不同的结果有3种可能.∵P(甲获胜)=12,P(乙获胜)=12,∴这个游戏是公平的.。
九年级数学上册 第25章 概率初步章末复习教案 新人教版
概率初步章末复习一、复习导入1.导入课题:同学们,通过对本章的学习,你对本章的知识结构和重要知识点及其运用是否有一个清晰的认识呢?为了强化同学们对本章的知识认知和应用,下面我们一起来对本章学习内容进行回顾总结.2.复习目标:(1)通过复习,进一步认清本章的知识结构.(2)熟悉本章重要的知识要点和解题方法.(3)熟练地用列举法和频率估算法求随机事件的概率.3.复习重、难点:重点:巩固准确运用两种求概率的方法以及用频率估计概率的方法.难点:用列表法或树形图法求概率的合理选用.4.复习指导:(1)复习内容:教材127页到第151页的内容.(2)复习时间:10分钟.(3)复习要求:对照本章的知识展开图重新看课本重点知识点的讲解,边看书,边记忆,边归纳,对存在疑问的地方进行交流.(4)复习参考提纲:①说说必然事件、不可能事件和随机事件有什么本质区别.必然事件一定发生;不可能事件一定不发生;随机事件有可能发生,也有可能不发生.②必然事件、不可能事件和随机事件的概率各是多少?必然事件的概率为1,不可能事件的概率为0,随机事件的概率介于0和1之间.③在什么事件中适合用P(A)=mn得到事件的概率?随机事件④求一个事件的概率,如果发生的可能结果数目较多时且涉及两个因素,通常适合采用什么方法?列表法⑤用画树状图的方法求一个随机事件的概率时,事件涉及的因素应满足什么条件?因素等于或多于两个.⑥事件发生的概率与事件发生的频率有何关系?概率是指这件事发生的可能性.频率表示事件发生的次数与总次数的比值.频率不等同于概率.但当重复实验的次数逐渐增大时,频率逐渐趋近于概率.二、自主复习学生可参照自学指导进行自学.三、互助复习1.师助生:(1)明了学情:倾听学生讨论的问题,看学生完成提纲的情况.(2)差异指导:对学生在自学中的方法和认识理解偏差进行指导,帮助学生理顺知识网络.2.生助生:学生之间相互交流,帮助整理和解决疑难问题.四、强化1.知识结构图表:2.3.4.5.练习:已知电流在一定时间内正常通过电子元件的概率是0.5,分别求在一定时间段内,A,B之间和C,D之间电流能够正常通过的概率.(提示:在一次试验中,每个电子元件的状态有两个可能(通电,断开),并且这两种状态的可能性相等,用列举的方法可以得出电路的四种可能状态.解:设A,B之间从左到右的两个电子元件依次为R1和R2,则在A,B之间的电路有4种可能状态:(R1通电、R2通电),(R1通电、R2断开),(R1断开、R2通电),(R1断开、R2断开).其中只有1种状态,即R1和R2都通电时A,B之间的电流才正常通过,所以P(A,B之间电流能够正常通过)=14.设C,D之间从上到下的两个元件依次为R3和R4,则在C,D之间的电路也有4种可能状态:(R3通电、R4通电),(R3通电、R4断开),(R3断开、R4通电),(R3断开、R4断开),其中前三种状态都能使C,D之间的电流正常通过,所以P(C,D之间电流能够正常通过)=34.五、评价1.学生的自我评价(围绕三维目标):各小组学生代表交流自己的学习收获和学后体会.2.教师对学生的评价:(1)表现性评价:对学生的学习态度、方法、成效及不足进行点评.(2)纸笔评价:课堂评价作业.3.教师的自我评价(教学反思):本节课一方面对全章知识进行系统归纳与总结,提升学生的整体观念,另一方面是对前面新课学习的回顾.本节课重点复习了用列举法求概率、用频率估计概率.通过实际问题的解答,提高学生分析问题的能力,增强了用数学解决问题的意识.同时让学生通过本课的复习,掌握运用概率知识的一些基本方法和步骤.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分)下列事件中,不是随机事件的是(D )A.篮球队员在罚球线上投篮一次,未投中B.经过某一有交通信号灯路口,遇到了红灯C.小伟掷两次硬币,每次向上的都是正面D.测量一下三角形的三个内角,其和为360°2.(10分)从1,2,3,4,5,6,7,8,9,10这十个数中随机取出一个数,取出的数是3的倍数的概率是(D ) A. 15 B. 16 C. 13 D. 3103.(10分)如图所示,有两个可以自由转动的均匀转盘A ,B ,转盘A 被均匀地分成4等份,每份分别标上1,2,3,4四个数字;转盘B 被均匀地分成6等份,每份分别标上1,2,3,4,5,6六个数字,分别转动转盘A 和B ,A 盘停止后指针指向奇数的概率和B 盘停止后指针指向奇数的概率哪个大?为什么?(如果指针恰好指在分格线上,取分格线右边的数字.)解:A 转盘停止后,指针指向奇数的概率为=2142.B 转盘停止后,指针指向奇数的概率为=3162,所以两者相等. 4.(30分)一个批发商从某服装制造公司购进了50包型号为L 的衬衫,由于包装工人的疏忽,在包裹中混进了型号为M 的衬衫,每一包中混入的M 号衬衫数见下表:M 号衬衫数0145791011包数7310155433一位零售商从50包中任意选取了一包,求下列事件的概率:(1)包中没有混入的M 号衬衫;(2)包中混入的M 号衬衫数不超过7;(3)包中混入的M 号衬衫数超过10.解:(1)P (包中没有混入M 号衬衫)=750. (2)P (包中混入M 号衬衫数不超过7)=++++=73101554505. (3)P (包中混入的M 号衬衫数超过10)=350. 5.(10分)同时掷两枚质地均匀的骰子,求点数和小于5的概率.解:同时投掷两枚骰子,点数和的所有可能的结果列表如下:共有36种可能性相等的结果,其中点数和小于5的结果有6种,所以P (点数和小于5)==61366. 二、综合应用(20分)6.(20分) 随机抛掷图中均匀的正四面体(正四面体的各面依次标有1,2,3,4四个数字),并且自由转动图中的转盘(转盘被分成面积相等的五个扇形区域,如果指针恰好指在分格线上,取分格线右边的数字).(1)求正四面体着地的数字与转盘指针所指区域的数字之积为4的概率;(2)设正四面体着地的数字为a ,转盘指针所指区域内的数字为b ,求关于x 的方程b ax x ++=2304有实数根的概率. 解:(1)用树状图表示二者的数字之积为4的结果如下:由上图可知,共有20种可能性相等的结果,其中数字之积为4(记为事件A )的结果有3种,所以()P A =320. (2)若方程b ax x ++=2304有实数根(记为事件B ),则9-ab≥0,即ab≤9,由(1)可知满足ab≤9的结果有14种,所以()P B ==1472010. 三、拓展延伸(10分)7.(10分)把三张形状、大小相同但画面不同的风景图片,都按同样的方式剪成相同三段,然后将上、中、下三段分别混合洗匀,从三堆图片中随机地各抽出一张,求这三张图片恰好组成一张完整风景图片的概率.解:不妨设三张风景图片为A ,B ,C ,各自平均剪成的三段分别为A 上,A 中,A 下, B 上,B 中,B 下,C 上,C 中,C 下,用树状图表示从三堆中随机地各抽出一张后的搭配结果.由图可知共有27种搭配结果,其中三张图片恰好组成一张完整风景图片(记为事件M )的结果有(A 上,A 中,A 下),(B 上,B 中,B 下),(C 上,C 中,C 下)三种.所以()P M ==31279. 如有侵权请联系告知删除,感谢你们的配合!。
人教版-数学-九年级上册 第25章 概率初步 复习导学案
二十五章概率初步复习总结【课标要求】考点课标要求知识与技能目标了解理解掌握灵活应用事件能区分可能与确定事件∨概率了解概率的意义∨运用列举法计算简单事件发生的概率∨了解用实验法求概率∨能解决实际问题∨∨【知识梳理】1.生活中的随机事件分为确定事件和不确定事件,确定事件又分为必然事件和不可能事件,其中:①必然事件发生的概率为1,即P(必然事件)=1;②不可能事件发生的概率为0,即P(不可能事件)=0;③如果A为不确定事件,那么0<P(A)<12.随机事件发生的可能性(概率)的计算方法:①理论计算又分为如下两种情况:第一种:只涉及一步实验的随机事件发生的概率,如:根据概率的大小与面积的关系,对一类概率模型进行的计算;第二种:通过列表法、列举法、树状图来计算涉及两步或两步以上实验的随机事件发生的概率,如:配紫色,对游戏是否公平的计算。
②实验估算又分为如下两种情况:第一种:利用实验的方法进行概率估算。
要知道当实验次数非常大时,实验频率可作为事件发生的概率的估计值,即大量实验频率稳定于理论概率。
第二种:利用模拟实验的方法进行概率估算。
如,利用计算器产生随机数来模拟实验。
【能力训练】一、填空题:1.一个口袋中装有4个白球,2个红球,6个黄球,摇匀后随机从中摸出一个球是白球的概率是。
2.若1000张奖券中有200张可以中奖,则从中任抽1张能中奖的概率为______。
3.一只袋内装有2个红球、3个白球、5个黄球(这些球除颜色外没有其它区别),从中任意取出一球,则取得红球的概率是___________。
4.如图,在这三张扑克牌中任意抽取一张,抽到“红桃7”的概率是。
5.小华与父母一同从重庆乘火车到广安邓小平故居参观.火车车厢里每排有左、中、右三个座位,小华一家三口随意坐某排的三个座位,则小华恰好坐在中间的概率是。
6.某班有49位学生,其中有23位女生. 在一次活动中,班上每一位学生的名字都各自写在一张小纸条上,放入一盒中搅匀. 如果老师闭上眼睛从盒中随机抽出一张纸条,那么抽到写有女生名字纸条的概率是。
初中数学九年级上册《25.7 概率初步》导学案
第二十五章概率初步年级:九年级内容:25.3利用频率估计概率(第2课时)课型:新授学习目标1、在掌握用频率估计概率的基础上,了解模拟实验估计概率的合理性与必要性。
2、掌握通过模拟实验估计概率的方法。
3、培养学生使用现代信息技术,针对一个现实问题,提出一个切实可行进行模拟实验的策略的能力。
学习重点:用频率估计概率。
学习难点:利用现代信息技术,通过模拟实验去估计概率。
学法指导通过学生间集体合作,小组讨论的形式,体会在解决某些实际问题时,有时考查实际的对象不方便时,可用模拟实验来估计概率。
学习过程:一、学习准备1、看谁做的快(1)抛掷两枚普通的骰子,“出现数字之积为奇数”与“出现数字之积为偶数”这两个概率之和是()(2)从一幅扑克牌中抽取一张,抽到红色“J”的概率是()(3)下列说法正确的是()A通过多次试验得到的某事件发生的频率等于这一事件的概率。
B某人前九次掷出的硬币都是反面朝上,那么第10次掷出的硬币正面朝上的概率一定大于反面朝上的概率。
C不确定事件的概率可能等1。
D实验估计结果与理论概率不一致。
2、概率频率的联系是什么?3、自学课本第160页,问题3,把疑难问题记录下来。
你是怎么求它的概率的?课本设计的方案的思路是什么?与前面求概率的方法有什么区别与联系?小组间讨论给出你们的结论。
二、探究归纳1、模拟实验的意义?2、你能设计一个简单的用模拟实验估计概率的问题吗?3、随机数的意义?怎样用计算机得随机数?小组间讨论实验。
三、应用提高例1:某风景区对5个旅游景点游客人数进行了统计,有关数据如下表:(1)如果这个星期天你去风景区,小明、小刚也去了,你在哪个风景区遇见他俩的机会大?为什么?(2)如果到了这个风景区,你不想把这几个景点都看完,但不知道看哪一个,于是你想出了一个主意:“抓”,那么你抓出哪种票价的机会大?有多大?例2质检员准备从一匹产品中抽取10件产品进行检查,如果是随机抽取,为了保证每件产品被抽取的机会均等。
九年级数学上册 第25章 概率初步章末复习教案 (新版)新人教版
概率初步章末复习一、复习导入1.导入课题:同学们,通过对本章的学习,你对本章的知识结构和重要知识点及其运用是否有一个清晰的认识呢?为了强化同学们对本章的知识认知和应用,下面我们一起来对本章学习内容进行回顾总结.2.复习目标:(1)通过复习,进一步认清本章的知识结构.(2)熟悉本章重要的知识要点和解题方法.(3)熟练地用列举法和频率估算法求随机事件的概率.3.复习重、难点:重点:巩固准确运用两种求概率的方法以及用频率估计概率的方法.难点:用列表法或树形图法求概率的合理选用.4.复习指导:(1)复习内容:教材127页到第151页的内容.(2)复习时间:10分钟.(3)复习要求:对照本章的知识展开图重新看课本重点知识点的讲解,边看书,边记忆,边归纳,对存在疑问的地方进行交流.(4)复习参考提纲:①说说必然事件、不可能事件和随机事件有什么本质区别.必然事件一定发生;不可能事件一定不发生;随机事件有可能发生,也有可能不发生.②必然事件、不可能事件和随机事件的概率各是多少?必然事件的概率为1,不可能事件的概率为0,随机事件的概率介于0和1之间.③在什么事件中适合用P(A)=mn得到事件的概率?随机事件④求一个事件的概率,如果发生的可能结果数目较多时且涉及两个因素,通常适合采用什么方法?列表法⑤用画树状图的方法求一个随机事件的概率时,事件涉及的因素应满足什么条件?因素等于或多于两个.⑥事件发生的概率与事件发生的频率有何关系?概率是指这件事发生的可能性.频率表示事件发生的次数与总次数的比值.频率不等同于概率.但当重复实验的次数逐渐增大时,频率逐渐趋近于概率.二、自主复习学生可参照自学指导进行自学.三、互助复习1.师助生:(1)明了学情:倾听学生讨论的问题,看学生完成提纲的情况.(2)差异指导:对学生在自学中的方法和认识理解偏差进行指导,帮助学生理顺知识网络.2.生助生:学生之间相互交流,帮助整理和解决疑难问题.四、强化1.知识结构图表:2.3.4.5.练习:已知电流在一定时间内正常通过电子元件的概率是0.5,分别求在一定时间段内,A,B之间和C,D之间电流能够正常通过的概率.(提示:在一次试验中,每个电子元件的状态有两个可能(通电,断开),并且这两种状态的可能性相等,用列举的方法可以得出电路的四种可能状态.解:设A,B之间从左到右的两个电子元件依次为R1和R2,则在A,B之间的电路有4种可能状态:(R1通电、R2通电),(R1通电、R2断开),(R1断开、R2通电),(R1断开、R2断开).其中只有1种状态,即R1和R2都通电时A,B之间的电流才正常通过,所以P(A,B之间电流能够正常通过)=14.设C,D之间从上到下的两个元件依次为R3和R4,则在C,D之间的电路也有4种可能状态:(R3通电、R4通电),(R3通电、R4断开),(R3断开、R4通电),(R3断开、R4断开),其中前三种状态都能使C,D之间的电流正常通过,所以P(C,D之间电流能够正常通过)=34.五、评价1.学生的自我评价(围绕三维目标):各小组学生代表交流自己的学习收获和学后体会.2.教师对学生的评价:(1)表现性评价:对学生的学习态度、方法、成效及不足进行点评.(2)纸笔评价:课堂评价作业.3.教师的自我评价(教学反思):本节课一方面对全章知识进行系统归纳与总结,提升学生的整体观念,另一方面是对前面新课学习的回顾.本节课重点复习了用列举法求概率、用频率估计概率.通过实际问题的解答,提高学生分析问题的能力,增强了用数学解决问题的意识.同时让学生通过本课的复习,掌握运用概率知识的一些基本方法和步骤.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分)下列事件中,不是随机事件的是(D )A.篮球队员在罚球线上投篮一次,未投中B.经过某一有交通信号灯路口,遇到了红灯C.小伟掷两次硬币,每次向上的都是正面D.测量一下三角形的三个内角,其和为360°2.(10分)从1,2,3,4,5,6,7,8,9,10这十个数中随机取出一个数,取出的数是3的倍数的概率是(D ) A. 15 B. 16 C. 13 D. 3103.(10分)如图所示,有两个可以自由转动的均匀转盘A ,B ,转盘A 被均匀地分成4等份,每份分别标上1,2,3,4四个数字;转盘B 被均匀地分成6等份,每份分别标上1,2,3,4,5,6六个数字,分别转动转盘A 和B ,A 盘停止后指针指向奇数的概率和B 盘停止后指针指向奇数的概率哪个大?为什么?(如果指针恰好指在分格线上,取分格线右边的数字.)解:A 转盘停止后,指针指向奇数的概率为=2142.B 转盘停止后,指针指向奇数的概率为=3162,所以两者相等. 4.(30分)一个批发商从某服装制造公司购进了50包型号为L 的衬衫,由于包装工人的疏忽,在包裹中混进了型号为M 的衬衫,每一包中混入的M 号衬衫数见下表:M 号衬衫数0145791011包数7310155433一位零售商从50包中任意选取了一包,求下列事件的概率:(1)包中没有混入的M 号衬衫;(2)包中混入的M 号衬衫数不超过7;(3)包中混入的M 号衬衫数超过10.解:(1)P (包中没有混入M 号衬衫)=750. (2)P (包中混入M 号衬衫数不超过7)=++++=73101554505. (3)P (包中混入的M 号衬衫数超过10)=350. 5.(10分)同时掷两枚质地均匀的骰子,求点数和小于5的概率.解:同时投掷两枚骰子,点数和的所有可能的结果列表如下:共有36种可能性相等的结果,其中点数和小于5的结果有6种,所以P (点数和小于5)==61366.二、综合应用(20分)6.(20分) 随机抛掷图中均匀的正四面体(正四面体的各面依次标有1,2,3,4四个数字),并且自由转动图中的转盘(转盘被分成面积相等的五个扇形区域,如果指针恰好指在分格线上,取分格线右边的数字).(1)求正四面体着地的数字与转盘指针所指区域的数字之积为4的概率;(2)设正四面体着地的数字为a ,转盘指针所指区域内的数字为b ,求关于x 的方程b ax x ++=2304有实数根的概率. 解:(1)用树状图表示二者的数字之积为4的结果如下:由上图可知,共有20种可能性相等的结果,其中数字之积为4(记为事件A )的结果有3种,所以()P A =320. (2)若方程b ax x ++=2304有实数根(记为事件B ),则9-ab≥0,即ab≤9,由(1)可知满足ab≤9的结果有14种,所以()P B ==1472010.三、拓展延伸(10分)7.(10分)把三张形状、大小相同但画面不同的风景图片,都按同样的方式剪成相同三段,然后将上、中、下三段分别混合洗匀,从三堆图片中随机地各抽出一张,求这三张图片恰好组成一张完整风景图片的概率.解:不妨设三张风景图片为A ,B ,C ,各自平均剪成的三段分别为A 上,A 中,A 下, B 上,B 中,B 下,C 上,C 中,C 下,用树状图表示从三堆中随机地各抽出一张后的搭配结果.由图可知共有27种搭配结果,其中三张图片恰好组成一张完整风景图片(记为事件M )的结果有(A 上,A 中,A 下),(B 上,B 中,B 下),(C 上,C 中,C 下)三种.所以()P M ==31279.。
《第二十五章概率初步》导学案含教学反思教学设计人教版九年级数学上
第二十五章概率初步25.1随机事件与概率25.随机事件1.了解必然发生的事件、不可能发生的事件、随机事件的特点.2.能根据随机事件的特点,辨别哪些事件是随机事件.3.有对随机事件发生的可能性大小作定性分析的能力,了解影响随机事件发生的可能性大小的因素.重点:对生活中的随机事件作出准确判断,对随机事件发生的可能性大小作定性分析.难点:对生活中的随机事件作出准确判断,理解大量重复试验的必要性.一、自学指导.(10分钟)自学:阅读教材P127~129.归纳:在一定条件下必然发生的事件,叫做__必然事件__;在一定条件下不可能发生的事件,叫做__不可能事件__;在一定条件下可能发生也可能不发生的事件,叫做__随机事件__.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.下列问题哪些是必然发生的?哪些是不可能发生的?(1)太阳从西边落下;(2)某人的体温是100℃;(3)a2+b2=-1(其中a,b都是实数);(4)自然条件下,水往低处流;(5)三个人性别各不相同;(6)一元二次方程x2+2x+3=0无实数解.解:(1)(4)(6)是必然发生的;(2)(3)(5)是不可能发生的.2.在一个不透明的箱子里放有除颜色外,其余都相同的4个小球,其中红球3个、白球1个.搅匀后,从中随机摸出1个小球,请你写出这个摸球活动中的一个随机事件:__摸出红球__.3.一副去掉大小王的扑克牌(共52张),洗匀后,摸到红桃的可能性__>__摸到J,Q,K 的可能性.(填“>”“<”或“=”)4.从一副扑克牌中任意抽出一张,则下列事件中可能性最大的是(D)A.抽出一张红桃B.抽出一张红桃KC.抽出一张梅花J D.抽出一张不是Q的牌5.某学校的七年级(1)班,有男生23人,女生23人.其中男生有18人住宿,女生有20人住宿.现随机抽一名学生,.其中可能性由大到小排列正确的是(A)A.cab B.acb C.bca D.cba点拨精讲:一般的,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.小伟掷一个质地均匀的正方形骰子,骰子的六个面上分别刻有1至6的点数.请考虑以下问题,掷一次骰子,观察骰子向上的一面:(1)出现的点数是7,可能吗?这是什么事件?(2)出现的点数大于0,可能吗?这是什么事件?(3)出现的点数是4,可能吗?这是什么事件?(4)你能列举与事件(3)相似的事件吗?点拨精讲:必然事件和不可能事件统称为确定事件.事先不能确定发生与否的事件为随机事件.2.袋中装有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出一个球.我们把“摸到白球”记为事件A,把“摸到黑球”记为事件B.(1)事件A和事件B是随机事件吗?哪个事件发生的可能性大?(2)20个小组进行“10次摸球”的试验中,事件A发生的可能性大约有几组?“20次摸球”的试验中呢?你认为哪种试验更能获得较正确结论呢?(3)如果把刚才各小组的20次“摸球”合并在一起是否等同于400次“摸球”?这样做会不会影响试验的正确性?(4)通过上述试验,你认为,要判断同一试验中哪个事件发生的可能性较大、必须怎么做?点拨精讲:(4)进行大量的、重复的试验.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟)1.下列事件中是必然事件的是(A)A.早晨的太阳一定从东方升起B.中秋节晚上一定能看到月亮C.打开电视机正在播少儿节目D.小红今年14岁了,她一定是初中生2.一个鸡蛋在没有任何防护的情况下,从六层楼的阳台上掉下来砸在水泥地面上没摔破(B)A.可能性很小B.绝对不可能C.有可能D.不太可能3.下列说法正确的是(C)A.可能性很小的事件在一次试验中一定不会发生B.可能性很小的事件在一次试验中一定发生C.可能性很小的事件在一次试验中有可能发生D.不可能事件在一次试验中也可能发生4.20张卡片分别写着1,2,3,…,20,从中任意抽出一张,号码是2的倍数与号码是3的倍数的可能性哪个大?解:号码是2的倍数的可能性大.5.指出下列事件中,哪些是必然事件,哪些是不可能事件,哪些是随机事件.(1)两直线平行,内错角相等;(2)刘翔再次打破110米跨栏的世界纪录;(3)打靶命中靶心;(4)掷一次骰子,向上一面是3点;(5)13个人中,至少有两个人出生的月份相同;(6)经过有信号灯的十字路口,遇见红灯;(7)在装有3个球的布袋里摸出4个球;(8)物体在重力的作用下自由下落;(9)抛掷一千枚硬币,全部正面朝上.解:必然事件:(1)(5);随机事件:(2)(3)(4)(6)(8)(9);不可能事件:(7).6.已知地球表面陆地面积与海洋面积的比值为3∶7.如果宇宙中飞来一块陨石落在地球上,“落在海洋里”与“落在陆地上”哪个可能性更大?解:“落在海洋里”可能性更大.学生总结本堂课的收获与困惑.(2分钟)1.必然事件、随机事件、不可能事件的特点.2.对随机事件发生的可能性大小进行定性分析. 3.理解大量重复试验的必要性.学习至此,请使用本课时对应训练部分.(10分钟)25. 概率(1)1.了解从数量上刻画一个事件发生的可能性的大小.2.理解P(A)=mn(在一次试验中有 n 种可能的结果,其中 A 包含 m 种)的意义.重点:对概率意义的正确理解.难点:对P(A)=mn(在一次试验中有 n 种可能的结果,其中 A 包含 m 种)的正确理解.一、自学指导.(10分钟)自学:阅读教材第130至132页. 归纳:1.当A 是必然事件时,P(A)=__1__;当A 是不可能事件时,P(A)=__0__;任一事件A 的概率P(A)的范围是__0≤P(A)≤1__.2.事件发生的可能性越大,则它的概率越接近__1__;反之,事件发生的可能性越小,则它的概率越接近__0__.3.一般地,在一次试验中,如果事件A 发生的可能性大小为__m n __,那么这个常数mn 就叫做事件A 的概率,记作__P(A)__.4.在上面的定义中,m ,n 各代表什么含义?mn的范围如何?为什么?点拨精讲:(1)刻画事件A 发生的可能性大小的数值称为事件A 的概率.(2)__必然__事件的概率为1,__不可能__事件的概率为0,如果A 为__随机__事件,那么0<P(A)<1.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.在抛掷一枚普通正六面体骰子的过程中,出现点数为2的概率是__16__.2.十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯恰是黄灯亮的概率为__112__.3.袋中有5个黑球,3个白球和2个红球,它们除颜色外,其余都相同.摸出后再放回,在连续摸9次且9次摸出的都是黑球的情况下,第10次摸出红球的概率为__15__.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(6分钟) 1.掷一个骰子,观察向上一面的点数,求下列事件的概率: (1)点数为2;(2)点数为奇数; (3)点数大于2小于5. 解:(1)16;(2)12;(3)13.2.一个桶里有60个弹珠,其中一些是红色的,一些是蓝色的,一些是白色的.拿出红色弹珠的概率是35%,拿出蓝色弹珠的概率是25%.桶里每种颜色的弹珠各有多少? 解:红:21;蓝:15;白:24.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(12分钟) 1.袋子中装有24个和黑球2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋中摸出一个球,摸到黑球的概率大,还是摸到白球的概率大一些呢?说明理由,并说明你能得到什么结论?解:摸到黑球的概率大.摸到黑球的可能性为1213,摸到白球的可能性为113,1213>113,故摸到黑球的概率大.(结论略)点拨精讲:要判断哪一个概率大,只要看哪一个可能性大.学生总结本堂课的收获与困惑.(2分钟)一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,事件A 包含其中的m 种结果,那么事件A 发生的概率为P(A)=__mn__且 __0__≤P(A)≤__1__.学习至此,请使用本课时对应训练部分.(10分钟)25. 概率(2)1. 进一步在具体情境中了解概率的意义;能够运用列举法计算简单事件发生的概率,并阐明理由.2.运用P(A)=mn解决一些实际问题.重点:运用P(A)=mn解决实际问题.难点:运用列举法计算简单事件发生的概率.一、自学指导.(10分钟) 自学:阅读教材P 133.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.从分别标有1,2,3,4,5号的5根纸签中随机地抽取一根.抽出的号码有多少种?抽到1的概率为多少?解:5种;15.2.掷一个骰子,向上一面的点数有多少种可能?向上一面的点数是1的概率是多少?解:6种;16.3.如图所示,有一个转盘,转盘分成4个相同的扇形,颜色分为红、绿、黄三种颜色,指针的位置固定,转动转盘后任其自由停止.指针恰好指向其中的某个扇形(指针指向两个扇形的交线时,当作指向右边的扇形),求下列事件的概率.(1)指针指向绿色;(2)指针指向红色或黄色;(3)指针不指向红色. 解:(1)14;(2)34;(3)12.点拨精讲:转一次转盘,它的可能结果有4种——有限个,并且各种结果发生的可能性相等.因此,它可以运用“P(A)=mn”,即“列举法”求概率.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)1.如图是计算机中“扫雷”游戏的画面,在一个有9×9个小方格的正方形雷区中,随机埋藏着3颗地雷,每个小方格内最多只能埋藏1颗地雷.小王在游戏开始时随机地踩中一个方格,踩中后出现了如图所示的情况,我们把与标号3的方格相邻的方格记为A 区域(划线部分),A 区域外的部分记为B 区域,数字3表示在A 区域中有3颗地雷,每个小方格中最多只能藏一颗.那么,第二步应该踩在A 区域还是B 区域?思考:如果小王在游戏开始时踩中的第一个方格上出现了标号1,则下一步踩在哪个区域比较安全?2.(1)掷一枚质地均匀的硬币的试验有几种可能的结果?它们的可能性相等吗?由此怎样确定“正面朝上”的概率?(2)掷两枚硬币,求下列事件的概率: A .两枚硬币全部正面朝上; B .两枚硬币全部反面朝上;C .一枚硬币正面朝上,一枚硬币反面朝上.思考:“同时掷两枚硬币”与“先后两次掷一枚硬币”,这两种试验的所有可能结果一样吗?点拨精讲:“同时掷两枚硬币”与“先后两次掷一枚硬币”,两种试验的所有可能结果一样.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟) 1.中国象棋红方棋子按兵种不同分布如下:1个帅,5个兵,“士、象、马、车、炮”各2个,将所有棋子反面朝上放在棋盘中,任取一个不是兵和帅的概率是( D )A .116B .516C .38D .582.冰柜中装有4瓶饮料、5瓶特种可乐、12瓶普通可乐、9瓶桔子水、6瓶啤酒,其中可乐是含有咖啡因的饮料,那么从冰柜中随机取一瓶饮料,该饮料含有咖啡因的概率是( D )A .536B .38C .1536D .17363.从8,12,18,32中随机抽取一个,与2是同类二次根式的概率为__34__.4.小李手里有红桃1,2,3,4,5,6,从中任抽取一张牌,观察其牌上的数字.求下列事件的概率:(1)牌上的数字为3;(2)牌上的数字为奇数;(3)牌上的数字大于3且小于6.解:(1)16;(2)12;(3)13.学生总结本堂课的收获与困惑.(2分钟)当一次试验要涉及两个因素并且可能出现的结果数目较多时,为不重不漏的列出所有可能的结果,通常采用列举法.学习至此,请使用本课时对应训练部分.(10分钟)25.2 用列举法求概率1. 会用列表法求出简单事件的概率.2. 会用树状图法求出一次试验中涉及3个或更多个因素时,不重不漏地求出所有可能的结果,从而正确地计算问题的概率.重点:运用列表法或树状图法计算简单事件的概率. 难点:用树状图法求出所有可能的结果.一、自学指导.(10分钟) 自学:阅读教材P 136~139.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.一个布袋中有两个白球和两个黄球,质地和大小无区别,每次摸出1个球,共有几种可能的结果?解:两种结果:白球、黄球.2.一个布袋中有两个白球和两个黄球,质地和大小无区别,每次摸出2个球,这样共有几种可能的结果?解:三种结果:两白球、一白一黄两球、两黄球.3.一个盒子里有4个除颜色外其余都相同的玻璃球,一个红色,一个绿色,两个白色,现随机从盒子里一次取出两个球,则这两个球都是白球的概率是__16__.4.同时抛掷两枚正方体骰子,所得点数之和为7的概率是__16__.点拨精讲:这里2,3,4题均为两次试验(或一次两项),可直接采用树状图法或列表法.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)1.同时掷两个质地均匀的骰子,计算下列事件的概率:(1)两个骰子的点数相同; (2)两个骰子点数的和是9; (3)至少有一个骰子的点数为2.讨论:(1)上述问题中一次试验涉及到几个因素?你是用什么方法不重不漏地列出了所有可能的结果,从而解决了上述问题?(2)能找到一种将所有可能的结果不重不漏地列举出来的方法吗?(介绍列表法求概率,让学生重新利用此法做上题).(3)如果把上例中的“同时掷两个骰子”改为“把一个骰子掷两次”,所得到的结果有变化吗?点拨精讲:当一次试验要涉及两个因素并且可能出现的结果数目较多时,为不重不漏的列出所有可能的结果,通常采用列表法. 列表法是将两个步骤分别列在表头中,所有可能性写在表格中,再把组合情况填在表内各空格中.2.甲口袋中装有2个相同的小球,他们分别写有A 和B ;乙口袋中装有3个相同的小球,分别写有C ,D 和E ;丙口袋中装有2个相同的小球,他们分别写有H 和I .从3个口袋中各随机取出1个小球.(1)取出的3个小球上恰好有1个、2个、3个元音字母的概率分别是多少? (2)取出3个小球上全是辅音字母的概率是多少?点拨:A ,E ,I 是元音字母;B ,C ,D ,H 是辅音字母.分析:弄清题意后,先让学生思考从3个口袋中每次各随机地取出一个球,共3个球,这就是说每一次试验涉及到3个因素,这样的取法共有多少种呢?打算用什么方法求得?点拨精讲:第一步可能产生的结果会是什么?——(A 和B ),两者出现的可能性相同吗?分不分先后?写在第一行.第二步可能产生的结果是什么?——(C ,D 和E ),三者出现的可能性相同吗?分不分先后?从A 和B 分别画出三个分支,在分支下的第二行分别写上C ,D 和E .第三步可能产生的结果有几个?——是什么?——(H 和I ),两者出现的可能性相同吗?分不分先后?从C ,D 和E 分别画出两个分支,在分支下的第三行分别写上H 和I .(如果有更多的步骤可依上继续)第四步按竖向把各种可能的结果竖着写在下面,就得到了所有可能的结果的总数.再找出符合要求的种数,就可计算概率了.合作完成树状图.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟) 1.将一个转盘分成6等份,分别是红、黄、蓝、绿、白、黑,转动转盘两次,两次能配成“紫色”(提示:只有红色和蓝色可配成紫色)的概率是__118__.2.抛掷两枚普通的骰子,出现数字之积为奇数的概率是__14__,出现数字之积为偶数的概率是__34__.3.第一盒乒乓球中有4个白球2个黄球,第二盒乒乓球中有3个白球3个黄球,分别从每个盒中随机的取出一个球,求下列事件的概率:(1)取出的两个球都是黄球;(2)取出的两个球中有一个白球一个黄球. 解:16;12.4.在六张卡片上分别写有1~6的整数,随机地抽取一张后放回,再随机的抽取一张,那么第二次取出的数字能够整除第一次取出的数字的概率是多少?解:718.点拨精讲:这里第4题中如果抽取一张后不放回,则第二次的结果不再是6,而是5. 5.小明和小刚用如图的两个转盘做游戏,游戏规则如下:分别旋转两个转盘,当两个转盘所转到的数字之积为奇数时,小明得2分;当所转到的数字之积为偶数时,小刚得1分.这个游戏对双方公平吗?若公平,说明理由;若不公平,如何修改规则才能使游戏对双方公平?解:P(积为奇数)=13,P(积为偶数)=23.1 2 3 1 1 2 3 224613×2=1×23.∴这个游戏对双方公平. 学生总结本堂课的收获与困惑.(2分钟)1. 一次试验中可能出现的结果是有限多个,各种结果发生的可能性是相等的.通常可用列表法和树状图法求得各种可能的结果. 2.注意第二次放回与不放回的区别.3.一次试验中涉及3个或更多个因素时,不重不漏地求出所有可能的结果,通常采用树状图法.学习至此,请使用本课时对应训练部分.(10分钟)25.3用频率估计概率1. 理解当试验的可能结果不是有限个,或各种结果发生的可能性不相等时,一般用统计频率的方法来估计概率.2. 了解用频率估计概率的方法与列举法求概率的区别,并能够通过对事件发生频率的分析,估计事件发生的概率.重点:了解用频率估计概率的必要性和合理性.难点:大量重复试验得到频率稳定值的分析,对频率与概率之间关系的理解.一、自学指导.(20分钟)自学:阅读教材P142~146.归纳:对于一般的随机事件,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总在一个固定数的附近摆动,显示出一定的稳定性.当重复试验的次数大量增加时,事件发生的频率就稳定在相应的概率附近,因此,可以通过大量重复试验,用一个事件发生的频率来估计这一事件发生的概率.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(2分钟)1.小强连续投篮75次,共投进45个球,则小强进球的频率是____.2.抛掷两枚硬币,当抛掷次数很多以后,出现“一正一反”这个不确定事件的频率值将稳定在__左右.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(5分钟)红星养猪场400头猪的质量(质量均为整数:千克)频率分布如下,其中数据不在分点上.组别频数频率46 ~50 4051 ~55 8056 ~60 16061 ~65 8066 ~70 3071~75 10从中任选一头猪,二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(6分钟)某商场设立了一个可以自由转动的转盘(如图),并规定:顾客购物10元以上能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品,下表是活动进行中的一组统计数据:转动转盘的次数n 100 150 200 500 800 1000落在“铅笔”的次数m 68 111 136 345 546 701落在“铅笔”的频率错误!(3)转动该转盘一次,获得铅笔的概率约是多少?(4)在该转盘中,标有“铅笔”区域的扇形的圆心角大约是多少?(精确到1°)【答案】:(2)0.69;(3)0.69;(4)×360°≈248°.学生总结本堂课的收获与困惑.(2分钟)尽管随机事件在每次试验中发生与否具有不确定性,但只要保持试验条件不变,那么这一事件出现的频率就会随着试验次数的增大而趋于稳定,这个稳定值就可以作为该事件发生概率的估计值.学习至此,请使用本课时对应训练部分.(10分钟)。
人教版初三数学上册第二十五章概率初步复习课教学设计.doc
第二十五章概率初步复习课教学目的:1,进一步理解随机事件及概率的定义。
2、能用多种方法进行列举,求出事件的概率。
3、理解用频率估计概率,并能知识解决生活中实际问题。
教学重点:求概率,解决实际问题教学难点:准确例举,合理选用方法。
教学过程:一、梳理本章知识1、知识结构随机事件----概率----用列举法求概率用频率估计概率2、问题(1)举例说明什么是随机事件?(2)在什么条件下适合用P(A)=m/n得到事件的概率?(3)事件发生的概率与事件发生的频率有什么关系?(4)简单叙述用频率估计概率的般做法?二、例题解析1、下列事件个是什么事件(1)太阳从西边下山(2)某人的体温是100℃(3)a平方加b平方等于-1(4)水往低处流(5)酸与碱反应生成水和盐(6)三个人的性格各部相同(7)一元二次方程x2+2x+3=0无实数解2、从一副扑克牌中任意抽取一张牌则P(抽到红桃8)=P(抽到数字为8的牌)=P(抽到数字小于8大于1的牌)=P(抽到红桃)=3、有一个转盘,分成四个相同的扇形,颜色分为红、煌、绿三种颜色,指针的位置固定,转动转盘后任其自由转动停止,其中的某个扇形会切好停在指针所指的位置(指针指向交线时,当作指向右边的扇形)求下列事件的概率(1)指针指向绿色(2)指针指向红色或黄色(3)指针不指向红色4、现有A、B两枚均匀的小立方体(立方体的每个面上分别标有数字1、2、3、4、5、6),用小刚掷A立方体朝上的数字为x,小明掷B立方体朝上的数字为y,来确定点P(),那么他们个掷一次所确定的点P落在已知直线y=2x+1的概率为多少?5、已知函数y=x-5,分别令x=1/2、1、3/2、2、5/2、3、7/2、4、9/2、5可得函数上十个点,随便取两个点P(x1,y1)Q(x2,y2),则P、Q两点在同一反比例函数上的概率是多少?6、在一口袋中有5张完全相同的卡片,分别写有1、2、3、4、5,口袋外有两张卡片,分别写有4、5,现随即从口袋中取出一张卡片,与口袋外两张卡品饭在一起,以卡片上的数量作为三条线段的长度,回答下列问题(1)求这三条线段能构成三角形的概率(2)求这三条线段能构成直角三角形的概率(3))求这三条线段能构成等腰三角形的概率7、口袋中有红色、黄色和白色的球功57个,其中15个红色球,每个球楚颜色以外没有任何区别,(1)小明通过大量反复试验(每次取一球,记下颜色,放回,搅匀再摸第二个)发现抹茶黄色球的概率稳定在1/3左右,请你估计袋中黄球的个数;(2)若小明取出的第一个球是白色,将他放在桌子上,再取第二个球,取到的球仍是白色的球的概率是多少?作业:见练习册。
人教版九年级数学上册 第25章 概率初步 精品导学案 新人教版
概率初步课题:第二十五章概率初步小结序号学习目标:1、知识和技能:1)。
.回顾本章内容,梳理本章的知识结构,建立有关概率知识的框架图。
2)。
用所学的概率知识去解决某些现实问题。
2、过程和方法:1)初步形成评价与反思的意识。
2)通过举例,进一步发展学生随机观念和统计观念。
3)体验解决问题策略的多样性,发展实践能力和创新精神。
3、情感、态度、价值观:1)积极参与回顾与思考的过程,对数学有好奇心和求知欲。
2)形成实事求是的态度。
学习重点:引导学生回顾本章内容,梳理知识结构,共同建立有关概率知识的框架图。
学习难点:结合事例,理解实验频率与理论概率的关系。
导学过程一、课前预习:阅读教材152页有关内容,思考下列问题:1、将本章知识结构图绘制的详细一些。
2.独立思考,回答“回顾与思考“中提出的问题。
二、课堂导学:1、导入同学们,学完本章后,初中阶段统计与概率部分就全部学完了,你能总结出在本章的学习中你学到的知识吗?2、出示任务、自主学习1)。
.回顾本章内容,梳理本章的知识结构,建立有关概率知识的框架图。
2)。
用所学的概率知识去解决某些现实问题。
3、合作探究阅读教材152页有关内容,回答下列问题:1.将本章知识结构图绘制的详细一些。
2.独立思考,回答“回顾与思考“中提出的问题。
三、展示反馈完成《问题导学》140—142页自主测评1---5题四、学习小结:本节课我们以问题的形式回顾本章的内容,梳理知识结构,在充分思考和交流的基础上,建立了有关概率知识的结果框架图,在自我回忆和总结中找出实验频率与理论概率的关系。
五、达标检测:1.下列事件是必然发生事件的是()A.打开电视机,正在转播足球比赛 B.小麦的亩产量一定为1000公斤C.在仅装有5个红球的袋中摸出1球,是红球 D.农历十五的晚上一定能看到圆月2.下列说法中,正确的是()A.买一张电影票,座位号一定是偶数 B.投掷一枚均匀的硬币,正面一定朝上C.三条任意长的线段可以组成一个三角形D.从1,2,3,4,5这五个数字中任取一个数,取到奇数的可能性大3.抛掷两枚各面分别标有1、2、3、4的四面体骰子,写出这个实验中的一个可能事件:;写出这个实验中的一个必然事件:.4.如图4,在这三张扑克牌中任意抽取一张,抽到“红桃7”的概率是.5.用6个球(除颜色外没有区别)设计满足以下条件的游戏:摸到白球的概率为12,摸到红球的概率为13,摸到黄球的概率为16.则应设个白球,个红球,个黄球.6.某中学七年级有6个班,要从中选出2个班代表学校参加某项活动,七(1)班必须参加,另外再从七(2)至七(6)班选出1个班.七(4)班有学生建议用如下的方法:从装有编号为1、2、3的三个白球的袋中摸出1个球,再从装有编号为1、2、3的三个红球的袋中摸出1个球(两袋中球的大小、形状与质量完全一样),摸出的两个球上的数字和是几,就选几班,你认为这种方法公平吗?请说明理由.7。
九年级数学上册第二十五章概率初步概率导学案新人教
25.1.2 概率一、自主学习1.认真自学课本第130页至第131页内容,并完成以下的填空:(1)概率的定义:记为:(2)课本两个试验有什么共同的特点?每一次试验中,每一次试验中,,2、从分别标有1,2,3 ,4,5号的5根纸签中随机地抽取一根.抽出的号码有种?抽到1的概率为多少?即:概率是P(抽到1号)= 3、掷一个骰子,向上的一面的点数有多少种可能?向上一面的点数是1的概率是多少?即: P(出现点数是1)=归纳:一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性相等,事件A包含其中的m种结果,那么事件A发生的概率为注意:1.概率从数量上刻画了一个随机事件发生的可能性的大小. 2 .当A是必然发生的事件时,P(A)=当A是不可能发生的事件时,P(A)=归纳:事件发生的可能性,则它的概率越接近;反之,事件发生的可能性越,则它的概率越接近。
总之0≤P(A)≤1二、合作探究掷一个骰子,观察向上的一面的点数,求下列事件的概率:(1)点数为3,(2)点数为偶数,(3)点数大于1小于5三、展示交流1、如图是一个转盘,转盘分成6个相同的三角形,颜色分为红、绿、黄三种颜色。
指针的位置固定,转动转盘后任其自由停止,其中的某个三角形会恰好停在指针所指的位置(指针指向两个三角形的交线时,当作指向右边的三角形)。
求下列事件的概率:1)指针指向红色 .2) 指针指向黄色或绿色 .3)指针不指向绿色.2、课本133页练习。
在具体情境中了解概率意义四、随堂检测1.小冲、小明、小芳在一起做游戏时,需要确定游戏的先后顺序.•他们约定用“石头、剪子、布”猜拳的方式确定.在1•个回合中小芳•出“布”的概率是______.2.中央电视台“幸运52”栏目中的“百宝箱”互动环节是一种竞猜游戏.游戏规则如下:在20个商标牌中,有5个商标牌的背面注明一定的奖金额,•其余商标牌的背面是一张哭脸.若翻到哭脸,就不得奖.参与这个游戏的观众有3•次翻牌机会(翻过的牌不能再翻),某观众前两次翻牌均获得若干奖金,他第三次翻牌获奖的概率是().(A)14(B)15(C)16(D)3203.如图,对角线将一个长宽不等的矩形分成4个区域,分别涂上红、黄、蓝、白四色,中间装有匀速转动的指针,则指针在每个区域内的概率是()A.一样大B.蓝白区域大C.红黄区域大D.由指针转动的速度确定4好落在灰色地面上的概率.5.“抢椅子”游戏中5人争抢去坐4张椅子,那么每个人可能坐到椅子的概率是()A.15B.19C.14D.456.一套未入住的80㎡的住宅,其中卧室①12㎡,卧室②14㎡,卧室③18㎡,卫生间8㎡,厨房8㎡,其余为客厅,一只小猫在室内地面上任意走动,那么这只小猫在各个地方的概率是多少?中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下列二次根式,最简二次根式是( )AB.CD【答案】C【解析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】A、被开方数含开的尽的因数,故A不符合题意;B、被开方数含分母,故B不符合题意;C、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C符合题意;D、被开方数含能开得尽方的因数或因式,故D不符合题意. 故选C.【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.2.如图,C,B是线段AD上的两点,若AB CD=,2BC AC=,则AC 与CD的关系为()A.2CD AC=B.3CD AC=C.4CD AC=D.不能确定【答案】B【解析】由AB=CD,可得AC=BD,又BC=2AC,所以BC=2BD,所以CD=3AC.【详解】∵AB=CD,∴AC+BC=BC+BD,即AC=BD,又∵BC=2AC,∴BC=2BD,∴CD=3BD=3AC.故选B.【点睛】本题考查了线段长短的比较,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍转化线段之间的数量关系是十分关键的一点.3.如图是一个正方体的表面展开图,如果对面上所标的两个数互为相反数,那么图中x的值是().A.3-B.3C.2D.8【答案】D【解析】根据正方体平面展开图的特征得出每个相对面,再由相对面上的两个数互为相反数可得出x的值.【详解】解:“3”与“-3”相对,“y”与“-2”相对,“x”与“-8”相对, 故x=8,故选D.【点睛】本题主要考查了正方体相对面上的文字,解决本题的关键是要熟练掌握正方体展开图的特征.4.在函数y中,自变量x的取值范围是( )A.x≥1B.x≤1且x≠0C.x≥0且x≠1D.x≠0且x≠1【答案】C【解析】根据分式和二次根式有意义的条件进行计算即可.【详解】由题意得:x≥2且x﹣2≠2.解得:x≥2且x≠2.故x的取值范围是x≥2且x≠2.故选C.【点睛】本题考查了函数自变量的取值范围问题,掌握分式和二次根式有意义的条件是解题的关键.5.已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①a+b+c<0;②a﹣b+c>1;③abc>0;④4a﹣2b+c<0;⑤c﹣a>1,其中所有正确结论的序号是()A.①②B.①③④C.①②③⑤D.①②③④⑤【答案】C【解析】根据二次函数的性质逐项分析可得解.【详解】解:由函数图象可得各系数的关系:a<0,b<0,c>0,则①当x=1时,y=a+b+c<0,正确;②当x=-1时,y=a-b+c>1,正确;③abc>0,正确;④对称轴x=-1,则x=-2和x=0时取值相同,则4a-2b+c=1>0,错误;⑤对称轴x=-2ba=-1,b=2a,又x=-1时,y=a-b+c>1,代入b=2a,则c-a >1,正确.故所有正确结论的序号是①②③⑤.故选C6.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个【答案】C【解析】试题分析:根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意.故轴对称图形有4个.故选C.考点:轴对称图形.7.已知函数y=(k-1)x2-4x+4的图象与x轴只有一个交点,则k的取值范围是( )A.k≤2且k≠1B.k<2且k≠1C.k=2 D.k=2或1【答案】D【解析】当k+1=0时,函数为一次函数必与x轴有一个交点;当k+1≠0时,函数为二次函数,根据条件可知其判别式为0,可求得k的值.【详解】当k-1=0,即k=1时,函数为y=-4x+4,与x轴只有一个交点;当k-1≠0,即k≠1时,由函数与x轴只有一个交点可知,∴△=(-4)2-4(k-1)×4=0,解得k=2,综上可知k的值为1或2,故选D.【点睛】本题主要考查函数与x轴的交点,掌握二次函数与x轴只有一个交点的条件是解题的关键,解决本题时注意考虑一次函数和二次函数两种情况.8.已知x1,x2是关于x的方程x2+ax-2b=0的两个实数根,且x1+x2=-2,x1·x2=1,则b a的值是( )A .B .-C.4 D.-1【答案】A【解析】根据根与系数的关系和已知x1+x2和x1•x2的值,可求a、b的值,再代入求值即可.【详解】解:∵x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,∴x1+x2=﹣a=﹣2,x1•x2=﹣2b=1,解得a=2,b=,∴b a=()2=.故选A.9.二次函数y=ax2+bx+c的图象在平面直角坐标系中的位置如图所示,则一次函数y=ax+b与反比例函数y=cx在同一平面直角坐标系中的图象可能是()A .B .C .D .【答案】C【解析】试题分析:∵二次函数图象开口方向向下,∴a <0,∵对称轴为直线2bx a=->0,∴b >0,∵与y 轴的正半轴相交,∴c >0,∴y ax b =+的图象经过第一、二、四象限,反比例函数c y x=图象在第一三象限,只有C 选项图象符合.故选C .考点:1.二次函数的图象;2.一次函数的图象;3.反比例函数的图象.10) A .9 B .±9 C .±3 D .3【答案】D【解析】根据算术平方根的定义求解., 又∵(±1)2=9, ∴9的平方根是±1,∴9的算术平方根是1.1. 故选:D . 【点睛】考核知识点:算术平方根.理解定义是关键. 二、填空题(本题包括8个小题)11.如图,直线x=2与反比例函数2y x =和1y x=-的图象分别交于A 、B两点,若点P 是y 轴上任意一点,则△PAB 的面积是_____.【答案】32. 【解析】解:∵把x=1分别代入2y x =、1y x=-,得y=1、y=12-, ∴A (1,1),B (1,1x -).∴13AB 122⎛⎫=--= ⎪⎝⎭. ∵P 为y 轴上的任意一点,∴点P 到直线BC 的距离为1.∴△PAB 的面积1133AB 222222=⨯=⨯⨯=. 故答案为:32. 12.已知(x+y )2=25,(x ﹣y )2=9,则x 2+y 2=_____. 【答案】17【解析】先利用完全平方公式展开,然后再求和.【详解】根据(x+y )2=25,x 2+y 2+2xy=25;(x ﹣y )2=9, x 2+y 2-2xy=9,所以x 2+y 2=17. 【点睛】(1)完全平方公式:2222a b a ab b ±=±+().(2)平方差公式:(a+b)(a-b)=22a b +.(3)常用等价变形:()2222,a b b a b a a b -=-=-+=-+ ()33a b b a -=--,()()b a b a -=--,()22a b a b --=+.13.12的相反数是______.【答案】﹣12.【解析】根据只有符号不同的两个数叫做互为相反数解答.【详解】12的相反数是12-.故答案为1 2 -.【点睛】本题考查的知识点是相反数,解题关键是熟记相反数的概念.14.一个扇形的圆心角为120°,弧长为2π米,则此扇形的半径是_____米.【答案】1【解析】根据弧长公式l =,可得r =,再将数据代入计算即可.【详解】解:∵l =,∴r ===1.故答案为:1.【点睛】考查了弧长的计算,解答本题的关键是掌握弧长公式:l =(弧长为l,圆心角度数为n,圆的半径为r).15.如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=6,AB=10,OD⊥BC于点D,则OD的长为______.【答案】1【解析】根据垂径定理求得BD,然后根据勾股定理求得即可.【详解】解:∵OD⊥BC,∴BD=CD=12BC=3,∵OB=12AB=5,∴在Rt△OBD中,.故答案为1.【点睛】本题考查垂径定理及其勾股定理,熟记定理并灵活应用是本题的解题关键.16.如图,一束光线从点A(3,3)出发,经过y轴上点C反射后经过点B(1,0),则光线从点A到点B经过的路径长为_____.【答案】2【解析】延长AC交x轴于B′.根据光的反射原理,点B、B′关于y轴对称,CB=CB′.路径长就是AB′的长度.结合A点坐标,运用勾股定理求解.【详解】解:如图所示,延长AC交x轴于B′.则点B、B′关于y轴对称,CB=CB′.作AD⊥x轴于D点.则AD=3,DB′=3+1=1.由勾股定理AB′=2∴AC+CB = AC+CB′= AB′=2.即光线从点A到点B经过的路径长为2.考点:解直角三角形的应用点评:本题考查了直角三角形的有关知识,同时渗透光学中反射原理,构造直角三角形是解决本题关键17.观察图形,根据图形面积的关系,不需要连其他的线,便可以得到一个用来分解因式的公式,这个公式是________________【答案】222()2a b a ab b +=++【解析】由图形可得:()2222a b a ab b +=++18.如图,在平面直角坐标系中,一动点从原点O 出发,沿着箭头所示方向,每次移动一个单位,依次得到点P 1(0,1);P 2(1,1);P 3(1,0);P 4(1,﹣1);P 5(2,﹣1);P 6(2,0)……,则点P 2019的坐标是_____.【答案】(673,0)【解析】由P 3、P 6、P 9 可得规律:当下标为3的整数倍时,横坐标为3n ,纵坐标为0,据此可解.【详解】解:由P 3、P 6、P 9 可得规律:当下标为3的整数倍时,横坐标为3n,纵坐标为0, ∵2019÷3=673, ∴P 2019 (673,0)则点P 2019的坐标是 (673,0).故答案为 (673,0). 【点睛】本题属于平面直角坐标系中找点的规律问题,找到某种循环规律之后,可以得解.本题难度中等偏上. 三、解答题(本题包括8个小题)19.如图,在平行四边形ABCD 中,E 为BC 边上一点,连结AE 、BD 且AE=AB.求证:∠ABE=∠EAD;若∠AEB=2∠ADB,求证:四边形ABCD是菱形.【答案】(1)证明见解析;(2)证明见解析.【解析】(1)根据平行四边形的对边互相平行可得AD∥BC,再根据两直线平行,内错角相等可得∠AEB=∠EAD,根据等边对等角可得∠ABE=∠AEB,即可得证.(2)根据两直线平行,内错角相等可得∠ADB=∠DBE,然后求出∠ABD=∠ADB,再根据等角对等边求出AB=AD,然后利用邻边相等的平行四边形是菱形证明即可.【详解】证明:(1)∵在平行四边形ABCD中,AD∥BC,∴∠AEB=∠EAD.∵AE=AB,∴∠ABE=∠AEB.∴∠ABE=∠EAD.(2)∵AD∥BC,∴∠ADB=∠DBE.∵∠ABE=∠AEB,∠AEB=2∠ADB,∴∠ABE=2∠ADB.∴∠ABD=∠ABE-∠DBE=2∠ADB-∠ADB=∠ADB.∴AB=AD.又∵四边形ABCD是平行四边形,∴四边形ABCD是菱形.20.小明遇到这样一个问题:已知:1b ca-=. 求证:240b ac-≥. 经过思考,小明的证明过程如下:∵1b ca-=,∴b c a -=.∴0a b c -+=.接下来,小明想:若把1x =-带入一元二次方程20ax bx c ++=(a ≠0),恰好得到0a b c -+=.这说明一元二次方程20ax bx c ++=有根,且一个根是1x =-.所以,根据一元二次方程根的判别式的知识易证:240b ac -≥.根据上面的解题经验,小明模仿上面的题目自己编了一道类似的题目:已知:42a cb+=-. 求证:24b ac ≥.请你参考上面的方法,写出小明所编题目的证明过程. 【答案】证明见解析【解析】解:∵42a cb+=-,∴42a c b +=-.∴420a b c ++=. ∴2x =是一元二次方程20ax bx c ++=的根. ∴240b ac -≥,∴24b ac ≥.21.关于x 的一元二次方程ax 2+bx+1=1.当b=a+2时,利用根的判别式判断方程根的情况;若方程有两个相等的实数根,写出一组满足条件的a ,b的值,并求此时方程的根.【答案】(2)方程有两个不相等的实数根;(2)b=-2,a=2时,x 2=x 2=﹣2. 【解析】分析:(2)求出根的判别式24b ac ∆=-,判断其范围,即可判断方程根的情况.(2)方程有两个相等的实数根,则240b ac ∆=-=,写出一组满足条件的a ,b 的值即可.详解:(2)解:由题意:0a ≠.∵()22242440b ac a a a ∆=-=+-=+>,∴原方程有两个不相等的实数根.(2)答案不唯一,满足240b ac -=(0a ≠)即可,例如: 解:令1a =,2b =-,则原方程为2210x x -+=, 解得:121x x ==.点睛:考查一元二次方程()200++=≠ax bx c a 根的判别式24b ac ∆=-,当240b ac ∆=->时,方程有两个不相等的实数根. 当240b ac ∆=-=时,方程有两个相等的实数根. 当240b ac ∆=-<时,方程没有实数根.22.如图,点C 在线段AB 上,AD ∥EB ,AC =BE ,AD =BC ,CF 平分∠DCE .求证:CF ⊥DE 于点F .【答案】证明见解析.【解析】根据平行线性质得出∠A=∠B ,根据SAS 证△ACD ≌△BEC ,推出DC=CE ,根据等腰三角形的三线合一定理推出即可. 【详解】∵AD ∥BE ,∴∠A =∠B . 在△ACD 和△BEC 中∵,∴△ACD ≌△BEC (SAS ),∴DC =CE .∵CF 平分∠DCE ,∴CF ⊥DE (三线合一). 【点睛】本题考查了全等三角形的性质和判定,平行线的性质,等腰三角形的性质等知识点,关键是求出DC=CE ,主要考查了学生运用定理进行推理的能力.23.某市教育局为了了解初一学生第一学期参加社会实践活动的情况,随机抽查了本市部分初一学生第一学期参加社会实践活动的天数,并将得到的数据绘制成了下面两幅不完整的统计图.请根据图中提供的信息,回答下列问题:扇形统计图中a的值为%,该扇形圆心角的度数为;补全条形统计图;如果该市共有初一学生20000人,请你估计“活动时间不少于5天”的大约有多少人?【答案】(1)25,90°;(2)见解析;(3)该市“活动时间不少于5天”的大约有1.【解析】试题分析:(1)根据扇形统计图的特征即可求得a的值,再乘以360°即得扇形的圆心角;(2)先算出总人数,再乘以“活动时间为6天”对应的百分比即得对应的人数;(3)先求得“活动时间不少于5天”的学生人数的百分比,再乘以20000即可.(1)由图可得该扇形圆心角的度数为90°;(2)“活动时间为6天” 的人数,如图所示:(3)∵“活动时间不少于5天”的学生人数占75%,20000×75%=1∴该市“活动时间不少于5天”的大约有1人.考点:统计的应用点评:统计的应用初中数学的重点,在中考中极为常见,一般难度不大.24.先化简2221169x x x x x -⎛⎫-⋅ ⎪--+⎝⎭,再在1,2,3中选取一个适当的数代入求值.【答案】3xx -,当x=2时,原式=2-. 【解析】试题分析: 先括号内通分,然后计算除法,最后取值时注意使得分式有意义,最后代入化简即可.试题解析:原式=()()2x x 1x 12x 1x 1x 3--⎛⎫-⋅ ⎪--⎝⎭-=()()2x x 1x 3x 1x 3--⋅--=x x 3- 当x=2时,原式=2223=--. 25.如图,已知在⊙O 中,AB 是⊙O 的直径,AC =8,BC =1.求⊙O 的面积;若D 为⊙O 上一点,且△ABD 为等腰三角形,求CD 的长.【答案】(1)25π;(2)CD 1CD 2=【解析】分析:(1)利用圆周角定理的推论得到∠C 是直角,利用勾股定理求出直径AB ,再利用圆的面积公式即可得到答案;(2)分点D 在上半圆中点与点D 在下半圆中点这两种情况进行计算即可.详解:(1)∵AB 是⊙O 的直径, ∴∠ACB=90°, ∵AB 是⊙O 的直径, ∴AC =8,BC =1, ∴AB =10,∴⊙O 的面积=π×52=25π.(2)有两种情况:①如图所示,当点D位于上半圆中点D1时,可知△ABD1是等腰直角三角形,且OD1⊥AB,作CE⊥AB垂足为E,CF⊥OD1垂足为F,可得矩形CEOF,∵CE=8624105 AC BCAB⋅⨯==,∴OF= CE=245,∴1241 555D F=-=,∵BE==185,∴187555OE=-=,∴75CF OE==,∴1CD===②如图所示,当点D位于下半圆中点D2时,同理可求2CD===∴CD1CD2=点睛:本题考查了圆周角定理的推论、勾股定理、矩形的性质等知识.利用分类讨论思想并合理构造辅助线是解题的关键.26.如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且AD DFAC CG=.求证:△ADF∽△ACG;若12ADAC=,求AFFG的值.【答案】(1)证明见解析;(2)1.【解析】(1)欲证明△ADF∽△ACG ,由可知,只要证明∠ADF=∠C即可.(2)利用相似三角形的性质得到,由此即可证明.【解答】(1)证明:∵∠AED=∠B,∠DAE=∠DAE,∴∠ADF=∠C,∵,∴△ADF∽△ACG.(2)解:∵△ADF∽△ACG ,∴,又∵,∴,∴1.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图所示的图形,是下面哪个正方体的展开图()A .B .C .D .【答案】D【解析】根据展开图中四个面上的图案结合各选项能够看见的面上的图案进行分析判断即可.【详解】A. 因为A选项中的几何体展开后,阴影正方形的顶点不在阴影三角形的边上,与展开图不一致,故不可能是A:B. 因为B选项中的几何体展开后,阴影正方形的顶点不在阴影三角形的边上,与展开图不一致,故不可能是B ;C .因为C选项中的几何体能够看见的三个面上都没有阴影图家,而展开图中有四个面上有阴影图室,所以不可能是C.D. 因为D选项中的几何体展开后有可能得到如图所示的展开图,所以可能是D ;故选D.【点睛】本题考查了学生的空间想象能力, 解决本题的关键突破口是掌握正方体的展开图特征.2.把边长相等的正六边形ABCDEF和正五边形GHCDL的CD边重合,按照如图所示的方式叠放在一起,延长LG交AF于点P,则∠APG=()A.141°B.144°C.147°D.150°【答案】B【解析】先根据多边形的内角和公式分别求得正六边形和正五边形的每一个内角的度数,再根据多边形的内角和公式求得∠APG的度数.【详解】(6﹣2)×180°÷6=120°,(5﹣2)×180°÷5=108°,∠APG=(6﹣2)×180°﹣120°×3﹣108°×2=720°﹣360°﹣216°=144°,故选B.【点睛】本题考查了多边形内角与外角,关键是熟悉多边形内角和定理:(n﹣2)•180 (n≥3)且n为整数).3.将抛物线23y x=向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为()A.23(2)3y x=++B.23(2)3y x=-+C.23(2)3y x=+-D.23(2)3y x=--【答案】A【解析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】将抛物线23y x=向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为23(2)3y x=++,故答案选A.4.若关于x ,y 的二元一次方程组59x y k x y k +=⎧⎨-=⎩的解也是二元一次方程236x y +=的解,则k 的值为( )A .34-B .34C .43D .43-【答案】B【解析】将k 看做已知数求出用k 表示的x 与y ,代入2x+3y=6中计算即可得到k 的值.【详解】解:59x y k x y k +=⎧⎨-=⎩①②,①+②得:214x k =,即7x k =,将7x k =代入①得:75k y k +=,即2y k =-, 将7x k =,2y k =-代入236x y +=得:1466k k -=,解得:34k =.故选:B . 【点睛】此题考查了二元一次方程组的解,以及二元一次方程的解,方程的解即为能使方程左右两边成立的未知数的值.5.如图,直线m ⊥n ,在某平面直角坐标系中,x 轴∥m ,y 轴∥n ,点A 的坐标为(-4,2),点B 的坐标为(2,-4),则坐标原点为( )A .O 1B .O 2C .O 3D .O 4【答案】A【解析】试题分析:因为A 点坐标为(-4,2),所以,原点在点A 的右边,也在点A 的下边2个单位处,从点B 来看,B (2,-4),所以,原点在点B的左边,且在点B的上边4个单位处.如下图,O1符合.考点:平面直角坐标系.6.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.30°B.25°C.20°D.15°【答案】B【解析】根据题意可知∠1+∠2+45°=90°,∴∠2=90°﹣∠1﹣45°=25°,7.下列计算正确的是()A.x2+x2=x4 B.x8÷x2=x4 C.x2•x3=x6D.(-x)2-x2=0【答案】D【解析】试题解析:A原式=2x2,故A不正确;B原式=x6,故B不正确;C原式=x5,故C不正确;D原式=x2-x2=0,故D正确;故选D考点:1.同底数幂的除法;2.合并同类项;3.同底数幂的乘法;4.幂的乘方与积的乘方.8.下列各运算中,计算正确的是()A.a12÷a3=a4B.(3a2)3=9a6C.(a﹣b)2=a2﹣ab+b2D.2a•3a=6a2【答案】D【解析】根据同底数幂的除法、积的乘方、完全平方公式、单项式乘法的法则逐项计算即可得.【详解】A、原式=a9,故A选项错误,不符合题意;B、原式=27a6,故B选项错误,不符合题意;C、原式=a2﹣2ab+b2,故C选项错误,不符合题意;D、原式=6a2,故D选项正确,符合题意,故选D.【点睛】本题考查了同底数幂的除法、积的乘方、完全平方公式、单项式乘法等运算,熟练掌握各运算的运算法则是解本题的关键.9.如图,P为⊙O外一点,PA、PB分别切⊙O于点A、B,CD切⊙O于点E,分别交PA、PB于点C、D,若PA=6,则△PCD的周长为()A.8 B.6 C.12 D.10 【答案】C【解析】由切线长定理可求得PA=PB,AC=CE,BD=ED,则可求得答案.【详解】∵PA、PB分别切⊙O于点A、B,CD切⊙O于点E,∴PA=PB=6,AC=EC,BD=ED,∴PC+CD+PD=PC+CE+DE+PD=PA+AC+PD+BD=PA+PB=6+6=12,即△PCD的周长为12,故选:C.【点睛】本题主要考查切线的性质,利用切线长定理求得PA=PB、AC=CE和BD=ED是解题的关键.10.如图,在▱ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,若BG=△CEF的面积是()A.B.C.D.【答案】A【解析】解:∵AE平分∠BAD,∴∠DAE=∠BAE;又∵四边形ABCD是平行四边形,∴AD∥BC,∴∠BEA=∠DAE=∠BAE,∴AB=BE=6,∵BG⊥AE,垂足为G,∴AE=2AG.在Rt△ABG中,∵∠AGB=90°,AB=6,BG=∴,∴AE=2AG=4;∴S△ABE=12AE•BG=142⨯⨯=∵BE=6,BC=AD=9,∴CE=BC﹣BE=9﹣6=3,∴BE:CE=6:3=2:1,∵AB∥FC,∴△ABE∽△FCE,∴S△ABE:S△CEF=(BE:CE)2=4:1,则S△CEF=14S△ABE=故选A.【点睛】本题考查1.相似三角形的判定与性质;2.平行四边形的性质,综合性较强,掌握相关性质定理正确推理论证是解题关键.二、填空题(本题包括8个小题)11=________.相加即可.【详解】解:原式=【点睛】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.12.化简:2222-2-2+1-121x x xx x x x-÷-+=_____.【答案】1x【解析】先算除法,再算减法,注意把分式的分子分母分解因式【详解】原式=222(11(11)(2)x xx x x x x---⨯++--))(=212(1)1(1)(1)x x xx x x x x-----=+++=1x【点睛】此题考查分式的混合运算,掌握运算法则是解题关键13.一个不透明的袋中装有除颜色外均相同的8个黑球、4个白球和若干个红球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中约有红球_____个. 【答案】8【解析】试题分析:设红球有x 个,根据概率公式可得0.484xx=++,解得:x =8.考点:概率.14.不等式1253x->的解集是________________ 【答案】7<-x【解析】首先去分母进而解出不等式即可.【详解】去分母得,1-2x>15 移项得,-2x>15-1 合并同类项得,-2x>14 系数化为1,得x<-7. 故答案为x<-7. 【点睛】此题考查了解一元一次不等式,解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.15.如图,直线m ∥n ,以直线m 上的点A 为圆心,适当长为半径画弧,分别交直线m ,n 于点B 、C ,连接AC 、BC ,若∠1=30°,则∠2=_____.【答案】75°【解析】试题解析:∵直线l1∥l2,∴130.A∠=∠=,AB AC=75.ACB B∴∠=∠=2180175.ACB∴∠=-∠-∠=故答案为75.16______________.【答案】-1-1.故答案为:-1.17.如图,直线x=2与反比例函数2yx=和1yx=-的图象分别交于A、B两点,若点P是y轴上任意一点,则△PAB的面积是_____.【答案】32.【解析】解:∵把x=1分别代入2yx=、1yx=-,得y=1、y=12-,∴A(1,1),B(1,1x-).∴13AB122⎛⎫=--=⎪⎝⎭.∵P为y轴上的任意一点,∴点P到直线BC的距离为1.∴△PAB的面积1133AB222222=⨯=⨯⨯=.故答案为:32.18.如图,▱ABCD中,M、N是BD的三等分点,连接CM并延长交AB于点E,连接EN并延长交CD于点F,以下结论:①E为AB的中点;②FC=4DF;③S△ECF=92EMN S;④当CE⊥BD时,△DFN是等腰三角形.其中一定正确的是_____.【答案】①③④【解析】由M、N是BD的三等分点,得到DN=NM=BM,根据平行四边形的性质得到AB=CD,AB∥CD,推出△BEM∽△CDM,根据相似三角形的性质得到,于是得到BE=AB,故①正确;根据相似三角形的性质得到=,求得DF=BE,于是得到DF=AB=CD,求得CF=3DF,故②错误;根据已知条件得到S△BEM=S△EMN =S△CBE,求得=,于是得到S△ECF =,故③正确;根据线段垂直平分线的性质得到EB=EN,根据等腰三角形的性质得到∠ENB=∠EBN,等量代换得到∠CDN=∠DNF,求得△DFN是等腰三角形,故④正确.【详解】解:∵•ƒM、N是BD的三等分点,∴DN=NM=BM,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴△BEM∽△CDM,∴,∴BE=CD,∴BE=AB,故①正确;∵AB∥CD,∴△DFN∽△BEN,∴=,∴DF=BE,∴DF=AB=CD,∴CF=3DF,故②错误;∵BM=MN,CM=2EM,∴△BEM=S△EMN =S△CBE,∵BE=CD,CF=CD,∴=,∴S△EFC =S△CBE =S△MNE,∴S△ECF =,故③正确;∵BM=NM,EM⊥BD,∴EB=EN,∴∠ENB=∠EBN,∵CD∥AB,∴∠ABN=∠CDB,∵∠DNF=∠BNE,∴∠CDN=∠DNF,∴△DFN是等腰三角形,故④正确;故答案为①③④.【点睛】考点:相似三角形的判定与性质;全等三角形的判定与性质;平行四边形的性质.三、解答题(本题包括8个小题)19.某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.降价前商场每月销售该商品的利润是多少元?要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?【答案】(1) 4800元;(2) 降价60元.【解析】试题分析:(1)先求出降价前每件商品的利润,乘以每月销售的数量就可以得出每月的总利润;(2)设每件商品应降价x元,由销售问题的数量关系“每件商品的利润×商品的销售数量=总利润”列出方程,解方程即可解决问题.试题解析:(1)由题意得60×(360-280)=4800(元).即降价前商场每月销售该商品的利润是4800元;(2)设每件商品应降价x元,由题意得(360-x-280)(5x+60)=7200,解得x1=8,x2=60.要更有利于减少库存,则x=60.即要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价60元.点睛:本题考查了列一元二次方程解实际问题的销售问题,解答时根据销售问题的数量关系建立方程是关键.20.如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O,A,B均为网格线的交点.在给定的网格中,以点O为位似中心,将线段AB放大为原来的2倍,得到线段11A B(点A,B的对应点分别为11A B、).画出线段11A B;将线段11A B绕点1B逆时针旋转90°得到线段21A B.画出线段21A B;以112A AB A、、、为顶点的四边形112AA B A的面积是个平方单位.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第25章概率初步复习
一、知识梳理
1.概率的有关概念:
(1)必然事件:在一定条件下,有些事件,这样的事件称为必然事件.
(2)不可能事件:在一定条件下,有些事件发生,这样的事件称为不可能事件.
(3)确定事件:统称确定事件。
(4)随机事件:在一定条件下,有些事件事件,称为随机事件。
(5)不确定事件:许多事情我们无法确定它,这些事情称为不确定事件.
(6)概率的定义:对于一个随机事件A,我们把刻画数值,称为随机事件A发生的概率
2.概率的计算:
(1)概率的计算有理论计算和实验计算两种方式.
其一是当试验次数很多时,一个事件发生的频率也稳定附近.因此,我们可以通过多次试验,用一个事件概率;其二对于某些特殊类型的试验,而通过列举法进行分析就能得到事件的概率.例如掷一个骰子(骰子的构造相同,质地均匀),
向上的一面的点数有6种可能,即1,2,3,4,5,6.因此每种结果的可能性相等,都是1
6
.
(2)试验的特点是:1.一次试验中,可能出现的结果有限多个;2.一次试验中,各种结果发生的可能性相等.具有这些特点的试验称为 .
(3)如果一次试验中共有n种可能出现的结果,而且这些结果出现的可能性都相同,
其中事件A包含的结果有m种,那么事件A发生的概率P(A)=m
n
,可以利用列表法或树状
图来球其中的m、n,从而得到事件A的概率.
(4)不可能事件发生的概率为,即P(不可能事件)= ;必然事件发生的概率为,即P(必然事件)= ;如果A为不确定事件,那么0<P(A)<1.
二、题型、技巧归纳
类型一、事件类型的辨别
【主题训练1】(攀枝花中考)下列叙述正确的是( )
A.“如果a,b是实数,那么a+b=b+a”是不确定事件
B.某种彩票的中奖概率为1
7
,是指买7张彩票一定有一张中奖
C.为了了解一批炮弹的杀伤力,采用普查的调查方式比较合适
D.“某班50位同学中恰有2位同学生日是同一天”是随机事件
【自主解答】选D.“如果a,b是实数,那么a+b=b+a”是必然事件;某种彩票的中奖概率为 ,是指中奖的机会是 ,在7张彩票中不一定会中奖;为了了解一批炮弹的杀伤力,调查具有破坏性,应采用抽查方式比较合适;“在50位同学中恰有2位同学生日是同一天”是随机事件.
归纳:判断事件类型的流程
类型二、求事件的概率
【主题训练2】(黄冈中考)如图,有四张背面相同的纸牌A,B,C,D,其正面分别是红桃,方块,黑桃,梅花,其中红桃、方块为红色,黑桃、梅花为黑色,小明将这4张纸牌背面朝上洗匀后,摸出一张,将剩余3张洗匀后再摸出一张.
(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌用A,B,C,D表示).
(2)求摸出的两张纸牌同为红色的概率.
【自主解答】
(1)树状图法:
列表法:
(2)一共有12种情况,符合条件的有2种,即
21
==
P.
126
【主题升华】求随机事件概率的类型及策略
1.有限等可能性事件:
(1)事件只包含一个因素:用列举的方法,根据公式P=n
求得结果.
m
求得结果.
(2)事件包含两个因素:用列表或画树状图的方法,根据公式P=n
m
(3)事件包含三个因素:用画树状图的方法,根据公式P=n
求得结果.
m
2.无限等可能性事件:与面积有关的事件的概率可以通过区域面积与总面积的比值来求解.
类型三概率的应用
【主题训练3】(青岛中考)小明和小刚玩摸纸牌游戏,如图,两组相同的纸牌,每组两张,纸面数字分别是2和3,将两组牌背面朝上,洗匀后从每组牌中各摸出一张,称为一次游戏.当两张牌牌面数字之和为奇数,小明得2分,否则小刚得1分,这个游戏对双方公平吗?请说明理由.
【自主解答】列表得:
∴P(和为奇数)=.42= 同理,P(和为偶数)=.42= 故小明所得分值=
111.22⨯= 小刚所得分值为111.22
⨯=
∴游戏对小刚不公平.
【主题升华】 关于游戏中概率的两个注意点 1.判断游戏公平的标准:
游戏双方获胜的概率(或游戏得分)是否相等,是判断游戏是否公平的唯一标准;若相等,则游戏公平,若不相等,则游戏不公平.
2.变非公平游戏为公平游戏的两个途径: (1)改变游戏规则,使双方获胜的概率相等.
(2)不改变双方获胜的概率,改变得分情况,使双方得分相等. 典例精析:
例题:甲、乙两人用手指玩游戏,规则如下:(ⅰ)每次游戏时,两人同时随机各伸出一根手指; (ⅱ)两人伸出的手指中,大拇指只胜食指,食指只胜中指,中指只胜无名指,无名指只胜小拇指,小拇指只胜大拇指,否则不分胜负,依据上述规则,当甲、乙两人同时随机地各伸出一根手指时.
(1)求甲伸出小拇指取胜的概率. (2)求乙取胜的概率.
【解析】(1)设A,B,C,D,E 分别表示大拇指、食指、中指、无名指、小拇指,列表如下:
可能性,∴P(甲伸出小拇指取胜)= 1
.
25
(2)由上表可知,乙取胜有5种可能性,∴P(乙取胜)= 51
. 255
=
三、随堂检测
1.(舟山中考)下列说法正确的是( )
A.要了解一批灯泡的使用寿命,应采用普查的方式
B.若一个游戏的中奖率是1%,则做100次这样的游戏一定会中奖
C.甲、乙两组数据的样本容量与平均数分别相同,若方差s甲2
=0.1,s乙2=0.2,则甲组数据比乙组数据稳定
D.“掷一枚硬币,正面朝上”是必然事件
2.(淄博中考)请写出一个概率小于的随机事件: .
3.(梧州中考)小李是9人队伍中的一员,他们随机排成一列队伍,从1开始按顺序报数,小李报到偶数的概率是( )
2411
A. B. C. D.
3929
4.(黔东南中考)从长为10 cm,7 cm,5 cm,3 cm的四条线段中任选三条能构成三角形的概率是( )
1113
A. B. C. D.
4324
5.(随州中考)在一个不透明的布袋中有2个红色和3个黑色小球,它们只有颜色上的区别.
(1)从布袋中随机摸出一个小球,求摸出红色小球的概率.
(2)现从袋中取出1个红色和1个黑色小球,放入另一个不透明的空布袋中.甲、乙两人约定做如下游戏:两人分别从这两个布袋中各随机摸出一个小球,若颜色相同,则甲获胜;若颜色不同,则乙获胜.请用树状图(或列表)的方法表示游戏所有可能结果,并用概率知识说明这个游戏是否公平.
【答案】
1. 【解析】选C.①要了解一批灯泡的使用寿命,应采用抽样调查的方式;②若一个游戏的中奖率是1%,则说明中奖的概率是1%,100次这样的游戏不一定会中奖;③甲、乙两组数据的样本容量与平均数分别相同,方差越小,则数据越稳定;
④“掷一枚硬币,正面朝上”是随机事件.
2. 答案:在一个不透明的袋子里,有三个大小和形状完全相同的球,其中有两个红球和一个黄球,摸出一个球是黄球的概率
3. 【解析】选B.1到9这9个自然数中是偶数的有2,4,6,8,共4个,所以任意报数,是偶数的概率是49
4. 【解析】选C.从长为10 cm,7 cm,5 cm,3 cm 的四条线段中任选三条,共有(10,7,5),(10,7,3),(7,5,3),(10,5,3)四
种可能性,能构成三角形的有(10,7,5),(7,5,3)两种,所求概率为1.
2
5. 【解析】(1)从布袋中随机摸出一个小球,一共有5种可能性,是红色的可能性是2
种,即P(红色小球)=2.5
(2)画树状图如下:
由上可知,两次摸球的结果共6种可能,其中颜色相同的结果有3种可能,颜色不同的结果有3种可能.
∵P(甲获胜)=12
,
P(乙获胜)=12
,
∴这个游戏是公平的.。