高考数学第一轮复习精品试题:数列(含全部习题答案)
高考数学一轮复习:数列
数列一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设S n 是等比数列{a n }的前n 项和,S 3S 6=13,则S 6S 12等于( )A.13B.15C.18D.192.设S n 为等差数列{a n }的前n 项和,若a 1=1,公差d =2,S k +2-S k =24,则k =( ) A .8 B .7 C .6 D .53.已知数列{a n }是各项均为正数的等比数列,a 1=3,前3项和S 3=21,则a 3+a 4+a 5=( )A .2B .33C .84D .1894.等差数列{a n }的前n 项和为S n ,若a 3+a 7-a 10=5,a 11-a 4=7,则S 13等于( ) A .152 B .154 C .156 D .1585.已知数列{a n }中,a 1=b (b >1),a n +1=-1a n +1(n ∈N *),能使a n =b 的n 可以等于( )A .14B .15C .16D .176.数列{a n }的前n 项和为S n ,若S n =2a n -1(n ∈N *),则T n =1a 1a 2+1a 2a 3+…+1a n a n +1的结果可化为( )A .1-14nB .1-12nC.23⎝⎛⎭⎫1-14n D.23⎝⎛⎭⎫1-12n 7.设等差数列{a n }的前n 项和为S n ,若S 15>0,S 16<0,则S 1a 1,S 2a 2,…,S 15a 15中最大的是( )A.S 6a 6B.S 7a 7C.S 8a 8D.S 9a 98.已知正项等比数列{a n }满足:a 7=a 6+2a 5,若存在两项a m ,a n ,使得a m a n =4a 1,则1m +4n的最小值为( ) A.32 B.53 C.256 D.43二、填空题(本大题共6小题,每小题5分,共30分.把答案填在答题卡相应位置)9.在等比数列{a n }中,a 5·a 11=3,a 3+a 13=4,则a 15a 5=________.10.已知数列{a n }满足a 1=2,a n +1=5a n -133a n -7(n ∈N *),则数列{a n }的前100项的和为________.11.已知数列{a n }的前n 项和S n 满足:S n +S m =S n +m ,且a 1=1,那么a 10=________.12.数列{a n }中,a 1=35,a n +1-a n =2n -1(n ∈N *),则a nn的最小值是________.13.已知a ,b ,c 是递减的等差数列,若将数列中两个数的位置对换,得到一个等比数列,则a 2+b 2c2的值为________.14.用大小一样的钢珠可以排成正三角形、正方形与正五边形数组,其排列的规律如下图所示:若用这m 个钢珠去排成每边n 个钢珠的正五边形数组时,就会多出9个钢珠,则m =________.三、解答题(本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤) 15.(12分)在数列{a n }、{b n }中,已知{a n }是等差数列,且a 2=3,a 5=9,又点(n ,b n )在曲线y =3x 上.(1)求数列{a n }、{b n }的通项公式;(2)令c n =a n +b n ,求数列{c n }的前n 项和T n .16.(13分)设各项为正数的等比数列{a n }的前n 项和为S n ,S 4=1,S 8=17. (1)求数列{a n }的通项公式;(2)是否存在最小正整数m ,使得当n ≥m 时,a n >201115恒成立?若存在,求出m ;若不存在,请说明理由.17.(13分)某同学在暑假的勤工俭学活动中,帮助某公司推销一种产品,每推销1件产品可获利润4元,第1天他推销了12件,之后加强了宣传,从第2天起,每天比前一天多推销3件.问:(1)该同学第6天的获利是多少元?(2)该同学参加这次活动的时间至少要达到多少天,所获得的总利润才能不少于1020元?18.(14分)已知数列{a n }是各项均不为0的等差数列,S n 是其前n 项和,且满足S 2n -1=12a 2n,n ∈N +. (1)求a n ;(2)数列{b n }满足b n =⎩⎪⎨⎪⎧2n -1(n 为奇数),12a n -1(n 为偶数),T n 为数列{b n }的前n 项和,求T 2n .19.(14分)数列{b n }(n ∈N *)是递增的等比数列,且b 1+b 3=5,b 1b 3=4. (1)求数列{b n }的通项公式;(2)若a n =log 2b n +3,求证数列{a n }是等差数列; (3)若a 21+a 2+a 3+…+a m ≤a 46,求m 的最大值. 20.(14分)已知数列{a n }单调递增,且各项非负,对于正整数K ,若对任意i ,j (1≤i ≤j ≤K ),a j -a i 仍是{a n }中的项,则称数列{a n }为“K 项可减数列”.(1)已知数列{b n }是首项为2,公比为2的等比数列,且数列{b n -2}是“K 项可减数列”,试确定K 的最大值.(2)求证:若数列{a n }是“K 项可减数列”,则其前n 项和S n =n2a n (n =1,2,…,K ).参考答案1.B [解析] 设等比数列{a n }的公比为q ,则由S 3S 6=13,得1-q 31-q 6=13, 解得q 3=2,所以S 6S 12=1-q 61-q 12=1-41-16=15,故选B.2.D [解析] ∵S k +2-S k =a k +1+a k +2=2a 1+(2k +1)d =4k +4,∴4k +4=24,可得k =5,故选D.3.C [解析] 设等比数列{a n }的公比为q ,由S 3=a 1+a 2+a 3=21,得a 1(1+q +q 2)=21,即q 2+q -6=0,解得q =2或q =-3(舍去),∴a 3+a 4+a 5=a 1(q 2+q 3+q 4)=3(22+23+24)=84,故选C.4.C [解析] 由题设a 3+a 7-a 10=5,a 11-a 4=7,得a 3+a 11+a 7-(a 10+a 4)=12,即a 7=12,则S 13=13(a 1+a 13)2=13·2a 72=156,故选C.5.C [解析] ∵a 1=b (b >1),∴a 2=-1b +1,a 3=-b +1b =-1-1b ,a 4=b ,由此可得数列{a n }是周期为3的数列,a 16=a 3×5+1=a 1=b ,故选C.6.C [解析] 由已知,有S n =2a n -1,S n -1=2a n -1-1(n ≥2),两式相减,得a n =2a n -2a n -1,即a n =2a n -1,∴数列{a n }是公比为2的等比数列,又S 1=2a 1-1,得a 1=1,则a n =2n -1,1a n a n +1=⎝⎛⎭⎫122n -1,∴T n =1a 1a 2+1a 2a 3+…+1a n a n +1=12+⎝⎛⎭⎫123+⎝⎛⎭⎫125+…+⎝⎛⎭⎫122n -1 =12⎣⎡⎦⎤1-⎝⎛⎭⎫14n 1-14=23⎝⎛⎭⎫1-14n ,故选C 7.C [解析] 由S 15>0,得S 15=15(a 1+a 15)2=15a 8>0,即a 8>0,由S 16<0,得S 16=16(a 1+a 16)2=8(a 8+a 9)<0,即a 9<-a 8<0,∴数列{a n }是递减数列,前8项为正,第9项起为负,则S 8最大,而正项中a 8最小,故选C.8.A [解析] 设等比数列的公比为q ,由a 7=a 6+2a 5,得 a 1q 6=a 1q 5+2a 1q 4,q 2-q -2=0,解得q =2或q =-1(舍去).由a m a n =4a 1,得a 1·2m -1·a 1·2n -1=4a 1,即2m +n -2=24,m +n =6,∴1m +4n =⎝⎛⎭⎫1m +4n ·m +n 6=56+2m 3n +n 6m≥56+22m 3n ·n 6m =56+23=32, 当且仅当2m 3n =n6m ,即m =2,n =4时取等号,故选A.9.3或13[解析] ∵a 5·a 11=a 3·a 13=3,a 3+a 13=4,∴a 3=1,a 13=3或a 3=3,a 13=1,∴a 15a 5=a 13a 3=3或13,故选C. 10.200 [解析] 由已知a n +1=5a n -133a n -7,得a 2=3,a 3=1,a 4=2,…,由此可知数列{a n }是周期为3的数列,其前100项的和为33×6+2=200.11.1 [解析] 方法一:由S n +S m =S n +m ,得S 1+S 9=S 10, ∴a 10=S 10-S 9=S 1=a 1=1. 方法二:∵S 2=a 1+a 2=2S 1,∴a 2=1, ∵S 3=S 1+S 2=3,∴a 3=1, ∵S 4=S 1+S 3=4,∴a 4=1, 由此归纳a 10=1.12.10 [解析] 由已知,得a 2-a 1=1,a 3-a 2=3,…,a n -a n -1=2(n -1)-1,各式相加,得a n -a 1=1+3+…+2(n -1)-1=(n -1)(1+2n -3)2=(n -1)2,即a n =(n -1)2+35,∴a n n =n +36n -2≥2n ·36n-2=10, 故当且仅当n =36n ,即n =6时,a nn有最小值,最小值是10.13.516或174 [解析] 依题意,得 ①⎩⎪⎨⎪⎧ a +c =2b ,b 2=ac 或②⎩⎪⎨⎪⎧ a +c =2b ,a 2=bc 或③⎩⎪⎨⎪⎧a +c =2b ,c 2=ab , 由①得a =b =c ,与“a ,b ,c 是递减的等差数列”相矛盾;由②消去c 整理得(a -b )(a +2b )=0,又a >b ,∴a =-2b ,c =4b ,a 2+b 2c 2=516;由③消去a 整理得(c -b )(c +2b )=0,又b >c ,∴c =-2b ,a =4b ,a 2+b 2c 2=174.14.126 [解析] 每边n 个钢珠的正三角形需要钢珠n (n +1)2个,每边n 个钢珠的正方形需要钢珠n 2个,根据已知n (n +1)2+n 2=m .设每边n 个钢珠的正五边形需要钢珠a n 个,根据组成规律,则a n +1=a n +3n +1且a 1=1,根据这个递推式解得a n =1+(3n +2)(n -1)2,根据已知1+(3n +2)(n -1)2+9=m .所以n (n +1)2+n 2=10+(3n +2)(n -1)2,解得n =9,所以m =9×102+92=126. 15.[解答] (1)设等差数列{a n }的公差为d ,则3d =a 5-a 2=9-3=6,d =2, ∴数列{a n }的通项公式是a n =a 1+(n -1)d =a 2-d +(n -1)d =2n -1; ∵点(n ,b n )在曲线y =3x 上,∴数列{b n }的通项公式为b n =3n . (2)由已知c n =a n +b n ,得数列{c n }的前n 项和为T n =c 1+c 2+…+c n =(a 1+a 2+…+a n )+(b 1+b 2+…+b n ) =n (1+2n -1)2+3(1-3n )1-3=12·3n +1+n 2-32.16.[解答] (1)设{a n }的公比为q ,由S 4=1,S 8=17,知q ≠1,所以得a 1(q 4-1)q -1=1,a 1(q 8-1)q -1=17.相除得q 8-1q 4-1=17,解得q 4=16,所以q =2或q =-2(舍去).将q =2代入a 1(q 4-1)q -1=1得a 1=115,所以a n =2n -115.(2)由a n =2n -115>201115,得2n -1>2011,而210<2011<211,所以n -1≥11,即n ≥12.因此,存在最小的正整数m =12,使得n ≥m 时,a n >201115恒成立.17.[解答] (1)记此同学第n 天推销的产品的件数为a n ,由题设可知,{a n }是一个公差为3的等差数列,则a n =12+(n -1)×3=3n +9,a 6=27,∴该同学第6天的获利是27×4=108(元).(2)设该同学前n 天推销的产品的件数为S n ,由题设可知,S n =12n +n (n -1)2×3,令4S n ≥1020,即12n +n (n -1)2×3≥255,化简,得n 2+7n -170≥0,解得n ≥10或n ≤-17(舍去),故该同学参加这次活动的时间至少要达到10天,所获得的总利润才能不少于1020元.18.[解答] (1)设数列{a n }的首项为a 1,公差为d ,在S 2n -1=12a 2n 中,令n =1,n =2,得⎩⎪⎨⎪⎧ 2S 1=a 21,2S 3=a 22,即⎩⎪⎨⎪⎧2a 1=a 21,2(3a 1+3d )=(a 1+d )2, 解得a 1=2,d =4或d =-2(舍去). 所以a n =4n -2.(2)由(1)得b n =⎩⎪⎨⎪⎧2n -1(n 为奇数),2n -3(n 为偶数),所以T 2n =1+(2×2-3)+22+(2×4-3)+24+(2×6-3)+…+22n -2+(2×2n -3)=1+22+24+…+22n -2+4(1+2+…+n )-3n =1-4n 1-4+4×n (n +1)2-3n=4n 3+2n 2-n -13. 19.[解答] (1)由⎩⎪⎨⎪⎧b 1b 3=4,b 1+b 3=5,知b 1,b 3是方程x 2-5x +4=0的两根,注意到b n +1>b n 得b 1=1,b 3=4. b 22=b 1b 3=4,得b 2=2,∴b 1=1,b 2=2,b 3=4.等比数列{b n }的公比为b 2b 1=2,∴b n =b 1q n -1=2n -1.(2)证明:a n =log 2b n +3=log 22n -1+3=n -1+3=n +2. ∵a n +1-a n =[(n +1)+2]-(n +2)=1,故数列{a n }是首项为3,公差为1的等差数列.(3)由(2)知数列{a n }是首项为3,公差为1的等差数列,有a 21+a 2+a 3+…+a m =a 21+a 1+a 2+a 3+…+a m -a 1=32+m ×3+m (m -1)2×1-3=6+3m +m 2-m 2,∵a 46=48,∴6+3m +m 2-m2≤48,整理得m 2+5m -84≤0,解得-12≤m ≤7. ∴m 的最大值是7.20.[解答] (1)设c n =b n -2=2n -2,则c 1=0,c 2=2,c 3=6,则c 1-c 1=c 1,c 2-c 1=c 2,c 2-c 2=c 1,即数列{c n }一定是“2项可减数列”, 但因为c 3-c 2≠c 1,c 3-c 2≠c 2,c 3-c 2≠c 3,所以K 的最大值为2. (2)证明:因为数列{a n }是“K 项可减数列”,所以a K -a t (t =1,2,…,K )必定是数列{a n }中的项,而{a n }是递增数列,a K -a K <a K -a K -1<a K -a K -2<…<a K -a 1,所以必有a K -a K =a 1,a K -a K -1=a 2,a K -a K -2=a 3,…,a K -a 1=a K . 故a 1+a 2+a 3+…+a K =(a K -a K )+(a K -a K -1)+(a K -a K -2)+…+(a K -a 1) =Ka K -(a 1+a 2+a 3+…+a K ),所以S K =Ka K -S K ,即S K =K2a K ,n所以S n=2a n(n=1,2,…,K).。
高考数学一轮复习精选试题:数列(解答题) Word版含答案
数列02解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)1.函数f(x)定义在[0,1]上,满足且f(1)=1,在每个区间=1,2,…)上, y=f(x) 的图象都是平行于x轴的直线的一部分.(Ⅰ)求f(0)及的值,并归纳出)的表达式;(Ⅱ)设直线轴及y=f(x)的图象围成的矩形的面积为, 求a1,a2及的值.【答案】 (Ⅰ) 由f(0)=2f(0), 得f(0)=0.由及f(1)=1, 得.同理,归纳得(Ⅱ) 当时,所以是首项为,公比为的等比数列.所以2.已知等差数列满足;又数列满足+…+,其中是首项为1,公比为的等比数列的前项和。
(I )求的表达式;(Ⅱ)若,试问数列中是否存在整数,使得对任意的正整数都有成立?并证明你的结论。
【答案】(I )设的首项为,公差为d ,于是由解得(Ⅱ)由 ① 得 ② ①—②得 即当时,,当时,于是设存在正整数,使对恒成立当时,,即 {}n a 34269,10a a a a +=+={}n b 12(1)nb n b +-12n n n b b S -+=n S 89n n a n n n c a b =-{}n c k n n k c c ≤{}n a 1a 1111239510a d a d a d a d +++=⎧⎨+++=⎩121a d =⎧⎨=⎩2(1)1n a n n ∴=-=+218881()()999n n S -=++++ (121231888)(1)(2)2()()1999n n n n nb n b n b b b ---+-+-+++=++++ (231221)888(1)(2)2()()1999n n n n n b n b b b -----+-+++=++++......1128()9n n b b b -+++= (1)128()9n n n T b b b -=+++=…1n =111b T =+2n ≥12218818()()()9999n n n n n n b T T ----=-=-=-⋅21(1)18()(2)99n n n b n -=⎧⎪∴=⎨-⋅≥⎪⎩22(1)18()(1)(2)99n n n n n C a b n n --=⎧⎪=-=⎨⋅⋅+≥⎪⎩k ,n k n N C C *∈≤1n =21703C C -=>21C C >当时, 当时,当时,,当时, 存在正整数或8,对于任意正整数都有成立。
高考数学一轮复习《数列的综合运用》练习题(含答案)
高考数学一轮复习《数列的综合运用》练习题(含答案)一、单选题1.某银行设立了教育助学低息贷款,其中规定一年期以上贷款月均等额还本付息(利息按月以复利计算).如果小新同学贷款10000元,一年还清,假设月利率为0.25%,那么小新同学每月应还的钱约为( )(1.002512≈1.03) A .833B .858C .883D .9022.某企业在今年年初贷款a 万元,年利率为γ,从今年年末开始每年偿还一定金额,预计五年内还清,则每年应偿还( ) A .()()5111a γγ++-万元 B .()()55111a γγγ++-万元C .()()54111a γγγ++-万元 D .()51a γγ+万元3.一种预防新冠病毒的疫苗计划投产两月后,使成本降64%,那么平均每月应降低成本( ) A .20%B .32%C .40%D .50%4.今年元旦,市民小王向朋友小李借款100万元用于购房,双方约定年利率为5%,按复利计算(即本年利息计入次年本金生息),借款分三次等额归还,从明年的元旦开始,连续三年都是在元旦还款,则每次的还款额约是( )万元.(四舍五入,精确到整数) (参考数据:()21.05 1.1025=,()31.05 1.1576=,()41.05 1.2155=) A .36B .37C .38D .395.随着新一轮科技革命和产业变革持续推进,以数字化、网络化、智能化以及融合化为主要特征的新型基础设施建设越来越受到关注.5G 基站建设就是“新基建”的众多工程之一,截至2020年底,我国已累计开通5G 基站超70万个,未来将进一步完善基础网络体系,稳步推进5G 网络建设,实现主要城区及部分重点乡镇5G 网络覆盖.2021年1月计划新建设5万个5G 基站,以后每个月比上一个月多建设1万个,预计我国累计开通500万个5G 基站时要到( ) A .2022年12月B .2023年2月C .2023年4月D .2023年6月6.我们知道,偿还银行贷款时,“等额本金还款法”是一种很常见的还款方式,其本质是将本金平均分配到每一期进行偿还,每一期的还款金额由两部分组成,一部分为每期本金,即贷款本金除以还款期数,另一部分是利息,即贷款本金与已还本金总额的差乘以利率.自主创业的大学生张华向银行贷款的本金为48万元,张华跟银行约定,按照等额本金还款法,每个月还一次款,20年还清,贷款月利率为0.4%,设张华第n 个月的还款金额为n a 元,则n a =( )A .2192B .39128n -C .39208n -D .39288n -7.高阶等差数列是数列逐项差数之差或高次差相等的数列,中国古代许多著名的数学家对推导高阶等差数列的求和公式很感兴趣,创造并发展了名为“垛积术”的算法,展现了聪明才智.如南宋数学家杨辉在《详解九章算法.商功》一书中记载的三角垛、方垛、刍甍垛等的求和都与高阶等差数列有关.如图是一个三角垛,最顶层有1个小球,第二层有3个,第三层有6个,第四层有10个,则第30层小球的个数为( )A .464B .465C .466D .4958.某单位用分期付款方式为职工购买40套住房,总房价1150万元.约定:2021年7月1日先付款150万元,以后每月1日都交付50万元,并加付此前欠款利息,月利率1%,当付清全部房款时,各次付款的总和为( ) A .1205万元B .1255万元C .1305万元D .1360万元9.小李在2022年1月1日采用分期付款的方式贷款购买一台价值a 元的家电,在购买1个月后的2月1日第一次还款,且以后每月的1日等额还款一次,一年内还清全部贷款(2022年12月1日最后一次还款),月利率为r .按复利计算,则小李每个月应还( ) A .()()1111111ar r r ++-元 B .()()1212111ar r r ++-元C .()11111a r +元D .()12111a r +元10.在流行病学中,基本传染数0R 是指在没有外力介入,同时所有人都没有免疫力的情况下,一个感染者平均传染的人数.0R 一般由疾病的感染周期、感染者与其他人的接触频率、每次接触过程中传染的概率决定.对于0R 1>,而且死亡率较高的传染病,一般要隔离感染者,以控制传染源,切断传播途径.假设某种传染病的基本传染数0R 3=,平均感染周期为7天(初始感染者传染0R 个人为第一轮传染,经过一个周期后这0R 个人每人再传染0R 个人为第二轮传染……)那么感染人数由1个初始感染者增加到1000人大约需要的天数为(参考数据:63729=,541024=)( ) A .35B .42C .49D .5611.为了更好地解决就业问题,国家在2020年提出了“地摊经济”为响应国家号召,有不少地区出台了相关政策去鼓励“地摊经济”.老王2020年6月1日向银行借了免息贷款10000元,用于进货.因质优价廉,供不应求,据测算:每月获得的利润是该月初投入资金的20%,每月底扣除生活费1000元,余款作为资金全部用于下月再进货,如此继续,预计到2021年5月底该摊主的年所得收入为( )(取()111.27.5=,()121.29=) A .32500元B .40000元C .42500元D .50000元12.某病毒研究所为了更好地研究“新冠”病毒,计划改建十个实验室,每个实验室的改建费用分为装修费和设备费,每个实验室的装修费都一样,设备费从第一到第十实验室依次构成等比数列,已知第五实验室比第二实验室的改建费用高28万元,第七实验室比第四实验室的改建费用高112万元,并要求每个实验室改建费用不能超过1100万元.则该研究所改建这十个实验室投入的总费用最多需要( ) A .2806万元B .2906万元C .3106万元D .3206万元二、填空题13.小李向银行贷款14760元,并与银行约定:每年还一次款,分4次还清所有的欠款,且每年还款的钱数都相等,贷款的年利率为0.25,则小李每年所要还款的钱数是___________元.14.从2017年到2020年期间,某人每年6月1日都到银行存入1万元的一年定期储蓄.若年利率为20%保持不变,且每年到期的存款本息均自动转为新的一年定期储蓄,到2020年6月1日,该人去银行不再存款,而是将所有存款的本息全部取回,则取回的金额为_______万元.15.银行一年定期储蓄存款年息为r ,三年定期储蓄存款年息为q ,银行为吸收长期资金,鼓励储户存三年定期的存款,那么q 的值应略大于______.16.今年“五一”期间,北京十家重点公园举行免费游园活动,北海公园免费开放一天,早晨6时30分有2人进入公园,接下来的第一个30分钟内有4人进去1人出来,第二个30分钟内有8人进去2人出来,第三个30分钟内有16人进去3人出来,第四个30分钟内有32人进去4人出来…,按照这种规律进行下去,到上午11时30分公园内的人数是____.三、解答题17.一杯100℃的开水放在室温25℃的房间里,1分钟后水温降到85℃,假设每分钟水温变化量和水温与室温之差成正比. (1)求()*n n N ∈分钟后的水温n t ;(2)当水温在40℃到55℃之间时(包括40℃和55℃),为最适合饮用的温度,则在水烧开后哪个时间段饮用最佳.(参考数据:lg 20.3≈)18.某优秀大学生毕业团队响应国家号召,毕业后自主创业,通过银行贷款等方式筹措资金,投资72万元生产并经营共享单车,第一年维护费用为12万元,以后每年都增加4万元,每年收入租金50万元.(1)若扣除投资和维护费用,则从第几年开始获取纯利润?(2)若年平均获利最大时,该团队计划投资其它项目,问应在第几年转投其它项目?19.去年某地产生的生活垃圾为20万吨,其中14万吨垃圾以填埋方式处理,6万吨垃圾以环保方式处理.预计每年生活垃圾的总量递增5%,同时,通过环保方式处理的垃圾量每年增加1.5万吨.记从今年起每年生活垃圾的总量(单位:万吨)构成数列{}n a ,每年以环保方式处理的垃圾量(单位:万吨)构成数列{}n b . (1)求数列{}n a 和数列{}n b 的通项公式;(2)为了确定处理生活垃圾的预算,请求出从今年起n 年内通过填埋方式处理的垃圾总量的计算公式,并计算从今年起5年内通过填埋方式处理的垃圾总量(精确到0.1万吨).(参考数据41.05 1.215≈,51.05 1.276≈,61.05 1.340≈)20.2020年是充满挑战的一年,但同时也是充满机遇、蓄势待发的一年.突如其来的疫情给世界带来了巨大的冲击与改变,也在客观上使得人们更加重视科技的力量和潜能.某公司一下属企业从事某种高科技产品的生产.假设该企业第一年年初有资金5000万元,并将其全部投入生产,到当年年底资金增长了50%,预计以后每年资金年增长率与第一年相同.公司要求企业从第一年开始,每年年底上缴资金(2500)t t ≤万元,并将剩余资金全部投入下一年生产.设第n 年年底企业上缴资金后的剩余资金为n a 万元. (1)写出1n a +与n a 的关系式,并判断{}2n a t -是否为等比数列;(2)若企业每年年底上缴资金1500t =,第*()m m N ∈年年底企业的剩余资金超过21000万元,求m 的最小值.21.流行性感冒是由流感病毒引起的急性呼吸道传染病.某市去年11月份曾发生流感,据统计,11月1日该市的新感染者有30人,以后每天的新感染者比前一天的新感染者增加50人.由于该市医疗部门采取措施,使该种病毒的传播得到控制,从11月()*1929,k k k +≤≤∈N 日起每天的新感染者比前一天的新感染者减少20人. (1)若9k =,求11月1日至11月10日新感染者总人数;(2)若到11月30日止,该市在这30天内的新感染者总人数为11940人,问11月几日,该市新感染者人数最多?并求这一天的新感染者人数.22.教育储蓄是指个人按国家有关规定在指定银行开户、存入规定数额资金、用于教育目的的专项储蓄,是一种专门为学生支付非义务教育所需教育金的专项储蓄,储蓄存款享受免征利息税的政策.若你的父母在你12岁生日当天向你的银行教育储蓄账户存入1000元,并且每年在你生日当天存入1000元,连续存6年,在你十八岁生日当天一次性取出,假设教育储蓄存款的年利率为10%.(1)在你十八岁生日当天时,一次性取出的金额总数为多少?(参考数据:71.1 1.95≈) (2)当你取出存款后,你就有了第一笔启动资金,你可以用你的这笔资金做理财投资.如果现在有三种投资理财的方案: ①方案一:每天回报40元;②方案二:第一天回报10元,以后每天比前一天多回报10元; ③方案三:第一天回报0.4元,以后每天的回报比前一天翻一番. 你会选择哪种方案?请说明你的理由.23.已知数集{}()1212,,1,2n n A a a a a a a n =≤<<≥具有性质P ;对任意的(),1i j i j n ≤≤≤,i j a a 与j ia a 两数中至少有一个属于A .(Ⅰ)分别判断数集{}1,3,4与{}1,2,3,6是否具有性质P ,并说明理由; (Ⅱ)证明:11a =,且1211112nn na a a a a a a ---+++=+++; (Ⅲ)证明:当5n =时,成等比数列。
高考数学一轮复习数列多选题测试试题及答案
高考数学一轮复习数列多选题测试试题及答案一、数列多选题1.如图,已知点E 是ABCD 的边AB 的中点,()*n F n ∈N为边BC 上的一列点,连接n AF 交BD 于n G ,点()*n G n ∈N 满足()1223n n n n n G D a G A a G E +=⋅-+⋅,其中数列{}n a 是首项为1的正项数列,n S 是数列{}n a 的前n 项和,则下列结论正确的是( )A .313a =B .数列{}3n a +是等比数列C .43n a n =-D .122n n S n +=--【答案】AB 【分析】化简得到()()12323n n n n n n G D a a G A a G B +=--⋅-+⋅,根据共线得到1230n n a a +--=,即()1323n n a a ++=+,计算123n n a +=-,依次判断每个选项得到答案. 【详解】()()112232n n n n n n G D a G A a G A G B +=⋅-+⋅+, 故()()12323n n n n n n G D a a G A a G B +=--⋅-+⋅,,n n G D G B 共线,故1230n n a a +--=,即()1323n n a a ++=+,11a =,故1342n n a -+=⨯,故123n n a +=-.432313a =-=,A 正确;数列{}3n a +是等比数列,B 正确;123n n a +=-,C 错误;2124323412nn n S n n +-=-=---,故D 错误.故选:AB . 【点睛】本题考查了向量运算,数列的通项公式,数列求和,意在考查学生的计算能力,转化能力和综合应用能力.2.设n S 是公差为()d d ≠0的无穷等差数列{}n a 的前n 项和,则下列命题正确的是( ) A .若0d <,则数列{}n S 有最大项 B .若数列{}n S 有最大项,则0d <C .若对任意*n N ∈,均有0n S >,则数列{}n S 是递增数列D .若数列{}n S 是递增数列,则对任意*n N ∈,均有0n S > 【答案】ABC 【分析】由等差数列的求和公式可得()2111222n n n d d S na d n a n -⎛⎫=+=+- ⎪⎝⎭,可看作关于n 的二次函数,由二次函数的性质逐个选项验证可得. 【详解】由等差数列的求和公式可得()2111222n n n d d S na d n a n -⎛⎫=+=+- ⎪⎝⎭, 选项A ,若0d <,由二次函数的性质可得数列{}n S 有最大项,故正确; 选项B ,若数列{}n S 有最大项,则对应抛物线开口向下,则有0d <,故正确; 选项C ,若对任意*n ∈N ,均有0n S >,对应抛物线开口向上,0d >, 可得数列{}n S 是递增数列,故正确;选项D ,若数列{}n S 是递增数列,则对应抛物线开口向上, 但不一定有任意*n ∈N ,均有0n S >,故错误. 故选:ABC . 【点睛】本题考查等差数列的求和公式的应用,()2111222n n n d d S na d n a n -⎛⎫=+=+- ⎪⎝⎭可看成是二次函数,然后利用二次函数的性质解决问题,考查分析和转化能力,属于常考题.3.已知数列{}n a ,{}n b 满足,11a =,11n n n a a a +=+,1(1)n n b n a =+,若23100100122223100b b b T b =++++,则( ) A .n a n = B .1n n b n =+ C .100100101T =D .10099100T =【答案】BC 【分析】先证明数列1n a 是等差数列得1n a n =,进而得1(1)1n n n b n a n ==++,进一步得()211111n b n n n n n ==-++,再结合裂项求和得100100101T =. 【详解】解:因为11nn n a a a +=+,两边取倒数得:1111n n a a +=+,即1111n na a ,所以数列1na 是等差数列,公差为1,首项为111a ,故()1111n n n a =+-⨯=,所以1n a n=, 所以1(1)1n n nb n a n ==++,故()211111n b n n n n n ==-++,所以31002100122211112310022334100101b b b T b =++++=++++⨯⨯⨯11111111100122334100101101101⎛⎫⎛⎫⎛⎫=+-+-++-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 故BC 正确,AD 错误; 故选:BC 【点睛】本题考查数列通项公式的求解,裂项求和,考查运算求解能力,是中档题.本题解题的关键在于证明数列1na 是等差数列,进而结合裂项求和求解100T .4.已知数列{}n a ,{}n b 满足:12n n n a a b +=+,()*1312lnn n n n b a b n N n++=++∈,110a b +>,则下列命题为真命题的是( )A .数列{}n n a b -单调递增B .数列{}n n a b +单调递增C .数列{}n a 单调递增D .数列{}n b 从某项以后单调递增【答案】BCD 【分析】计算221122ln 2a b a b a b -=--<-,知A 错误;依题意两式相加{}ln +-n n a b n 是等比数列,得到()1113ln -+=+⋅+n n n a b a b n ,知B 正确;结合已知条件,计算10n n a a +->,即得C 正确;先计算()11113ln(1)2ln n n n b b a b n n -+-=+⋅++-,再结合指数函数、对数函数增长特征知D 正确. 【详解】由题可知,12n n n a a b +=+①,1312lnn n n n b a b n++=++②,①-②得,1131lnn n n n n a b a b n+++-=--,当1n =时,2211ln 2a b a b -=--,∴2211-<-a b a b ,故A 错误.①+②得,()113ln(1)3ln n n n n a b a b n n +++=+++-,()11ln(1)3ln n n n n a b n a b n +++-+=+-,∴{}ln +-n n a b n 是以11a b +为首项,3为公比的等比数列,∴()111ln 3-+-=+⋅n n n a b n a b ,∴()1113ln -+=+⋅+n n n a b a b n ,③又110a b +>,∴B 正确.将③代入①得,()()11113ln n n n n n n a a a b a a b n -+=++=++⋅+,∴()11113ln 0n n n a a a b n -+-=+⋅+>,故C 正确.将③代入②得,()()11113311ln 3ln ln n n n n n n n n b b a b b a b n n n-+++=+++=++⋅++,∴()11113ln(1)2ln n n n b b a b n n -+-=+⋅++-.由110a b +>,结合指数函数与对数函数的增长速度知,从某个()*n n N∈起,()1113ln 0n a b n -+⋅->,又ln(1)ln 0n n +->,∴10n n b b +->,即{}n b 从某项起单调递增,故D 正确. 故选:BCD . 【点睛】判定数列单调性的方法:(1)定义法:对任意n *∈N ,1n n a a +>,则{}n a 是递增数列,1n n a a +<,则{}n a 是递减数列;(2)借助函数单调性:利用()n a f n =,研究函数单调性,得到数列单调性.5.若数列{}n a 的前n 项和是n S ,且22n n S a =-,数列{}n b 满足2log n n b a =,则下列选项正确的为( ) A .数列{}n a 是等差数列B .2nn a =C .数列{}2na 的前n 项和为21223n +-D .数列11n n b b +⎧⎫⎨⎬⋅⎩⎭的前n 项和为n T ,则1n T <【答案】BD 【分析】根据22n n S a =-,利用数列通项与前n 项和的关系得1,1,2n nS n a S n =⎧=⎨≥⎩,求得通项n a ,然后再根据选项求解逐项验证. 【详解】当1n =时,12a =,当2n ≥时,由22n n S a =-,得1122n n S a --=-, 两式相减得:12n n a a -=,又212a a =,所以数列{}n a 是以2为首项,以2为公比的等比数列, 所以2nn a =,24nn a =,数列{}2na 的前n 项和为()141444143n n nS +--'==-, 则22log log 2nn n b a n ===,所以()1111111n n b b n n n n +==-⋅⋅++,所以 1111111 (11123411)n T n n n =-+-++-=-<++, 故选:BD 【点睛】方法点睛:求数列的前n 项和的方法 (1)公式法:①等差数列的前n 项和公式,()()11122n n n a a n n S na d +-==+②等比数列的前n 项和公式()11,11,11nn na q S a q q q =⎧⎪=-⎨≠⎪-⎩;(2)分组转化法:把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解.(3)裂项相消法:把数列的通项拆成两项之差求和,正负相消剩下首尾若干项.(4)倒序相加法:把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广.(5)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列对应项之积构成的,则这个数列的前n 项和用错位相减法求解.(6)并项求和法:一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解.6.设等差数列{}n a 的前n 项和为n S ,公差为d .已知312a =,120S >,70a <则( )A .60a >B .数列1n a ⎧⎫⎨⎬⎩⎭是递增数列 C .0n S <时,n 的最小值为13 D .数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项【答案】ACD 【分析】 由已知得()()612112712+12+220a a a a S ==>,又70a <,所以6>0a ,可判断A ;由已知得出2437d -<<-,且()12+3n a n d =-,得出[]1,6n ∈时,>0n a ,7n ≥时,0n a <,又()1112+3n a n d =-,可得出1na 在1,6n n N上单调递增,1na 在7n nN ,上单调递增,可判断B ;由()313117713+12203213a a a S a ⨯==<=,可判断C ;判断 n a ,n S 的符号, n a 的单调性可判断D ; 【详解】由已知得311+212,122d a a a d ===-,()()612112712+12+220a a a a S ==>,又70a <,所以6>0a ,故A 正确;由7161671+612+40+512+3>0+2+1124+7>0a a d d a a d d a a a d d ==<⎧⎪==⎨⎪==⎩,解得2437d -<<-,又()()3+312+3n a n d n d a =-=-,当[]1,6n ∈时,>0n a ,7n ≥时,0n a <,又()1112+3n a n d =-,所以[]1,6n ∈时,1>0na ,7n ≥时,10n a <,所以1na 在1,6nn N上单调递增,1na 在7nn N,上单调递增,所以数列1n a ⎧⎫⎨⎬⎩⎭不是递增数列,故B 不正确;由于()313117713+12203213a a a S a ⨯==<=,而120S >,所以0n S <时,n 的最小值为13,故C 选项正确 ;当[]1,6n ∈时,>0n a ,7n ≥时,0n a <,当[]1,12n ∈时,>0n S ,13n ≥时,0n S <,所以当[]7,12n ∈时,0n a <,>0n S ,0nnS a <,[]712n ∈,时,n a 为递增数列,n S 为正数且为递减数列,所以数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项,故D 正确; 【点睛】本题考查等差数列的公差,项的符号,数列的单调性,数列的最值项,属于较难题.7.设等差数列{a n }的前n 项和为S n ,公差为d .已知a 3=12,S 12>0,a 7<0,则( ) A .a 6>0 B .2437d -<<- C .S n <0时,n 的最小值为13D .数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项【答案】ABCD 【分析】S 12>0,a 7<0,利用等差数列的求和公式及其性质可得:a 6+a 7>0,a 6>0.再利用a 3=a 1+2d =12,可得247-<d <﹣3.a 1>0.利用S 13=13a 7<0.可得S n <0时,n 的最小值为13.数列n n S a ⎧⎫⎨⎬⎩⎭中,n ≤6时,n n S a >0.7≤n ≤12时,n n S a <0.n ≥13时,n n S a >0.进而判断出D 是否正确. 【详解】 ∵S 12>0,a 7<0,∴()67122a a +>0,a 1+6d <0.∴a 6+a 7>0,a 6>0.∴2a 1+11d >0,a 1+5d >0, 又∵a 3=a 1+2d =12,∴247-<d <﹣3.a 1>0. S 13=()113132a a +=13a 7<0.∴S n <0时,n 的最小值为13.数列n n S a ⎧⎫⎨⎬⎩⎭中,n ≤6时,n n S a >0,7≤n ≤12时,n n S a <0,n ≥13时,n n S a >0.对于:7≤n ≤12时,nnS a <0.S n >0,但是随着n 的增大而减小;a n <0,但是随着n 的增大而减小,可得:nnS a <0,但是随着n 的增大而增大. ∴n =7时,nnS a 取得最小值.综上可得:ABCD 都正确. 故选:ABCD . 【点评】本题考查了等差数列的通项公式与求和公式及其性质,考查了推理能力与计算能力,属于难题.8.已知等差数列{}n a 的前n 项和为n S ,若981S =,713a =,3S ,1716S S -,k S 成等比数列,则( ) A .2n S n = B .122310*********a a a a a a ++⋅⋅⋅+= C .11k = D .21n a n =-【答案】ACD 【分析】先根据题意求出等差数列的首项和公差,再根据等差数列的通项公式和求和公式求得,n n a S ,再由3S ,1716S S -,k S 成等比数列列出式子求解得出k 的值,再利用裂项相消法求和,得到122310111111021a a a a a a ++⋅⋅⋅+=,从而判断各项的正误. 【详解】依题意,95981S a ==,解得59a =; 而713a =,故75275a a d -==-,则1541a a d =-=, 则21n a n =-,2n S n =,故D 、A 正确:因为3S ,1716S S -,k S 成等比数列,故()223171617k S S S S a =-=,则22933k =,解得11k =,故C 正确;而122310111111021a a a a a a ++⋅⋅⋅+=,故B 错误. 故选:ACD . 【点睛】思路点睛:该题考查的是有关数列的问题,解题方法如下: (1)根据题意,求得通项公式,进而求得前n 项和; (2)根据三项成等比数列的条件,列出等式,求得k 的值;(3)利用裂项相消法,对12231011111a a a a a a ++⋅⋅⋅+求和; (4)对选项逐个判断正误,得到结果.二、平面向量多选题9.定义空间两个向量的一种运算sin ,a b a b a b ⊗=⋅,则关于空间向量上述运算的以下结论中恒成立的有( ) A .()()a b a b λλ⊗=⊗ B .a b b a ⊗=⊗C .()()()a b c a c b c +⊗=⊗+⊗D .若()11,a x y =,()22,b x y =,则122a b x y x y ⊗=- 【答案】BD 【分析】对于A,B,只需根据定义列出左边和右边的式子即可,对于C,当λab 时,()()1sin ,a b c b c b c λ+⊗=+⋅,()()()sin ,sin,1sin ,a c b c b c b c b c b c b c b c λλ⊗+⊗=⋅+⋅=+⋅,显然不会恒成立. 对于D,根据数量积求出cos ,a b ,再由平方关系求出sin ,a b 的值,代入定义进行化简验证即可. 【详解】解:对于A :()()sin ,a b a b a b λλ⊗=⋅,()sin ,a b a b a bλλλ⊗=⋅,故()()a b a b λλ⊗=⊗不会恒成立;对于B ,sin ,a b a b a b ⊗=⋅,=sin ,b a b a b a ⊗⋅,故a b b a ⊗=⊗恒成立; 对于C ,若λab ,且0λ>,()()1sin ,a b c b c b c λ+⊗=+⋅,()()()sin,sin ,1sin ,a c b c b c b c b c b c b c b c λλ⊗+⊗=⋅+⋅=+⋅,显然()()()a b c a c b c +⊗=⊗+⊗不会恒成立; 对于D ,1212cos ,x x y y a b a b+=⋅,212sin ,1a b a b ⎛ ⎪=- ⎪⋅⎭,即有222121212121x x y y x x y y a b a b a b a a b ⎛⎫⎛⎫++ ⎪⊗=⋅⋅-=⋅- ⎪ ⎪ ⎪⋅⎝⎭⎭21y =⎪+⎭==1221x y x y =-.则1221a b x y x y ⊗=-恒成立. 故选:BD. 【点睛】本题考查向量的新定义,理解运算法则正确计算是解题的关键,属于较难题.10.在三棱锥P ABC -中,三条侧棱,,PA PB PC 两两垂直,且3PA PB PC ===,G 是PAB △的重心,E ,F 分别为,BC PB 上的点,且::1:2BE EC PF FB ==,则下列说法正确的是( ) A .EG PG ⊥ B .EG BC ⊥C .//FG BCD .FG EF ⊥【答案】ABD 【分析】取,,PA a PB b PC c ===,以{},,a b c 为基底表示EG ,FG ,EF ,结合向量数量积运算性质、向量共线定理即可选出正确答案. 【详解】如图,设,,PA a PB b PC c ===,则{},,a b c 是空间的一个正交基底, 则0a b a c b c ⋅=⋅=⋅=,取AB 的中点H ,则22111()33233PG PH a b a b ==⨯+=+, 1121111,3333333EG PG PE a b b c a b c BC c b =-=+--=--=-,11113333FG PG PF a b b a =-=+-=,1121133333EF PF PE b c b c b ⎛⎫=-=-+=-- ⎪⎝⎭,∴0EG PG ⋅=,A 正确;0EG BC ⋅=,B 正确;()FG BC R λλ≠∈,C 不正确;0FG EF ⋅=,D 正确.故选:ABD.【点睛】本题考查了平面向量共线定理,考查了由数量积求两向量的位置关系,考查了平面向量基本定理的应用,属于中档题.。
高三数学一轮复习备考试题:数列(含答案)
高考一轮复习备考试题(附参考答案)数列一、填空题1、(2014年江苏高考)在各项均为正数的等比数列}{n a 中,若12=a ,2682a a a +=,则6a 的值是 ▲2、(2013年江苏高考)在正项等比数列}{n a 中,215=a ,376=+a a ,则满足n n a a a a a a 2121>+++的最大正整数n 的值为 。
3、(2012年江苏高考)现有10个数,它们能构成一个以1为首项,3-为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是 ▲ .4、(2015届江苏南京高三9月调研)记数列{a n }的前n 项和为S n .若a 1=1,S n =2(a 1+a n )(n ≥2,n ∈N *),则S n = ▲5、(2015届江苏南通市直中学高三9月调研)已知等比数列{}n a 的前n 项和为n S ,且1324412a a a a S +=++=,,则数列{}n a 的公比q 为 ▲6、(2015届江苏苏州高三9月调研)已知等比数列{}n a 的各项均为正数,3614,,2a a ==则45a a += ▲7、(南京市2014届高三第三次模拟)已知数列{a n }满足a n =a n -1-a n -2(n ≥3,n ∈N *),它的前n 项和为S n .若S 9=6,S 10=5,则a 1的值为 ▲8、(南通市2014届高三第三次调研)设数列{a n }为等差数列,数列{b n }为等比数列.若12a a <,12b b <,且2(1,2,3)i i b a i ==,则数列{b n }的公比为 ▲ .9、(苏锡常镇四市2014届高三5月调研(二))已知S n 为等差数列{a n }的前n 项和,a 1 = -1,S 3 =6,则S 6 = ▲10、(徐州市2014届高三第三次模拟)在等比数列{}n a 中,已知11a =,48a =.设3n S 为该数列的前3n 项和,n T 为数列{}3n a 的前n 项和.若3n n S tT =,则实数t 的值为 ▲11、(南京、盐城市2014届高三第二次模拟(淮安三模))已知等差数列{a n }的公差d 不为0,且a 1,a 3,a 7成等比数列,则a 1d 的值为 ▲二、解答题1、(2014年江苏高考)设数列{}的前n 项和为.若对任意的正整数n,总存在正整数m,使得,则称{}是“H 数列。
高考数学一轮复习《数列》练习题(含答案)
高考数学一轮复习《数列》练习题(含答案)一、单选题1.已知数列{}n a 为等差数列,n S 为其n 前项和,若4511a a +=,则8S =( ) A .36B .40C .44D .472.8,2的等差中项是( ) A .±5B .±4C .5D .43.已知等比数列{}n a 中,3464,32a a a ==,则101268a a a a --的值为( )A .2B .4C .8D .164.若2(23n a n tn t =++为常数)*n N ∈,且数列{}n a 为单调递增数列,则实数t 的取值范围为( ) A .2t <-B .2t >-C .6t <-D .6t >-5.记n S 为数列{}n a 的前n 项和.若(8)(1,2,)n a n n n =-=,则( ) A .{}n a 有最大项,{}n S 有最大项 B .{}n a 有最大项,{}n S 有最小项 C .{}n a 有最小项,{}n S 有最大项D .{}n a 有最小项,{}n S 有最小项6.数列{}n a 满足:12a =,()111n n a a +-=,n S 是{}n a 的前n 项和,则2021S =( ) A .4042 B .2021 C .20232D .202127.在等差数列{}n a 中,若6a ,7a 是方程2320x x ++=的两根,则{}n a 的前12项的和为( ) A .6B .18C .-18D .-68.早在3000年前,中华民族的祖先就已经开始用数字来表达这个世界.在《乾坤谱》中,作者对易传“大衍之数五十”进行了一系列推论,用来解释中国传统文化中的太极衍生原理,如图.该数列从第一项起依次是0,2,4,8,12,18,24,32,40,50,60,72,…,若记该数列为{}n a ,则20212020a a -=( )A .2018B .2020C .2022D .20249.已知数列{}n a 的前n 项和27n S n n =-,若35<<k a ,则k =( ) A .8B .7C .6D .510.等比数列{}n b 的前n 项之积为n T ,若456b b b =,则5T =( ) A .1B .2C .3D .411.数列{}n a 满足1a m =,2212114,4(2)2,4n n n n n a n a n a a n ---⎧<=≥⎨≥⎩,若{}n a 为等比数列,则m 的取值范围是( ) A .(1,9]B .9,2⎡⎫+∞⎪⎢⎣⎭C .[2,9]D .[18,)+∞12.在等差数列{}n a 中,满足4737a a =,且10,n a S >,是{}n a 前n 项的和,若n S 取得最大值,则n =( ) A .7 B .8C .9D .10二、填空题13.已知数列{}n a 为等差数列,10a <且1231990a a a a ++++=,设()12n n n n b a a a n *++=∈N ,当{}n b 的前n 项和n S 最小时,n 的值组成的集合为______.14.已知数列{}n a 中各项是从1、0、-1这三个整数中取值的数列,n S 为其前n 项和,定义()21n n b a =+,且数列{}n b 的前n 项和为n T ,若30301,51S T =-=,则数列{}n a 的前30项中0的个数为_______个.15.已知等比数列{}n a 的各项均为正数,且1212222016,log log log n n n a a a a a +⋅=+++=______.16.n S 是等比数列{}n a 的前n 项和,若131n n S a -=⋅+(*n N ∈),则a =______.17.已知数列{}n a 满足11a =,21n nn a a a +=+,数列{}n b 的前n 项和n S ,1n n n a b a +=.若()100S k k Z <∈,则k 的最小值为_______________.三、解答题18.已知数列{a n }的前n 项和为S n ,数列{a n }为等差数列,a 1=12,d =-2. (1)求S n ,并画出{S n }(1≤n ≤13)的图象;(2)分别求{S n }单调递增、单调递减的n 的取值范围,并求{S n }的最大(或最小)的项; (3){S n }有多少项大于零?19.已知等差数列{}n a 满足37a =,616a =. (1)求{}n a 的通项公式;(2)若当2n ≥时,113n n b b a -=,且13b =,求使0n b >的最大正整数n 的值.20.设{}n a 是各项都为正数的单调递增数列,已知19a =,且n a 满足关系式:19n n a a ++=+*n ∈N .(1)求{}n a 的通项公式; (2)若99n n b a n=+,求数列{}n b 的前n 项和n S .21.已知n S 是公差不为零的等差数列{}n a 的前n 项和,已知1055S =,且2a ,4a ,8a 成等比数列.(1)求数列{}n a 的通项公式; (2)若nn S b n=,求371141n b b b b -+++⋅⋅⋅+的值.22.已知数列{}n a 满足12n n a a +=+,n *∈N ,且2a ,5a ,14a 构成等比数列.(1)求数列{}n a 的通项公式;(2)设12nn n b a +=,求数列{}n b 的前n 项和n S .23.设等差数列{}n a 公差为d ,等比数列{}n b 公比为q ,已知d q =,111a b +=,221a b +=,431a b +=.(1)求数列{}n a 和{}n b 的通项公式; (2)求数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和n S .(3)求数列211n n n n a a a b +++⎧⎫⎨⎬⎩⎭的前n 项和n T .24.已知数列{}n a 的前n 项和为n S ,0n a >,22=,n n n S a a n N *+∈. (1)求{}n a 的通项公式; (2)记22n n n b a a +=,求数列{}n b 的前n 项和n T .25.已知数列{}n a 的前n 项和为n S ,满足*21()n n S a n =-∈N ,数列{}n b 满足*1(1)(1)()n n nb n b n n n N +-+=+∈,且11b =.(1)证明数列n b n ⎧⎫⎨⎬⎩⎭为等差数列,并求数列{}n a 和{}n b 的通项公式;(2)若12214(1)(1)(32log )(32log )n n n n n c a a -++=-++,求数列{}n c 的前2n 项和2n T ;(3)若n n d a ={}n d的前n 项和为n D ,对任意的*n N ∈,都有n n D nS a ≤-,求实数a 的取值范围。
高考理科数学一轮复习专题训练:数列(含详细答案解析)
B . 3 2.在正项等比数列{a }中,已知 a 4 = 2 , a = ,则 a 5 的值为( 8= 2 , a = ,可得 8 q 4 = 8 = ,又因为 q > 0 ,所以 q = 1 2 2127B .35063C .28051D . 3502第 7 单元 数列(基础篇)第Ⅰ卷一、选择题:本大题共12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知等差数列{a n }的前 n 项和为 S n ,若 a 1=12,S 5=90,则等差数列{a n }公差 d =()A .2【答案】C2 C .3D .4【解析】∵a =12,S =90,∴ 5 ⨯12 + 1 5 5 ⨯ 4 2d = 90 ,解得 d=3,故选 C .n 8 1 )1 1 A . B . - C . -1 D .14 4【答案】D【解析】由题意,正项等比数列{a }中,且 a n 48 1 a 1 a 16 41,则 a = a ⋅ q = 2 ⨯ = 1 ,故选 D .5 43.在等差数列{a n}中, a 5+ a = 40 ,则 a + a + a = ( ) 13 8 9 10A .72B .60C .48D .36【答案】B【解析】根据等差数列的性质可知: a 5 + a 13 = 40 ⇒ 2a 9 = 40 ⇒ a 9 = 20 ,a + a + a = 2a + a = 3a = 60 ,故本题选 B .8 9109994.中国古代数学名著《张丘建算经》中记载:“今有马行转迟,次日减半,疾七日,行七百里”.其大意:现有一匹马行走的速度逐渐变慢,每天走的里程数是前一天的一半,连续走了7 天,共走了 700 里,则这匹马第 7 天所走的路程等于()A .700里里 里【答案】A127里【解析】设马每天所走的路程是 a 1, a 2 ,.....a 7 ,是公比为1的等比数列,a 1 - ( )7 ⎪a = a q 6= 7005.已知等差数列{a n } 的前 n 项和 S n 有最大值,且 a=10(a +a )2= 5(a + a ) = 5(a + a ) > 0 , S =2 = 11a < 0 , (a + 2d - 1)2 = (a + d - 1)(a + 4d - 1) ⎩ d = 2这些项的和为 700, S = 7 ⎛ 1 ⎫ 1 ⎝ 2 ⎭1 - 12 = 700 ⇒ a =1 64 ⨯ 700 127 ,7 1 127 ,故答案为 A .a 5< -1 ,则满足 S 6n> 0 的最大正整数 n 的值为()A .6B .7C .10D .12【答案】C【解析】设等差数列{a n } 的公差为 d ,因为等差数列{a n } 的前 n 项和 S n 有最大值,所以 d < 0 ,a又 a 5 < -1 ,所以 a 5 > 0 , a 6 < 0 ,且 a 5 + a 6 > 0 ,6 所以 S1 101 10 5 6 11 所以满足 S n > 0 的最大正整数 n 的值为 10.11(a + a )1 1166.已知等差数列{a n}的公差不为零, Sn为其前 n 项和, S 3 = 9 ,且 a 2 - 1 , a 3 - 1, a 5 - 1构成等比数列,则 S 5 = ( )A .15B . -15C .30D .25【答案】D【解析】设等差数列{a n}的公差为 d (d ≠ 0),⎧⎪3a + 3d = 9⎧a = 1 由题意 ⎨ 1 ,解得 ⎨ 1 ⎪⎩ 1 1 1.∴ S = 5 ⨯1 +5 5 ⨯ 4 ⨯ 22 = 25 .故选 D .7.在等差数列{a n } 中, a 3 , a 9 是方程 x 2 + 24 x + 12 = 0 的两根,则数列{a n } 的前 11 项和等于(A .66B .132C . -66D . -132【答案】D)S = 11⨯ (a + a ) 2 2 2 = 15 ,解得 n = 5 ,( )nC . a = 3n -1D . a =3n【解析】因为 a 3 , a 9 是方程 x 2 + 24 x + 12 = 0 的两根,所以 a 3 + a 9 = -24 ,又 a 3 + a 9 = -24 = 2a 6 ,所以 a 6 = -12 ,11⨯ 2a1 11 = 6 = -132 ,故选 D . 118.我国南宋数学家杨辉 1261 年所著的《详解九章算法》一书里出现了如图所示的表,即杨辉三角,这是数学史上的一个伟大成就,在“杨辉三角”中,第n 行的所有数字之和为 2n -1 ,若去除所有为 1 的项,依次构成数列 2,3,3,4,6,4,5,10,10,5,…,则此数列的前 15 项和为()A .110B .114C .124D .125【答案】B【解析】由题意, n 次二项式系数对应的杨辉三角形的第 n +1行, 令 x = 1 ,可得二项展开式的二项式系数的和 2n ,其中第 1 行为 2 0 ,第 2 行为 21 ,第 3 行为 22 ,L L 以此类推,即每一行的数字之和构成首项为 1,公比为 2 的对边数列,则杨辉三角形中前 n 行的数字之和为 S = n 1- 2n1- 2 = 2n - 1,若除去所有为 1 的项,则剩下的每一行的数字的个数为1,2,3, 4,L ,可以看成构成一个首项为 1,公差为 2 的等差数列,则T =n n (n + 1)2 ,令 n (n + 1)所以前 15 项的和表示前 7 行的数列之和,减去所有的 1,即 27 - 1 - 13 = 114 ,即前 15 项的数字之和为 114,故选 B .9.已知数列{a }的前 n 项和为 S nn,满足 2S n =3a n -1 ,则通项公式 a n 等于()A . a = 2n- 1n【答案】CB . a= 2nn n: , + , + + , + + + , ,那么数列 {b }= ⎧⎨ 1 ⎩ a an n +1 ⎭n + 1 ⎭C . 4 ⨯ ⎝ 2 n + 1 ⎭D .⎝ 1 + 2 + ⋅⋅⋅ + n n2 a an (n + 1) ⎝ n n + 1 ⎭ = = = 4 ⨯ - ⎪ , ∴ S = 4 ⨯ 1 - + - + - + ⋅⋅⋅ + - = 4 ⨯ 1 - ⎪ 2 2 3 3 4 n n + 1 ⎭ ⎝ ⎝⎪ , 1 1 ⎫【解析】当 n = 1 时, 2S 1 = 3a 1 -1 ,∴ a 1 = 1 ,当 n ≥ 2 且 n ∈ N * 时, 2S n -1 = 3a n -1 - 1 ,则 2S n - 2Sn -1 = 2a n = 3a n - 1 - 3a n -1 + 1 = 3a n - 3a n -1 ,即 a n = 3an -1,∴ 数列 {a }是以1 为首项, 3 为公比的等比数列∴ a nn= 3n -1 ,本题正确选项 C . 10.已知数列 满足,且 ,则( )A .B .C .D .【答案】B【解析】利用排除法,因为,当当当当时,时,时,时, ,排除 A ;,B 符合题意;,排除 C ;,排除 D ,故选 B .11.已知数列为()1 12 1 23 1 2 34 2 3 3 4 4 45 5 5 5⋯ n ⎫ ⎬ 前 项和A .1 - 1 ⎛ n + 1B . 4 ⨯ 1 - 1 ⎫ ⎛ 1 ⎪ - 1 ⎫⎪1 1-2 n + 1【答案】B【解析】由题意可知: a =nn (n + 1)= = , n + 1 n + 1 2∴ b = 1n n n +11 4 ⎛ 1 1 ⎫ n n + 1 ⋅2 2⎛ 1 1 1 1 1 ⎛ n本题正确选项 B .1 ⎫n + 1 ⎭12.已知数列{a }满足递推关系: a , a = ,则 a 2017= (12016B . 12018D . 1=a 2 -= 1 . ⎩ a∴ 1=1}满足 a 2 q ,可设三数为 , a , aq ,可得 ⎪⎨ a⎪ q 求出 ⎨ ,公比 q 的值为 1.=3an n +1 = a 1 n a + 12 n)A .12017C .12019【答案】C【解析】∵ ana + 1 n1, a = ,∴ 1 1 1 a a n +1 n⎧ 1 ⎫∴数列 ⎨ ⎬ 是等差数列,首项为 2,公差为 1.n ⎭a2017= 2 + 2016 = 2018 ,则 a2018 .故选 C .第Ⅱ卷二、填空题:本大题共4 小题,每小题5 分.13.已知等比数列{a n 1 = 12 ,且 a 2a 4 = 4(a3 - 1) ,则 a 5 = _______.【答案】8【解析】∵ a 2a 4 = 4(a 3 - 1) ,∴ a 3 = 4(a 3 -1) ,则 a 3 = 2 ,∴ a = 5 a 2 3 = a122 1 2= 8 ,故答案为 8.14.若三数成等比数列,其积为 8,首末两数之和为 4,则公比 q 的值为_______.【答案】1【解析】三数成等比数列,设公比为⎧a = 2⎩ q = 1⎧ a3 = 8 a q + aq =4 ⎩,15.在数列 {an}中,a 1= 1 , an 3 + a n(n ∈ N *)猜想数列的通项公式为________.=3a4 3 + a 53 + a 6 3a 3a 32 数列的通项公式为 a = 3n + 2 n + 2+ = (m + n) + ⎪ = 10 + + ⎪ ≥ 10 + 2 ⋅ ⎪⎪ = 2 , n m ⎭ 8 ⎝ n m ⎭【答案】3n + 2【解析】由 an 3 + a n, a = 1 ,可得 a = 1 2 3a 1 3 + a 13 3 3= , a = = , a == ,……,∴ 猜想 3 4 2 33,本题正确结果 .n16.已知正项等比数列{a n } 满足 2a 5 + a 4 = a 3 ,若存在两项 a m , a n ,使得 8 a m a n = a 1 ,则9 1+ 的最小值 mn为__________.【答案】2【解析】Q 正项等比数列{a n } 满足 2a 5 + a 4 = a 3 ,∴ 2a 1q 4 +a 1q 3 =a 1q 2 ,整理得 2q 2 +q - 1 = 0 ,又 q > 0 ,解得 q = 12,Q 存在两项 a , a 使得 8 a ⋅ a = a ,∴ 64a 2 q m +n -2 = a 2 ,整理得 m + n = 8 ,m nmn111∴则 9 1 1 ⎛ 9 1 ⎫ 1 ⎛ m 9n ⎫ 1 ⎛ m 9n ⎫ m n 8 ⎝ m n ⎭ 8 ⎝9 1 m 9n+ 的最小值为 2,当且仅当 = 取等号,但此时 m , n ∉ N * .m n n m又 m + n = 8 ,所以只有当 m = 6 , n = 2 时,取得最小值是 2.故答案为 2.三、解答题:本大题共6 个大题,共 70 分,解答应写出文字说明、证明过程或演算步骤.17.(10 分)已知等差数列{a n(1)求 {a}的通项公式;n}的公差不为 0, a 1= 3 ,且 a , a , a 成等比数列.2 4 7(2)求 a 2 + a 4 + a 6 + L + a 2n .【答案】(1) a n = n + 2 ;(2) n 2 + 3n .【解析】(1)Q a 2 , a 4 , a 7成等比数列,∴a42= a a ,2 7即 (a 1 + 3d )2 = (a 1 + d )(a 1 + 6d ) ,化简得 (a 1 - 3d )d = 0 ,∵公差 d ≠ 0 ,∴ a 1 = 3d ,6=n (a +a ) (2)若b= 4 { ⎪ 12 由题意得 ⎨,则 ⎨ , ⎩ 7 ⎪(a + 6d )2 = (a + d )(a + 21d )⎩ 1化简得 ⎨⎧a + 2d = 7(2)证明: b = 42n (2n + 4) n (n + 2) 2 ⎝ n n + 2 ⎭ - + - + - + L +⎪1 + - - = - ⎪ < . ⎪Q a = 3 ,∴ d = 1,∴ a = a + (n - 1)d = n + 2 .1 n1(2)由(1)知 a 2n = 2n + 2 ,故{a 2n } 是首项为 4、公差为 2 的等差数列,所以 a + a + a + L + a2 4 6 n (4 + 2n + 2)2 2n = = n 2 + 3n . 2 218.(12 分)已知公差不为零的等差数列{a n } 满足 S 5 = 35 ,且 a 2 , a 7 , a 22 成等比数列.(1)求数列{a n } 的通项公式;n nn(a - 1)(a + 3) ,且数列 b n }的前 n 项和为 T n ,求证: T < 3n 4.【答案】(1) a n = 2n + 1;(2)见详解.【解析】(1)设等差数列{a n } 的公差为 d ( d ≠ 0 ),⎧ 5 ⨯ 4⎧S = 355a + d = 35 5a 2 = a a2 221 11 ⎩2a 1 = 3d ⎧a = 3 ,解得 ⎨ 1⎩d = 2,所以 a = 3 + 2 (n -1) = 2n +1. nn nn(a -1)(a + 3) =4 11⎛1 1 ⎫ = = - ⎪ ,所以 T = n 1 ⎛ 1 1 1 1 1 1 1 1 1 1 ⎫- + - 2 ⎝ 1 3 2 4 3 5 n - 1 n + 1 n n + 2 ⎭= 1 ⎛ 1 1 1 ⎫ 3 1 ⎛ 1 1 ⎫ 3 + 2 ⎝ 2 n + 1 n + 2 ⎭ 4 2 ⎝ n + 1 n + 2 ⎭ 419.(12 分)已知数列{a n}的前 n 项和为 Sn且 S = 2a - 1 (n ∈ N * ) .n n(1)求数列{a n}的通项公式;(2)求数列{na n}的前 n 项和 T n.【答案】(1) a = 2n- 1 ;(2) T = n ⋅ 2n - 2n + 1 .nn【解析】(1)因为 S = 2a - 1 ,当 n ≥ 2 时, S = 2a - 1 ,7= 2a + 1 , n ∈ N * .+1),数列 ⎨ 15 ≤ T n < ; 即 a ∴ 数列 {a }的通项公式为 a = 2n - 1 n ∈ N * .(2n + 1)(2n + 3) 2⎝ 2n + 1 2n + 3⎪⎭ , - ⎪ + - ⎪ +⋅⋅⋅+⎪⎥ 2 ⎢⎣⎝ 3 5 ⎭ ⎝ 5 7 ⎭ ⎝ 2n + 2n + 3 ⎭⎦ 6 4n + 6整理可得 a n = 2a n -1 ,Q a = S = 2a - 1 ,解得 a = 1 ,1 111所以数列 {a n}为首项为1 ,公比为 2 的等比数列,∴a = 2n -1 .n(2)由题意可得:T = 1⨯ 20 + 2 ⨯ 21 + ⋅⋅⋅ + n ⋅ 2n ,n所以 2T = 1⨯ 21 + 2 ⨯ 22 + ⋅⋅⋅ + (n - 1)2n -1 + n ⋅ 2n ,n两式相减可得 -T = 1 + 21 + 22 + ⋅⋅⋅+ 2n -1 - n ⋅ 2n = n∴ T = n ⋅ 2n - 2n + 1 .n1 - 2n 1 - 2- n ⋅ 2n = 2n - 1 - n ⋅ 2n ,20.(12 分)已知数列{a n}满足 a 1= 1 , an +1n(1)求证数列{a n +1}是等比数列,并求数列{a n } 的通项公式;(2)设 b = log (a n 2 2n +1 ⎧ 1 ⎫ 1 1b b ⎬ 的前 n 项和 T n ,求证:6 ⎩ n n +1 ⎭.【答案】(1)证明见解析, a = 2n - 1(n ∈ N * )(2)见解析. n【解析】(1)由 an +1 = 2a n + 1 ,得 a n +1 + 1 = 2 (a + 1),n+ 1n +1 a + 1n= 2 ,且 a + 1 = 2 ,1∴ 数列 {a +1}是以 2 为首项, 2 为公比的等比数列,n∴ a + 1 = 2 ⨯ 2n -1 = 2n ,n( )nn(2)由(1)得: b = logn2(a2n +1+ 1) = log (22n +1- 1 + 1)= 2n + 1 ,2∴1b bn n +11 1 ⎛ 1 1 ⎫ = = -∴T = n1 ⎡⎛ 1 1 ⎫ ⎛ 1 1 ⎫ ⎛ 1 1 ⎫⎤ 1 1 - = - (n ∈ N * ),8又 0 < 1即 1n (2)设数列满足 b = a sin a π2的前 项和 .⎪⎩n,2 3 L 2 3 L 2 (a + 4) = S + S 2a = d + 4 d = 2 ⎪ ⎩= asin n π + ⎪ = a cos (n π ) , 2 ⎭ ⎝n +1,2n -1,⎪⎩n, 2 3 L 2 3 L a ⋅ a1 1 1 1 1 1 1≤ ,∴- ≤- < 0 ,∴ ≤ - < ,4n + 6 10 10 4n + 6 15 6 4n + 6 61≤ T < .15 621.(12 分)已知等差数列的前 项和为 ,且 是 与 的等差中项.(1)求的通项公式;n ,求n n【答案】(1)⎧⎪- (n + 2), ;(2) T = ⎨n n = 2k - 1(k = 1,,, ) n = 2k (k = 1,,, ) .⎧a = 7⎧a + 2d = 7 ⎧a = 3 【解析】(1)由条件,得 ⎨ 3 ,即 ⎨ 1 , ⎨ 1⎪715⎩1⎩,所以{a n }的通项公式是(2)由(1)知, b = a sinnn.(2n + 1)π 2n n⎛ π ⎫(1)当 n = 2k -1 (k =1,2,3,…)即 n 为奇数时, b = -a , b nnn +1= aT = -a + a - a + L + a n 1 2 3 n -1 - a = -a + (-2) n - 1= -n - 2 ;n 1(2)当 n = 2k (k =1,2,3,…):即 n 为偶数时, b = a , bnnn -1= -aT = -a + a - a +⋯- a n 1 2 3 n -1+ a = 2 ⋅ n n 2= n ,⎧⎪- (n + 2), 综上所述, T = ⎨n22.(12 分)设正项数列n = 2k - 1(k = 1,,, ) n = 2k (k = 1,,, ) .的前 n 项和为 ,已知 .(1)求证:数列 是等差数列,并求其通项公式;(2)设数列的前 n 项和为 ,且 b = 4n nn +1,若对任意 都成立,求实数 的取值范围.9(2)由(1)可得 b = 1 n (n + 1) n n + 1∴ T = 1 - ⎪ + - ⎪ + L + - ⎛ 1 ⎫ ⎛ 1 1 ⎫ ⎛ 1 1 ⎫1 n = 1 -= , ⎪ 2 ⎭ ⎝ 2 3 ⎭⎝ n n + 1 ⎭n + 1 n + 1⎝,即 nλ < n + (-1)n ⋅ 2 对任意⎢⎣ ⎥⎦n 恒成立,令 f (n ) = (n + 2)(n + 1)Q f (n + 1)- f (n ) = n (n + 1)- 2②当 为奇数时, λ < (n - 2)(n + 1)又 (n - 2)(n + 1)= n - - 1 ,易知:f (n ) = n - 在【答案】(1)见证明,【解析】(1)证明:∵;(2),且.,当当即时,时,有,解得 .,即.,于是,即.∵ ,∴为常数,∴数列是 为首项, 为公差的等差数列,∴.1 1= - ,nnn + 1都成立⎡ n (n + 1)+ (-1)n ⋅ 2 (n + 1)⎤⇔ λ <⎢⎥ nmin(n ∈ N *),①当 为偶数时, λ < (n + 2)(n + 1) = n + 2+ 3 ,n nn (n + 1) > 0 ,在 上为增函数,;n 恒成立,2 2 n n n为增函数,,102⨯ 4 ⨯ 3 = 0 ⎧a = -3 ⎪S 4 = 4a 1 + ⎪⎩a = a + 4d = 516 4⎩q3 (a + a + a ) = 120 ∴由①②可知:,综上所述 的取值范围为.第 7 单元 数列(提高篇)第Ⅰ卷一、选择题:本大题共12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.记 S 为等差数列{a } 的前 n 项和.已知 S = 0 , a = 5 ,则()n n45A . a n = 2n - 5B . a n = 3n - 10C . S = 2n 2 - 8nD . S = 1n nn 2 - 2n【答案】A2.已知等比数列{a }中, a n 3 ⋅ a = 20 , a = 4 ,则 a 的值是( )13 6 10A .16B .14C .6D .5【答案】D【解析】由等比数列性质可知 a ⋅ a = a 2 = 20 ,3138由 a 6 = 4 ,得 q 4= a 2 8 = a 2620 5= ,∴ a = a q 4 = 5 ,本题正确选项 D .10 63.等比数列{a } 中, a + a + a = 30 , a + a + a = 120 ,则 a + a + a = ( )n123456789A .240B .±240C .480D .±480【答案】C【解析】设等比数列{a } 中的公比为 q ,由 a + a + a = 30 , a + a + a = 120 ,n 1 2 3 4 5 6⎧ 得 ⎨a + a + a = 301 2 31 2 3,解得 q 3 = 4 ,∴ a + a + a = q 3 (a + a + a ) = 480.7 8 9 4 5 6112 , N = 4.我国古代的《洛书》中记载着世界上最古老的一个幻方:如图,将1,2,…,9 填入3 ⨯ 3 的方格内,使三行,三列和两条对角线上的三个数字之和都等于 15.一般地,将连续的正整数1,2,3,L , n 2 填入 n ⨯ n 个方格中,使得每行,每列和两条对角线上的数字之和都相等,这个正方形叫做n 阶幻方.记 n 阶幻方的对角线上的数字之和为 N n ,如图三阶幻方的 N 3 = 15 ,那么 N 9 的值为()A .369B .321C .45D .41【答案】A【解析】根据题意可知,幻方对角线上的数成等差数列,根据等差数列的性质可知对角线的两个数相加正好等于1 + n 2,根据等差数列的求和公式 S = n (1+ n 2 ) 9 9 ⨯ (1+ 92 ) 2 = 369 ,故选 A .5.已知 1, a 1 , a 2 ,9 四个实数成等差数列,1, b 1 , b 2 , b 3 ,9 五个数成等比数列,则b 2 (a 2 - a 1 ) = ( A .8 B .-8 C .±8 D .98【答案】A)【解析】由 1, a 1 , a 2 ,9 成等差数列,得公差 d = a 2 - a 1 = 9 - 1 84 - 1 = 3 ,由 1, b , b , b ,9 成等比数列,得 b 2 = 1⨯ 9 ,∴ b = ±3 ,12322当 b = -3 时,1, b , -3 成等比数列,此时 b 2 = 1⨯ (-3) 无解,2 11所以 b = 3 ,∴ b (a - a 2 2 2 1 ) = 3 ⨯ 8= 8 .故选 A .36.已知数列{a n }是公比不为 1 的等比数列, S n为其前 n 项和,满足 a = 2 ,且16a , 9a , 2a2 1 4 7成等差数列,则 S = ()3A . 5B .6C .7D .9【答案】C【解析】数列{a n } 是公比 q 不为 l 的等比数列,满足 a 2 = 2 ,即 a 1q = 2 ,122 ⨯ 2 + 3)⨯ 2 ; 2 ⨯ 2 + 4 )⨯3 ;22- 5 =,且 A n =7n + 45a7= (10B .172C . 143A . 93【解析】因为 7 = 7 = a + a a 2a A = 13 = 7 ⨯13 + 45 = 17 1 13 2 且16a , 9a , 2a 成等差数列,得18a = 16a + 2a ,即 9a q 3 = 8a + a q 6 ,1 47417111解得 q = 2,a = 1 ,则 S = 1 3 1 - 23 1 - 2= 7 .故选 C .7.将石子摆成如图的梯形形状,称数列 5,9,14,20,L ,为“梯形数”.根据图形的构成,此数列的第 2016 项与 5 的差,即 a 2016- 5 = ()A . 2018⨯ 2014B . 2018⨯ 201C .1011⨯ 2015D .1010⨯ 2012【答案】C【解析】由已知的图形我们可以得出图形的编号与图中石子的个数之间的关系为:n =1 时, a = 2 + 3 = 11(n =2 时, a = 2 + 3 + 4 = 2…,由此我们可以推断:1 (a = 2 + 3 + L + (n + 2 ) = 1n⎡⎣2 + (n + 2)⎤⎦ ⨯ (n + 1),∴ a 1⨯ ⎡⎣2 + (2016 + 2)⎤⎦ ⨯ (2016 + 1)- 5 = 1011⨯ 2015 .故选 C .20168.已知两个等差数列{a }和 {b }的前 n 项和分别为 A 和 BnnnnB n + 3 b n 7)17D .15【答案】B771131313(a + a )1 131 13= 2 b 2b b + b 13(b + b ) B 13 + 3 2,故答案选 B .9.已知数列{ }的前 n 项和为 , , ( ),则 ( )A.32B.64C.128D.25613,∴ S B .C . 1a - 1 a - 1,n⎧B . 2019 ) =+ = + = + =2 ,1 1 + 1 + a 2a 2【答案】B【解析】由,得,又,∴- 1 n +1 S - 1n= 2 ,即数列{则∴10.数列1}是以 1 为首项,以 2 为公比的等比数列,,则 ..故选 B .满足: ,若数列 是等比数列,则 的值是()A .1 【答案】B2 D .【解析】数列为等比数列 ⇒ a- 1λa - 2上式恒成立,可知 ⎨λ =q⎩-2 = -q⇒ λ = 2 ,本题正确选项 B .11.已知函数 f (x ) =2( 1 + x 2x ∈ R ),若等比数列满足 a a1 2019= 1 ,则A .2019【答案】A ( )2 C .2D . 1 2【解析】∴ f (a )+ f (a12019,1 + a2 1 + a 2 1 + a 2 1 + a 21 2019 1 1 1为等比数列,则,14b b3B . 16 C . 115D . 2b b= = - ⎭ 数列 的前 项和 T = - + - ⎪ ⎪ , 2 ⎝ 3 5 5 72n + 1 2n + 3 ⎭ 2 ⎝ 3 2n + 3 ⎭可得 λ ≤ 12,即12.已知是公比不为 1 的等比数列,数列.满足: , , 成等比数列,c =1n2n 2n +2,若数列的前 项和对任意的恒成立,则 的最大值为( )A .115【答案】C【解析】由 , ,成等比数列得 a 2 =a a ,2 2nb n又是公比不为 1 的等比数列,设公比为 q ,则 a 2 q2b n-2 = a 2 q 2n ,整理得 b = n + 1,c =111n n2n 2n +21 1 ⎛ 1 1 ⎫ (2n + 1)(2n + 3)2 ⎝ 2n + 1 2n +3 ⎪ ,1 ⎛ 1 1 1 11 1 ⎫ 1 ⎛ 1 1 ⎫+ ⋅⋅⋅ +- = - n数列 是单调递增数列,则当 n =1 时取到最小值为1151 ,即 的最大值为,故选 C .1515,第Ⅱ卷二、填空题:本大题共4 小题,每小题5 分.13.已知{a n } 是等差数列, a 2 + a 4 + a 6 + a 8 = 16 ,则 S 9 = _________.【答案】36【解析】{a n } 是等差数列, a 2 + a 4 + a 6 + a 8 = 16 , a 2 + a 8 = a 4 + a 6 = 2a 5 ,得出 a 5 = 4 ,又由 S = 9 ⋅ (a 1 + a 9 )9 = 9a = 36 .514.在数列 {a }中, a n 1= 1,an +1- a = 2n + 1 ,则数列的通项 a = ________.n n15x【答案】 n 2【解析】当 n ≥ 2 时,a = (a - a ) + (ann n -1n -1- a n -2) + (an -2- a n -3) + L + (a - a ) + (a - a ) + a ,3 2 2 1 1⇒ a = (2n - 1) + (2n - 3) + (2 n - 5) + L + 5 + 3 + 1 = n当 n = 1 , a 也适用,所以 a = n 2 .1nn (2n - 1 + 1) 2= n 2 ,15.设数列{a n } 的前 n 项和为 S n ,且 ∀n ∈ N *, a n +1a = ________.n【答案】 n - 6(n ∈ N * ) (答案不唯一)> a , S ≥ S .请写出一个满足条件的数列{a } 的通项公式n n 6 n【解析】 ∀n ∈ N * , a n +1> a ,则数列{a } 是递增的, ∀n ∈ N * , S ≥ S ,即 S 最小,n n n 6 6只要前 6 项均为负数,或前 5 项为负数,第 6 项为 0,即可,所以,满足条件的数列{a n } 的一个通项公式 a n = n - 6(n ∈ N * ) (答案不唯一).16.已知函数 f ( x ) = x 2 cosπx2,数列 {a }中, a = f (n )+ f (n + 1)(n ∈ N * ) ,则数列{a }的n n n前 40 项之和 S 40 = __________.【答案】1680【解析】函数 f (x ) = x 2 cos π 2且数列 {a }中, a = f (n )+ f (n +1),n n可得 a = f (1)+ f (2) = 0 - 4 = -4 ; a = f (2)+ f (3) = -4 + 0 = -4 ;12a = f (3)+ f (4) = 0 +16 = 16 ; a = f (4)+ f (5) = 16 ;3 4a = f (5)+ f (6) = 0 - 36 = -36 ; a = f (6)+ f (7) = -36 ;…,5 6可得数列 {a n 即有数列 {a n}为 -4 , -4 , 16 ,16 , -36 , -36 , 64 , 64 , -100 , -100 ,…, }的前 40 项之和:S = (-4 - 4 +16 +16)+ (-36 - 36 + 64 + 64)+ (-100 -100 +144 +144)+ 40⋅⋅⋅+ (-1444 -1444 +1600 +1600) = 24 + 56 + 88 +⋅⋅⋅+ 31216= ⨯10 ⨯ (24 + 312 ) = 1680 , ( a b a 1 - 22n 2 + n (n ∈ N * ).2 2 222212本题正确结果1680 .三、解答题:本大题共6 个大题,共 70 分,解答应写出文字说明、证明过程或演算步骤.17.10 分)已知数列{a n}是等比数列,数列 {b }是等差数列,且满足: n 1= b = 1 , + b = 4a , - 3b = -5 .1 2 3 2 3 2(1)求数列{a n }和 {b }的通项公式;n(2)设 c n = a n + b n ,求数列 {c n}的前 n 项和 S n .【答案】(1) a = 2n -1 , n ∈ N * , b = 2n - 1,n ∈ N * ;(2) S = 2n + n 2 - 1 .nn n【解析】(1)设 {an}的公比为 q , {b }的公差为 d ,由题意 q > 0 ,n⎧(1+ d ) + (1+ 2d ) = 4q ⎧-4q + 3d = -2由已知,有 ⎨ ,即 ⎨⎩q 2 - 3(1+ d ) = -5 ⎩ q 2 - 3d = -2⇒ q 2 - 4q + 4 = 0 ⇒ d = q = 2 ,所以 {a n }的通项公式为 an= 2n -1 , n ∈ N * , {b }的通项公式为 b = 2n - 1,n ∈ N * .n n(2) c = a + b = 2n -1 + 2n - 1 ,分组求和,分别根据等比数列求和公式与等差数列求和公式得到nnn1 - 2nn (1+ 2n - 1)S =+= 2n + n 2 - 1 .n18.(12 分)己知数列{a }的前 n 项和为 S n(1)求 {a}的通项公式;nn且 S = n 1 12 2(2)设 b n =1a an n +1,求数列 {b n}的前 100 项和.【答案】(1) a n = n ;(2) T100 =100 101.【解析】(1)当 n ≥ 2 时, S =n两式相减得 a n = S n - S n -1 = n , n 2 + n , S = (n - 1)2 + (n - 1)= n 2 + n- n ,17当 n =1时, a = S = + = 1,满足 a = n ,\ a = n . 2 2骣 1 骣 1 骣1 1 1 1 1001 - + - +L + - +2 = - , n +1 =2 n∈ N * ). ⎧⎬(2)若数列{b }满足: ba + 1 3n4 4 == 3 +n⎩ a n +1⎭a + 1 = 3n ,所以 a =1 - 1 . 3n ( )⇒ S = 2n - 144(2)令 b = 2n + 1,求数列 {b }的前 n 项和 T 及 T 的最小值.a + 2 nn1 11 1 n n(2)由(1)可知 b n =1 1 1= - ,n (n + 1) n n + 1所以数列 {b n}的前 100 项和 T100= b +b +?1 2b100= 琪 琪 琪 琪 - = 1 - = .桫 2桫 3 ? 99 100100 101 101 10119.(12 分)已知数列{a }满足: a n 1 3a -2a n - 3 ( 3a + 4 n(1)证明数列 ⎨ 1 ⎫ 为等差数列,并求数列{a n }的通项公式;⎩ a n + 1⎭nn =3n (n ∈ N * ),求 {b }的前 n 项和 S . nn n【答案】(1)证明见解析, a = n1 2n - 1 9- 1;(2) S = ⨯ 3n +2 + .n【解析】(1)因为 an +1+ 1 = -2a - 3 a + 1 1 3a + 4 1 n + 1 = n ,所以 , 3a + 4 3a + 4 a + 1 a a + 1 n n n +1 n +1 n⎧ 1 ⎫所以 ⎨ ⎬ 是首项为 3,公差为 3 的等差数列,所以n1 n(2)由(1)可知: a =n 1 3n- 1,所以由 b = n 3n a + 1 nn ∈ N * ⇒ b = n ⋅ 3n +1 , nS = 1 ⨯ 32 + 2 ⨯ 33 + L + (n - 1) ⨯ 3n + n ⨯ 3n +1 ①;n3S = 1 ⨯ 33 + 2 ⨯ 34 + L + (n - 1) ⨯ 3n +1 + n ⨯ 3n +2 ②,n①-②得 -2S = 32 + 33 + L + 3n +1 - n ⨯ 3n +2 = n 32 (3n - 1)3 - 1 - n ⨯ 3n +2n9⨯ 3n +2+ .20.(12 分)已知数列{a n}的前 n 项和为 Sn,且 S n = 2a n - 2n -1 .(1)求数列{a n}的通项公式;n nn185 ⨯ 2n -1 (2)Q b = 2n + 1 1 1 1 ⎛ 3 5 7 2n + 1 ⎫ ,则 T n = ⎪ , a + 2 52n -1 5 ⎝ 20 21 22 2n -1 ⎭ T = ⎪ 两式作差得 1 - T = ⨯ ⎢3 + ⎛ 1 ⎫ 1 ⎡ ⎛ 2 2 2 ⎫ 2n + 1⎤ 2n + 5 + +⋅⋅⋅+ - = 1 -2n ⎥⎦ ⎝ 2 ⎭ n 5 ⎣21 22 2n -1 ⎭ 5 ⨯ 2n 5 ⨯ 2n -1 5 ⨯ 2n 5 ⨯ 2n -1 5 ⨯ 2n 5 ⎧( ⎧ n - 1)2n + , n 是奇数 3 - 3n ⎪b n = 2 2 , n 是奇数2 , b = ⎨ ;(2) T = ⎨ .3n ⎪(n - 1)2n + 1 + , n 是偶数 n -2 ⎪b = 2 2 , n 是偶数n n【答案】(1)a = 5 ⨯ 2n -1- 2 (n ∈ N *);(2) T = 2 - 2n +5 3,最小值 . 5【解析】(1)当 n =1 时, a 1 = S 1 = 2a 1 - 2 - 1 ,解得 a 1 = 3 ,当 n ≥ 2 时, a n = S n - S n -1 = 2a n - 2a n -1 - 2 ,解得 a n = 2 a n -1 + 2 .则 a + 2 = 2 (an n -1+ 2),故 {a n + 2}是首项为 a 1 + 2 = 5 ,公比为 2 的等比数列,∴ a = 5 ⨯ 2n -1 - 2 (n ∈ N * ). n = ⨯ (2n + 1)⨯ + + + ⋅⋅⋅ +nn1 1 ⎛2 n 5 ⎝3 5 7 2n - 1 2n + 1 ⎫+ + + ⋅⋅⋅ + +21 22 23 2n -1 2n ⎭⎪ ⎪⎝,所以 T = 2 - n 2n + 5 5 ⨯ 2n -1,2n + 5 2n + 7 2n + 5 -2n - 3令 c = ,有 c - c =- = < 0 ,对 n ∈ N * 恒成立, n n +1 n则数列{c n }是递减数列,故{T n } 为递增数列,则 (T n )min 3= T = . 121.(12 分)已知正项数列且.的前 项和为 ,且 , ,数列 满足 ,(1)求数列(2)令【答案】(1), 的通项公式;,求数列 的前 项和 .n +1 ⎪⎪ n n⎩ n ⎪⎩ 2【解析】(1)当时, ,即 ,,19⎧⎪S + S = a 2 由 ⎨ ,可得= a 2 (n ≥ 2) ,⎪⎩ n由 ⎨ 两式相除,得 n +1 = 2 (n ≥ 2 ),⎧b b = 2n b⎪⎩b n -1b n = 2n -1 (n ≥ 2)综上:b = ⎨ n ⎪b = 2 n -22 , n 是偶数 ⎩ ⎧ 3n ⎪⎪ 2 , 的前 项和为 B ,∴ B = ⎨ , -3n + 1 ⎪ , n 是奇数 ⎧(n - 1)2n + , n 是奇数 ⎪⎪ 2综上: T = ⎨ .3n ⎪(n - 1)2n + 1 + , n 是偶数n +1 n n +1 S + S n -1 n即,又是公差为 ,首项为 的等差数列,,由题意得:,n n +1 b n -1是奇数时,是公比是 ,首项 的等比数列,∴ b = 2nn +1 2 ,同理 是偶数时是公比是 ,首项的等比数列,∴ b = 2nn -2 2 ,n ⎧ n +1⎪b = 2 2 , n 是奇数n.(2)令,即 ,⎧⎪ A = 1⋅ 20 + 2 ⋅ 21 + 3 ⋅ 22 + ⋅⋅⋅ + n ⋅ 2n -1的前 项和为 ,则 ⎨ n⎪⎩2 A n = 1⋅ 21 + 2 ⋅ 22 + 3 ⋅ 23 + ⋅⋅⋅ + n ⋅ 2n,两式相减得 - A = 20 + 21 + 22 + 2n -1 - n ⋅ 2n = n,1 - 2n 1 - 2- n ⋅ 2n ,令n n⎪⎩ 2n 是偶数3 - 3nn⎪⎩ 220ln 22 ln 32 ln n 2 (n - 1)(2n + 1) (当 x ≥ a 时, f '( x ) = 1 - = ,此时要考虑 a 与 1 的大小.(2)由(1)可知当 a = 1 , x > 1 时, x -1 - ln x > 0 ,即 ln x > 1 - x ,所以 ln x = n - 1 - = n - 1 - - ⎪ < n - 1 - + + L + ⎝ 2 n 2 ⎭ ⎝ 2 ⨯ 3 3 ⨯ 4 n(n + 1) ⎭ 1 ⎫ n - 1 = (n - 1) - n + 1 ⎭ 2(n + 1) ⎛ 122.(12 分)已知函数 f ( x ) =| x - a | - ln x(a > 0) .(1)讨论 f ( x ) 的单调性;(2)比较 + +⋯+ 与 的大小 n ∈ N * 且 n > 2) ,并证明你的结论.22 32 n 2 2(n + 1)【答案】(1)见解析;(2)见解析.⎧ x - ln x - a, 【解析】(1)函数 f ( x ) 可化为 f ( x ) = ⎨⎩a - x - ln x,x ≥ a0 < x < a ,当 0 < x < a 时, f '( x ) = -1 - 1 x< 0 ,从而 f ( x ) 在 (0, a) 上总是递减的,1 x - 1x x①若 a ≥ 1 ,则 f '( x ) ≥ 0 ,故 f ( x ) 在 [a, +∞ ) 上递增;②若 0 < a < 1 ,则当 a ≤ x < 1 时, f '( x ) < 0 ;当 x > 1 时, f '( x ) > 0 ,故 f ( x ) 在 [a,1) 上递减,在 (1, +∞) 上递增,而 f ( x ) 在 x = a 处连续,所以当 a ≥ 1 时, f ( x ) 在 (0, a) 上递减,在[a, +∞ ) 上递增;当 0 < a < 1 时, f ( x ) 在 (0,1) 上递减,在[1, +∞ ) 上递增.1< 1 - .x x所以 ln 22 ln 32 ln n 2 1 1 1+ + L + < 1 - + 1 - + L 1 -22 32 n 2 22 32 n 2⎛ 1 1 + ⎝ 22 32 + L + 1 ⎫ 1 1 ⎫ ⎛ 1 ⎪ ⎪2n 2 - 2 - n + 1 (n - 1)(2n + 1) = = .2(n + 1) 2(n + 1)21。
高考数学一轮复习《数列》练习题(含答案)
高考数学一轮复习《数列》练习题(含答案)一、单选题1.数列{}n a 满足:13a =,12n n a a +=-,则100a 等于( ) A .98B .195-C .201-D .2012.在等比数列中,1912,,833n a a q ===,则项数n 为( )A .3B .4C .5D .63.已知等差数列{}n a 中,11a =,公差0d ≠,如果1a ,2a ,5a 成等比数列,那么d 等于( ) A .2或2-B .2-C .2D .34.已知等比数列{}n a 的前n 和为n S ,22S =,412S =,则56a a +=( ) A .48B .50C .60D .625.已知数列{}n a 是等差数列,前n 项和为n S ,若36S =,618S =,则9S =( ). A .30B .36C .40D .486.自然数按照下表的规律排列,则上起第2013行,左起第2014列的数为( )A .201320143⨯+B .201320142⨯+C .201320141⨯+D .20132014⨯7.已知{}n a 为等差数列,且1713πa a a ++=,则()212tan a a +的值为( ) A 3B .3-C .3±D .38.已知数列{}n a 中,112n a n =-,n S 是数列{}n a 的前n 项和,则n S 最大值时n 的值为( ) A .4B .5C .6D .79.设数列{}n a 的前n 项和为n S ,11a =,且()()121n n n n S S S n n --=+-()*,2n N n ∈≥,则22n nS n -的最小值为( )A .23B .3C .2-D .1-10.已知无穷递减实数列{}n a 满足11a =,则下列可作为{}n a 递推公式*()n N ∈的是( ) A .1sin n n a a += B .1cos n n a a += C .12na n a +=D .12log n n a a +=11.数列}{n a 的首项12a =,且)(146n n a a n N *+=+∈,令)(2log 2n n b a =+,则1220212021b b b ++⋅⋅⋅+=( )A .2020B .2021C .2022D .202312.已知数列{}n a 的前n 项和为n S ,12a =,()*111n n na S n +++=∈N ,则24816S S S S +++=( ) A .398B .7916C .418D .5二、填空题13.已知等差数列{}n a 的前n 项和为n S ,若171251,0S a ==,则{}n a 的通项公式为_____________14.二十四节气作为我国古代订立的一种补充历法,在我国传统农耕文化中占有极其重要的位置,是古代劳动人民对天文、气象进行长期观察、研究的产物,凝聚了古代劳动人民的智慧.古代数学著作《周髀算经》中记载有这样一个问题:从夏至之日起,小暑、大暑、立秋、处暑、白露、秋分、寒露、霜降、立冬、小雪、大雪这十二个节气的日影子长依次成等差数列,若小暑、立秋、白露的日影子长的和为18尺,霜降的日影子长为10尺,则秋分的日影子长为_______________________尺.15.记n T 为等差数列{}n a 的前n 项和,若21a =,54a =,则10T =________. 16.等差数列{}n a 中,n S 是前n 项和,且38S S =,7k S S =,则k 的值为__________. 17.已知数列{}n a 的通项公式是6n n a f π⎛⎫=⎪⎝⎭,其中()sin()(0,)2f x wx w πϕϕ=+><的部分图象如图所示,n S 为数列{}n a 的前n 项和,则2020S =___________.三、解答题18.已知等差数列{}n a 中,61013,25a a == (1)求数列{}n a 的通项公式n a ; (2)求数列{}n a 的第8项,第16项.19.已知n S 为等差数列{}n a 的前n 项和,2716a a +=,10100S =.求数列{}n a 的通项公式.20.已知数列{}n c 的前n 项之积为n T ,即12n n T c c c =,且()110n n n T +=,lg 1n n a c =-.(1)求数列{}n c 、{}n a 的通项公式;(2)设数列{}n a 的前n 项和为n S ,n b =n *∈N ,均有121113nb b b +++<.21.已知数列{}n a 的前n 项和为n S ,11a =,0n a ≠,11n n n a a S λ+=-,其中λ为常数. (1)证明:2n n a a λ+-=;(2)当数列{}n a 为等差数列时,记数列{}3nn a 的前n 项和为n T ,证明:1n T <.22.已知等比数列{a n }的前n 项和为S n ,a 1=1,a n <a n +1,且S 3=2S 2+1. (1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =(2n -1)a n (n ∈N *),求数列{b n }的前n 项和T n .23.已知等差数列{}n a 中,42a =,()5433a a a =-,数列{}n b 满足12b =,12n n b b +=. (1)求{}n a ,{}n b 的通项公式;(2)记n S 为数列{}n a 的前n 项和,试比较1n n a a +⋅与12n S +的大小;(3)任意*N n ∈,()()2322,?n n nn n n a a n b c a n b +⎧+--⎪⎪=⎨⎪⎪⎩为偶数,为奇数,求数列{}n c 的前2n 项和.24.设函数()11lnxf x x-=+,设11a =,()1231,2n n a f f f f n n n n n n *-⎛⎫⎛⎫⎛⎫⎛⎫=++++∈≥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭N .(1)求数列{}n a 的通项公式. (2)若112b =,()()()11,211nn n b n n a a *+=∈≥++N ,数列{}n b 的前n 项和为n S ,若()11n n a S λ+<+对一切n *∈N 成立,求λ的取值范围.25.设*N n ∈,数列{}n a 的前n 项和为n S ,已知12n n n S S a +=++,______.请在①1a ,2a ,5a 成等比数列,②69a =,③535S =,这三个条件中任选一个补充在上面题干中,并解答下面问题.(1)求数列{}n a 的通项公式;(2)若数列{}n b满足()11na nn nb a +=+-,求数列{}n b的前2n 项的和2n T参考答案1.B2.B3.C 4.B5.B6.B7.B8.B9.D10.A11.C12.B13.12n a n =- 14.8.4 15.45 16.4 17.18.(1)()*35n a n n N =-∈;(2)81619,43a a ==.19.21n a n =-.20.(1)对任意的n *∈N ,12n n T c c c =.当2n ≥时,()()1211101010n n n n n n n n T c T +--===, 当1n =时,21110c T ==满足210n n c =,故()210n n c n N *=∈,所以,lg 121n n a c n =-=-;(2)证明:()()1211212n n a a n n +-=+---=⎡⎤⎣⎦,故数列{}n a 为等差数列, 所以,()122n n n a a S n +==,n b ∴=(2124nn n ++=+,故当2n ≥时,n b=<2===当1n =时,1113b =<, 当2n ≥时,12111111111132411n b b b nn ⎛⎫⎛⎫⎛⎫+++<+-+-++- ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭223=<<,故对任意的n *∈N ,121113nb b b +++<. 21.证明:(1)由11n n n a a S λ+=-,得1211n n n a a S λ+++=-,两式相减得121()n n n n a a a a λ+++-=, 由于0n a ≠,所以10n a +≠,所以2n n a a λ+-=.(2)设等差数列{}n a 的公差为d ,由121111a a S a λλ=-=-;11a =,得21a λ=-,又31a a λ-=,得31a λ=+,所以1(1)11λλλ+--=--,解得4λ=;所以3124d a a =-=,解得2d =,所以12(1)21n a n n =+-=-,令3n n na b =,则1(21)()3n n b n =-⋅;所以121111()3()(21)()333nnT n =⨯+⨯+⋯+-⨯, 则23111111()3()(21)()3333n n T n +=⨯+⨯+⋯+-⨯,两式相减得,21231121()[1()]2111111121332[()()()](21)()2(21)()()(121)1333333333313n n n n n n T n n n -++-=+++⋯++--⋅=+⨯--=-+--,所以113()13n n T n =-⋅<.22.(1)a n =2n -1(n ∈N *);(2)T n =(2n -3)×2n +3. 23.(1)由题意可得:113243a d a d d +=⎧⎨+=⎩,解得:111a d =-⎧⎨=⎩, 故()1112n a n n =-+-⨯=-因为数列{}n b 满足12b =,12n n b b +=, 所以{}n b 是首项为2,公比为2的等比数列,所以1222n nn b -=⋅=,(2)由(1)知:()()212132n n a a n n n n +⋅=--=-+,()()12322n n n n n S -+--==,所以()()1122n n n S ++-=所以()()212122n S n n n n +=+-=--,所以11224n n n a a S n ++⋅-=-+, 所以当2n <时,112n n n a a S ++⋅>, 当2n =时,112n n n a a S ++⋅=, 当3n ≥时,112n n n a a S ++⋅<; (3)当n 为奇数时,2n nn c =, 当n 为偶数时,()()2223443161641616222nnnnn n n n n n n c ---+--+-=-==222222224161644(2)222222n n n n n n n n n n n n n n ---+-+-=-=-=- 对于任意正整数n ,有211321132111321222nk k n k n c c c c ---=-=+++=+++∑①, 213212111123214222n k n n k n n c --+=--=+++∑②,①-②得21321212111131222112141422222214nn k n n n k n n c --++=---=+++-=---∑ 441215863334224664n n nn n -+-=---=-⋅⋅⋅, 所以211110659184n k n k n c --=+=-⨯∑, 以及22421ni n i c c c c ==+++∑22222226222204224862220426486(2)(22)2222222222n n n n --=-+-+-+-++-2220104244n n n n -=-+=,因此2221211111106591844nnnk k k n n k k k n n c c c ---===+=+=-+⨯∑∑∑, 所以,数列{}n c 的前2n 项和为211106591844n n n n--+-+⨯. 24.(1)1,11,2n n a n n =⎧=⎨-≥⎩;(2)14λ>.25.选①,(1)由12n n n S S a +=++得:()*12N n n a a n +-=∈,∴数列{}n a 是以1a为首项,2为公差的等差数列.由1a ,2a ,5a 成等比数列得()()211128a a a +=+,解得11a =.∴()*21N n a n n =-∈.(2)()()()112121na n nn n n b a n +=+-=+--,()()()22122211357 (434122221)n n n T n n n+-=+-+-+---+-=-+⎡⎤⎣⎦-. 选②,(1)由12n n n S S a +=++得()*12N n n a a n +-=∈,∴数列{}n a 是以1a 为首项,2为公差的等差数列. 由69a =得1529a +⨯=,解得11a =-,∴()*23N n a n n =-∈.(2)()()()1112123na n nn n n b a n +-=+-=+--,∴()()22211135...454321n n T n n -=++-+---+-⎡⎤⎣⎦- 2212412n n n n =-+=-+.选③,(1)同理,由12n n n S S a +=++得()*12N n n a a n +-=∈,∴数列{}n a 是以1a 为首项,2为公差的等差数列, 由535S =得151035a d +=,解得13a =,∴()*21N n a n n =+∈.(2)()()()1112121na n nn n n b a n ++=+-=+-+, ∴()()()2222213579 (414121)n n T n n -=+-+-+---++⎡⎤⎣⎦- 221242442n n n n ++=-+=-+.。
高考数学一轮复习数列多选题(讲义及答案)含答案
高考数学一轮复习数列多选题(讲义及答案)含答案一、数列多选题1.各项均为正数的等比数列{}n a 的前n 项积为n T ,若11a >,公比1q ≠,则下列命题正确的是( )A .若59T T =,则必有141T =B .若59T T =,则必有7T 是n T 中最大的项C .若67T T >,则必有78T T >D .若67T T >,则必有56T T >【答案】ABC 【分析】根据题意,结合等比数列的通项公式、等差数列的前n 项和公式,以及等比数列的性质,逐项分析,即可求解. 【详解】由等比数列{}n a 可知11n n a a q -=⋅,由等比数列{}n a 的前n 项积结合等差数列性质可知:()1211212111111123n n n n n n n n a a q a q a qa a T a a a q a q--+++-=⋅⋅⋅==⋅=对于A ,若59T T =,可得51093611a q a q =,即42611a q =,()71491426211141a q q T a ∴===,故A 正确;对于B ,若59T T =,可得42611a q =,即13211a q=,又11a >,故1q <,又59T T =,可知67891a a a a =,利用等比数列性质知78691a a a a ==,可知67891,1,1,1a a a a >><<,故7T 是n T 中最大的项,故B 正确;对于C ,若67T T >,则61572111a q a q >,即611a q <,又10a >,则1q <,可得76811871T T a a q a q <=<=,故78T T >,故C 正确; 对于D ,若67T T >,则611a q <,56651T a T a q ==,无法判断其与“1”的大小关系,故D 错误. 故选:ABC 【点睛】关键点点睛:本题主要考查了等比数列的通项公式及等差数列前n 项和公式,以及等比数列的性质的应用,其中解答中熟记等比数列的通项公式和性质及等差数列的求和公式,准确运算是解答的关键,着重考查了学生的推理与运算能力,属于较难题.2.已知数列{},{}n n a b 均为递增数列,{}n a 的前n 项和为,{}n n S b 的前n 项和为,n T 且满足*112,2()n n n n n a a n b b n N +++=⋅=∈,则下列结论正确的是( )A .101a <<B .11b <<C .22n n S T <D .22n n S T ≥【答案】ABC【分析】利用数列单调性及题干条件,可求出11,a b 范围;求出数列{},{}n n a b 的前2n 项和的表达式,利用数学归纳法即可证明其大小关系,即可得答案. 【详解】因为数列{}n a 为递增数列, 所以123a a a <<,所以11222a a a <+=,即11a <, 又22324a a a <+=,即2122a a =-<, 所以10a >,即101a <<,故A 正确; 因为{}n b 为递增数列, 所以123b b b <<,所以21122b b b <=,即1b <又22234b b b <=,即2122b b =<, 所以11b >,即11b <<,故B 正确;{}n a 的前2n 项和为21234212()()()n n n S a a a a a a -=++++⋅⋅⋅++= 22(121)2[13(21)]22n n n n +-++⋅⋅⋅+-==,因为12n n n b b +⋅=,则1122n n n b b +++⋅=,所以22n n b b +=,则{}n b 的2n 项和为13212422()()n n n b b b b b b T -=++⋅⋅⋅++++⋅⋅⋅+=1101101122(222)(222)()(21)n n nb b b b --++⋅⋅⋅++++⋅⋅⋅+=+-1)1)n n>-=-,当n =1时,222,S T =>,所以22T S >,故D 错误; 当2n ≥时假设当n=k时,21)2k k ->21)k k ->, 则当n=k +11121)21)21)2k k k k k ++-=+-=->2221(1)k k k >++=+所以对于任意*n N ∈,都有21)2k k ->,即22n n T S >,故C 正确 故选:ABC 【点睛】本题考查数列的单调性的应用,数列前n 项和的求法,解题的关键在于,根据数列的单调性,得到项之间的大小关系,再结合题干条件,即可求出范围,比较前2n 项和大小时,需灵活应用等差等比求和公式及性质,结合基本不等式进行分析,考查分析理解,计算求值的能力,属中档题.3.已知n S 是等差数列{}n a 的前n 项和,201920212020S S S <<,设12n n n n b a a a ++=,则数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,则下列结论中正确的是( ) A .20200a >B .20210a <C .2019202020212022a a a a ⋅>⋅D .2019n =时,n T 取得最大值【答案】ABC 【分析】根据题设条件,得到2021202020212020201920200,0S S a S S a -=<-=>,进而求得201920220a a >->,20192020a a >20212022a a ,再结合“裂项法”求得12121112n n n T d a a a a ++⎫⎛=-⎪⎝⎭,结合0d <,即可求解. 【详解】设等差数列{}n a 的公差为d ,因为201920212020S S S <<,可得2021202020210S S a -=<,2020201920200S S a -=>,20212019S S -=202120200a a +>,即202020210a a >->,202020210a d a d ->-->,即201920220a a >->, 所以20192020a a >20212022a a ,0d <,即数列{}n a 递减, 且10a >,20a >,…,20200a >,20210a <,又由12n n n n b a a a ++=,可得1211n n n n b a a a ++==1121112n n n n d a a a a +++⎛⎫- ⎪⎝⎭, 则122323341121211111111122n n n n n T d a a a a a a a a a a a a d a a +++⎛⎫⎛=-+-+⋅⋅⋅+-=- ⎪⎝⎝⎭121n n a a ++⎫⎪⎭,由0d <,要使n T 取最大值,则121211n n a a a a ++⎛⎫-⎪⎝⎭取得最小值, 显然1210n n a a ++>,而23a a >34201920202021202220222023a a a a a a a a >⋅⋅⋅>><<⋅⋅⋅, 所以当2020n =时,121211n n a a a a ++⎛⎫-⎪⎝⎭取得最小值. 综上可得,正确的选项为ABC. 故选:ABC. 【点睛】本题主要考查了数列的综合应用,其中解答中熟练应用通项n a 和n S 的关系式,数列的“裂项法”求和,以及数列的单调性进行求解是解答的关键,着重考查推理与运算能力.4.已知数列{}n a 的前n 项和为n S ,且1a p =,122n n S S p --=(2n ≥,p 为常数),则下列结论正确的有( ) A .{}n a 一定是等比数列B .当1p =时,4158S =C .当12p =时,m n m n a a a +⋅= D .3856a a a a +=+【答案】BC 【分析】对于A 选项,若0p =,则数列{}n a 不是等比数列,当0p ≠时,通过题目条件可得112n n a a -=,即数列{}n a 为首项为p ,公比为12的等比数列,然后利用等比数列的通项公式、前n 项和公式便可得出B ,C ,D 是否正确. 【详解】由1a p =,122n n S S p --=得,()222a p p p +-=,故22pa =,则2112a a =,当3n ≥时,有1222n n S S p ---=,则120n n a a --=,即112n n a a -=, 故当0p ≠时,数列{}n a 为首项为p ,公比为12的等比数列;当0p =时不是等比数列,故A 错误;当1p =时,441111521812S ⎛⎫⨯- ⎪⎝⎭==-,故B 正确; 当12p =时,12nn a ⎛⎫= ⎪⎝⎭,则12m nm n m n a a a ++⎛⎫⋅== ⎪⎝⎭,故C 正确;当0p ≠时,38271133+22128a a p p ⎛⎫=+=⎪⎝⎭,而56451112+22128a a p p ⎛⎫=+= ⎪⎝⎭, 故3856a a a a +>+,则D 错误; 故选:BC.5.记数列{}n a 的前n 项和为n S ,*n ∈N ,下列四个命题中不正确的有( ) A .若0q ≠,且对于*212,n n n n a a a ++∀∈=N ,则数列{}n a 为等比数列B .若nn S Aq B =+(非零常数q ,A ,B 满足1q ≠,0A B +=),则数列{}n a 为等比数列C .若数列{}n a 为等比数列,则232,,,n n n n n S S S S S --仍为等比数列D .设数列{}n a 是等比数列,若123a a a <<,则{}n a 为递增数列 【答案】AC 【分析】若0n a =,满足对于*212,n n n n a a a ++∀∈=N ,但数列{}n a 不是等比数列,可判断A ;利用n a 与n S 的关系,可求得数列{}n a 的通项公式,可判断B ;若数列{}n a 为等比数列,当公比1q =-,且n 为偶数时,此时232,,,n n n n n S S S S S --均为0,可判断C ;设数列{}n a 是等比数列,且公比为q ,若123a a a <<,即1211a a q a q <<,分类讨论10a >与10a <两种情况,可判断D ; 【详解】对于A ,若0n a =,满足对于*212,n n n n a a a ++∀∈=N ,但数列{}n a 不是等比数列,故A 错误;对于B ,当2n ≥时,()111(1)nn n n n n a S S Aq B AqB Aq q ---=-=+-+=-且1q ≠;当1n =时,0A B +=,则()111a S Aq B A q ==+=-符合上式,故数列{}n a 是首项为()1A q -公比为q 的等比数列,故B 正确;对于C ,若数列{}n a 为等比数列,当公比1q =-,且n 为偶数时,此时232,,,n n n n n S S S S S --均为0,不为等比数列,故C 错误;对于D ,设数列{}n a 是等比数列,且公比为q ,若123a a a <<,即1211a a q a q <<,若10a >,可得21q q <<,即1q >,则{}n a 为递增数列;若10a <,可得21q q >>,即01q <<,则{}n a 为递增数列;故D 正确;故选:AC 【点睛】结论点睛:本题考查等比数列通项公式及和的性质,等比数列和的性质:公比为1q ≠-的等比数列{}n a 的前n 项和为n S ,则232,,,n n n n n S S S S S --仍成等比数列,其公比为n q ;同理等差数列和的性质:公差为d 的等差数列{}n a 的前n 项和为n S ,数列232,,,m m m m m S S S S S --构成等差数列,公差为md ,考查学生的分析能力,属于中档题.6.下列说法中正确的是( )A .数列{}n a 成等差数列的充要条件是对于任意的正整数n ,都有122n n n a a a ++=+B .数列{}n a 成等比数列的充要条件是对于任意的正整数n ,都有212n n n a a a ++=C .若数列{}n a 是等差数列,则n S 、2n n S S -、32n n S S -也是等差数列D .若数列{}n a 是等比数列,则n S 、2n n S S -、32n n S S -也是等比数列 【答案】AC 【分析】利用等差中项法可判断A 选项的正误;取0n a =可判断B 选项的正误;利用等差数列求和公式以及等差中项法可判断C 选项的正误;取1q =-,n 为偶数可判断D 选项的正误. 【详解】对于A 选项,充分性:若数列{}n a 成等差数列,则对任意的正整数n ,n a 、1n a +、2n a +成等差数列,则121n n n n a a a a +++-=-,即122n n n a a a ++=+,充分性成立; 必要性:对任意的正整数n ,都有122n n n a a a ++=+,则121n n n n a a a a +++-=-, 可得出2132431n n a a a a a a a a +-=-=-==-=,所以,数列{}n a 成等差数列,必要性成立.所以,数列{}n a 成等差数列的充要条件是对于任意的正整数n ,都有122n n n a a a ++=+,A 选项正确;对于B 选项,当数列{}n a 满足0n a =时,有212n n n a a a ++=,但数列{}n a 不是等比数列,B选项错误;对于C 选项,设等差数列{}n a 的公差为d ,则()112n n n dS na -=+,()2122122n n n d S na -=+,()3133132n n n dS na -=+, 所以,()()()22111322112222n n n n d n n d n n d S S na na na ---⎡⎤⎡⎤-=+-+=+⎢⎥⎢⎥⎣⎦⎣⎦, ()()()232111533122132222n n n n d n n d n n d S S na na na ---⎡⎤⎡⎤-=+-+=+⎢⎥⎢⎥⎣⎦⎣⎦, 所以,()()()()22232111532222n n n n n d n n d n n d S S S na na na ⎡⎤⎡⎤⎡⎤---⎢⎥⎢⎥⎢⎥-+=+++=+⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦()22n n S S =-,所以,n S 、2n n S S -、32n n S S -是等差数列,C 选项正确;对于D 选项,当公比1q =-,且n 是偶数时,n S 、2n n S S -、32n n S S -都为0, 故n S 、2n n S S -、32n n S S -不是等比数列,所以D 选项错误. 故选:AC.【点睛】 方法点睛;1.判断等差数列有如下方法:(1)定义法:1n n a a d +-=(d 为常数,n *∈N ); (2)等差中项法:()122n n n a a a n N*++=+∈;(3)通项法:n a p n q =⋅+(p 、q 常数);(4)前n 项和法:2n S p n q n =⋅+⋅(p 、q 常数).2.判断等比数列有如下方法: (1)定义法:1n na q a +=(q 为非零常数,n *∈N ); (2)等比中项法:212n n n a a a ++=⋅,n *∈N ,0n a ≠; (3)通项公式法:nn a p q =⋅(p 、q 为非零常数); (4)前n 项和法:nn S p q p =⋅-,p 、q 为非零常数且1q ≠.7.设首项为1的数列{}n a 的前n 项和为n S ,已知121n n S S n +=+-,则下列结论正确的是( )A .数列{}n a 为等比数列B .数列{}n S n +为等比数列C .数列{}n a 中10511a =D .数列{}2n S 的前n 项和为2224n n n +---【答案】BCD 【分析】由已知可得11222n n n n S n S nS n S n++++==++,结合等比数列的定义可判断B ;可得2n n S n =-,结合n a 和n S 的关系可求出{}n a 的通项公式,即可判断A ;由{}n a 的通项公式,可判断C ;由分组求和法结合等比数列和等差数列的前n 项和公式即可判断D. 【详解】因为121n n S S n +=+-,所以11222n n n n S n S nS n S n++++==++.又112S +=,所以数列{}n S n +是首项为2,公比为2的等比数列,故B 正确;所以2n n S n +=,则2nn S n =-.当2n ≥时,1121n n n n a S S --=-=-,但11121a -≠-,故A 错误;由当2n ≥时,121n n a -=-可得91021511a =-=,故C 正确;因为1222n n S n +=-,所以2311222...2221222...22n n S S S n ++++=-⨯+-⨯++-()()()23122412122 (2)212 (22412)2n n n n n n n n n ++--⎡⎤=+++-+++=-+=---⎢⎥-⎣⎦ 所以数列{}2n S 的前n 项和为2224n n n +---,故D 正确. 故选:BCD . 【点睛】关键点点睛:在数列中,根据所给递推关系,得到等差等比数列是重难点,本题由121n n S S n +=+-可有目的性的构造为1122n n S S n n +++=+,进而得到11222n n n n S n S nS n S n++++==++,说明数列{}n S n +是等比数列,这是解决本题的关键所在,考查了推理运算能力,属于中档题,8.设等差数列{a n }的前n 项和为S n ,公差为d .已知a 3=12,S 12>0,a 7<0,则( ) A .a 6>0 B .2437d -<<- C .S n <0时,n 的最小值为13 D .数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项 【答案】ABCD 【分析】S 12>0,a 7<0,利用等差数列的求和公式及其性质可得:a 6+a 7>0,a 6>0.再利用a 3=a 1+2d =12,可得247-<d <﹣3.a 1>0.利用S 13=13a 7<0.可得S n <0时,n 的最小值为13.数列n n S a ⎧⎫⎨⎬⎩⎭中,n ≤6时,n n S a >0.7≤n ≤12时,n n S a <0.n ≥13时,n n S a >0.进而判断出D 是否正确. 【详解】 ∵S 12>0,a 7<0,∴()67122a a +>0,a 1+6d <0.∴a 6+a 7>0,a 6>0.∴2a 1+11d >0,a 1+5d >0, 又∵a 3=a 1+2d =12,∴247-<d <﹣3.a 1>0. S 13=()113132a a +=13a 7<0.∴S n <0时,n 的最小值为13.数列n n S a ⎧⎫⎨⎬⎩⎭中,n ≤6时,n n S a >0,7≤n ≤12时,n n S a <0,n ≥13时,n n S a >0.对于:7≤n ≤12时,nnS a <0.S n >0,但是随着n 的增大而减小;a n <0,但是随着n 的增大而减小,可得:nnS a <0,但是随着n 的增大而增大. ∴n =7时,nnS a 取得最小值.综上可得:ABCD 都正确. 故选:ABCD . 【点评】本题考查了等差数列的通项公式与求和公式及其性质,考查了推理能力与计算能力,属于难题.二、平面向量多选题9.如图,B 是AC 的中点,2BE OB =,P 是平行四边形BCDE 内(含边界)的一点,且(),OP xOA yOB x y R =+∈,则下列结论正确的为( )A .当0x =时,[]2,3y ∈B .当P 是线段CE 的中点时,12x =-,52y =C .若x y +为定值1,则在平面直角坐标系中,点P 的轨迹是一条线段D .x y -的最大值为1- 【答案】BCD 【分析】利用向量共线的充要条件判断出A 错,C 对;利用向量的运算法则求出OP ,求出x ,y 判断出B 对,过P 作//PM AO ,交OE 于M ,作//PN OE ,交AO 的延长线于N ,则OP ON OM =+,然后可判断出D 正确. 【详解】当0x =时,OP yOB =,则P 在线段BE 上,故13y ≤≤,故A 错 当P 是线段CE 的中点时,13()2OP OE EP OB EB BC =+=++ 1153(2)222OB OB AB OA OB =+-+=-+,故B 对x y +为定值1时,A ,B ,P 三点共线,又P 是平行四边形BCDE 内(含边界)的一点,故P 的轨迹是线段,故C 对如图,过P 作//PM AO ,交OE 于M ,作//PN OE ,交AO 的延长线于N ,则:OP ON OM =+;又OP xOA yOB =+;0x ∴,1y ;由图形看出,当P 与B 重合时:01OP OA OB =⋅+⋅;此时x 取最大值0,y 取最小值1;所以x y -取最大值1-,故D 正确 故选:BCD 【点睛】结论点睛:若OC xOA yOB =+,则,,A B C 三点共线1x y ⇔+=.10.在ABC 中,D 、E 分别是AC 、BC 上的点,AE 与BD 交于O ,且AB BC BC CA CA AB ⋅=⋅=⋅,2AB AC AE +=,2CD DA =,1AB =,则( )A .0AC BD ⋅=B .0OA OE ⋅=C .34OA OB OC ++= D .ED 在BA 方向上的正射影的数量为712【答案】BCD 【分析】根据AB BC BC CA CA AB ⋅=⋅=⋅以及正弦定理得到sin cos sin cos C B B C ⋅=⋅,从而求出B C =,进一步得到B C A ==,ABC 等边三角形,根据题目条件可以得到E 为BC 的中点和D 为AC 的三等分点,建立坐标系,进一步求出各选项. 【详解】由AB BC BC CA CA AB ⋅=⋅=⋅得cos cos AB BC B CA BC C ⋅=⋅, ||cos ||cos AB B CA C ⋅=⋅,正弦定理,sin cos sin cos C B B C ⋅=⋅,()0sin B C =-,B C =,同理:A C =,所以B C A ==,ABC 等边三角形.2AB AC AE +=,E 为BC 的中点,2CD DA =,D 为AC 的三等分点.如图建立坐标系,3A ⎛ ⎝⎭,1,02B ⎛⎫- ⎪⎝⎭,1,02C ⎛⎫ ⎪⎝⎭,136D ⎛ ⎝⎭,解得3O ⎛ ⎝⎭, O 为AE 的中点,所以,0OA OE +=正确,故B 正确; 1323,,,23AC BD ⎛⎫⎛=-= ⎪ ⎪ ⎝⎭⎝⎭,AC BD ⋅=123310236⨯--≠,故A 错误; 324OA OB OC OA OE OE ++=+==,故C 正确; 136ED ⎛= ⎝⎭,132BA ⎛= ⎝⎭,投影712||ED BA BA ⋅=,故D 正确. 故选:BCD.【点睛】如何求向量a 在向量b 上的投影,用向量a 的模乘以两个向量所成的角的余弦值就可以了,当然还可以利用公式a b b ⋅进行求解.。
(完整版)高三数学第一轮复习单元测试--数列
高三数学第一轮复习单元测试(2)— 《数列》一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若互不相等的实数a 、b 、c 成等差数列,c 、a 、b 成等比数列,且103=++c b a , 则a = ( )A .4B .2C .-2D .-42.已知等差数列共有10项,其中奇数项之和15,偶数项之和为30,则其公差是 ( ) A .5 B .4 C .3 D .2 3.在等差数列{}n a 中,已知1232,13,a a a =+=则456a a a ++等于 ( )A .40B .42C .43D .454.在等差数列{a n }中,若a a+a b =12,S N 是数列{a n }的前n 项和,则S N 的值为 ( ) A .48 B .54 C .60 D .665.设S n 是等差数列{a n }的前n 项和,若S 3S 6=13,则S 6S 12= ( )A .310B .13C .18D .196.设{}n a 是公差为正数的等差数列,若12315a a a ++=,12380a a a =,则111213a a a ++=( )A .120B .105C .90D .757.已知等差数列{a n }的前n 项和为S n ,若a a 2001+=,且A 、B 、C 三点共线 (该直线不过原点O ),则S 200= ( )A .100B .101C .200D .2018.在等比数列{}n a 中,12a =,前n 项和为n S ,若数列{}1n a +也是等比数列,则n S 等于( )A .122n +- B .3n C .2n D .31n -9.设4710310()22222()n f n n N +=+++++∈L ,则()f n 等于( )A .2(81)7n- B .12(81)7n +- C .32(81)7n +- D .42(81)7n +- 10.弹子跳棋共有60棵大小相同的球形弹子,现在棋盘上将它叠成正四面体球垛,使剩下的弹子尽可能的少,那么剩下的弹子有 ( ) A .3 B .4 C .8 D .9 11.设数列{}n a 的前n 项和为n S ,令12nn S S S T n+++=L ,称n T 为数列1a ,2a ,……,n a 的“理想数”,已知数列1a ,2a ,……,500a 的“理想数”为2004,那么数列2, 1a ,2a ,……,500a 的“理想数”为 ( )A .2002B .2004C .2006D .200812.已知数列{}n a 对任意的*p q ∈N ,满足p q p q a a a +=+,且26a =-,那么10a 等于( )A .165-B .33-C .30-D .21-二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上. 13.数列{a n }中,若a 1=1,a n +1=2a n +3 (n ≥1),则该数列的通项a n = .14.=⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=1110113112111,244)(f f f f x f xx Λ则设 . 15.在德国不莱梅举行的第48届世乒赛期间,某商场橱窗里用同样的乒乓球堆成若干准“正 三棱锥”形的展品,其中第一堆只有一层, 就一个乒乓球;第2、3、4、…堆最底层(第 一层)分别按右图所示方式固定摆放.从第一 层开始,每层的小球自然垒放在下一层之上,第n 堆第n 层就放一个乒乓球,以)(n f 表示第n 堆的乒乓球总数,则=)3(f ;=)(n f (答案用n 表示).16.已知整数对排列如下()()()()()()()()()()()()Λ,4,2,5,1,1,4,2,3,3,2,4,1,1,3,2,23,1,1,2,2,1,1,1, 则第60个整数对是_______________.三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)数列{a n }的前n 项和记为S n ,()111,211n n a a S n +==+≥(1)求{a n }的通项公式;(2)等差数列{b n }的各项为正,其前n 项和为T n ,且315T =,又112233,,a b a b a b +++成等比数列,求T n 18.(本小题满分12分) 设数列}{n a 、}{n b 、}{n c 满足:2+-=n n n a a b ,2132++++=n n n n a a a c (n =1,2,3,…),证明:}{n a 为等差数列的充分必要条件是}{n c 为等差数列且1+≤n n b b (n =1,2,3,…)19.(本小题满分12分)已知数列3021,,,a a a Λ,其中1021,,,a a a Λ是首项为1,公差为1的等差数列;201110,,,a a a Λ是公差为d 的等差数列;302120,,,a a a Λ是公差为2d 的等差数列(0≠d ). (1)若4020=a ,求d ;(2)试写出30a 关于d 的关系式,并求30a 的取值范围;(3)续写已知数列,使得403130,,,a a a Λ是公差为3d 的等差数列,……,依次类推,把已知数列推广为无穷数列. 提出同(2)类似的问题((2)应当作为特例),并进行研究,你能得到什么样的结论? 20.(本小题满分12分) 某市去年11份曾发生流感,据统计,11月1日该市新的流感病毒感染者有20人,此后,每天的新感染者平均比前一天的新感染者增加50人,由于该市医疗部门采取措施,使该种病毒的传播得到控制,从某天起,每天的新感染者平均比前一天的新感染者减少30人,到11月30日止,该市在这30日内感染该病毒的患者总共8670人,问11月几日,该市感染此病毒的新患者人数最多?并求这一天的新患者人数. 21.(本小题满分12分)等差数列{}n a 中,12a =,公差d 是自然数,等比数列{}n b 中,1122,b a b a ==.(Ⅰ)试找出一个d 的值,使{}n b 的所有项都是{}n a 中的项;再找出一个d 的值,使{}n b 的项不都是{}n a 中的项(不必证明);(Ⅱ)判断4d =时,是否{}n b 所有的项都是{}n a 中的项, 并证明你的结论;(Ⅲ)探索当且仅当d 取怎样的自然数时,{}n b 的所有项都是{}n a 中的项,并说明理由. 22.(本小题满分14分)已知数列{n a }中,112--=n n a a (n ≥2,+∈N n ),(1)若531=a ,数列}{n b 满足11-=n n a b (+∈N n ),求证数列{n b }是等差数列; (2)若531=a ,求数列{n a }中的最大项与最小项,并说明理由; (3)(理做文不做)若211<<a ,试证明:211<<<+n n a a .参考答案(2)1.D .依题意有22,,310.a c b bc a a b c +=⎧⎪=⎨⎪++=⎩4,2,8.a b c =-⎧⎪=⎨⎪=⎩2.C . 3302551520511=⇒⎩⎨⎧=+=+d d a d a ,故选C . 3.B . ∵等差数列{}n a 中12a =,2313a a += ∴公差3d =. ∴45613345a a a a d d d ++=+++=1312a d +=42. 4.B . 因为461912a a a a +=+=,所以1999()2a a S +==54,故选B . 5.A . 由等差数列的求和公式可得31161331,26153S a d a d S a d +===+可得且0d ≠ 所以6112161527312669010S a d d S a d d +===+,故选A . 6.B .12322153155a a a a a ++=⇒=⇒=,()()1232228080a a a a d a a d =⇒-+=,将25a =代入,得3d =,从而()()11121312233103530105a a a a a d ++==+=⨯+=.选B .7.A . 依题意,a 1+a 200=1,故选A .8.C .因数列{}n a 为等比,则12n n a q -=,因数列{}1n a +也是等比数列,则22121122212(1)(1)(1)22(12)01n n n n n n n n n n n n n a a a a a a a a a a a a a q q q +++++++++=++⇒+=++⇒+=⇒+-=⇒=即2n a =,所以2n S n =,故选择答案C .9.D . f (n )=3(1)432[12]2(81)127n n ++-=--,选D . 10.B . 正四面体的特征和题设构造过程,第k 层为k 个连续自然数的和,化简通项再裂项用公式求和.依题设第k层正四面体为(),k k k k k 2213212+=+=++++Λ则前k 层共有()()()()6062121212121222≤++=+++++++k k k k k L ,k 最大为6,剩4,选B .11.A .认识信息,理解理想数的意义有,20025014984995002501,5004984995002004500321500321=+++++⨯∴++++=a a a a a a a a ΛΛ,选A .12.C .由已知4a =2a +2a = -12,8a =4a +4a =-24,10a =8a +2a = -30,选C .13.由112332(3)n n n n a a a a ++=+⇔+=+,即133n n a a +++=2,所以数列{n a +3}是以(1a +3)为首项,以2为公比的等比数列,故n a +3=(1a +3)12n -,n a =12n +-3. 14.由()()11=+-x f x f ,整体求和所求值为5.15.2)1()()(111211+==-++-+=⇒+=--+n n a a a a a a n a a n n n n n ΛΛ )(n f 的规律由)2(2)1()1()(≥+==--n n n a n f n f n ,所以22)1()(223)2()3(222)1()2(1)1(222+=--+=-+=-=n n f n f f f f f f Λ所以)]321()321[(21)(222n n n f +++++++++=ΛΛ 6)2)(1(]2)1(6)12)(1([21++=++++=n n n n n n n n 16.观察整数对的特点,整数对和为2的1个,和为3的2个,和为4的3个,和为5的4个,和n 为的 n -1个,于是,借助()21321+=++++n n n Λ估算,取n=10,则第55个整数对为()1,11,注意横坐标递增,纵坐标递减的特点,第60个整数对为()7,517.(1)由121n n a S +=+可得()1212n n a S n -=+≥,两式相减得()112,32n n n n n a a a a a n ++-==≥ 又21213a S =+= ∴213a a = 故{a n }是首项为1,公比为3得等比数列 ∴13n n a -=. (2)设{b n }的公差为d ,由315T =得,可得12315b b b ++=,可得25b =, 故可设135,5b d b d =-=+又1231,3,9a a a ===由题意可得()()()2515953d d -+++=+解得122,10d d == ∵等差数列{b n }的各项为正,∴0d >,∴2d = ∴()213222n n n T n n n-=+⨯=+18.ο1必要性:设数列}{n a 是公差为1d 的等差数列,则:--=-+++)(311n n n n a a b b )(2+-n n a a =--+)(1n n a a )(23++-n n a a =1d -1d =0,∴1+≤n n b b (n =1,2,3,…)成立; 又2)(11+-=-++n n n n a a c c )(12++-n n a a )(323++-+n n a a =61d (常数)(n =1,2,3,…) ∴数列}{n c 为等差数列.ο2充分性:设数列}{n c 是公差为2d 的等差数列,且1+≤n n b b (n =1,2,3,…), ∵2132++++=n n n n a a a c ……① ∴432232++++++=n n n n a a a c ……②①-②得:)(22++-=-n n n n a a c c )(231++-+n n a a )(342++-+n n a a =2132++++n n n b b b ∵+-=-++)(12n n n n c c c c 2212)(d c c n n -=-++∴2132++++n n n b b b 22d -=……③ 从而有32132+++++n n n b b b 22d -=……④ ④-③得:0)(3)(2)(23121=-+-+-+++++n n n n n n b b b b b b ……⑤ ∵0)(1≥-+n n b b ,012≥-++n n b b ,023≥-++n n b b , ∴由⑤得:01=-+n n b b (n =1,2,3,…),由此,不妨设3d b n =(n =1,2,3,…),则2+-n n a a 3d =(常数) 故312132432d a a a a a c n n n n n n -+=++=+++……⑥ 从而3211324d a a c n n n -+=+++31524d a a n n -+=+……⑦ ⑦-⑥得:3112)(2d a a c c n n n n --=-++,故311)(21d c c a a n n n n +-=-++3221d d +=(常数)(n =1,2,3,…), ∴数列}{n a 为等差数列.综上所述:}{n a 为等差数列的充分必要条件是}{n c 为等差数列且1+≤n n b b (n =1,2,3,…). 19.(1)3,401010.102010=∴=+==d d a a . (2)())0(11010222030≠++=+=d d d d a a , ⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛+=432110230d a ,当),0()0,(∞+∞-∈Y d 时,[)307.5,a ∈+∞.(3)所给数列可推广为无穷数列{}n a ,其中1021,,,a a a Λ是首项为1,公差为1的等差数列,当1≥n时,数列)1(1011010,,,++n n n a a a Λ是公差为n d 的等差数列.研究的问题可以是:试写出)1(10+n a 关于d 的关系式,并求)1(10+n a 的取值范围. 研究的结论可以是:由()323304011010d d d d a a +++=+=, 依次类推可得 ()⎪⎩⎪⎨⎧=+≠--⨯=+++=++.1),1(10,1,11101101)1(10d n d d d d d a n nn Λ 当0>d 时,)1(10+n a 的取值范围为),10(∞+等.20.设第n 天新患者人数最多,则从n+1天起该市医疗部门采取措施,于是,前n 天流感病毒感染者总人数,构成一个首项为20,公差为50的等差数列的n 项和,()()N n ,n n n n n n S n∈≤≤-=⨯-+=3015255021202,而后30-n 天的流感病毒感染者总人数,构成一个首项为()60503050120-=-⨯-+n n ,公差为30,项数为30-n 的等差数列的和,()()()()(),n n n n n n Tn148502445653026050306050302-+-=-⨯--+--=依题设构建方程有,(),n n n n ,T S n n 867014850244565525867022=-+-+-∴=+化简,120588612=∴=+-n ,n n 或49=n (舍),第12天的新的患者人数为 20+(12-1)·50=570人.故11月12日,该市感染此病毒的新患者人数最多,新患者人数为570人.21.(1)0d =时,{}n a 的项都是{}n b 中的项;(任一非负偶数均可); 1d =时,{}n a 的项不都是{}n b 中的项.(任一正奇数均可); (2) 4d =时,422(21),n a n n =-=-123n n b -=⨯131 2(21)2n m a -+=⨯-=131(2n m -+=为正整数),{}n b 的项一定都是{}n a 中的项 (3)当且仅当d 取2(*)k k ∈N (即非负偶数)时,{}n b 的项都是{}n a 中的项. 理由是:①当2(*)d k k =∈N 时,2(1)22[1(1)],n a n k n k =+-⋅=+-⋅2n >时,11122112(1)2(C C 1)n n n n n n n b k k k k ------=⋅+=++⋅⋅⋅++,其中112211C C n n n n n k k k-----++⋅⋅⋅+ 是k 的非负整数倍,设为Ak (*A ∈N ),只要取1m A =+即(m 为正整数)即可得n m b a =, 即{}n b 的项都是{}n a 中的项;②当21,()d k k =+∈N 时,23(23)2k b +=不是整数,也不可能是{}n a 的项. 22.(1)1111111121n n n n n a b a a a ---===----,而1111-=--n n a b ,∴11111111=-=-=-----n n n n n a a a b b .)(+∈N n∴{n b }是首项为251111-=-=a b ,公差为1的等差数列. (2)依题意有nn b a 11=-,而5.31)1(25-=-+-=⋅n n b n ,∴5.311-=-n a n .对于函数5.31-=x y ,在x >3.5时,y >0,0)5.3(12<--=x y',在(3.5,∞+) 上为减函数. 故当n =4时,5.311-+=n a n 取最大值3. 而函数5.31-=x y 在x <3.5时,y <0, 0)5.3(12<--=x y',在(∞-,3.5)上也为减函数.故当n =3时,取最小值,3a =-1. (3)先用数学归纳法证明21<<n a ,再证明n n a a <+1. ①当1=n 时,211<<a 成立; ②假设当k n =时命题成立,即21<<k a ,当1+=k n 时,1121<<ka )23,1(121∈-=⇒+kk a a ⇒211<<+k a 故当1+=k n 时也成立,综合①②有,命题对任意+∈N n 时成立,即21<<n a . (也可设x x f 12)(-=(1≤x ≤2),则01)(2'>=xx f , 故=1)1(f 223)2()(1<=<=<+f a f a k k ).下证: n n a a <+10122)1(21=⋅-<+-=-+kk k k n n a a a a a a ⇒n n a a <+1.。
高考数学一轮复习数列多选题练习题及答案
高考数学一轮复习数列多选题练习题及答案一、数列多选题1.已知等比数列{}n a 的公比为q ,前n 项和0n S >,设2132n n n b a a ++=-,记{}n b 的前n 项和为n T ,则下列判断正确的是( ) A .若1q =,则n n T S = B .若2q >,则n n T S > C .若14q =-,则n n T S > D .若34q =-,则n n T S > 【答案】BD 【分析】先求得q 的取值范围,根据q 的取值范围进行分类讨论,利用差比较法比较出n T 和n S 的大小关系. 【详解】由于{}n a 是等比数列,0n S >,所以110,0a S q =>≠, 当1q =时,10n S na =>,符合题意; 当1q ≠时,()1101n n a q S q-=>-,即101nq q ->-,上式等价于1010n q q ⎧->⎨->⎩①或1010n q q ⎧-<⎨-<⎩②.解②得1q >.解①,由于n 可能是奇数,也可能是偶数,所以()()1,00,1q ∈-.综上所述,q 的取值范围是()()1,00,-+∞.2213322n n n n b a a a q q ++⎛⎫=-=- ⎪⎝⎭,所以232n n T q q S ⎛⎫=- ⎪⎝⎭,所以()2311222n n n n T S S q q S q q ⎛⎫⎛⎫-=⋅--=⋅+⋅- ⎪ ⎪⎝⎭⎝⎭,而0n S >,且()()1,00,q ∈-⋃+∞.所以,当112q -<<-,或2q >时,0n n T S ->,即n n T S >,故BD 选项正确,C 选项错误. 当12(0)2q q -<<≠时,0n n T S -<,即n n T S <. 当12q =-或2q 时,0,n n n n T S T S -==,A 选项错误.综上所述,正确的选项为BD. 故选:BD 【点睛】本小题主要考查等比数列的前n 项和公式,考查差比较法比较大小,考查化归与转化的数学思想方法,考查分类讨论的数学思想方法,属于中档题.2.已知等比数列{}n a 首项11a >,公比为q ,前n 项和为n S ,前n 项积为n T ,函数()()()()127f x x x a x a x a =+++,若()01f '=,则( )A .{}lg n a 为单调递增的等差数列B .01q <<C .11n a S q ⎧⎫-⎨⎬-⎩⎭为单调递增的等比数列 D .使得1n T >成立的n 的最大值为6【答案】BCD 【分析】令()()()()127g x x a x a x a =+++,利用()()127001f g a a a '===可得3411a a q ==,01q <<,B 正确;由()()111lg lg lg 1lg n n a a q a n q -==+-可得A 错误;由()111111111n n n a a a qS q q q q q --=--=⋅---可得C 正确;由11a >,01q <<,41a =可推出671T T >=,81T <可得D 正确. 【详解】令()()()()127g x x a x a x a =+++,则()()f x xg x =, ()()()f x g x xg x ''∴=+,()()127001f g a a a '∴===,因为{}n a 是等比数列,所以712741a a a a ==,即3411a a q ==,11a >,01q ∴<<,B 正确;()()111lg lg lg 1lg n n a a q a n q -==+-,{}lg n a ∴是公差为lg q 的递减等差数列,A 错误;()111111111n n n a a a q S q q q q q --=--=⋅---,11n a S q ⎧⎫∴-⎨⎬-⎩⎭是首项为101a q q <-,公比为q 的递增等比数列,C 正确;11a >,01q <<,41a =,3n ∴≤时,1n a >,5n ≥时,01n a <<,4n ∴≤时,1n T >,7712741T a a a a ===,8n ∴≥时,78971n n T T a a a T =<=,又75671T T a a =>,7671T T a =>,所以使得1n T >成立的n 的最大值为6,D 正确. 故选:BCD 【点睛】关键点点睛:利用等比数列的性质、通项公式、求和公式、数列的单调性求解是解题关键.3.设等差数列{a n }的前n 项和为S n ,公差为d .已知a 3=12,S 12>0,a 7<0,则( ) A .a 6>0 B .2437d -<<- C .S n <0时,n 的最小值为13D .数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项【答案】ABCD 【分析】S 12>0,a 7<0,利用等差数列的求和公式及其性质可得:a 6+a 7>0,a 6>0.再利用a 3=a 1+2d =12,可得247-<d <﹣3.a 1>0.利用S 13=13a 7<0.可得S n <0时,n 的最小值为13.数列n n S a ⎧⎫⎨⎬⎩⎭中,n ≤6时,n n S a >0.7≤n ≤12时,n n S a <0.n ≥13时,n n S a >0.进而判断出D 是否正确. 【详解】 ∵S 12>0,a 7<0,∴()67122a a +>0,a 1+6d <0.∴a 6+a 7>0,a 6>0.∴2a 1+11d >0,a 1+5d >0, 又∵a 3=a 1+2d =12,∴247-<d <﹣3.a 1>0. S 13=()113132a a +=13a 7<0.∴S n <0时,n 的最小值为13.数列n n S a ⎧⎫⎨⎬⎩⎭中,n ≤6时,n n S a >0,7≤n ≤12时,n n S a <0,n ≥13时,n n S a >0.对于:7≤n ≤12时,nn S a <0.S n >0,但是随着n 的增大而减小;a n <0,但是随着n 的增大而减小,可得:nnS a <0,但是随着n 的增大而增大.∴n =7时,nnS a 取得最小值. 综上可得:ABCD 都正确. 故选:ABCD . 【点评】本题考查了等差数列的通项公式与求和公式及其性质,考查了推理能力与计算能力,属于难题.4.如图,已知点E 是ABCD 的边AB 的中点,()*n F n ∈N为边BC 上的一列点,连接n AF 交BD 于n G ,点()*n G n ∈N 满足()1223n n n n n G D a G A a G E +=⋅-+⋅,其中数列{}n a 是首项为1的正项数列,n S 是数列{}n a 的前n 项和,则下列结论正确的是( )A .313a =B .数列{}3n a +是等比数列C .43n a n =-D .122n n S n +=--【答案】AB 【分析】化简得到()()12323n n n n n n G D a a G A a G B +=--⋅-+⋅,根据共线得到1230n n a a +--=,即()1323n n a a ++=+,计算123n n a +=-,依次判断每个选项得到答案. 【详解】()()112232n n n n n n G D a G A a G A G B +=⋅-+⋅+, 故()()12323n n n n n n G D a a G A a G B +=--⋅-+⋅,,n n G D G B 共线,故1230n n a a +--=,即()1323n n a a ++=+,11a =,故1342n n a -+=⨯,故123n n a +=-.432313a =-=,A 正确;数列{}3n a +是等比数列,B 正确;123n n a +=-,C 错误;2124323412nn n S n n +-=-=---,故D 错误.故选:AB . 【点睛】本题考查了向量运算,数列的通项公式,数列求和,意在考查学生的计算能力,转化能力和综合应用能力.5.设n S 是公差为()d d ≠0的无穷等差数列{}n a 的前n 项和,则下列命题正确的是( ) A .若0d <,则数列{}n S 有最大项 B .若数列{}n S 有最大项,则0d <C .若对任意*n N ∈,均有0n S >,则数列{}n S 是递增数列D .若数列{}n S 是递增数列,则对任意*n N ∈,均有0n S >【答案】ABC 【分析】由等差数列的求和公式可得()2111222n n n d d S na d n a n -⎛⎫=+=+- ⎪⎝⎭,可看作关于n 的二次函数,由二次函数的性质逐个选项验证可得. 【详解】由等差数列的求和公式可得()2111222n n n d d S na d n a n -⎛⎫=+=+- ⎪⎝⎭, 选项A ,若0d <,由二次函数的性质可得数列{}n S 有最大项,故正确; 选项B ,若数列{}n S 有最大项,则对应抛物线开口向下,则有0d <,故正确; 选项C ,若对任意*n ∈N ,均有0n S >,对应抛物线开口向上,0d >, 可得数列{}n S 是递增数列,故正确;选项D ,若数列{}n S 是递增数列,则对应抛物线开口向上, 但不一定有任意*n ∈N ,均有0n S >,故错误. 故选:ABC . 【点睛】本题考查等差数列的求和公式的应用,()2111222n n n d d S na d n a n -⎛⎫=+=+- ⎪⎝⎭可看成是二次函数,然后利用二次函数的性质解决问题,考查分析和转化能力,属于常考题.6.两个等差数列{}n a 和{}n b ,其公差分别为1d 和2d ,其前n 项和分别为n S 和n T ,则下列命题中正确的是( )A .若为等差数列,则112da =B .若{}n n S T +为等差数列,则120d d +=C .若{}n n a b 为等差数列,则120d d ==D .若*n b N ∈,则{}n b a 也为等差数列,且公差为12d d +【答案】AB 【分析】对于A ,利用=对于B ,利用()2211332S T S T S T +=+++化简可得答案; 对于C ,利用2211332a b a b a b =+化简可得答案; 对于D ,根据112n n b b a a d d +-=可得答案. 【详解】对于A ,因为为等差数列,所以=即== 化简得()21120d a -=,所以112d a =,故A 正确;对于B ,因为{}n n S T +为等差数列,所以()2211332S T S T S T +=+++, 所以()11121111122223333a d b d a b a d b d +++=+++++, 所以120d d +=,故B 正确;对于C ,因为{}n n a b 为等差数列,所以2211332a b a b a b =+, 所以11121111122()()(2)(2)a d b d a b a d b d ++=+++, 化简得120d d =,所以10d =或20d =,故C 不正确;对于D ,因为11(1)n a a n d =+-,且*n b N ∈,所以11(1)n b n a a b d =+-()112111a b n d d =++--⎡⎤⎣⎦,所以()()1111211n b a a b d n d d =+-+-,所以()()()11111211112111n n b b a a a b d nd d a b d n d d +-=+-+-----12d d =, 所以{}n b a 也为等差数列,且公差为12d d ,故D 不正确. 故选:AB 【点睛】关键点点睛:利用等差数列的定义以及等差中项求解是解题关键.7.已知数列{}n a 的前n 项和为n S ,11a =,且1n n S a λ-=(λ为常数).若数列{}n b 满足2920n n a b n n -+-=,且1n n b b +<,则满足条件的n 的取值可以为( )A .5B .6C .7D .8【答案】AB 【分析】利用11a S =可求得2λ=;利用1n n n a S S -=-可证得数列{}n a 为等比数列,从而得到12n na ,进而得到nb ;利用10nnb b 可得到关于n 的不等式,解不等式求得n 的取值范围,根据n *∈N 求得结果. 【详解】当1n =时,1111a S a λ==-,11λ∴-=,解得:2λ=21n n S a ∴=-当2n ≥且n *∈N 时,1121n n S a --=-1122n n nn n a S S a a ,即:12n n a a -=∴数列{}n a 是以1为首项,2为公比的等比数列,12n n a2920n n a b n n =-+-,219202n n n n b --+-∴= ()()222111912092011280222n n n n nn n n n n n b b +--+++--+--+∴-=-=< 20n >,()()21128470n n n n ∴-+=--<,解得:47n <<又n *∈N ,5n ∴=或6 故选:AB 【点睛】关键点点睛:本题考查数列知识的综合应用,涉及到利用n a 与n S 的关系求解通项公式、等比数列通项公式的求解、根据数列的单调性求解参数范围等知识,解决本题的关键点是能够得到n b 的通项公式,进而根据单调性可构造出关于n 的不等式,从而求得结果,考查学生计算能力,属于中档题.8.下列说法中正确的是( )A .数列{}n a 成等差数列的充要条件是对于任意的正整数n ,都有122n n n a a a ++=+B .数列{}n a 成等比数列的充要条件是对于任意的正整数n ,都有212n n n a a a ++=C .若数列{}n a 是等差数列,则n S 、2n n S S -、32n n S S -也是等差数列D .若数列{}n a 是等比数列,则n S 、2n n S S -、32n n S S -也是等比数列 【答案】AC 【分析】利用等差中项法可判断A 选项的正误;取0n a =可判断B 选项的正误;利用等差数列求和公式以及等差中项法可判断C 选项的正误;取1q =-,n 为偶数可判断D 选项的正误. 【详解】对于A 选项,充分性:若数列{}n a 成等差数列,则对任意的正整数n ,n a 、1n a +、2n a +成等差数列,则121n n n n a a a a +++-=-,即122n n n a a a ++=+,充分性成立; 必要性:对任意的正整数n ,都有122n n n a a a ++=+,则121n n n n a a a a +++-=-, 可得出2132431n n a a a a a a a a +-=-=-==-=,所以,数列{}n a 成等差数列,必要性成立.所以,数列{}n a 成等差数列的充要条件是对于任意的正整数n ,都有122n n n a a a ++=+,A 选项正确;对于B 选项,当数列{}n a 满足0n a =时,有212n n n a a a ++=,但数列{}n a 不是等比数列,B选项错误;对于C 选项,设等差数列{}n a 的公差为d ,则()112n n n dS na -=+,()2122122n n n d S na -=+,()3133132n n n dS na -=+, 所以,()()()22111322112222n n n n d n n d n n d S S na na na ---⎡⎤⎡⎤-=+-+=+⎢⎥⎢⎥⎣⎦⎣⎦, ()()()232111533122132222n n n n d n n d n n d S S na na na ---⎡⎤⎡⎤-=+-+=+⎢⎥⎢⎥⎣⎦⎣⎦, 所以,()()()()22232111532222n n n n n d n n d n n d S S S na na na ⎡⎤⎡⎤⎡⎤---⎢⎥⎢⎥⎢⎥-+=+++=+⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦()22n n S S =-,所以,n S 、2n n S S -、32n n S S -是等差数列,C 选项正确;对于D 选项,当公比1q =-,且n 是偶数时,n S 、2n n S S -、32n n S S -都为0, 故n S 、2n n S S -、32n n S S -不是等比数列,所以D 选项错误. 故选:AC. 【点睛】 方法点睛;1.判断等差数列有如下方法:(1)定义法:1n n a a d +-=(d 为常数,n *∈N ); (2)等差中项法:()122n n n a a a n N*++=+∈;(3)通项法:n a p n q =⋅+(p 、q 常数);(4)前n 项和法:2n S p n q n =⋅+⋅(p 、q 常数).2.判断等比数列有如下方法: (1)定义法:1n na q a +=(q 为非零常数,n *∈N ); (2)等比中项法:212n n n a a a ++=⋅,n *∈N ,0n a ≠; (3)通项公式法:nn a p q =⋅(p 、q 为非零常数); (4)前n 项和法:nn S p q p =⋅-,p 、q 为非零常数且1q ≠.9.已知等差数列{}n a 的前n 项和为n S ,218a =,512a =,则下列选项正确的是( ) A .2d =- B .122a =C .3430a a +=D .当且仅当11n =时,n S 取得最大值【答案】AC 【分析】先根据题意得等差数列{}n a 的公差2d =-,进而计算即可得答案. 【详解】解:设等差数列{}n a 的公差为d ,则52318312a a d d =+=+=,解得2d =-.所以120a =,342530a a a a +=+=,11110201020a a d =+=-⨯=, 所以当且仅当10n =或11时,n S 取得最大值. 故选:AC 【点睛】本题考查等差数列的基本计算,前n 项和n S 的最值问题,是中档题. 等差数列前n 项和n S 的最值得求解常见一下两种情况:(1)当10,0a d ><时,n S 有最大值,可以通过n S 的二次函数性质求解,也可以通过求满足10n a +<且0n a >的n 的取值范围确定;(2)当10,0a d <>时,n S 有最小值,可以通过n S 的二次函数性质求解,也可以通过求满足10n a +>且0n a <的n 的取值范围确定;10.首项为正数,公差不为0的等差数列{}n a ,其前n 项和为n S ,则下列4个命题中正确的有( )A .若100S =,则50a >,60a <;B .若412S S =,则使0n S >的最大的n 为15;C .若150S >,160S <,则{}n S 中7S 最大;D .若89S S <,则78S S <. 【答案】ABD 【分析】利用等差数列的求和公式及等差数列的性质,逐一检验选项,即可得答案. 【详解】对于A :因为正数,公差不为0,且100S =,所以公差0d <, 所以1101010()02a a S +==,即1100a a +=, 根据等差数列的性质可得561100a a a a +=+=,又0d <, 所以50a >,60a <,故A 正确; 对于B :因为412S S =,则1240S S -=,所以561112894()0a a a a a a ++⋅⋅⋅++=+=,又10a >,所以890,0a a ><, 所以115815815()15215022a a a S a +⨯===>,116891616()16()022a a a a S ++===, 所以使0n S >的最大的n 为15,故B 正确; 对于C :因为115815815()15215022a a a S a +⨯===>,则80a >, 116891616()16()022a a a a S ++===,则890a a +=,即90a <, 所以则{}n S 中8S 最大,故C 错误;对于D :因为89S S <,则9980S a S =->,又10a >, 所以8870a S S =->,即87S S >,故D 正确, 故选:ABD 【点睛】解题的关键是先判断d 的正负,再根据等差数列的性质,对求和公式进行变形,求得项的正负,再分析和判断,考查等差数列性质的灵活应用,属中档题.。
高考数学一轮复习数列多选题测试含答案
高考数学一轮复习数列多选题测试含答案一、数列多选题1.设{}n a 是无穷数列,若存在正整数()2k k ≥,使得对任意n *∈N ,均有n k n a a +>,则称{}n a 是“间隔递增数列”,k 是{}n a 的“间隔数”,下列说法正确的是( ) A .公比大于1的等比数列一定是“间隔递增数列” B .若()21nn a n =+-,则{}n a 是“间隔递增数列”C .若(),2n ra n r r n*=+∈≥N ,则{}n a 是“间隔递增数列”且“间隔数”的最小值为r D .已知22021n a n tn =++,若{}n a 是“间隔递增数列”且“间隔数”的最小值为3,则54t -<≤-【答案】BCD 【分析】利用新定义,逐项验证是否存在正整数()2k k ≥,使得0n k n a a +->,即可判断正误. 【详解】选项A 中,设等比数列{}n a 的公比是()1q q >,则()1111111n k n n n k k n a a a a q q q a q +---+=-=--,其中1k q >,即()110n k q q -->,若10a <,则0n k n a a +-<,即n k n a a +<,不符合定义,故A 错误;选项B 中,()()()()()21212111n kn n k n k n a a n k n k ++⎡⎤⎡⎤⎡⎤++--+-=+---⎣⎦-=⎣⎦⎣⎦,当n 是奇数时,()211kn k n a a k +=---+,则存在1k时,0n k n a a +->成立,即对任意n *∈N ,均有n k n a a +>,符合定义;当n 是偶数时,()211kn k n a a k +-=+--,则存在2k ≥时,0n k n a a +->成立,即对任意n *∈N ,均有n k n a a +>,符合定义.综上,存在2k ≥时,对任意n *∈N ,均有n k n a a +>,符合定义,故B 正确;选项C 中,()()1n k n r r kr r a a n k n k k n k n n k n n k n +⎡⎤-⎛⎫⎛⎫++-+=+=-⎢⎥ ⎪ ⎪+++⎝⎭⎝⎭⎢⎣-⎦=⎥()2n kn r k n k n +-=⋅+,令2()f n n kn r =+-,开口向上,对称轴02k -<,故2()f n n kn r =+-在n *∈N 时单调递增,令最小值(1)10f k r =+->,得1k r >-,又k *∈N ,2k ≥,,2r r *∈≥N ,故存在k r ≥时,0n k n a a +->成立,即对任意n *∈N ,均有n k n a a +>,符合定义,“间隔数”的最小值为r ,故C 正确;选项D 中,因为22021n a n tn =++,是“间隔递增数列”,则()()()2222021202012n k n a a n k t n k kn k t n n k t +⎡⎤-=-=++>⎣++++⎦++,即20k n t ++>,对任意n *∈N 成立,设()2g n k n t =++,显然在n *∈N 上()g n 递增,故要使()20g n k n t =++>,只需(1)20g k t =++>成立,即2t k --<. 又“间隔数”的最小值为3,故存在3k ≥,使2t k --<成立,且存在k 2≤,使2t k --≥成立,故23t --<且22t --≥,故54t -<≤-,故D 正确. 故选:BCD. 【点睛】本题的解题关键在于读懂题中“间隔递增数列”的定义,判断是否存在正整数()2k k ≥,使0n k n a a +->对于任意的n *∈N 恒成立,逐项突破难点即可.2.已知数列{}n a 满足11a =,()111n n na n a +-+=,*n N ∈,其前n 项和为n S ,则下列选项中正确的是( )A .数列{}n a 是公差为2的等差数列B .满足100n S <的n 的最大值是9C .n S 除以4的余数只能为0或1D .2n n S na = 【答案】ABC 【分析】根据题意对()111n n na n a +-+=变形得()1111111n n a a n n n n n n +=-+-=++,进而根据累加法求得()*21n a n n N =-∈,再依次讨论各选项即可得答案.【详解】解:因为()111n n na n a +-+=,故等式两边同除以()1n n +得:()1111111n n a a n n n n n n +=-+-=++, 所以()1111111n n a a n n n n n n -=-----=,()()12111221211n n a a n n n n n n --=------=--,,2111121122a a =-⨯-= 故根据累加法得:()11121n a a n nn =-≥-, 由于11a =,故()212n a n n =-≥,检验11a =满足, 故()*21n a n n N=-∈所以数列{}n a 是公差为2的等差数列,故A 选项正确;由等差数列前n 项和公式得:()21212n n n S n +-==,故2100n n S =<,解得:10n <,故满足100n S <的n 的最大值是9,故B 选项正确; 对于C 选项,当*21,n k k N =-∈时,22441n n k S k ==-+,此时n S 除以4的余数只能为1;当*2,n k k N =∈时,224n n k S ==,此时n S 除以4的余数只能0,故C 选项正确;对于D 选项,222n S n =,()2212n n n n n n a =-=-,显然2n n S na ≠,故D 选项错误.故选:ABC 【点睛】本题考查累加法求通项公式,裂项求和法,等差数列的相关公式应用,考查运算求解能力,是中档题.本题解题的关键在于整理变形已知表达式得()1111111n n a a n n n n n n +=-+-=++,进而根据累加法求得通项公式.3.下列说法中正确的是( )A .数列{}n a 成等差数列的充要条件是对于任意的正整数n ,都有122n n n a a a ++=+B .数列{}n a 成等比数列的充要条件是对于任意的正整数n ,都有212n n n a a a ++=C .若数列{}n a 是等差数列,则n S 、2n n S S -、32n n S S -也是等差数列D .若数列{}n a 是等比数列,则n S 、2n n S S -、32n n S S -也是等比数列 【答案】AC 【分析】利用等差中项法可判断A 选项的正误;取0n a =可判断B 选项的正误;利用等差数列求和公式以及等差中项法可判断C 选项的正误;取1q =-,n 为偶数可判断D 选项的正误. 【详解】对于A 选项,充分性:若数列{}n a 成等差数列,则对任意的正整数n ,n a 、1n a +、2n a +成等差数列,则121n n n n a a a a +++-=-,即122n n n a a a ++=+,充分性成立; 必要性:对任意的正整数n ,都有122n n n a a a ++=+,则121n n n n a a a a +++-=-, 可得出2132431n n a a a a a a a a +-=-=-==-=,所以,数列{}n a 成等差数列,必要性成立.所以,数列{}n a 成等差数列的充要条件是对于任意的正整数n ,都有122n n n a a a ++=+,A 选项正确;对于B 选项,当数列{}n a 满足0n a =时,有212n n n a a a ++=,但数列{}n a 不是等比数列,B选项错误;对于C 选项,设等差数列{}n a 的公差为d ,则()112n n n dS na -=+,()2122122n n n d S na -=+,()3133132n n n dS na -=+, 所以,()()()22111322112222n n n n d n n d n n d S S na na na ---⎡⎤⎡⎤-=+-+=+⎢⎥⎢⎥⎣⎦⎣⎦, ()()()232111533122132222n n n n d n n d n n d S S na na na ---⎡⎤⎡⎤-=+-+=+⎢⎥⎢⎥⎣⎦⎣⎦, 所以,()()()()22232111532222n n n n n d n n d n n d S S S na na na ⎡⎤⎡⎤⎡⎤---⎢⎥⎢⎥⎢⎥-+=+++=+⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦()22n n S S =-,所以,n S 、2n n S S -、32n n S S -是等差数列,C 选项正确;对于D 选项,当公比1q =-,且n 是偶数时,n S 、2n n S S -、32n n S S -都为0, 故n S 、2n n S S -、32n n S S -不是等比数列,所以D 选项错误. 故选:AC. 【点睛】 方法点睛;1.判断等差数列有如下方法:(1)定义法:1n n a a d +-=(d 为常数,n *∈N ); (2)等差中项法:()122n n n a a a n N*++=+∈;(3)通项法:n a p n q =⋅+(p 、q 常数);(4)前n 项和法:2n S p n q n =⋅+⋅(p 、q 常数).2.判断等比数列有如下方法: (1)定义法:1n na q a +=(q 为非零常数,n *∈N ); (2)等比中项法:212n n n a a a ++=⋅,n *∈N ,0n a ≠; (3)通项公式法:nn a p q =⋅(p 、q 为非零常数); (4)前n 项和法:nn S p q p =⋅-,p 、q 为非零常数且1q ≠.4.已知数列{}n a ,{}n b 满足:12n n n a a b +=+,()*1312lnn n n n b a b n N n++=++∈,110a b +>,则下列命题为真命题的是( )A .数列{}n n a b -单调递增B .数列{}n n a b +单调递增C .数列{}n a 单调递增D .数列{}n b 从某项以后单调递增【答案】BCD 【分析】计算221122ln 2a b a b a b -=--<-,知A 错误;依题意两式相加{}ln +-n n a b n 是等比数列,得到()1113ln -+=+⋅+n n n a b a b n ,知B 正确;结合已知条件,计算10n n a a +->,即得C 正确;先计算()11113ln(1)2ln n n n b b a b n n -+-=+⋅++-,再结合指数函数、对数函数增长特征知D 正确. 【详解】由题可知,12n n n a a b +=+①,1312lnn n n n b a b n ++=++②,①-②得,1131lnn n n n n a b a b n+++-=--,当1n =时,2211ln 2a b a b -=--,∴2211-<-a b a b ,故A 错误.①+②得,()113ln(1)3ln n n n n a b a b n n +++=+++-,()11ln(1)3ln n n n n a b n a b n +++-+=+-,∴{}ln +-n n a b n 是以11a b +为首项,3为公比的等比数列,∴()111ln 3-+-=+⋅n n n a b n a b ,∴()1113ln -+=+⋅+n n n a b a b n ,③又110a b +>,∴B 正确.将③代入①得,()()11113ln n n n n n n a a a b a a b n -+=++=++⋅+,∴()11113ln 0n n n a a a b n -+-=+⋅+>,故C 正确.将③代入②得,()()11113311ln 3ln ln n n n n n n n n b b a b b a b n n n -+++=+++=++⋅++,∴()11113ln(1)2ln n n n b b a b n n -+-=+⋅++-.由110a b +>,结合指数函数与对数函数的增长速度知,从某个()*n n N∈起,()1113ln 0n a b n -+⋅->,又ln(1)ln 0n n +->,∴10n n b b +->,即{}n b 从某项起单调递增,故D 正确. 故选:BCD . 【点睛】判定数列单调性的方法:(1)定义法:对任意n *∈N ,1n n a a +>,则{}n a 是递增数列,1n n a a +<,则{}n a 是递减数列;(2)借助函数单调性:利用()n a f n =,研究函数单调性,得到数列单调性.5.(多选)设数列{}n a 是等差数列,公差为d ,n S 是其前n 项和,10a >且69S S =,则( ) A .0d >B .80a =C .7S 或8S 为n S 的最大值D .56S S >【答案】BC 【分析】根据69S S =得到80a =,再根据10a >得到0d <,可得数列{}n a 是单调递减的等差数列,所以7S 或8S 为n S 的最大值,根据6560S S a -=>得65S S >,故BC 正确. 【详解】由69S S =得,960S S -=, 即7890a a a ++=,又7982a a a +=,830a ∴=,80a ∴=,∴B 正确;由8170a a d =+=,得17a d =-,又10a >,0d ∴<, ∴数列{}n a 是单调递减的等差数列,()()0,70,9n n a n N n a n N n **⎧>∈≤⎪∴⎨<∈≥⎪⎩, 7S ∴或8S 为n S 的最大值,∴A 错误,C 正确; 6560S S a -=>,65S S ∴>,所以D 错误.故选:BC . 【点睛】关键点点睛:根据等差中项推出80a =,进而推出0d <是解题关键.6.若数列{}n a 的前n 项和是n S ,且22n n S a =-,数列{}n b 满足2log n n b a =,则下列选项正确的为( ) A .数列{}n a 是等差数列B .2nn a =C .数列{}2na 的前n 项和为21223n +-D .数列11n n b b +⎧⎫⎨⎬⋅⎩⎭的前n 项和为n T ,则1n T <【答案】BD 【分析】根据22n nS a =-,利用数列通项与前n 项和的关系得1,1,2n n S n a S n =⎧=⎨≥⎩,求得通项n a ,然后再根据选项求解逐项验证. 【详解】当1n =时,12a =,当2n ≥时,由22n n S a =-,得1122n n S a --=-,两式相减得:12n n a a -=, 又212a a =,所以数列{}n a 是以2为首项,以2为公比的等比数列, 所以2nn a =,24nn a =,数列{}2na 的前n 项和为()141444143n n nS +--'==-, 则22log log 2nn n b a n ===,所以()1111111n n b b n n n n +==-⋅⋅++,所以 1111111 (11123411)n T n n n =-+-++-=-<++, 故选:BD 【点睛】方法点睛:求数列的前n 项和的方法 (1)公式法:①等差数列的前n 项和公式,()()11122n n n a a n n S na d +-==+②等比数列的前n 项和公式()11,11,11nn na q S a q q q=⎧⎪=-⎨≠⎪-⎩;(2)分组转化法:把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解.(3)裂项相消法:把数列的通项拆成两项之差求和,正负相消剩下首尾若干项.(4)倒序相加法:把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广.(5)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列对应项之积构成的,则这个数列的前n 项和用错位相减法求解.(6)并项求和法:一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解.7.在n n n A B C (1,2,3,n =)中,内角,,n n n A B C 的对边分别为,,n n n a b c ,n n n A B C 的面积为n S ,若5n a =,14b =,13c =,且222124n n n a c b ++=,222124n n n a b c ++=,则( ) A .n n n A B C 一定是直角三角形 B .{}n S 为递增数列 C .{}n S 有最大值 D .{}n S 有最小值【答案】ABD 【分析】先结合已知条件得到()222211125=252n n n n b c b c +++-+-,进而得到22225=n n n b c a +=,得A 正确,再利用面积公式得到递推关系1221875=644n n S S ++,通过作差法判定数列单调性和最值即可. 【详解】 由222124n n n a c b ++=,222124n n n a b c ++=得,222222112244n n n n n n a c a b bc+++++=+()2221122n n n a b c =++()2225122n n b c =++,故()222211125=252n n n n b c b c +++-+-, 又221125=0b c +-,22250n n b c ∴+-=,22225=n n n b c a ∴+=,故n n n A B C 一定是直角三角形,A 正确;n n n A B C 的面积为12n n n S b c =,而()4222222222221124224416n n n n n n n n n n n n a b c a b c a c a b bc+++++++=⨯=, 故()42222222222111241875161875==1616641n n n n n n n n n n n a b c a b bS S c c S +++++++==+,故22212218751875==6446434n n n n n S S SS S +-+--,又22125=244n n n n n b c b c S +=≤(当且仅当==2n n b c 时等号成立) 22121875=06344n n n S SS +∴--≥,又由14b =,13c =知n n b c ≠不是恒成立,即212n n S S +>,故1n n S S +>,故{}n S 为递增数列,{}n S 有最小值16=S ,无最大值,故BD 正确,C 错误. 故选:ABD. 【点睛】本题解题关键是利用递推关系得到()222211125=252n n n n b c b c +++-+-,进而得到22225=n n n b c a +=,再逐步突破.数列单调性常用作差法判定,也可以借助于函数单调性判断.8.下面是关于公差0d >的等差数列{}n a 的几个命题,其中正确的有( ) A .数列{}n a 递增B .n S 为{}n a 的前n 项和,则数列n S n ⎧⎫⎨⎬⎩⎭是递增的等差数列 C .若n a n =,n S 为{}n a 的前n 项和,且n S n c ⎧⎫⎨⎬+⎩⎭为等差数列,则0cD .若70a =,n S 为{}n a 的前n 项和,则方程0n S =有唯一的根13n = 【答案】ABD 【分析】选项A. 由题意10n n a a d +-=>可判断;选项B.先求出112n S n a d n -=+⨯,根据1012n n S S dn n +-=>+可判断;选项C. 若n a n =,则()12n n n S +=,则0c 或1c =时n S n c ⎧⎫⎨⎬+⎩⎭为等差数列可判断;选项D.由1602n n S dn -⎛⎫=--= ⎪⎝⎭可判断. 【详解】选项A. 由题意10n n a a d +-=>,则1n n a a +>,所以数列{}n a 递增,故A 正确. 选项B. ()112n n n S na d -=+⨯,则112n S n a d n -=+⨯ 所以1012n n S S d n n +-=>+,则11n n S S n n +>+,所以数列n S n ⎧⎫⎨⎬⎩⎭是递增的等差数列. 故B 正确. 选项C. 若n a n =,则()12n n n S +=,则()()12n n n S n c n c =+++当0c时,12+n S n c n =+为等差数列. 当1c =时,2n S n c n=+为等差数列.所以选项C 不正确.选项D. 70a =,即7160a a d =+=,则16a d =-又()()1111660222n n n n n n S na d dn d dn ---⎛⎫=+⨯=-+⨯=--= ⎪⎝⎭由0,0d n >>,所以1602n --=,得13n =,故选项D 正确. 故选:ABD【点睛】关键点睛:本题考查等差数列的判定和单调性的单调,解答本题的关键是利用等差数列的定义和前n 项和公式进行判断,求出162n n S dn -⎛⎫=-+ ⎪⎝⎭,从而判断,属于中档题.二、平面向量多选题9.已知向量(4,3)a k =,(4,3)b k =,则( ) A .若a b ⊥,则0k = B .若//a b ,则1k =C .若a b >,则1k <D .若a b a b +=-,则a b ⊥【答案】AD 【分析】先根据a b ⊥建立方程44330k k ⨯+⨯=解得0k =,判断选项A 正确;再根据//a b ,建立方程(4,3)(4,3)k k λ=解得1k =±,判断选项B 错误;接着根据a b >建立不等式4(3)(4)3k k +>+解得11k -<<,判断选项C 错误;最后根据a b a b +=-,化简整理得到a b ⊥,判断选项D 正确.【详解】解:因为(4,3)a k =,(4,3)b k =,a b ⊥,则44330k k ⨯+⨯=,解得0k =,故选项A 正确;因为(4,3)a k =,(4,3)b k =,//a b ,则λa b ,即(4,3)(4,3)k k λ=,解得1k =±,故选项B 错误;因为(4,3)a k =,(4,3)b k =,a b >,则>,解得11k -<<,故选项C 错误;因为(4,3)a k =,(4,3)b k =,a b a b +=-,则0a b ⋅=,0a ≠,0b ≠,所以a b ⊥,故选项D 正确.故答案为:AD. 【点睛】本题考查利用向量垂直求参数、利用向量共线求参数、根据向量的模的大小关系求参数的范围、利用向量的运算判断向量垂直,是中档题.10.已知向量()1,3OA =-,()2,1OB =-,()3,8OC t t =+-,若点A ,B ,C 能构成三角形,则实数t 可以为( ) A .-2B .12C .1D .-1【答案】ABD【分析】若点A ,B ,C 能构成三角形,故A ,B ,C 三点不共线,即向量,AB BC 不共线,计算两个向量的坐标,由向量共线的坐标表示,即得解【详解】若点A ,B ,C 能构成三角形,故A ,B ,C 三点不共线,则向量,AB BC 不共线, 由于向量()1,3OA =-,()2,1OB =-,()3,8OC t t =+-,故(3,4)AB OB OA =-=-,(5,9)BC OC OB t t =-=+-若A ,B ,C 三点不共线,则 3(9)4(5)01t t t ---+≠∴≠故选:ABD【点睛】本题考查了向量共线的坐标表示,考查了学生转化划归,概念理解,数学运算能力,属于中档题.。
高考数学第一轮复习训练:数列(word版含答案)
数列苦行者本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题 (本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知的前n 项和( ) A . 67 B . 65C . 6lD . 56【答案】A 2.在等差数列中,公差d=1,,则的值为( ) A .40 B .45C .50D .55【答案】B3.在等比数列}{n a 中,11=a ,公比|q|≠1,若54321a a a a a a m ⋅⋅⋅⋅=,则m =( ) A .9 B .10C .11D .12【答案】C 4.等差数列的前n 项和为,若,则下列结论:①② ③④其中正确结论是( )A .②③B .①③C .①④D .②④【答案】A5.设S n 为数列{}n a 的前n 项之和,若不等式22212n n s a a nλ+≥对任何等差数列{}n a 及任何正整数n 恒成立,则λ的最大值为( )A .0B .15C . 12D .1【答案】B6.已知{a n }是等比数列,2512,4a a ==,则公比q=( ) A .21-B .-2C .2D .21 【答案】D7.数列1,-3,5,-7,9,…的一个通项公式为( )A .12-=n a nB .()()121--=n a nnC .()()1211--=+n a n nD .()()121+-=n a nn【答案】C8.在等比数列{}n a 中,5,6144117=+=⋅a a a a ,则=1020a a ( ) A .32 B .23 C .32或23 D . -32或-23 【答案】C9.已知等差数列{}n a 的前n 项和为n S ,若1m >,且21121,38m m m m a a a S -+-+-==,则m等于( )A .38B .20C .10D .9【答案】C10.数列{}n a 中,11a =,12,()2nn n a a n N a ++=∈+,则5a =( ) A .25B .13 C .23D .12【答案】B11.如果{}n a 为递增数列,则{}n a 的通项公式可以为( )A .23n a n =-+B .231n a n n =--+C . 12n n a =D .21log n a n =+【答案】D12.等比数列{a n }的首项a 1=-1,前n 项和为S n ,若8736=S S ,则n n S ∞→lim 等于( )A . 21-B .1C .-32 D .不存在【答案】C第Ⅱ卷(非选择题 共90分)二、填空题 (本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.已知{}n a 是公比为实数q 的等比数列,若71a =,且456,1,a a a +成等差数列,则q =____________.【答案】2114.观察下列等式:33333333333333311111231291236123361234101234100123451512345225==+=+=++=++=+++=+++=++++=++++=可以推测:3333123n ++++=____________ (n N *∈,用含有n 的代数式表示)【答案】221(1)4n n + 15.已知数列}{n a 中,1)1(+-=n n a (*N n ∈),则4a = 【答案】216.已知数列{}n a 的前n 项和为332412++=n n S n ,则这个数列的通项公式为____________【答案】⎪⎩⎪⎨⎧>+==1,12561,1259n n n a n三、解答题 (本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.已知数列{}n a 的前n 和为n S ,其中(21)n n S a n n =-且113a =(1) 求23,a a ;(2)猜想数列{}n a 的通项公式,并用数学归纳法加以证明。
高考数学一轮复习《数列》练习题(含答案)
高考数学一轮复习《数列》练习题(含答案)一、单选题1.已知数列{}n a 是等差数列,前n 项和为n S ,若36S =,618S =,则9S =( ). A .30B .36C .40D .482.在数列{}n a 中,12a =,122n n a a n +=+,则9a 等于( ) A .20B .30C .36D .283.已知数列{}n a 满足()*1432,n n a a n n N -=+≥∈,且10a =,则此数列的第4项是( )A .15B .255C .16D .634.设{}n a 是公比为q 的等比数列,||1q >,令()*1n n b a n N =+∈,若数列{}n b 有连续四项在集合{53,23,19,37,82}--=( )AB C D .25.已知等比数列{}n a 前n 项和n S 满足113n n S A +=-⋅(A R ∈),数列{}n b 是递增的,且2n b An Bn =+,则实数B 的取值范围为( )A .2,3⎡⎫-+∞⎪⎢⎣⎭B .[)1,-+∞C .()1,-+∞D .1,3⎛⎫-+∞ ⎪⎝⎭6.已知等差数列{}n a 中,1n n a a +<,且37469,10a a a a =+=,则此等差数列的公差d =( ) A .4-B .3-C .2-D .13-7.记n S 为数列{}n a 的前n 项和.若(8)(1,2,)n a n n n =-=,则( ) A .{}n a 有最大项,{}n S 有最大项 B .{}n a 有最大项,{}n S 有最小项 C .{}n a 有最小项,{}n S 有最大项D .{}n a 有最小项,{}n S 有最小项8.设公差为-2的等差数列,如果1479750a a a a +++⋅⋅⋅+=,那么36999a a a a +++⋅⋅⋅+=( ) A .-72 B .-78 C .-182D .-829.在等比数列{}n a 中,3a ,15a 是方程262=0x x ++的两根,则216a a 的值为( ) A .2B .2-C .6D .6-10.某房屋开发商出售一套50万元的住宅,可以首付5万元,以后每过一年付5万元,9年后共10次付清,也可以一次付清(此后一年定期存款税后利率设为2%,按复利计算)并优惠%a ,为鼓励购房者一次付款,问优惠率应不低于多少?( )(a 取整数,计算过程中参考以下数据:910111.02 1.195,1.02 1.219,1.02 1.243===) A .8%B .9%C .11%D .19%11.设数列{}n a 的前n 项和为n S ,11a =,且()()121n n n n S S S n n --=+-()*,2n N n ∈≥,则22n nS n -的最小值为( )A .23B .3C .2-D .1-12.设等差数列{}n a 的前n 项和为n S ,公差为d ,已知17210,a S S ≠=,则( ) A .140da > B .150da > C .280S > D .280S <二、填空题13.已知数列{}n a 满足①1N ,k k k a a ∀*+∈>,②1N ,2k k k a a ∀*+∈-≤,请写出一个满足条件的数列的通项公式________.(答案不唯一)14.已知等比数列{a n }满足log 2(a 1a 2a 3a 4a 5)=5,等差数列{b n }满足b 3=a 3,则b 1+b 2+b 3+b 4+b 5=_____.15.设等差数列{}n a 的前n 项和为n S ,若728S =,则237a a a ++的值为___________. 16.已知数列{}n a 的前n 项和为n S ,且满足1n n a S +=,则812128S S S a a a +++=______________. 17.已知等差数列{a n }的前n 项和为S n ,a 4+a 7+a 10=9,S 14-S 3=77,则使S n 取得最小值时n 的值为____.三、解答题18.已知等比数列{}n a 满足1611a a +=,且34329a a =.求数列{}n a 的通项n a .19.已知数列{a n }的前n 项和为S n ,且满足a 1=1,a 2=2. (1)若数列{a n }是等差数列,求公差d 及前n 项和S n ; (2)若数列{a n }是等比数列,求公比q 及前n 项和T n .20.已知等比数列{}n a 是递增数列,满足432a =,3580a a +=. (1)求{}n a 的通项公式;(2)设2log n n b a =,若n b 为数列{}n c 的前n 项积,证明111n nb c +=.21.已知数列{a n }的通项公式为a n =22n n (n ∈N *),则这个数列是否存在最大项?若存在,请求出最大项;若不存在,请说明理由.22.已知等差数列{}n a 的前n 项和为n S .若33a =,728S =. (1)求{}n a 的通项公式;(2)求和:21123n n S a a x a x a x -=++++,其中x 为非零实数.23.已知数列{}n a 的前n 项和2n S n n =+,令11242n n b a a a a -=++++,1,2,n =⋅⋅⋅.(1)求{}n a 、{}n b 的通项公式;(2)数列{}n a 中去掉数列{}n b 中的项,剩下的项按原来顺序排成新数列{}n c ,求2021c 的值.24.已知正项数列{}n a ,其前n 项和n S 满足2843n n n S a a =++,且2a 是1a 和7a 的等比中项.(1)求数列{}n a 的通项公式;(2)符号[]x 表示不超过实数x 的最大整数,记23log 4n n a b ⎡+⎤⎛⎫= ⎪⎢⎥⎝⎭⎣⎦,求1232n b b b b +++.25.设数列{}(,1)n a n n ∈≥N 的前两项12,a a 给定,若对于每个正整数n ≥3,均存在正整数k (1≤k ≤n -1),使得12n n n kn a a a a k---+++=,则称数列{}n a 为“Ω数列”.(1)若数列{}(,1)n a n n ∈≥N 为1211,2a a ==-的等比数列,当n ≥3时,试问:n a 与122n n a a --+是否相等,并说明数列{}(,1)n a n n ∈≥N 是否为“Ω数列”;(2)讨论首项为1a ,公差为d 的等差数列{}n a 是否为“Ω数列”,并说明理由; (3)已知数列{}n a 为“Ω数列”,且120,1a a ==,记()()12,,2n n n k S n k a a a n n ---=+++∈≥N ,,其中正整数k ≤n -1,对于每个正整数n ≥3,当正整数k 分别取1,2,…,n -1时,(,)S n k k 的最大值记为n M ,最小值记为n m ,设()n n n b n M m =⋅-,当正整数n 满足3≤n ≤2021时,比较nb 与1n b +的大小,并求出nb 的最大值.参考答案1.B2.A3.D4.B5.C6.C7.A8.D9.A10.B11.D12.B13.()*n a n n N =∈14.10 15.12 16.502 17.518.6123n n a -=⨯或1123n n a -=⋅.19.(1)1d =,()12n n n S +=;(2)2q ,21n n T =-20.(1)可设等比数列{}n a 的公比为()1q q >,∵432a =,∴35323280a a q q+=+=. 解得:2q或12q =(舍去). 所以41422n n n a a -+=⋅=.(2)∵2log 1n n b a n ==+,∴112c b ==, 当2n ≥时,121n c c c n ⋅=+①,121n c c c n -⋅=②,①/②得1(2)n n c n n+=≥, 当1n =时,1221c ==也成立,∴1n n c n+=, ∴111111n n nb c n n +=+=++. 21.存在,a 3=98为这个数列的最大项.22.(1)n a n =;(2)()()()121,1211,11n n n n x S nx n x x x +⎧+=⎪⎪=⎨-++⎪≠⎪-⎩. 23.(1)2n a n =,()221nn b =-;(2)4062.24.(1)43n a n =-;(2)()1232222n n b b b b n n +++⋅⋅⋅+=-++.25.解:(1)n a 与122n n a a --+相等. 因为{}n a 是等比数列,所以2112a q a ==-,则112n n a -⎛⎫=- ⎪⎝⎭, 当3n ≥时,2112n n a --⎛⎫=- ⎪⎝⎭,3212n n a --⎛⎫=- ⎪⎝⎭,所以()2321121111212222222n n n n n n na a a ------⎛⎫⎛⎫⎛⎫-+--⨯- ⎪ ⎪ ⎪+⎛⎫⎝⎭⎝⎭⎝⎭===-= ⎪⎝⎭,所以n a 与122n n a a --+相等; 因为对每个正整数3n ≥,均存在2k =且121n ≤≤-,使得12n n n kn a a a a k---+++=,所以{}n a 为“Ω数列”;(2){}n a 为首项为1a ,公差为d 的等差数列,所以()11n a a n d +-=, 当0d =时,对每个正整数3n ≥,均存在正整数1k =且111n ≤≤-使得11n n a a -=, 所以当0d =时,{}n a 为“Ω数列”;当0d ≠时,()()()112231=n n n k ka n n n k da a a k k---+-+-++--⎡⎤+++⎣⎦132k a n d +⎛⎫=+- ⎪⎝⎭,若12n n n kn a a a a k---+++=,则312k n n +-=-,解得1k =-,不符合题意,所以{}n a 不是“Ω数列”. 综上,d =0时,{}n a 为“Ω数列”;0d ≠时,{}n a 不为“Ω数列”; (3)由题可知,对于每个正整数3n ≥,均有[],n n n a m M ∈,()[]1,1,1n n n S n a m M -=∈,且对于所有正整数1k n ≤-,均有(),n n S n k m M k≤≤,即(),n n km S n k kM ≤≤, 对于每个正整数4n ≥,选取恰当的正整数1,1t n l n ≤-≤-,使得(),n S n t M t =,(),n S n l m l=,由()()()111,1,11n n n S n t a S n t a t M ---=+--≤+-,得()()()()()11111111,11n n n n n n n n n n t M a tM ta S n t ta a t M ta t M a ---------=-=-≤+--=--,即()1111n n n n t M a M a t-----≤-, 类似的,()()()()()1111111,1,111n n n n n n n n n l a m la lm la S n l la a S n l l a l m --------=-=-≤----≤---()()111n n l a m --=--,即()1111n n n n l a m a m l-----≤-, 因为111n n n m a M ---≤≤,1t n ≤-,1l n ≤-, 所以()()11111121n n n n n n t n M a M a M a t n --------≤-≤--,()()11111121n n n n n n l n a m a m a m l n --------≤-≤--, 所以()()()()1111112211n n n n n n n n n n n n M m M a a m M a a m n n ---------=-+-≤-+---()()1111112211n n n n n n n n M a a m M m n n --------=-+-=---, 因为120,1a a ==,所以11n n m M --≠, 所以()()1111211n n n n n n n n M m M m M m n n-------≤-<--, 即()()()111n n n n n M m n M m ---≤--,所以正整数4n ≥时,1n n b b -<,即正整数3n ≥时,1n n b b +<成立,{}n b 是递减数列. 所以正整数n 满足32021n ≤≤时,当3n =时,n b 取得最大值为3133122b ⎛⎫=-= ⎪⎝⎭.。
2024年广东省高考数学一轮复习第6章:数列(附答案解析)
2024年广东省高考数学一轮复习第6章:数列一、单项选择题1.数列-15,17,-19,111,…的通项公式可能是a n 等于()A.(-1)n -12n +3B.(-1)n3n +2C.(-1)n -13n +2D.(-1)n 2n +3答案D解析由a 1=-15,排除A ,C ;由a 2=17,排除B ;分母为奇数列,分子为(-1)n ,故D 正确.2.已知数列{a n }为等比数列,公比为q ,若a 5=4(a 4-a 3),则q 等于()A .4B .3C .2D .1答案C解析由题意,得a 1q 4=4(a 1q 3-a 1q 2),解得q =2.3.在正项等比数列{a n }中,a 2=4,a 6=64,S n =510,则n 等于()A .6B .7C .8D .9答案C解析由a 2=4,a 6=64,得q 4=a6a 2=16(q >0),所以q =2,a 1=2,所以510=2(1-2n )1-2,解得n =8.4.定义[x ]表示不超过x 的最大整数,若数列{a n }的通项公式为a n =3n -1,则等式a 15+a 25+a 35+…+a 105等于()A .30B .29C .28D .27答案D解析a 15+a 25+a 35+…+a 105=25+55+85+…+295=0+(1×2)+(2×2)+(3×1)+(4×2)+(5×2)=27.5.等比数列{a n }中,a 1+a 2=6,a 3+a 4=12,则{a n }的前8项和为()A .90B .30(2+1)C .45(2+1)D .72答案A解析等比数列{a n}中,a1+a2=6,a3+a4=(a1+a2)q2=12,∴q2=2,a5+a6=(a3+a4)q2=24,同理a7+a8=48,则{a n}的前8项和a1+a2+a3+a4+a5+a6+a7+a8=6+12+24+48=90.6.设数列{a n},{b n}都是正项等比数列,S n,T n分别为数列{lg a n}与{lg b n}的前n项和,且S nT n=n+12n,则33logab等于()A.3 5B.95C.59D.53答案D解析因为数列{a n},{b n}都是正项等比数列,所以数列{lg a n}与{lg b n}为等差数列,因为S nT n=n+12n,所以S5T5=lg(a1.a2 (5)lg(b1·b2·…·b5)=lg a53lg b53=33logb a=610=35.则33loga b=53.7.(2022·新高考全国Ⅱ)图1是中国古代建筑中的举架结构,AA′,BB′,CC′,DD′是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图,其中DD1,CC1,BB1,AA1是举,OD1,DC1,CB1,BA1是相等的步,相邻桁的举步之比分别为DD1OD1=0.5,CC1DC1=k1,BB1CB1=k2,AA1BA1=k3.已知k1,k2,k3成公差为0.1的等差数列,且直线OA的斜率为0.725,则k3等于()A.0.75B.0.8 C.0.85D.0.9答案D解析设OD1=DC1=CB1=BA1=1,则CC1=k1,BB1=k2,AA1=k3,依题意,有k3-0.2=k1,k3-0.1=k2,且DD 1+CC 1+BB 1+AA 1OD 1+DC 1+CB 1+BA 1=0.725,所以0.5+3k 3-0.34=0.725,故k 3=0.9.8.等差数列{a n }的前n 项和为S n .已知a 1=-5,a 3=-1.记b n =Sn a n (n =1,2,…),则数列{b n }的()A .最小项为b 3B .最大项为b 3C .最小项为b 4D .最大项为b 4答案C解析等差数列{a n }中,a 1=-5,a 3=-1,所以d =2,a n =-5+2(n -1)=2n -7,S n =-5n +n (n -1)2×2=n 2-6n ,则b n =S n a n =n (n -6)2n -7,令f (x )=x 2-6x 2x -7,x >0,则f ′(x )=2(x 2-7x +21)(2x -7)2>0,故f (x )因为b 1=1,b 3=9,b 4=-8,结合数列的函数特性易得,当n =4时,b n 取得最小值.二、多项选择题9.等差数列{a n }的公差为d ,前n 项和为S n ,当首项a 1和d 变化时,a 3+a 8+a 13是一个定值,则下列各数也为定值的有()A .a 7B .a 8C .S 15D .S 16答案BC解析由等差中项的性质可得a 3+a 8+a 13=3a 8为定值,则a 8为定值,S 15=15(a 1+a 15)2=15a 8为定值,但S 16=16(a 1+a 16)2=8(a 8+a 9)不是定值.10.下列说法正确的是()A .任意等差数列{a n }和{b n },数列{a n +b n }是等差数列B .存在等差数列{a n }和{b n },数列{a n b n }是等差数列C .任意等比数列{a n }和{b n },数列{a n +b n }是等比数列D .存在等比数列{a n }和{b n },数列{a n b n }是等比数列答案ABD解析A 项,若{a n }和{b n }都是等差数列,不妨设a n =k 1n +b 1,b n =k 2n +b 2,故可得a n +b n =(k 1+k 2)n +b 1+b 2,则a n +1+b n +1=(k 1+k 2)(n +1)+b 1+b 2,则a n +1+b n +1-(a n +b n )=k 1+k 2,故数列{a n +b n }是等差数列,故A 正确;B 项,设数列{a n }是数列1,1,1;数列{b n }是数列2,2,2,故可得数列{a n b n }是数列2,2,2,是等差数列,故B 正确;C 项,若{a n }和{b n }是等比数列,设a n =a 1q n 1,b n =b 1q n 2,故可得a n +b n =a 1q n 1+b 1q n2,a n +1+b n +1=a 1q n +11+b 1q n +12,则a n +1+b n +1a n +b n =a 1q n +11+b 1q n +12a 1q n 1+b 1q n2,不是常数,故{a n +b n }不是等比数列,故C 错误;D 项,设数列{a n }是数列1,1,1;数列{b n }是数列2,2,2,故可得数列{a n b n }是数列2,2,2,是等比数列,故D 正确.11.数列{a n }的前n 项和为S n ,若a 1=1,a n +1=2S n (n ∈N *),则有()A .S n =3n-1B .{S n }为等比数列C .a n =2·3n -1D .a n ,n =1,n -2,n ≥2答案ABD解析由题意,数列{a n }的前n 项和满足a n +1=2S n (n ∈N *),当n ≥2时,a n =2S n -1,两式相减,可得a n +1-a n =2(S n -S n -1)=2a n ,可得a n +1=3a n ,即a n +1a n=3(n ≥2),又a 1=1,则a 2=2S 1=2a 1=2,所以a2a 1=2,所以数列{a n }的通项公式为a n ,n =1,n -2,n ≥2.当n ≥2时,S n =a n +12=2·3n -12=3n -1,又S 1=a 1=1,适合上式,所以数列{a n }的前n 项和为S n =3n -1,又S n +1S n =3n3n -1=3,所以数列{S n }为首项为1,公比为3的等比数列,综上可得选项ABD 是正确的.12.设S n 为等比数列{a n }的前n 项和,若a n >0,a 1=12,S n <2,则{a n }的公比可取的值为()A.14B.15C.45D .2答案AB解析设等比数列{a n }的公比为q ,则q ≠1.∵a n >0,a 1=12,S n <2,∴{a n }是递减数列,12×q n -1>0,12(1-q n )1-q <2,∴1>q >0且1≤4-4q ,解得0<q ≤34.∴{a n },34,故{a n }的公比可取的值为14或15.三、填空题13.已知数列{a n }满足a 1=1,11+a n +1-11+a n =1,则a 5=________.答案-79解析∵11+a n +1-11+a n =1,是以11+a 1=12为首项,1为公差的等差数列,∴11+a n =12+(n -1)×1=n -12∴11+a 5=5-12=92,解得a 5=-79.14.已知等比数列{a n }共有2n 项,其和为-240,且奇数项的和比偶数项的和大80,则公比q =________.答案2解析奇+S 偶=-240,奇-S 偶=80,奇=-80,偶=-160,所以q =S 偶S 奇=-160-80=2.15.在数列{a n }中,a 1=2,且na n +1=(n +2)a n ,则a n =________.答案n (n +1)解析由已知得,a n +1a n =n +2n ,则有a 2a 1=31,a 3a 2=42,a 4a 3=53,…,a n -1a n -2=n n -2,a n a n -1=n +1n -1,将这(n -1)个等式相乘得,a n a 1=n (n +1)1×2,则a n =n (n +1).16.已知数列{a n }的前n 项和为S n .且a 1=1,{lg S n }是公差为lg 3的等差数列,则a 2+a 4+…+a 2n =________.答案9n -14解析S 1=a 1=1,则lg S 1=lg 1=0,∵{lg S n }是公差为lg 3的等差数列,∴lg S n =(n -1)lg 3=lg 3n -1,则S n =3n -1,当n ≥2时,a n =S n -S n -1=3n -1-3n -2=2×3n -2,a 2=2,当n ≥2时,a n +1a n =2×3n -12×3n -2=3,∴数列{a n }自第二项起构成公比为3的等比数列,可得a 2+a 4+…+a 2n =2(1-9n )1-9=9n -14.。
高三第一轮复习数列练习题含答案
第六章数列第1讲数列的概念与简单表示法一、选择题1.数列{a n}:1,-58,715,-924,…的一个通项公式是( )A.a n=(-1)n+12n-1n2+n(n∈N+)B.a n=(-1)n-12n+1n3+3n(n∈N+)C.a n=(-1)n+12n-1n2+2n(n∈N+)D.a n=(-1)n-12n+1n2+2n(n∈N+)解析观察数列{a n}各项,可写成:31×3,-52×4,73×5,-94×6,故选D.答案 D2.把1,3,6,10,15,21这些数叫做三角形数,这是因为这些数目的点子可以排成一个正三角形(如图所示).则第七个三角形数是( ).A.27 B.28 C.29 D.30解析观察三角形数的增长规律,可以发现每一项与它的前一项多的点数正好是本身的序号,所以根据这个规律计算即可.根据三角形数的增长规律可知第七个三角形数是1+2+3+4+5+6+7=28.答案 B3.已知数列{a n}的前n项和为S n,且S n=2a n-1(n∈N*),则a5=().A .-16B .16C .31D .32解析 当n =1时,S 1=a 1=2a 1-1,∴a 1=1, 又S n -1=2a n -1-1(n ≥2),∴S n -S n -1=a n =2(a n -a n -1). ∴a n a n -1=2.∴a n =1×2n -1,∴a 5=24=16. 答案 B4.将石子摆成如图的梯形形状,称数列5,9,14,20,…为梯形数,根据图形的构成,此数列的第2 014项与5的差即a 2 014-5=( ).A .2 020×2 012B .2 020×2 013C .1 010×2 012D .1 010×2 013解析 结合图形可知,该数列的第n 项a n =2+3+4+…+(n +2).所以a 2 014-5=4+5+…+2 016=2 013×1 010.故选D. 答案 D5.在数列{a n }中,a n =-2n 2+29n +3,则此数列最大项的值是 ( ). A .103B.8658C.8258D .108解析 根据题意并结合二次函数的性质可得:a n =-2n 2+29n +3=-2⎝ ⎛⎭⎪⎫n 2-292n +3=-2⎝ ⎛⎭⎪⎫n -2942+3+8418,∴n =7时,a n 取得最大值,最大项a 7的值为108. 答案 D6.定义运算“*”,对任意a ,b ∈R ,满足①a *b =b *a ;②a *0=a ;(3)(a *b )*c =c *(ab )+(a *c )+(c *b ).设数列{a n }的通项为a n =n *1n *0,则数列{a n }为( ). A .等差数列 B .等比数列 C .递增数列D .递减数列解析 由题意知a n =⎝ ⎛⎭⎪⎫n *1n *0=0]n ·1n +(n *0)+⎝ ⎛⎭⎪⎫0]1n )=1+n +1n ,显然数列{a n }既不是等差数列也不是等比数列;又函数y=x+1x在[1,+∞)上为增函数,所以数列{a n}为递增数列.答案 C二、填空题7.在函数f(x)=x中,令x=1,2,3,…,得到一个数列,则这个数列的前5项是________.答案1,2,3,2, 58.已知数列{a n}满足a1=1,且a n=n(a n+1-a n)(n∈N*),则a2=________;a n=________.解析由a n=n(a n+1-a n),可得a n+1a n=n+1n,则a n=a na n-1·a n-1a n-2·a n-2a n-3·…·a2a1·a1=nn-1×n-1n-2×n-2n-3×…×21×1=n,∴a2=2,a n=n.答案2n9.已知f(x)为偶函数,f(2+x)=f(2-x),当-2≤x≤0时,f(x)=2x,若n∈N*,a n=f(n),则a2 013=________.解析∵f(x)为偶函数,∴f(x)=f(-x),∴f(x+2)=f(2-x)=f(x-2).故f(x)周期为4,∴a2 013=f(2 013)=f(1)=f(-1)=2-1=1 2.答案1 210.已知数列{a n}的前n项和S n=n2-9n,第k项满足5<a k<8,则k的值为________.解析∵S n=n2-9n,∴n≥2时,a n=S n-S n-1=2n-10,a1=S1=-8适合上式,∴a n=2n-10(n∈N*),∴5<2k-10<8,得7.5<k<9.∴k=8.答案8三、解答题11.数列{a n }的通项公式是a n =n 2-7n +6. (1)这个数列的第4项是多少?(2)150是不是这个数列的项?若是这个数列的项,它是第几项? (3)该数列从第几项开始各项都是正数? 解 (1)当n =4时,a 4=42-4×7+6=-6.(2)令a n =150,即n 2-7n +6=150,解得n =16,即150是这个数列的第16项.(3)令a n =n 2-7n +6>0,解得n >6或n <1(舍), ∴从第7项起各项都是正数.12.若数列{a n }的前n 项和为S n ,且满足a n +2S n S n -1=0(n ≥2),a 1=12.(1)求证:⎩⎨⎧⎭⎬⎫1S n 成等差数列;(2)求数列{a n }的通项公式.(1)证明 当n ≥2时,由a n +2S n S n -1=0, 得S n -S n -1=-2S n S n -1,所以1S n -1S n -1=2,又1S 1=1a 1=2,故⎩⎨⎧⎭⎬⎫1S n 是首项为2,公差为2的等差数列.(2)解 由(1)可得1S n=2n ,∴S n =12n .当n ≥2时,a n =S n -S n -1=12n -12(n -1)=n -1-n 2n (n -1)=-12n (n -1).当n =1时,a 1=12不适合上式. 故a n =⎩⎪⎨⎪⎧12,n =1,-12n (n -1),n ≥2.13.设数列{a n }的前n 项和为S n .已知a 1=a (a ≠3),a n +1=S n +3n ,n ∈N *.(1)设b n =S n -3n ,求数列{b n }的通项公式; (2)若a n +1≥a n ,n ∈N *,求a 的取值范围. 解 (1)依题意,S n +1-S n =a n +1=S n +3n , 即S n +1=2S n +3n ,由此得S n +1-3n +1=2(S n -3n ),又S 1-31=a -3(a ≠3),故数列{S n -3n }是首项为a -3,公比为2的等比数列,因此,所求通项公式为b n =S n -3n =(a -3)2n -1,n ∈N *. (2)由(1)知S n =3n +(a -3)2n -1,n ∈N *,于是,当n ≥2时,a n =S n -S n -1=3n +(a -3)2n -1-3n -1-(a -3)2n -2=2×3n-1+(a -3)2n -2,当n =1时,a 1=a 不适合上式, 故a n =⎩⎨⎧a ,n =1,2×3n -1+(a -3)2n -2,n ≥2. a n +1-a n =4×3n -1+(a -3)2n -2 =2n -2⎣⎢⎡⎦⎥⎤12·⎝ ⎛⎭⎪⎫32n -2+a -3, 当n ≥2时,a n +1≥a n ⇔12·⎝ ⎛⎭⎪⎫32n -2+a -3≥0⇔a ≥-9. 又a 2=a 1+3>a 1.综上,所求的a 的取值范围是[-9,+∞). 14.在等差数列{a n }中,a 3+a 4+a 5=84,a 9=73. (1)求数列{a n }的通项公式;(2)对任意m ∈N *,将数列{a n }中落入区间(9m,92m )内的项的个数记为b m ,求数 列{b m }的前m 项和S m .解 (1)因为{a n }是一个等差数列, 所以a 3+a 4+a 5=3a 4=84,即a 4=28.设数列{a n }的公差为d ,则5d =a 9-a 4=73-28=45,故d =9. 由a 4=a 1+3d 得28=a 1+3×9,即a 1=1.所以a n =a 1+(n -1)d =1+9(n -1)=9n -8(n ∈N *). (2)对m ∈N *,若9m <a n <92m ,则9m +8<9n <92m +8,因此9m -1+1≤n ≤92m -1,故得b m=92m-1-9m-1.于是S m=b1+b2+b3+…+b m=(9+93+…+92m-1)-(1+9+…+9m-1)=9×(1-81m)1-81-1-9m1-9=92m+1-10×9m+180.第2讲等差数列及其前n项和一、选择题1. {a n}为等差数列,公差d=-2,S n为其前n项和.若S10=S11,则a1=( ) A.18 B.20C.22 D.24解析由S10=S11得a11=S11-S10=0,a1=a11+(1-11)d=0+(-10)×(-2)=20.答案 B2.设等差数列{a n}的前n项和为S n.若a1=-11,a4+a6=-6,则当S n取最小值时,n等于( ).A.6 B.7 C.8 D.9解析由a4+a6=a1+a9=-11+a9=-6,得a9=5,从而d=2,所以S n=-11n+n(n-1)=n2-12n=(n-6)2-36,因此当S n取得最小值时,n=6.答案 A3.已知{a n}为等差数列,a1+a3+a5=105,a2+a4+a6=99,则a20等于().A.-1 B.1 C.3 D.7解析两式相减,可得3d=-6,d=-2.由已知可得3a3=105,a3=35,所以a20=a3+17d=35+17×(-2)=1.答案 B4.在等差数列{a n}中,S15>0,S16<0,则使a n>0成立的n的最大值为().A.6 B.7 C.8 D.9解析依题意得S15=15(a1+a15)2=15a8>0,即a8>0;S16=16(a1+a16)2=8(a1+a16)=8(a8+a9)<0,即a8+a9<0,a9<-a8<0.因此使a n>0成立的n的最大值是8,选C.答案 C5.设S n 为等差数列{a n }的前n 项和,若a 1=1,公差d =2,S k +2-S k =24,则k =( ). A .8B .7C .6D .5解析 由a 1=1,公差d =2得通项a n =2n -1,又S k +2-S k =a k +1+a k +2,所以2k +1+2k +3=24,得k =5. 答案 D6.已知两个等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A n B n=7n +45n +3,则使得a nb n为整数的正整数的个数是( ). A .2 B .3 C .4D .5解析 由A n B n =7n +45n +3得:a n b n =A 2n -1B 2n -1=14n +382n +2=7n +19n +1,要使a nb n 为整数,则需7n +19n +1=7+12n +1为整数,所以n =1,2,3,5,11,共有5个. 答案 D 二、填空题7.已知数列{a n }为等差数列,S n 为其前n 项和,a 7-a 5=4,a 11=21,S k =9,则k =________.解析 a 7-a 5=2d =4,d =2,a 1=a 11-10d =21-20=1,S k =k +k k -12×2=k 2=9.又k ∈N *,故k =3.答案 38.设等差数列{a n }的前n 项和为S n ,若S 412-S 39=1,则公差为________. 解析 依题意得S 4=4a 1+4×32d =4a 1+6d ,S 3=3a 1+3×22d =3a 1+3d ,于是有4a 1+6d 12-3a 1+3d9=1,由此解得d =6,即公差为6.答案 69.在等差数列{a n }中,a 1=-3,11a 5=5a 8-13,则数列{a n }的前n 项和S n 的最小值为________.解析 (直接法)设公差为d ,则11(-3+4d )=5(-3+7d )-13,所以d =59,所以数列{a n }为递增数列.令a n ≤0,所以-3+(n -1)·59≤0,所以n ≤325,又n ∈N *,前6项均为负值, 所以S n 的最小值为-293. 答案 -29310.设项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,则这个数列的中间项是________,项数是________. 解析 设等差数列{a n }的项数为2n +1, S 奇=a 1+a 3+…+a 2n +1=(n +1)(a 1+a 2n +1)2=(n +1)a n +1,S 偶=a 2+a 4+a 6+…+a 2n =n (a 2+a 2n )2=na n +1,∴S 奇S 偶=n +1n =4433,解得n =3,∴项数2n +1=7,S 奇-S 偶=a n +1,即a 4=44-33=11为所求中间项. 答案 11 7 三、解答题11.设a 1,d 为实数,首项为a 1,公差为d 的等差数列{a n }的前n 项和为S n ,满足S 5S 6+15=0.(1)若S 5=5,求S 6及a 1; (2)求d 的取值范围. 解 (1)由题意知S 6=-15S 5=-3,a 6=S 6-S 5=-8,所以⎩⎨⎧5a 1+10d =5,a 1+5d =-8.解得a 1=7,所以S 6=-3,a 1=7.(2)因为S 5S 6+15=0,所以(5a 1+10d )(6a 1+15d )+15=0,即2a 21+9da 1+10d2+1=0,故(4a 1+9d )2=d 2-8,所以d 2≥8. 故d 的取值范围为d ≤-22或d ≥2 2.12.在等差数列{a n }中,公差d >0,前n 项和为S n ,a 2·a 3=45,a 1+a 5=18. (1)求数列{a n }的通项公式; (2)令b n =S nn +c(n ∈N *),是否存在一个非零常数c ,使数列{b n }也为等差数列?若存在,求出c 的值;若不存在,请说明理由. 解 (1)由题设,知{a n }是等差数列,且公差d >0, 则由⎩⎨⎧ a 2a 3=45,a 1+a 5=18,得⎩⎨⎧(a 1+d )(a 1+2d )=45,a 1+(a 1+4d )=18.解得⎩⎨⎧a 1=1,d =4.∴a n =4n -3(n ∈N *).(2)由b n =S nn +c =n (1+4n -3)2n +c =2n ⎝ ⎛⎭⎪⎫n -12n +c ,∵c ≠0,∴可令c =-12,得到b n =2n . ∵b n +1-b n =2(n +1)-2n =2(n ∈N *), ∴数列{b n }是公差为2的等差数列.即存在一个非零常数c =-12,使数列{b n }也为等差数列. 13.在数列{a n }中,a 1=8,a 4=2,且满足a n +2+a n =2a n +1. (1)求数列{a n }的通项公式;(2)设S n 是数列{|a n |}的前n 项和,求S n .解 (1)由2a n +1=a n +2+a n 可得{a n }是等差数列, 且公差d =a 4-a 14-1=2-83=-2.∴a n =a 1+(n -1)d =-2n +10. (2)令a n ≥0,得n ≤5.即当n ≤5时,a n ≥0,n ≥6时,a n <0. ∴当n ≤5时,S n =|a 1|+|a 2|+…+|a n | =a 1+a 2+…+a n =-n 2+9n ; 当n ≥6时,S n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a 5-(a 6+a 7+…+a n ) =-(a 1+a 2+…+a n )+2(a 1+a 2+…+a 5) =-(-n 2+9n )+2×(-52+45) =n 2-9n +40,∴S n =⎩⎨⎧-n 2+9n ,n ≤5,n 2-9n +40,n ≥6.14.已知数列{a n }的前n 项和为S n ,且a 2a n =S 2+S n 对一切正整数n 都成立. (1)求a 1,a 2的值; (2)设a 1>0,数列⎩⎨⎧⎭⎬⎫lg 10a 1a n 的前n 项和为T n .当n 为何值时,T n 最大?并求出T n 的最大值.解 (1)取n =1,得a 2a 1=S 2+S 1=2a 1+a 2,① 取n =2,得a 22=2a 1+2a 2,② 由②-①,得a 2(a 2-a 1)=a 2,③(i)若a 2=0,由①知a 1=0, (ii)若a 2≠0,由③知a 2-a 1=1.④由①、④解得,a 1=2+1,a 2=2+2;或a 1=1-2,a 2=2- 2. 综上可得a 1=0,a 2=0;或a 1=2+1,a 2=2+2;或a 1=1-2,a 2=2-2.(2)当a 1>0时,由(1)知a 1=2+1,a 2=2+2.当n ≥2时,有(2+2)a n =S 2+S n ,(2+2)a n -1=S 2+S n -1, 所以(1+2)a n =(2+2)a n -1,即a n =2a n -1(n ≥2), 所以a n =a 1(2)n -1=(2+1)·(2)n -1. 令b n =lg 10a 1a n ,则b n =1-lg(2)n -1=1-12(n -1)lg 2=12lg 1002n -1,所以数列{b n }是单调递减的等差数列(公差为-12lg 2), 从而b 1>b 2>…>b 7=lg 108>lg 1=0,当n ≥8时,b n ≤b 8=12lg 100128<12lg 1=0, 故n =7时,T n 取得最大值,且T n 的最大值为 T 7=7(b 1+b 7)2=7(1+1-3lg 2)2=7-212lg 2.第3讲 等比数列及其前n 项和一、选择题1.2+1与2-1两数的等比中项是( )A .1B .-1C .±1D.12解析 设等比中项为x ,则x 2=(2+1)(2-1)=1,即x =±1. 答案 C2.设{a n }是任意等比数列,它的前n 项和,前2n 项和与前3n 项和分别为X ,Y ,Z ,则下列等式中恒成立的是( ). A .X +Z =2YB .Y (Y -X )=Z (Z -X )C .Y 2=XYD .Y (Y -X )=X (Z -X )解析 (特例法)取等比数列1,2,4,令n =1得X =1,Y =3,Z =7代入验算,选D. 答案 D3.已知等比数列{a n }为递增数列.若a 1>0,且2(a n +a n +2)=5a n +1,则数列{a n }的公比q =( ). A .2B.12C .2或12D .3解析 ∵2(a n +a n +2)=5a n +1,∴2a n +2a n q 2=5a n q , 化简得,2q 2-5q +2=0,由题意知,q >1.∴q =2. 答案 A4.在正项等比数列{a n }中,S n 是其前n 项和.若a 1=1,a 2a 6=8,则S 8=( ).A .8B .15(2+1)C .15(2-1)D .15(1-2)解析∵a 2a 6=a 24=8,∴a 21q 6=8,∴q =2,∴S 8=1-q 81-q=15(2+1).答案 B5.已知等比数列{a n }的前n 项和S n =t ·5n -2-15,则实数t 的值为( ).A .4B .5C.45D.15解析 ∵a 1=S 1=15t -15,a 2=S 2-S 1=45t ,a 3=S 3-S 2=4t ,∴由{a n }是等比数列知⎝ ⎛⎭⎪⎫45t 2=⎝ ⎛⎭⎪⎫15t -15·4t ,显然t ≠0,所以t =5.答案 B6.在由正数组成的等比数列{a n }中,若a 3a 4a 5=3π,则sin(log 3a 1+log 3a 2+…+log 3a 7)的值为 ( ). A.12B.32C .1D .-32解析 因为a 3a 4a 5=3π=a 34,所以a 4=3π3.log 3a 1+log 3a 2+…+log 3a 7=log 3(a 1a 2…a 7)=log 3a 74=7log 33π3=7π3,所以sin(log 3a 1+log 3a 2+…+log 3a 7)=32. 答案 B 二、填空题7.设1=a 1≤a 2≤…≤a 7,其中a 1,a 3,a 5,a 7成公比为q 的等比数列,a 2,a 4,a 6成公差为1的等差数列,则q 的最小值是________.解析 设a 2=t ,则1≤t ≤q ≤t +1≤q 2≤t +2≤q 3,由于t ≥1,所以q ≥max{t ,t +1,3t +2}故q 的最小值是33.答案338.在等比数列{a n }中,若公比q =4,且前3项之和等于21,则该数列的通项公式a n =________.解析 由题意知a 1+4a 1+16a 1=21,解得a 1=1, 所以数列{a n }的通项公式a n =4n -1. 答案 4n -19.设f (x )是定义在R 上恒不为零的函数,且对任意的实数x ,y ∈R ,都有f (x )·f (y )=f (x +y ),若a 1=12,a n =f (n )(n ∈N *),则数列{a n }的前n 项和S n 的取值范围是________.解析 由已知可得a 1=f (1)=12,a 2=f (2)=[f (1)]2=⎝ ⎛⎭⎪⎫122,a 3=f (3)=f (2)·f (1)=[f (1)]3=⎝ ⎛⎭⎪⎫123,…,a n =f (n )=[f (1)]n =⎝ ⎛⎭⎪⎫12n ,∴S n =12+⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫123+…+⎝ ⎛⎭⎪⎫12n=12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=1-⎝ ⎛⎭⎪⎫12n, ∵n ∈N *,∴12≤S n <1. 答案 ⎣⎢⎡⎭⎪⎫12,110.等差数列{a n }的首项为a 1,公差为d ,前n 项和为S n ,给出下列四个命题:①数列⎩⎨⎧⎭⎬⎫⎝ ⎛⎭⎪⎫12a n 为等比数列;②若a 2+a 12=2,则S 13=13;③S n =na n -n (n -1)2d ;④若d >0,则S n 一定有最大值.其中真命题的序号是________(写出所有真命题的序号).解析 对于①,注意到⎝ ⎛⎭⎪⎫12a n +1⎝ ⎛⎭⎪⎫12a n =⎝ ⎛⎭⎪⎫12a n +1-a n =⎝ ⎛⎭⎪⎫12d 是一个非零常数,因此数列⎩⎨⎧⎭⎬⎫⎝ ⎛⎭⎪⎫12a n 是等比数列,①正确.对于②,S 13=13(a 1+a 13)2=13(a 2+a 12)2=13,因此②正确.对于③,注意到S n=na1+n(n-1)2d=n[a n-(n-1)d]+n(n-1)2d=na n-n(n-1)2d,因此③正确.对于④,S n=na1+n(n-1)2d,d>0时,S n不存在最大值,因此④不正确.综上所述,其中正确命题的序号是①②③.答案①②③三、解答题11.已知等比数列{a n}中,a1=13,公比q=13.(1)S n为{a n}的前n项和,证明:S n=1-a n 2;(2)设b n=log3a1+log3a2+…+log3a n,求数列{b n}的通项公式.解 (1)证明因为a n=13×⎝⎛⎭⎪⎫13n-1=13n,S n=13⎝⎛⎭⎪⎫1-13n1-13=1-13n2,所以S n=1-a n2.(2)b n=log3a1+log3a2+…+log3a n=-(1+2+…+n)=-n n+12.所以{b n}的通项公式为b n=-n n+12.12.已知数列{a n}的前n项和为S n,在数列{b n}中,b1=a1,b n=a n-a n-1(n≥2),且a n+S n=n.(1)设c n=a n-1,求证:{c n}是等比数列;(2)求数列{b n}的通项公式.(1)证明∵a n+S n=n,①∴a n+1+S n+1=n+1,②②-①得a n+1-a n+a n+1=1,∴2a n+1=a n+1,∴2(a n+1-1)=a n-1,∴a n+1-1a n-1=12.∵首项c1=a1-1,又a1+a1=1.∴a 1=12,∴c 1=-12,公比q =12.∴{c n }是以-12为首项,公比为12的等比数列. (2)解 由(1)可知c n =⎝ ⎛⎭⎪⎫-12·⎝ ⎛⎭⎪⎫12n -1=-⎝ ⎛⎭⎪⎫12n , ∴a n =c n +1=1-⎝ ⎛⎭⎪⎫12n.∴当n ≥2时,b n =a n -a n -1=1-⎝ ⎛⎭⎪⎫12n -⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n -1=⎝ ⎛⎭⎪⎫12n -1-⎝ ⎛⎭⎪⎫12n =⎝ ⎛⎭⎪⎫12n . 又b 1=a 1=12代入上式也符合,∴b n =⎝ ⎛⎭⎪⎫12n .13.已知两个等比数列{a n },{b n },满足a 1=a (a >0),b 1-a 1=1,b 2-a 2=2,b 3-a 3=3.(1)若a =1,求数列{a n }的通项公式; (2)若数列{a n }唯一,求a 的值.解 (1)设数列{a n }的公比为q ,则b 1=1+a =2,b 2=2+aq =2+q ,b 3=3+aq 2=3+q 2,由b 1,b 2,b 3成等比数列得(2+q )2=2(3+q 2). 即q 2-4q +2=0,解得q 1=2+2,q 2=2- 2.所以数列{a n }的通项公式为a n =(2+2)n -1或a n =(2-2)n -1.(2)设数列{a n }的公比为q ,则由(2+aq )2=(1+a )(3+aq 2),得aq 2-4aq +3a -1=0(*),由a >0得Δ=4a 2+4a >0,故方程(*)有两个不同的实根. 由数列{a n }唯一,知方程(*)必有一根为0, 代入(*)得a =13.14.数列{a n }的前n 项和记为S n ,a 1=t ,点(S n ,a n +1)在直线y =3x +1上,n ∈N *.(1)当实数t 为何值时,数列{a n }是等比数列.(2)在(1)的结论下,设b n =log 4a n +1,c n =a n +b n ,T n 是数列{c n }的前n 项和,求T n .解 (1)∵点(S n ,a n +1)在直线y =3x +1上, ∴a n +1=3S n +1,a n =3S n -1+1(n >1,且n ∈N *).∴a n +1-a n =3(S n -S n -1)=3a n ,∴a n +1=4a n (n >1,n ∈N *),a 2=3S 1+1=3a 1+1=3t +1,∴当t =1时,a 2=4a 1,数列{a n }是等比数列.(2)在(1)的结论下,a n +1=4a n ,a n +1=4n ,b n =log 4a n +1=n ,c n =a n +b n =4n -1+n ,∴T n =c 1+c 2+…+c n =(40+1)+(41+2)+…+(4n -1+n ) =(1+4+42+…+4n -1)+(1+2+3+…+n ) =4n -13+(1+n )n 2.第4讲 数列求和一、选择题1.在等差数列}{n a 中,5,142==a a ,则}{n a 的前5项和5S =( ) A.7 B.15 C.20 D.25 解析15242451,5551522a a a a a a S ++==⇒=⨯=⨯=.答案 B2.若数列{a n }的通项公式是a n =(-1)n (3n -2),则a 1+a 2+…+a 10=( ). A .15B .12C .-12D .-15解析 设b n =3n -2,则数列{b n }是以1为首项,3为公差的等差数列,所以a 1+a 2+…+a 9+a 10=(-b 1)+b 2+…+(-b 9)+b 10=(b 2-b 1)+(b 4-b 3)+…+(b 10-b 9)=5×3=15. 答案 A3.在数列{a n }中,a n =1n (n +1),若{a n }的前n 项和为2 0132 014,则项数n 为( ).A .2 011B .2 012C .2 013D .2 014解析 ∵a n =1n (n +1)=1n -1n +1,∴S n =1-1n +1=n n +1=2 0132 014,解得n =2013. 答案 C4.数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为( ). A .3 690B .3 660C .1 845D .1 830解析 当n =2k 时,a 2k +1+a 2k =4k -1, 当n =2k -1时,a 2k -a 2k -1=4k -3, ∴a 2k +1+a 2k -1=2,∴a 2k +1+a 2k +3=2, ∴a 2k -1=a 2k +3,∴a 1=a 5=…=a 61.∴a 1+a 2+a 3+…+a 60=(a 2+a 3)+(a 4+a 5)+…+(a 60+a 61)=3+7+11+…+(4×30-1)=30×(3+119)2=30×61=1 830.答案 D5. 已知数列{a n }的通项公式为a n =2n +1,令b n =1n(a 1+a 2+…+a n ),则数列{b n }的前10项和T 10=( )A .70B .75C .80D .85 解析 由已知a n =2n +1,得a 1=3,a 1+a 2+…+a n =n 3+2n +12=n(n +2),则b n =n +2,T 10=10 3+122=75,故选B . 答案 B6.数列{a n }满足a n +a n +1=12(n ∈N *),且a 1=1,S n 是数列{a n }的前n 项和,则S 21=( ). A.212B .6C .10D .11解析 依题意得a n +a n +1=a n +1+a n +2=12,则a n +2=a n ,即数列{a n }中的奇数项、偶数项分别相等,则a 21=a 1=1,S 21=(a 1+a 2)+(a 3+a 4)+…+(a 19+a 20)+a 21=10(a 1+a 2)+a 21=10×12+1=6,故选B. 答案 B 二、填空题7.在等比数列{a n }中,若a 1=12,a 4=-4,则公比q =________;|a 1|+|a 2|+…+|a n |=________.解析 设等比数列{a n }的公比为q ,则a 4=a 1q 3,代入数据解得q 3=-8,所以q =-2;等比数列{|a n |}的公比为|q |=2,则|a n |=12×2n -1,所以|a 1|+|a 2|+|a 3|+…+|a n |=12(1+2+22+…+2n -1)=12(2n -1)=2n -1-12. 答案 -2 2n -1-128.等比数列{a n }的前n 项和S n =2n -1,则a 21+a 22+…+a 2n =________.解析 当n =1时,a 1=S 1=1,当n ≥2时,a n =S n -S n -1=2n -1-(2n -1-1)=2n -1,又∵a 1=1适合上式.∴a n =2n -1,∴a 2n =4n -1. ∴数列{a 2n }是以a 21=1为首项,以4为公比的等比数列.∴a 21+a 22+…+a 2n =1· 1-4n 1-4=13(4n -1).答案 13(4n-1)9.已知等比数列{a n }中,a 1=3,a 4=81,若数列{b n }满足b n =log 3a n ,则数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1b n b n +1的前n 项和S n =________.解析 设等比数列{a n }的公比为q ,则a 4a 1=q 3=27,解得q =3.所以a n =a 1q n -1=3×3n -1=3n ,故b n =log 3a n =n , 所以1b n b n +1=1n n +1 =1n -1n +1.则S n =1-12+12-13+…+1n -1n +1=1-1n +1=nn +1.答案n n +110.设f (x )=4x 4x +2,利用倒序相加法,可求得f ⎝ ⎛⎭⎪⎫111+f ⎝ ⎛⎭⎪⎫211+…+f ⎝ ⎛⎭⎪⎫1011的值为________. 解析当x 1+x 2=1时,f (x 1)+f (x 2)=4x 14x 1+2+4x 24x 2+2=2×4x 1+x 2+2×(4x 1+4x 2)4x 1+x 2+(4x 1+4x 2)×2+4=1.设S =f ⎝ ⎛⎭⎪⎫111+f ⎝ ⎛⎭⎪⎫211+…+f ⎝ ⎛⎭⎪⎫1011,倒序相加有2S =⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫111+f ⎝ ⎛⎭⎪⎫1011+⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫211+f ⎝ ⎛⎭⎪⎫911+…+f ⎝ ⎛⎭⎪⎫1011+f ⎝ ⎛⎭⎪⎫111=10,即S =5. 答案 5 三、解答题11.等差数列{a n }的各项均为正数,a 1=3,前n 项和为S n ,{b n }为等比数列,b 1=1,且b 2S 2=64,b 3S 3=960.(1)求a n 与b n ; (2)求1S 1+1S 2+…+1S n.解 (1)设{a n }的公差为d ,{b n }的公比为q ,则d 为正数,a n =3+(n -1)d ,b n =q n -1.依题意有⎩⎨⎧S 2b 2= 6+d q =64,S 3b 3= 9+3d q 2=960,解得⎩⎨⎧d =2,q =8或⎩⎪⎨⎪⎧d =-65,q =403.(舍去)故a n =3+2(n -1)=2n +1,b n =8n -1. (2)S n =3+5+…+(2n +1)=n (n +2),所以1S 1+1S 2+…+1S n =11×3+12×4+13×5+…+1n n +2=12⎝⎛⎭⎪⎫1-13+12-14+13-15+…+1n -1n +2 =12⎝ ⎛⎭⎪⎫1+12-1n +1-1n +2 =34-2n +32 n +1 n +2.12.已知数列{a n }的前n 项和为S n ,且a 1=1,a n +1=12S n (n =1,2,3,…). (1)求数列{a n }的通项公式;(2)设b n =log 32(3a n +1)时,求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1b n b n +1的前n 项和T n . 解 (1)由已知得⎩⎪⎨⎪⎧a n +1=12S n ,a n =12S n -1(n ≥2),得到a n +1=32a n (n ≥2).∴数列{a n }是以a 2为首项,以32为公比的等比数列. 又a 2=12S 1=12a 1=12,∴a n =a 2×⎝ ⎛⎭⎪⎫32n -2=12⎝ ⎛⎭⎪⎫32n -2(n ≥2).又a 1=1不适合上式,∴a n =⎩⎪⎨⎪⎧1,n =1,12⎝ ⎛⎭⎪⎫32n -2,n ≥2.(2)b n =log 32(3a n +1)=log 32⎣⎢⎡⎦⎥⎤32·⎝ ⎛⎭⎪⎫32n -1=n . ∴1b n b n +1=1n (1+n )=1n -11+n. ∴T n =1b 1b 2+1b 2b 3+1b 3b 4+…+1b n b n +1=⎝ ⎛⎭⎪⎫11-12+⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n -11+n=1-11+n =nn +1. 13.设数列{a n }满足a 1+3a 2+32a 3+…+3n -1a n =n3,n ∈N *. (1)求数列{a n }的通项;(2)设b n =na n,求数列{b n }的前n 项和S n .思维启迪:(1)由已知写出前n -1项之和,两式相减.(2)b n =n ·3n 的特点是数列{n }与{3n }之积,可用错位相减法. 解 (1)∵a 1+3a 2+32a 3+…+3n -1a n =n3, ①∴当n ≥2时,a 1+3a 2+32a 3+…+3n -2a n -1=n -13, ②①-②得3n -1a n =13,∴a n =13n .在①中,令n =1,得a 1=13,适合a n =13n ,∴a n =13n . (2)∵b n =na n,∴b n =n ·3n .∴S n =3+2×32+3×33+…+n ·3n , ③ ∴3S n =32+2×33+3×34+…+n ·3n +1.④④-③得2S n =n ·3n +1-(3+32+33+…+3n ),即2S n =n ·3n +1-3(1-3n )1-3,∴S n =(2n -1)3n +14+34. 探究提高 解答本题的突破口在于将所给条件式视为数列{3n -1a n }的前n 项和,从而利用a n 与S n 的关系求出通项3n -1a n ,进而求得a n ;另外乘公比错位相减是数列求和的一种重要方法,但值得注意的是,这种方法运算过程复杂,运算量大,应加强对解题过程的训练,重视运算能力的培养. 14.将数列{a n }中的所有项按每一行比上一行多两项的规则排成如下数表:a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9 …已知表中的第一列数a 1,a 2,a 5,…构成一个等差数列,记为{b n },且b 2=4,b 5=10.表中每一行正中间一个数a 1,a 3,a 7,…构成数列{c n },其前n 项和为S n .(1)求数列{b n }的通项公式;(2)若上表中,从第二行起,每一行中的数按从左到右的顺序均构成等比数列,公比为同一个正数,且a 13=1.①求S n ;②记M ={n |(n +1)c n ≥λ,n ∈N *},若集合M 的元素个数为3,求实数λ的取值范围.解 (1)设等差数列{b n }的公差为d , 则⎩⎨⎧ b 1+d =4,b 1+4d =10,解得⎩⎨⎧b 1=2,d =2, 所以b n =2n .(2)①设每一行组成的等比数列的公比为q .由于前n 行共有1+3+5+…+(2n -1)=n 2个数,且32<13<42,a 10=b 4=8, 所以a 13=a 10q 3=8q 3,又a 13=1,所以解得q =12. 由已知可得c n =b n q n -1,因此c n =2n ·⎝ ⎛⎭⎪⎫12n -1=n 2n -2. 所以S n =c 1+c 2+c 3+…+c n =12-1+220+321+…+n2n -2,12S n =120+221+…+n -12n -2+n2n -1,因此12S n =12-1+120+121+…+12n -2-n 2n -1=4-12n -2-n2n -1=4-n +22n -1,解得S n =8-n +22n -2.②由①知c n =n2n -2,不等式(n +1)c n ≥λ,可化为n (n +1)2n -2≥λ. 设f (n )=n (n +1)2n -2, 计算得f (1)=4,f (2)=f (3)=6,f (4)=5,f (5)=154. 因为f (n +1)-f (n )=(n +1)(2-n )2n -1,所以当n ≥3时,f (n +1)<f (n ).因为集合M 的元素个数为3,所以λ的取值范围是(4,5].第5讲数列的综合应用一、选择题1.已知{a n}为等比数列.下面结论中正确的是().A.a1+a3≥2a2B.a21+a23≥2a22C.若a1=a3,则a1=a2D.若a3>a1,则a4>a2解析设公比为q,对于选项A,当a1<0,q≠1时不正确;选项C,当q=-1时不正确;选项D,当a1=1,q=-2时不正确;选项B正确,因为a21+a23≥2a1a3=2a22.答案 B2.满足a1=1,log2a n+1=log2a n+1(n∈N*),它的前n项和为S n,则满足S n>1 025的最小n值是().A.9 B.10 C.11 D.12解析因为a1=1,log2a n+1=log2a n+1(n∈N*),所以a n+1=2a n,a n=2n-1,S n=2n-1,则满足S n>1 025的最小n值是11.答案 C3.某化工厂打算投入一条新的生产线,但需要经环保部门审批同意方可投入生产.已知该生产线连续生产n年的累计产量为f(n)=12n(n+1)(2n+1)吨,但如果年产量超过150吨,将会给环境造成危害.为保护环境,环保部门应给该厂这条生产线拟定最长的生产期限是().A.5年B.6年C.7年D.8年解析由已知可得第n年的产量a n=f(n)-f(n-1)=3n2.当n=1时也适合,据题意令a n≥150⇒n≥52,即数列从第8项开始超过150,即这条生产线最多生产7年.答案 C4.在等差数列{a n}中,满足3a4=7a7,且a1>0,S n是数列{a n}前n项的和,若S n取得最大值,则n=().A .7B .8C .9D .10解析 设公差为d ,由题设3(a 1+3d )=7(a 1+6d ), 所以d =-433a 1<0.解不等式a n >0,即a 1+(n -1)⎝ ⎛⎭⎪⎫-433a 1>0,所以n <374,则n ≤9,当n ≤9时,a n >0,同理可得n ≥10时,a n <0. 故当n =9时,S n 取得最大值. 答案 C5.设y =f (x )是一次函数,若f (0)=1,且f (1),f (4),f (13)成等比数列,则f (2)+f (4)+…+f (2n )等于( ).A .n (2n +3)B .n (n +4)C .2n (2n +3)D .2n (n +4)解析 由题意可设f (x )=kx +1(k ≠0), 则(4k +1)2=(k +1)×(13k +1),解得k =2,f (2)+f (4)+…+f (2n )=(2×2+1)+(2×4+1)+…+(2×2n +1)=2n 2+3n . 答案 A6.若数列{a n }为等比数列,且a 1=1,q =2,则T n =1a 1a 2+1a 2a 3+…+1a n a n +1的结果可化为( )A .1-14nB .1-12nC.23⎝⎛⎭⎪⎫1-14nD.23⎝⎛⎭⎪⎫1-12n解析 a n =2n -1,设b n =1a n a n +1=⎝ ⎛⎭⎪⎫122n -1,则T n =b 1+b 2+…+b n =12+⎝ ⎛⎭⎪⎫123+…+⎝ ⎛⎭⎪⎫122n -1=12⎝ ⎛⎭⎪⎫1-14n 1-14=23⎝⎛⎭⎪⎫1-14n .答案 C二、填空题7.设关于x 的不等式x 2-x <2nx (n ∈N *)的解集中整数的个数为a n ,数列{a n }的前n 项和为S n ,则S 100的值为________.解析 由x 2-x <2nx (n ∈N *),得0<x <2n +1,因此知a n =2n . ∴S 100=100(2+200)2=10 100.答案 10 1008.已知a ,b ,c 成等比数列,如果a ,x ,b 和b ,y ,c 都成等差数列,则a x +cy =________.解析 赋值法.如令a ,b ,c 分别为2,4,8,可求出x =a +b 2=3,y =b +c2=6,a x +c y =2. 答案 29.设曲线y =x n +1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,令a n=lg x n ,则a 1+a 2+a 3+…+a 99的值为________.解析 由y ′=(n +1)x n (x ∈N *),所以在点(1,1)处的切线斜率k =n +1,故切线方程为y =(n +1)(x -1)+1,令y =0得x n =nn +1,所以a 1+a 2+a 3+…+a 99=lg x 1+lg x 2+…+lg x 99=lg(x 1·x 2·…·x 99)=lg 12×23×…×9999+1=lg 199+1=-2. 答案 -210.数列{a n }的前n 项和为S n ,若数列{a n }的各项按如下规律排列:12,13,23,14,24,34,15,25,35,45,…,1n ,2n ,…,n -1n ,…,有如下运算和结论: ①a 24=38;②数列a 1,a 2+a 3,a 4+a 5+a 6,a 7+a 8+a 9+a 10,…是等比数列;③数列a 1,a 2+a 3,a 4+a 5+a 6,a 7+a 8+a 9+a 10,…的前n 项和为T n =n 2+n 4;④若存在正整数k ,使S k <10,S k +1≥10,则a k =57.其中正确的结论有________.(将你认为正确的结论序号都填上)解析 依题意,将数列{a n }中的项依次按分母相同的项分成一组,第n 组中的数的规律是:第n 组中的数共有n 个,并且每个数的分母均是n +1,分子由1依次增大到n ,第n 组中的各数和等于1+2+3+…+n n +1=n2.对于①,注意到21=6(6+1)2<24<7(7+1)2=28,因此数列{a n }中的第24项应是第7组中的第3个数,即a 24=38,因此①正确. 对于②、③,设b n 为②、③中的数列的通项,则b n =1+2+3+…+n n +1=n2,显然该数列是等差数列,而不是等比数列,其前n 项和等于12×n (n +1)2=n 2+n4,因此②不正确,③正确.对于④,注意到数列的前6组的所有项的和等于62+64=1012,因此满足条件的a k 应是第6组中的第5个数,即a k =57,因此④正确. 综上所述,其中正确的结论有①③④. 答案 ①③④ 三、解答题11.已知等差数列{a n }的前n 项和为S n ,S 5=35,a 5和a 7的等差中项为13. (1)求a n 及S n ; (2)令b n =4a 2n -1(n ∈N *),求数列{b n }的前n 项和T n . 解 (1)设等差数列{a n }的公差为d , 因为S 5=5a 3=35,a 5+a 7=26,所以⎩⎨⎧a 1+2d =7,2a 1+10d =26,解得a 1=3,d =2,所以a n =3+2(n -1)=2n +1,S n =3n +n (n -1)2×2=n 2+2n . (2)由(1)知a n =2n +1,所以b n =4a 2n -1=1n (n +1)=1n -1n +1,所以T n =⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1 =1-1n +1=nn +1.12.设数列{a n }的前n 项和为S n ,满足2S n =a n +1-2n +1+1,n ∈N *,且a 1,a 2+5,a 3成等差数列. (1)求a 1的值;(2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有1a 1+1a 2+…+1a n<32.(1)解 当n =1时,2a 1=a 2-4+1=a 2-3, ① 当n =2时,2(a 1+a 2)=a 3-8+1=a 3-7,② 又a 1,a 2+5,a 3成等差数列,所以a 1+a 3=2(a 2+5),③由①②③解得a 1=1.(2)解 ∵2S n =a n +1-2n +1+1, ∴当n ≥2时,有2S n -1=a n -2n +1,两式相减整理得a n +1-3a n =2n,则a n +12n -32·a n2n -1=1,即a n +12n +2=32⎝ ⎛⎭⎪⎫a n 2n -1+2.又a 120+2=3,知⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 2n -1+2是首项为3,公比为32的等比数列,∴a n 2n -1+2=3⎝ ⎛⎭⎪⎫32n -1,即a n =3n -2n ,n =1时也适合此式,∴a n =3n -2n . (3)证明 由(2)得1a n=13n-2n. 当n ≥2时,⎝ ⎛⎭⎪⎫32n >2,即3n -2n >2n ,∴1a 1+1a 2+…+1a n<1+⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫123+…+⎝ ⎛⎭⎪⎫12n =1+12⎝ ⎛⎭⎪⎫1-12n -1<32.13.已知各项均不相等的等差数列{a n }的前四项和为14,且a 1,a 3,a 7恰为等比数列{b n }的前三项.(1)分别求数列{a n },{b n }的前n 项和S n ,T n ;(2)记数列{a n b n }的前n 项和为K n ,设c n =S n T nK n ,求证:c n +1>c n (n ∈N *).(1)解 设公差为d ,则⎩⎨⎧4a 1+6d =14,(a 1+2d )2=a 1(a 1+6d ), 解得d =1或d =0(舍去),a 1=2, 所以a n =n +1,S n =n (n +3)2.又a 1=2,d =1,所以a 3=4,即b 2=4. 所以数列{b n }的首项为b 1=2,公比q =b 2b 1=2,所以b n =2n ,T n =2n +1-2.(2)证明 因为K n =2·21+3·22+…+(n +1)·2n , ① 故2K n =2·22+3·23+…+n ·2n +(n +1)·2n +1,②①-②得-K n =2·21+22+23+…+2n -(n +1)·2n +1, ∴K n =n ·2n +1,则c n =S n T n K n=(n +3)(2n-1)2n +1.c n +1-c n =(n +4)(2n +1-1)2n +2-(n +3)(2n -1)2n +1=2n +1+n +22n +2>0,所以c n +1>c n (n ∈N *).14.设数列{a n }的前n 项和S n 满足S n +1=a 2S n +a 1,其中a 2≠0. (1)求证:{a n }是首项为1的等比数列;(2)若a 2>-1,求证:S n ≤n2(a 1+a n ),并给出等号成立的充要条件. 证明 (1)由S 2=a 2S 1+a 1,得a 1+a 2=a 2a 1+a 1, 即a 2=a 2a 1.因a 2≠0,故a 1=1,得a 2a 1=a 2,又由题设条件知S n +2=a 2S n +1+a 1,S n +1=a 2S n +a 1, 两式相减得S n +2-S n +1=a 2(S n +1-S n ),即a n +2=a 2a n +1,由a 2≠0,知a n +1≠0,因此a n +2a n +1=a 2.综上,a n +1a n =a 2对所有n ∈N *成立.从而{a n }是首项为1,公比为a 2的等比数列.(2)当n =1或2时,显然S n =n2(a 1+a n ),等号成立.设n ≥3,a 2>-1且a 2≠0,由(1)知,a 1=1,a n =a n -12,所以要证的不等式化为:1+a 2+a 22+…+a n -12≤n 2(1+a n -12)(n ≥3), 即证:1+a 2+a 22+…+a n 2≤n +12(1+a n 2)(n ≥2), 当a 2=1时,上面不等式的等号成立.当-1<a 2<1时,a r 2-1与a n -r 2-1,(r =1,2,…,n -1)同为负;当a 2>1时,a r 2-1与a n -r 2-1,(r =1,2,…,n -1)同为正;因此当a 2>-1且a 2≠1时,总有(a r 2-1)(a n -r 2-1)>0,即a r 2+a n -r 2<1+a n 2,(r=1,2,…,n -1).上面不等式对r 从1到n -1求和得2(a 2+a 22+…+a n -12)<(n -1)(1+a n 2).由此得1+a 2+a 22+…+a n 2<n +12(1+a n 2).综上,当a 2>-1且a 2≠0时,有S n ≤n2(a 1+a n ),当且仅当n =1,2或a 2=1时等号成立.。
高三数学一轮复习《数列》练习题 (含答案)
高三数学一轮复习《数列》练习题 (含答案)一、单选题1.已知递增等差数列{}n a 中,122a a =-,则3a 的( ) A .最大值为-4B .最小值为4C .最小值为-4D .最大值为42.已知数列{}n a 的前n 项和为n S ,112a =,2n ≥且*n ∈N ,满足120n n n a S S -+=,数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,则下列说法中错误的是( ) A .214a =-B .648211S S S =+ C .数列{}12n n n S S S +++-的最大项为712D .1121n n n n nT T T n n +-=++ 3.已知等差数列{}n a 的前n 项和n S ,且34S =,714S =,则23n n S a +-最小时,n 的值为( ). A .2 B .1或2 C .2或3 D .3或44.设等比数列{}n a 的公比为q ,前n 项和为n S .若1q >,2152m m m a a a +++=,且29m m S S =,*m ∈N ,则m 的值为( )A .2B .3C .4D .55.设等差数列{}n a 的前n 项和为n S ,若2k S =,28k S =,则4k S =( ) A .28B .32C .16D .246.某企业在今年年初贷款a 万元,年利率为γ,从今年年末开始每年偿还一定金额,预计五年内还清,则每年应偿还( ) A .()()5111a γγ++-万元 B .()()55111a γγγ++-万元C .()()54111a γγγ++-万元 D .()51a γγ+万元7.由1a =4,3d =确定的等差数列{}n a ,当an =28时,序号n 等于( ) A .9B .10C .11D .128.在等差数列{}n a 中,1815360a a a ++=,则9102a a -的值为( ) A .6B .8C .12D .139.在等差数列{}n a 中,n S 为其前n 项和,若26712a a a ++=,则9S =A .20B .27C .36D .4510.设数列{}n a 的前n 项和为n S ,且11a = 2(1)()nn S a n n N n *=+-∈,则数列13n S n ⎧⎫⎨⎬+⎩⎭的前10项的和是 A .290B .920C .511D .101111.记n S 为等比数列{}n a 的前n 项和.若24S =,46S =,则6S =( ) A .7B .8C .9D .1012.等比数列{}n a 中,3103384a a ==,,则该数列的通项n a =( ) A .32?3n -B .13?2n -C .3?2nD .33?2n -二、填空题13.在等比数列{}n a 中,23341,2a a a a +=+=,则45a a +=________.14.在正项等比数列{}n a 中,若3453a a a π=,()313237sin log log log a a a ++⋯+的值为______________.15.已知数列{}n a 的通项公式212n a n n=+,其前n 项和为n S ,则10S =_____.(用分数作答)16.已知a 是1,2的等差中项,b 是1-,16-的等比中项,则ab 等于___________.三、解答题17.已知实数111,,a b c 成等差数列,求证:,,222b b b ac --成等比数列.18.设数列{}n a 的前n 项和为n S ,且4120S =,13n n a a +=. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设321log n n b a -=,求数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n T .19.设数列{}n a 满足11a =,1123n n n a a -+-=⋅.(1)求数列{}n a 的通项公式;(2)令()21n n b n a =+,求数列{}n b 的前n 项和n S .20.已知数列{}n a 满足11a =,11,,2,.n n na n a a n ++⎧=⎨+⎩为奇数为偶数(1)记2n n b a =,写出1b ,2b ,并求数列{}n b 的通项公式; (2)求{}n a 的前20项和.21.已知数列{}n a 中,13a =,点()1,n n a a +在直线3y x =上. (1)求数列{}n a 的通项公式及其前n 项的和n S ; (2)设*,N n nnb n a =∈,证明:1234n b b b +++<.22.若数列{}n a 的前n 项和22n n S a =-,*n N ∈. (1)求数列{}n a 的通项公式;(2)若()221log *n n b a n N -=∈,求数列{}n b 的前n 项和n T .23.已知数列{}n a 的前n 项和为n S ,194a =-,且1439n n S S +=-.(1)求数列{}n a 的通项;(2)设数列{}n b 满足*3(4)0()n n b n a n N +-=∈,记{}n b 的前n 项和为n T ,若n n T b λ≤对任意N n *∈恒成立,求实数λ的取值范围.24.已知数列1a ,2a ,…,6n a 的项{1,2}i a ∈,其中1,2,3,i =…,6n ,*n ∈N ,其前6n 项和为6n S ,记6n S 除以3余数为1的数列1a ,2a ,…,6n a 的个数构成的数列为{}n b ,*n ∈N . (1)求1b 的值;(2)求数列{}n b 的通项公式,并化简.参考答案1.B解:∵递增等差数列{an }中,a 1a 2=﹣2, ∴a 1(a 1+d )=﹣2,且d >0, ∴d =112a a --,∴a 1<0, ∴a 3=a 1+2d =114a a --≥4=, 当且仅当a 1=﹣2时,等号成立, ∴a 3有最小值4. 2.D当2n ≥且*n ∈N 时,由1n n n a S S -=-, 由120n n n a S S -+=可得111112020n n n n n nS S S S S S ----+=⇒-+=, 整理得1112n n S S --=(2n ≥且n +∈N ). 则1n S ⎧⎫⎨⎬⎩⎭为以2为首项,以2为公差的等差数列()12122n n n S ⇒=+-⋅=,12n S n ∴=. A 中,当2n =时,221111424a S S =-=-=-,A 选项正确;B 中,1n S ⎧⎫⎨⎬⎩⎭为等差数列,显然有648211S S S =+,B 选项正确; C 中,记()()1212211221n n n n b S S n n n S ++=+-=+-++, ()()()1123111212223n n n n b S S S n n n ++++=+-=+-+++,()()()1111602223223n n n b b n n n n n n ++∴-=--=-<++++,故{}n b 为递减数列, ()1123max 111724612n b b S S S ∴==+-=+-=,C 选项正确; D 中,12n n S =,()()2212n n n T n n +∴==+,()()112n T n n +∴=++. ()()()()()()11112112111n n n n T T n n n n n n n n n n n n n n +-=⋅++⋅++=+--+++++222122212n n n n n n T =-++=+-≠,D 选项错误.3.C解:设等差数列{}n a 的公差为d , 因为34S =,714S =,所以1132342767142a d a d ⨯⎧+=⎪⎪⎨⨯⎪+=⎪⎩,解得11a =,13d =,所以2223(1)11550[1(2)]23318n n n n n n S a n n +----=+⨯-++=,因为n ∈+N ,所以当2n =或3n =时,其有最小值. 4.B因为2152m m m a a a +++=,所以252m m m a a q a q +=,得到25102q q -+=,因为1q >,所以2q .由29m m S S =,得()()211121291212m m a a --=⨯--,又10a ≠,所以()212912mm -=-,因为*m ∈N ,则120m -≠, 所以129m +=,解得3m =, 5.B由等差数列{}n a 前n 项和的性质,可得k S ,2k k S S -,32k k S S -,43k k S S -成等差数列, ∴()2322k k k k k S S S S S -=+-,解得318k S =. ∴ 2,6,10,418k S -成等差数列, 可得4210618k S ⨯=+-,解得432k S =. 6.B设每年偿还x 万元,则()()()()()234511111x x x x x a γγγγγ++++++++=+,所以()()()5511111xa γγγ++--=+, 解得()()55111a x γγγ+=+-.7.A解:因为14a =,3d =,所以()1131n a a n d n =+-=+,所以3128n a n =+=,解得9n = 8.C因为1815360a a a ++=,所以8560a =,所以812a =, 所以910180108212a a a a a a =+-==-, 故选:C. 9.C因为{}n a 为等差数列,26712a a a ++=,131212+=a d ∴,因此144+=a d 又()9111989936942S a d a d a d ⨯=+=+=+,936S =∴. 10.C由()2(1)nn S a n n N n*=+-∈得2(1)n n S na n n =--, 当2n ≥时,11(1)4(1)n n n n n a S S na n a n --=-=----,整理得14n n a a --=, 所以{}n a 是公差为4的等差数列,又11a =,所以()43n a n n N *=-∈,从而()2133222(1)2n n n a a S n n n n n n ++=+=+=+, 所以1111132(1)21n S n n n n n ⎛⎫==- ⎪+++⎝⎭,数列13n S n ⎧⎫⎨⎬+⎩⎭的前10项的和115121111S ⎛⎫=-= ⎪⎝⎭.11.A∵n S 为等比数列{}n a 的前n 项和, ∴2S ,42S S -,64S S -成等比数列 ∴24S =,42642S S -=-= ∴641S S -=, ∴641167S S =+=+=. 12.D设等比数列{}n a 的公比为q ,因为3103384a a ==,,可得71033841283a q a ===,解得2q ,所以数列{}n a 的通项公式为33332n n n a a q --==⨯.13.4设公比为q ,由23341,2a a a a +=+=, 得()2323342a q a q q a a a a q =+=+=+=, 所以()453434224a a a q a q q a a +=+=+=⨯=. 14数列{}n a 是正项等比数列,∴343a π= ,()3132373127log log ......log log ...a a a a a a +++= , ()77733312744...3a a a a a π=== ,∴()73313237312737log log ......log log ...log 33a a a a a a ππ⎛⎫+++=== ⎪⎝⎭, ()3132377sin log log log sinsin 33a a a ππ∴++⋯+===15.175264因为数列{}n a 的通项公式21111222n a n n n n ⎛⎫==- ⎪++⎝⎭, 所以10111111111...21324351120S ⎛⎫=-+-+-++- ⎪⎝⎭,111111752121226411⎛⎫=+--= ⎪⎝⎭, 故答案为:17526416.6±因为a 是1,2的等差中项,所以12322a +==, 因为b 是1-,16-的等比中项,所以2(1)(16)16b =-⨯-=,4b =±,所以6ab =±.故答案为:6±.17.因为111,,a b c 成等差数列,所以112a c b +=,即2b ac a c=+且0abc ≠,又()()2220222444b b b b ac b b a c ac a c ac a c a c ⎛⎫⎛⎫-⋅-=-++=-++=> ⎪ ⎪+⎝⎭⎝⎭, 所以2222b b b a c ⎛⎫⎛⎫⎛⎫-⋅-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭成立且各项均不为零,所以:,,222b b ba c --成等比数列.18.(1)3nn a =(2)n T 21nn =+ (Ⅰ)∵13n na a +=,∴{}n a 是公比为3q =的等比数列,又()4141312013a S -==-,解得13a=.∴{}n a 是以13a =为首项,以3q =为公比的等比数列,通项公式为113n nn a a q -==.(Ⅱ)∵213log 321n n b n -==- ∴()()11113352121n T n n =+++⨯⨯-+ 111111123352121n n ⎛⎫=-+-++- ⎪-+⎝⎭11(122121nn n =-=++) 19.(1)13-=n n a ,*n N ∈;(2)3n n S n =⋅,*n N ∈.(1)由已知,当2n ≥时, 2123n n n a a ---=⋅,()()()121321n n n a a a a a a a a -=+-+-++-()12211312133312313n n n ----=+++++=+⨯=-当1n =时,11131a -==符合上式,13n n a -∴=,*n N ∈.(2)由(1)知()()121213n n n b n a n -=+=+⨯,()0113353213n n S n -=⨯+⨯+++⨯①3n S =()()1213353213213n n n n -⨯+⨯++-⨯++⨯②①-②得()()121232333213n n n S n --=++++-+⋅()()121213332131n n n -=++++-+⋅+()132213113nn n -=⨯-+⋅+-23n n =-⋅所以,3nn S n =⋅,*n N ∈.20.(1)122,5,31n b b b n ===-;(2)300.解:(1)[方法一]【最优解】:显然2n 为偶数,则21222212,1n n n n a a a a +++=+=+, 所以2223n n a a +=+,即13n n b b +=+,且121+12b a a ===, 所以{}n b 是以2为首项,3为公差的等差数列, 于是122,5,31n b b b n ===-. [方法二]:奇偶分类讨论由题意知1231,2,4a a a ===,所以122432,15b a b a a ====+=. 由11n n a a +-=(n 为奇数)及12n n a a +-=(n 为偶数)可知, 数列从第一项起,若n 为奇数,则其后一项减去该项的差为1, 若n 为偶数,则其后一项减去该项的差为2.所以*23()n n a a n N +-=∈,则()11331n b b n n =+-⨯=-.[方法三]:累加法由题意知数列{}n a 满足*113(1)1,()22nn n a a a n +-==++∈N . 所以11213(1)11222b a a -==++=+=, 322433223(1)3(1)11212352222b a a a a a --==++=+=+++=++=+=,则222121222111()()()121221+n n n n n n b a a a a a a a a a ---==-+-+-+=+++++++12(1)131n n n =+-+=-⨯.所以122,5b b ==,数列{}n b 的通项公式31n b n =-. (2)[方法一]:奇偶分类讨论 20123201351924620++++++++()()S a a a a a a a a a a a a =+=+++1231012310(1111)b b b b b b b b =-+-+-++-+++++110()102103002b b +⨯=⨯-=. [方法二]:分组求和由题意知数列{}n a 满足12212121,1,2n n n n a a a a a -+==+=+, 所以2122123n n n a a a +-=+=+.所以数列{}n a 的奇数项是以1为首项,3为公差的等差数列;同理,由2221213n n n a a a ++=+=+知数列{}n a 的偶数项是以2为首项,3为公差的等差数列. 从而数列{}n a 的前20项和为: 201351924260()()S a a a a a a a a =+++++++++1091091013102330022⨯⨯=⨯+⨯+⨯+⨯=. 21.(1)3nn a =,1332n n S +-=;因为点()1,n n a a +在直线3y x =上,所以13n na a +=,又13a =, 故数列{n a }是以3为公比,3为首项的等比数列,所以3nn a =,()31313n n S -==-1332n +-. (2)由题可知3n n nb =,记12nn T b b b =+++,所以212333n nnT =+++① ①13⨯,得2311123333n n nT +=+++②①-②,得2111211111132133333233223n n n n n n n n nT ++++⎛⎫=+++-=--=- ⎪⨯⎝⎭,故332443n n n T +=-⨯,又32043nn+>⨯,故34nT <,即证. 22.(1)2n n a =;(2)2n T n =.(1)数列{}n a 的前n 项和22n n S a =-,*n N ∈.2n ≥时,()112222n n n n n a S S a a --=-=---,化为:12n n a a -=,1n =时,1122a a =-,解得12a =.∴数列{}n a 是等比数列,首项为2,公比为2.2n n a ∴=.(2)221log 21n n b a n -==-.因为12n nb b ,∴数列{}n b 是等差数列,首项为1,公差为2,所以21()(1+21)22n n n a a n n T n +-∴===. 23.(1)33()4nn a =-⋅;(2)31λ-≤≤.(1)当1n =时,1214()39a a a +=-,229272749,4416a a =-=-∴=-, 当2n ≥时,由1439n n S S +=-①, 得1439n n S S -=-②,①-②得143n n a a += 122730,0,164n n n a a a a +=-≠∴≠∴=, 又213,{}4n a a a =∴是首项为94-,公比为34的等比数列, 1933()3()444n n n a -∴=-⋅=-⋅;(2)由3(4)0n n b n a +-=,得43(4)()34n n n n b a n -=-=-, 所以234333333210(4)44444nn T n ⎛⎫⎛⎫⎛⎫⎛⎫=-⨯-⨯-⨯⨯++-⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎝+⎭⎭,2413333333321(5)(4)444444nn n T n n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-⨯-⨯-⨯++-⋅+-⋅ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,两式相减得234113333333(4)4444444nn n T n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-⨯++++--⋅ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭1193116493(4)34414n n n -+⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦=-+-- ⎪⎝⎭-111993334(4)44444n n n n n +++⎛⎫⎛⎫⎛⎫=-+---⋅=-⋅ ⎪⎪⎪⎝⎭⎝⎭⎝⎭,所以134()4n n T n +=-⋅,由n n T b λ≤得1334()(4)()44n nn n λ+-⋅≤-⋅恒成立,即(4)30n n λ-+≥恒成立,4n =时不等式恒成立;4n <时,312344n n n λ≤-=----,得1λ≤; 4n >时,312344n n n λ≥-=----,得3λ≥-; 所以31λ-≤≤.24.(1)121b =(2)6213n n b -=,*n ∈N 解:(1)因为前六项的和除以3余数为1 所以这6项中包含2个1或5个1,其余均为2,所以这样的数列共有256621C C +=个,故121b =(2)因为1a ,2a ,…,6n a 和6n S 除以3余数为1,所以这6n 项中包含2个1或5个1……或61n -个1,其余均为2,所以2561666n n n n n b C C C -=+++,设6n S 除以3余数为2,0的数列1a ,2a ,…,6n a 的个数构成的数列分别为{}n c ,n d同理,1462666n n n n nc C C C -=+++,036666nn n n n d C C C =+++∵146261642666666n n n n n n n n n n n c C C C C C C b ---=++⋯+=++⋯+=∵66222n nn n n n n b c d d b ++=⇒=-结合(1)猜想6213n n b -=,*n ∈N下面用数学归纳法证明当1n =时,6121213b -==,成立 假设当n k =时,有6213k k b -=,*k ∈N 成立,且6213k k k c b -==,6223k k d += 则当1n k =+时,数列共()66k +项,分两步看,第一步先看前6k 项,前6k 项的和除以3余数为1,2,0的数列的个数分别为k b ,k c ,k d ,第二步看后6项,最后6项的和除以3众数为0,2,1的数列的个数分别为22,21,21∴6666(1)1212122212221212221213333k k k k k k k k b b c d ++--+-=⨯+⨯+⨯=⨯+⨯+⨯=所以当1n k =+时,猜想也成立 综上,6213n n b -=,*n ∈N。
全国百所名校高考数学一轮复习试卷:数列(详解答案)
全国百所名校高考数学一轮复习试卷专题七:数列满分150分,考试用时120分钟。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设等差数列{}n a 的前n 项和为n S ,已知35a =,7930a a +=,则10S =( ) A .85B .97C .100D .1752.已知数列{}n a 中,13n n a S +=,则下列关于{}n a 的说法正确的是( ) A .一定为等差数列 B .一定为等比数列C .可能为等差数列,但不会为等比数列D .可能为等比数列,但不会为等差数列 3.已知数列{}()1111,,124n n n a a a n a -==-≥,则a 2020=( ) A .45B .14C .﹣3D .154.等比数列{}n a 的各项均为正数,且564718a a a a +=,则3132310log log log a a a +++=( ) A .12B .10C .8D .32log 5+5.有这样一道题目:“戴氏善屠,日益功倍.初日屠五两,今三十日屠讫,向共屠几何?”其意思为:“有一个姓戴的人善于屠肉,每一天屠完的肉是前一天的2倍,第一天屠了5两肉,共屠了30天,问一共屠了多少两肉?"在这个问题中,该屠夫前5天所屠肉的总两数为( ) A .35B .75C .155D .3156.在等差数列{}n a 中,12018a =-,其前n 项和为n S ,若151051510S S -=,则2020S =( ) A .0B .2018C .2019-D .20207.设n S 是{}n a 的前n 项和,12a =,且1113n n n a S S ++=-,则1222111S S S ++⋅⋅⋅+=( ) A .-66 B .77C .88D .998.数列{}{},n n a b 为等差数列,前n 项和分别为,n n S T ,若3n 22n n S T n +=,则77a b =( ) A .4126B .2314C .117 D .1169.已知等比数列{}n a 的前n 项和为n S ,若1220a a +=,334S =,且2n a S a ≤≤+,则实数a 的取值范围是( ) A .[]1,0-B .11,2⎡⎤-⎢⎥⎣⎦C .1,12⎡⎤⎢⎥⎣⎦D .[]0,110.若数列{}n a 满足()()1121nn n a a n n N +++-⋅=-∈,则{}n a 的前40项的和是( )A .760B .180C .800D .82011.已知等比数列{}n a 的前n 项和为n S ,且72nn S m -=-,若121n nb a a a =⋅⋅⋅,则数列{}n b 中最小的项为( ) A .5bB .6bC .7bD .6b 或7b12.已知数列{}n a 满足()12323213nn a a a na n ++++=-⋅.设4n nnb a =,n S 为数列{}n b 的前n 项和.若n S λ<(常数),*n N ∈,则λ的最小值是( ) A .32B .94C .3112D .3118二、填空题:本题共4小题,每小题5分,共20分。
高考数学一轮复习数列多选题复习题及答案
高考数学一轮复习数列多选题复习题及答案一、数列多选题1.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”,记n S 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68a = B .954S =C .135********a a a a a ++++=D .22212201920202019a a a a a +++= 【答案】ACD 【分析】由题意可得数列{}n a 满足递推关系12211,1,(3)n n n a a a a a n --===+≥,依次判断四个选项,即可得正确答案. 【详解】对于A ,写出数列的前6项为1,1,2,3,5,8,故A 正确; 对于B ,911235813+21+3488S =++++++=,故B 错误;对于C ,由12a a =,342a a a =-,564a a a =-,……,201920202018a a a =-,可得:13520192426486202020182020a a a a a a a a a a a a a a +++⋅⋅⋅+=+-+-+-++-=,故C正确.对于D ,斐波那契数列总有21n n n a a a ++=+,则2121a a a =,()222312321a a a a a a a a =-=-,()233423423a a a a a a a a =-=-,……,()220182018201920172018201920172018a a a a a a a a =-=-,220192019202020192018a a a a a =-,可得22212201920202019201920202019a a a a a a a a+++==,故D 正确;故选:ACD. 【点睛】本题以“斐波那契数列”为背景,考查数列的递推关系及性质,考查方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意递推关系的灵活转换,属于中档题.2.已知数列{} n a 满足11a =,121++=+n n a a n ,*n N ∈, n S 是数列1 n a ⎧⎫⎨⎬⎩⎭的前n 项和,则下列结论中正确的是( ) A .()21121n nS n a -=-⋅B .212n n S S =C .2311222n n n S S ≥-+ D .212n n S S ≥+【答案】CD 【分析】根据数列{} n a 满足11a =,121++=+n n a a n ,得到1223+++=+n n a a n ,两式相减得:22n n a a +-=,然后利用等差数列的定义求得数列{} n a 的通项公式,再逐项判断.【详解】因为数列{} n a 满足11a =,121++=+n n a a n ,*n N ∈, 所以1223+++=+n n a a n , 两式相减得:22n n a a +-=,所以奇数项为1,3,5,7,….的等差数列; 偶数项为2,4,6,8,10,….的等差数列; 所以数列{} n a 的通项公式是n a n =, A. 令2n =时, 311111236S =++=,而 ()1322122⨯-⋅=,故错误; B. 令1n =时, 213122S =+=,而 11122S =,故错误;C. 当1n =时, 213122S =+=,而 31132222-+=,成立,当2n ≥时,211111...23521n n S S n =++++--,因为221n n >-,所以11212n n >-,所以111111311...1 (352148222)n n n ++++>++++=--,故正确; D. 因为21111...1232n n S S n n n n-=+++++++,令()1111...1232f n n n n n=+++++++,因为()111111()021*******f n f n n n n n n +-=+-=->+++++,所以()f n 得到递增,所以()()112f n f ≥=,故正确; 故选:CD 【点睛】本题主要考查等差数列的定义,等比数列的前n 项和公式以及数列的单调性和放缩法的应用,还考查了转化求解问题的能力,属于较难题.3.如图,已知点E 是ABCD 的边AB 的中点,()*n F n ∈N为边BC 上的一列点,连接n AF 交BD 于n G ,点()*n G n ∈N 满足()1223n n n n n G D a G A a G E +=⋅-+⋅,其中数列{}n a 是首项为1的正项数列,n S 是数列{}n a 的前n 项和,则下列结论正确的是( )A .313a =B .数列{}3n a +是等比数列C .43n a n =-D .122n n S n +=--【答案】AB 【分析】化简得到()()12323n n n n n n G D a a G A a G B +=--⋅-+⋅,根据共线得到1230n n a a +--=,即()1323n n a a ++=+,计算123n n a +=-,依次判断每个选项得到答案. 【详解】()()112232n n n n n n G D a G A a G A G B +=⋅-+⋅+, 故()()12323n n n n n n G D a a G A a G B +=--⋅-+⋅,,n n G D G B 共线,故1230n n a a +--=,即()1323n n a a ++=+,11a =,故1342n n a -+=⨯,故123n n a +=-.432313a =-=,A 正确;数列{}3n a +是等比数列,B 正确;123n n a +=-,C 错误;2124323412nn n S n n +-=-=---,故D 错误.故选:AB . 【点睛】本题考查了向量运算,数列的通项公式,数列求和,意在考查学生的计算能力,转化能力和综合应用能力.4.(多选题)数列{}n a 满足()2*1n n n a a a n N+=-+∈,110,2a ⎛⎫∈ ⎪⎝⎭,则以下说法正确的为( ) A .10n n a a +<<B .22221231n a a a a a +++⋅⋅⋅+<C .对任意正数b ,都存在正整数m 使得12311111111mb a a a a +++⋅⋅⋅+>----成立D .11n a n <+ 【答案】ABCD 【分析】对于A ,结合二次函数的特点可确定正误;对于B ,将原式化简为111n a a a +-<,由10n a +>得到结果; 对于C ,结合1a 范围和A 中结论可确定12111111nn a a a ++⋅⋅⋅+>---,由此判断得到结果;对于D ,利用数学归纳法可证得结论. 【详解】对于A ,2211124n nn n a a a a +⎛⎫=-+=--+ ⎪⎝⎭,若10,2n a ⎛⎫∈ ⎪⎝⎭,则110,4n a +⎛⎫∈ ⎪⎝⎭,又110,2a ⎛⎫∈ ⎪⎝⎭,可知0n a >,10n a +>, 又210n n n a a a +-=-<,10n n a a +∴<<,A 正确; 对于B ,由已知得:21n n n a a a +=-,()()()2221212231111n n n n a a a a a a a a a a a a ++∴++⋅⋅⋅+=-+-+⋅⋅⋅+-=-<,B 正确;对于C ,由110,2a ⎛⎫∈ ⎪⎝⎭及A 中结论得:1112na <-<,1121n a <<-, 12111111nn a a a ∴++⋅⋅⋅+>---,显然对任意的正数b ,在在正整数m ,使得m b >,此时12311111111mb a a a a +++⋅⋅⋅+>----成立,C 正确; 对于D ,(i )当1n =时,由已知知:112a <成立, (ii )假设当()n k k N*=∈时,11nan <+成立, 则222111112411n nn n a a a a n n +⎛⎫⎛⎫=-+=--+<-+ ⎪ ⎪++⎝⎭⎝⎭, 又()()()221111012121n n n n n -+-=-<+++++,即()2111121n n n -+<+++, 112n a n +∴<+, 综上所述:当n *∈N 时,112n a n +<+,D 正确.故选:ABCD. 【点睛】关键点点睛:本题考查数列与不等式的综合应用问题,关键在于能够熟练应用不等式的性质与函数的性质进行化简辨析,同时对于数列中的不等式证明问题,可采用数学归纳法进行证明.5.两个等差数列{}n a 和{}n b ,其公差分别为1d 和2d ,其前n 项和分别为n S 和n T ,则下列命题中正确的是( )A .若为等差数列,则112da =B .若{}n n S T +为等差数列,则120d d +=C .若{}n n a b 为等差数列,则120d d ==D .若*n b N ∈,则{}n b a 也为等差数列,且公差为12d d +【答案】AB 【分析】对于A ,利用=对于B ,利用()2211332S T S T S T +=+++化简可得答案; 对于C ,利用2211332a b a b a b =+化简可得答案; 对于D ,根据112n n b b a a d d +-=可得答案. 【详解】对于A ,因为为等差数列,所以=即== 化简得()21120d a -=,所以112d a =,故A 正确;对于B ,因为{}n n S T +为等差数列,所以()2211332S T S T S T +=+++, 所以()11121111122223333a d b d a b a d b d +++=+++++, 所以120d d +=,故B 正确;对于C ,因为{}n n a b 为等差数列,所以2211332a b a b a b =+, 所以11121111122()()(2)(2)a d b d a b a d b d ++=+++, 化简得120d d =,所以10d =或20d =,故C 不正确;对于D ,因为11(1)n a a n d =+-,且*n b N ∈,所以11(1)n b n a a b d =+-()112111a b n d d =++--⎡⎤⎣⎦,所以()()1111211n b a a b d n d d =+-+-,所以()()()11111211112111n n b b a a a b d nd d a b d n d d +-=+-+-----12d d =, 所以{}n b a 也为等差数列,且公差为12d d ,故D 不正确. 故选:AB 【点睛】关键点点睛:利用等差数列的定义以及等差中项求解是解题关键.6.在递增的等比数列{}n a 中,已知公比为q ,n S 是其前n 项和,若1432a a =,2312a a +=,则下列说法正确的是( )A .2qB .数列{}2n S +是等比数列C .8510S =D .数列{}lg n a 是公差为2的等差数列【答案】ABC 【分析】 计算可得2q,故选项A 正确;8510S =,122n n S ++=,所以数列{}2n S +是等比数列,故选项,B C 正确;lg lg 2n a n =⋅,所以数列{}lg n a 是公差为lg 2的等差数列,故选项D 错误. 【详解】{}n a 为递增的等比数列,由142332,12,a a a a =⎧⎨+=⎩得23142332,12,a a a a a a ==⎧⎨+=⎩解得234,8a a =⎧⎨=⎩或238,4a a =⎧⎨=⎩,∵{}n a 为递增数列,∴234,8a a =⎧⎨=⎩∴322a q a ==,212a a q ==,故选项A 正确; ∴2nn a =,()12122212nn nS +⨯-==--,∴9822510S =-=,122n n S ++=,∴数列{}2n S +是等比数列,故选项B 正确;所以122n n S +=-,则9822510S =-=,故选项C 正确.又lg 2lg 2lg nn n a ==⋅,∴数列{}lg n a 是公差为lg 2的等差数列,故选项D 错误. 故选:ABC. 【点睛】方法点睛:证明数列为等差(等比)数列常用的方法有: (1)定义法; (2)通项公式法 (3)等差(等比)中项法(4)等差(等比)的前n 项和的公式法.要根据已知灵活选择方法证明.7.在数列{}n a 中,如果对任意*n N ∈都有211n n n na a k a a +++-=-(k 为常数),则称{}n a 为等差比数列,k 称为公差比.下列说法正确的是( ) A .等差数列一定是等差比数列 B .等差比数列的公差比一定不为0C .若32nn a =-+,则数列{}n a 是等差比数列D .若等比数列是等差比数列,则其公比等于公差比 【答案】BCD 【分析】考虑常数列可以判定A 错误,利用反证法判定B 正确,代入等差比数列公式判定CD 正确. 【详解】对于数列{}n a ,考虑121,1,1n n n a a a ++===,211n n n na a a a +++--无意义,所以A 选项错误;若等差比数列的公差比为0,212110,0n n n n n na a a a a a +++++---==,则1n n a a +-与题目矛盾,所以B 选项说法正确;若32nn a =-+,2113n n n na a a a +++-=-,数列{}n a 是等差比数列,所以C 选项正确;若等比数列是等差比数列,则11,1n n q a a q -=≠,()()11211111111111n n nn n n n n n n a q q a a a q a q q a a a q a q a q q +++--+---===---,所以D 选项正确. 故选:BCD 【点睛】易错点睛:此题考查等差数列和等比数列相关的新定义问题.解决此类问题应该注意: (1)常数列作为特殊的等差数列公差为0; (2)非零常数列作为特殊等比数列公比为1.8.(多选)设数列{}n a 是等差数列,公差为d ,n S 是其前n 项和,10a >且69S S =,则( ) A .0d > B .80a =C .7S 或8S 为n S 的最大值D .56S S >【答案】BC【分析】根据69S S =得到80a =,再根据10a >得到0d <,可得数列{}n a 是单调递减的等差数列,所以7S 或8S 为n S 的最大值,根据6560S S a -=>得65S S >,故BC 正确. 【详解】由69S S =得,960S S -=, 即7890a a a ++=,又7982a a a +=,830a ∴=,80a ∴=,∴B 正确;由8170a a d =+=,得17a d =-,又10a >,0d ∴<, ∴数列{}n a 是单调递减的等差数列,()()0,70,9n n a n N n a n N n **⎧>∈≤⎪∴⎨<∈≥⎪⎩, 7S ∴或8S 为n S 的最大值,∴A 错误,C 正确; 6560S S a -=>,65S S ∴>,所以D 错误.故选:BC . 【点睛】关键点点睛:根据等差中项推出80a =,进而推出0d <是解题关键.二、平面向量多选题9.ABC ∆是边长为3的等边三角形,已知向量a 、b 满足3AB a =,3AC a b =+,则下列结论中正确的有( ) A .a 为单位向量 B .//b BCC .a b ⊥D .()6a b BC +⊥【答案】ABD 【分析】求出a 可判断A 选项的正误;利用向量的减法法则求出b ,利用共线向量的基本定理可判断B 选项的正误;计算出a b ⋅,可判断C 选项的正误;计算出()6a b BC +⋅,可判断D 选项的正误.综合可得出结论. 【详解】 对于A 选项,3AB a =,13a AB ∴=,则113a AB ==,A 选项正确; 对于B 选项,3AC ab AB b =+=+,b AC AB BC ∴=-=,//b BC ∴,B 选项正确;对于C 选项,21123cos 0333a b AB BC π⋅=⋅=⨯⨯≠,所以a 与b 不垂直,C 选项错误; 对于D 选项,()()()2260a b BC AB AC AC AB AC AB +⋅=+⋅-=-=,所以,()6a b BC +⊥,D 选项正确.故选:ABD. 【点睛】本题考查向量有关命题真假的判断,涉及单位向量、共线向量的概念的理解以及垂直向量的判断,考查推理能力,属于中等题.10.如图,已知点O 为正六边形ABCDEF 中心,下列结论中正确的是( )A .0OA OC OB ++=B .()()0OA AF EF DC -⋅-= C .()()OA AF BC OA AF BC ⋅=⋅D .OF OD FA OD CB +=+-【答案】BC【分析】利用向量的加法法则、减法法则的几何意义,对选项进行一一验证,即可得答案. 【详解】对A ,2OA OC OB OB ++=,故A 错误;对B ,∵OA AF OA OE EA -=-=,EF DC EF EO OF -=-=,由正六边形的性质知OF AE ⊥,∴()()0OA AF EF DC -⋅-=,故B 正确; 对C ,设正六边形的边长为1,则111cos1202OA AF ⋅=⋅⋅=-,111cos602AF BC ⋅=⋅⋅=, ∴()()OA AF BC OA AF BC ⋅=⋅1122BC OA ⇔-=,式子显然成立,故C 正确; 对D ,设正六边形的边长为1,||||1OF OD OE +==,||||||||3FA OD CB OD DC CB OC OA AC +-=+-=-==,故D 错误;故选:BC. 【点睛】本题考查向量的加法法则、减法法则的几何意义,考查数形结合思想,考查逻辑推理能力和运算求解能力,求解时注意向量的起点和终点.。
高考数学第一轮复习精品试题:数列(含全部习题答案)-推荐下载
11.已知等差数列{an}的公差
12.由正数构成的等比数列{an},若
13.已知数列{an}中,
14.在等差数列{an}中,若
质,相应地:在等比数列{bn}中,若
15.
已知数列{2n-1an
an1
}的前
d≠0,且
2a n
a 2 n
a 10
n
0
项和
是其前
aa 13
B.等比数列
D.以上答案都不是
.
9.已知数列{ an}的前 n 项和公式 Sn=n2+2n+5,则 a6+a7+a8=
.
10.设 an 是首项为
1
的正项数列,且
n
1
a2 n1
nan2
an1an
0
(
n
=1,2,3,…),则它的通项公式是
an =________.
11. 下面分别是数列{ an}的前 n 项和 an 的公式,求数列{ an}的通项公式: (1)Sn=2n2-3n; (2)Sn=3n-2
(
)
A.7. B.15
C.30
D.31.
3.数列{ an}的前 n 项和为 Sn=2n2+1,则 a1,a5 的值依次为
(
)
A.2,14 B.2,18 C.3,4.
D.3,18.
4.已知数列{ an}的前 n 项和为 Sn=4n2 -n+2,则该数列的通项公式为 (
)
A. an=8n+5(n∈N*)
a 15
C.8
S n
S
' n
53 C. 27
a n
C.7
n
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学第一轮复习精品试题:数列第2章数列§2.1数列的概念与简单表示重难点:理解数列的概念,认识数列是反映自然规律的基本数学模型,探索并掌握数列的几种间单的表示法(列表、图象、通项公式);了解数列是一种特殊的函数;发现数列规律找出可能的通项公式.考纲要求:①了解数列的概念和几种简单的表示方法(列表、图像、通项公式).②了解数列是自变量巍峨正整数的一类函数.经典例题:假设你正在某公司打工,根据表现,老板给你两个加薪的方案:(Ⅰ)每年年末加1000元;(Ⅱ)每半年结束时加300元。
请你选择:(1)如果在该公司干10年,问两种方案各加薪多少元?(2)对于你而言,你会选择其中的哪一种?当堂练习:1. 下列说法中,正确的是( )A.数列1,2,3与数列3,2,1是同一个数列.B.数列l, 2,3与数列1,2,3,4是同一个数列.C.数列1,2,3,4,…的一个通项公式是an=n.D.以上说法均不正确.2巳知数列{ an}的首项a1=1,且an+1=2 an+1,(n≥2),则a5为( )A.7.B.15 C.30 D.31.3.数列{ an}的前n项和为Sn=2n2+1,则a1,a5的值依次为( )A.2,14 B.2,18 C.3,4.D.3,18.4.已知数列{ an}的前n项和为Sn=4n2 -n+2,则该数列的通项公式为( )A.an=8n+5(n∈N*) B.an=8n-5(n∈N*)C.an=8n+5(n≥2) D.⎪⎩⎪⎨⎧∈≥-==),2(58)1(5+nNnnnna5.已知数列{ an}的前n项和公式Sn=n2+2n+5,则a6+a7+a8= ( )A.40.B.45 C.50 D.55.6.若数列}{n a前8项的值各异,且n8naa=+对任意的*Nn∈都成立,则下列数列中可取遍}{n a前8项值的数列为()A.}{12+ka B.}{13+ka C.}{14+ka D.}{16+ka7.在数列{ an}中,已知an=2,an= an+2n,则a4 +a6 +a8的值为.8.已知数列{ an}满足a1=1 ,an+1=c an+b, 且a2 =3,a4=15,则常数c,b 的值为.9.已知数列{ an}的前n项和公式Sn=n2+2n+5,则a6+a7+a8= .10.设{}na是首项为1的正项数列,且()011221=+-+++nnnnaanaan(n=1,2,3,…),则它的通项公式是n a=________.11. 下面分别是数列{ an}的前n项和an的公式,求数列{ an}的通项公式:(1)Sn=2n2-3n;(2)Sn=3n-212. 已知数列{ an}中a1=1,nn a n n a 11+=+ (1)写出数列的前5项;(2)猜想数列的通项公式.13. 已知数列{ an}满足a1=0,an +1+Sn=n2+2n(n ∈N*),其中Sn 为{ an}的前n 项和,求此数列的通项公式.14. 已知数列{ an}的通项公式an 与前n 项和公式Sn 之间满足关系Sn=2-3an (1)求a1;(2)求an 与an (n ≥2,n ∈N*)的递推关系; (3)求Sn 与Sn (n ≥2,n ∈N*)的递推关系,第2章 数列 §2.2等差数列、等比数列重难点:理解等差数列、等比数列的概念,掌握等差数列、等比数列的通项公式与前n 项和公式,能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题. 考纲要求:①理解等差数列、等比数列的概念.②掌握等差数列、等比数列的通项公式与前n 项和公式.③能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题. ④了解等差数列与一次函数、等比数列与指数函数的关系.经典例题:已知一个数列{an}的各项是1或3.首项为1,且在第k 个1和第k+1个1之间有2k-1个3,即1,3,1,3,3,3,1,3,3,3,3,3,1,…,记该数列的前n 项的和为Sn . (1)试问第2006个1为该数列的第几项? (2)求a2006;(3)求该数列的前2006项的和S2006;当堂练习:1,…则是该数列的( )A .第6项B .第7项C .第10项D .第11项2.方程2640x x -+=的两根的等比中项是( )A .3B .2± C. D .2 3. 已知12,,,n a a a …为各项都大于零的等比数列,公比1q ≠,则( ) A .1845a a a a +>+ B .1845a a a a +<+C .1845a a a a +=+D .18a a +和45a a +的大小关系不能由已知条件确定4.一个有限项的等差数列,前4项之和为40,最后4项之和是80,所有项之和是210,则此数列的项数为( ) A .12 B .14 C .16 D .185.若a 、b 、c 成等差数列,b 、c 、d 成等比数列,111,,c d e 成等差数列,则a 、c 、e 成( ) A .等差数列 B .等比数列C .既成等差数列又成等比数列D .以上答案都不是 6.在等差数列{an}中,14812152a a a a a ---+=,则313a a +=( ) A .4 B .4- C .8 D .8- 7.两等差数列{an}、{bn}的前n 项和的比'5327n n S n S n +=+,则55a b 的值是( )A .2817B .4825C .5327D .2315 8.{an}是等差数列,10110,0S S ><,则使0n a <的最小的n 值是( ) A .5 B .6 C .7 D .8 9.{an}是实数构成的等比数列,n S 是其前n 项和,则数列{n S } 中( ) A .任一项均不为0 B .必有一项为0C .至多有一项为0D .或无一项为0,或无穷多项为0 10.某数列既成等差数列也成等比数列,那么该数列一定是( ) A .公差为0的等差数列 B .公比为1的等比数列 C .常数数列1,1,1,… D .以上都不对11.已知等差数列{an}的公差d≠0,且a1、a3、a9成等比数列,则1392410a a a a a a ++++的值是 .12.由正数构成的等比数列{an},若132423249a a a a a a ++=,则23a a += .13.已知数列{an}中,122n n n a a a +=+对任意正整数n 都成立,且712a =,则5a = .14.在等差数列{an}中,若100a =,则有等式()*12121919,n n a a a a a a n n -+++=+++<∈N …… 成立,类比上述性质,相应地:在等比数列{bn}中,若91b =,则有等式15. 已知数列{2n-1an }的前n 项和96n S n =-.⑴求数列{an}的通项公式;⑵设2||3log 3n n a b n ⎛⎫=- ⎪⎝⎭,求数列1n b ⎧⎫⎨⎩⎭的前n 项和.16.已知数列{an}是等差数列,且11232,12a a a a =++=. ⑴求数列{an}的通项公式;⑵令()n n n b a x x =∈R ,求数列{bn}前n 项和的公式.17. 甲、乙两人连续6年对某县农村养鸡业规模进行调查,提供两个不同的信息图如图所示.甲调查表明:从第1年每个养鸡场出产1万只鸡上升到第6年平均每个鸡场出产2万只鸡.乙调查表明:由第1年养鸡场个数30个减少到第6年10个.请您根据提供的信息说明:⑴第2年养鸡场的个数及全县出产鸡的总只数; ⑵到第6年这个县的养鸡业比第1年是扩大了还是 缩小了?请说明理由;⑶哪一年的规模最大?请说明理由.18.已知数列{an}为等差数列,公差0d ≠,{an}的部分项组成的数列12,,,k k k na a a …恰为等比数列,其中1231,5,17k k k ===,求12n k k k +++….第2章 数列 §2.3等差数列、等比数列综合运用1、设{}n a 是等比数列,有下列四个命题:①2{}n a 是等比数列;②1{}n n a a +是等比数列;③1{}n a 是等比数列;④{lg ||}n a 是等比数列。
其中正确命题的个数是 ( ) A 、1 B 、2 C 、3 D 、4 2、{}n a 为等比数列,公比为q ,则数列123456789,,,a a a a a a a a a ++++++ 是( )A 、公比为3q 的等比数列B 、公比为6q 的等比数列C 、公比为3q 的等比数列D 、公比为6q 的等比数列3、已知等差数列{}n a 满足1231010a a a a ++++= ,则有 ( )A 、11010a a +> B 、11010a a +< C 、11010a a += D 、5151a =4、若直角三角形的三边的长组成公差为3的等差数列,则三边的长分别为 ( )A 、5,8,11B 、9,12,15C 、10,13,16D 、15,18,21 5、数列,,,,,()a a a a a R ∈ 必为 ( ) A 、等差非等比数列 B 、等比非等差数列 C 、既等差且等比数列 D 、以上都不正确6、若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个 数列共有 A 、10项 B 、11项 C 、12项 D 、13项 ( )7、在等差数列{}n a 中,14a =,且1513,,a a a 成等比数列,则{}n a 的通项公式为 ( )A 、31n a n =+ B 、3n a n =+ C 、31n a n =+或4n a = D 、3n a n =+或4n a =8、数列2311,,,,,,,n a a a a - 的前n 项的和为 ( ) A 、11n a a -- B 、111n a a +-- C 、211n a a +-- D 、以上均不正确9、等差数列{}n a 中,1710342,21a a a a +=-=,则前10项的和10S 等于 ( )A 、720B 、257C 、255D 、不确定10、某人于2000年7月1日去银行存款a 元,存的是一年定期储蓄;2001年7月1日他将 到期存款的本息一起取出,再加a 元后,还存一年的定期储蓄,此后每年7月1日他都 按照同样的方法,在银行存款和取款;设银行一年定期储蓄利率r 不变,则到2005年 7月1日,他将所有的存款和利息全部取出时,取出的钱数共有多少元? ( )A 、5(1)a r +B 、5[(1)(1)]a r r +++ C 、6[(1)(1)]a r r r +-+ D 、5[(1)]a r r r +-11、在某报《自测健康状况》的报道中,自测血压结果与相应年龄的统计数据如下表, 观察表中的数列的特点,用适当的数填入表中空格内:年龄(岁)30 35 40 45 50 55 60 65收缩压(水银柱,毫米) 110115 120 125 130 135 145 舒张压70 73 75 78 80 83 8812、两个数列123,,,,x a a a y 与12,,,x b b y 都成等差数列,且x y ≠,则2121a a b b --=13、公差不为0的等差数列的第2,3,6项依次构成一等比数列,该等比数列的公比q =14、等比数列{}n a 中,14,5a q ==,前n 项和为n S ,满足510n S >的最小自然数n 为15、设{}n a 是一个公差为(0)d d ≠的等差数列,它的前10项和10110S =,且124,,a a a成等比数列.(1)证明1a d =;(2)求公差d 的值和数列{}n a 的通项公式.16、(1)在等差数列{}n a 中,16412,7a a a +==,求n a 及前n 项和n S ;(2)在等比数列{}n a 中,12166,128,126n n n a a a a S -+===,求,n q .17、设无穷等差数列{}n a 的前n 项和为n S .(1)若首项132a =,公差1=d ,求满足22()k k S S =的正整数k ;(2)求所有的无穷等差数列{}n a ,使得对于一切正整数k 都有22()k k S S =成立.18.甲、乙两大型超市,2001年的销售额均为P (2001年为第1年),根据市场分析和预测,甲超市前n 年的总销售额为)2(22+-n n P ,乙超市第n 年的销售额比前一年多12-n P . (I )求甲、乙两超市第n 年的销售额的表达式;(II )根据甲、乙两超市所在地的市场规律,如果某超市的年销售额不足另一超市的年销售额的20%,则该超市将被另一超市收购,试判断哪一个超市将被收购,这个情况将在哪一年出现,试说明理由.第2章 数列 数列单元检测 1. 已知等差数列}{n a 的前n 项和为Sn ,若854,18S a a 则-=等于 ( D )A .18B .36C .54D .722. 已知{}n a 为等差数列,{}n b 为等比数列,其公比1≠q ,且),,3,2,1(0n i b i =>,若11b a =,1111b a =,则 ( B ) A .66b a = B .66b a >C .66b a < D .66b a >或66b a <3. 在等差数列{a n }中,3(a 3+a 5)+2(a 7+a 10+a 13)=24,则此数列的前13项之和为 ( D ) A .156 B .13 C .12 D .264. 已知正项等比数列数列{an},bn=log a an, 则数列{bn}是 ( A ) A 、等比数列 B 、等差数列 C 、既是等差数列又是等比数列 D 、以上都不对5. 数列{}n a 是公差不为零的等差数列,并且1385,,a a a 是等比数列{}n b 的相邻三项,若52=b ,则n b 等于( B )A. 1)35(5-⋅nB. 1)35(3-⋅n C.1)53(3-⋅n D. 1)53(5-⋅n6. 数列1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,6,…的第1000项的值是 ( B ) A. 42 B.45 C. 48 D. 517. 一懂n 层大楼,各层均可召集n 个人开会,现每层指定一人到第k 层开会,为使n 位开会人员上下楼梯所走路程总和最短,则k 应取 ( D )A.21n B.21(n—1) C.21(n+1) D.n为奇数时,k=21(n—1)或k=21(n+1),n为偶数时k=21n8. 设数列{}n a 是等差数列,26,a =- 86a =,Sn 是数列{}n a 的前n 项和,则( B )A.S4<S5B.S4=S5C.S6<S5D.S6=S59. 等比数列{}n a 的首项11a =-,前n 项和为,n S 若3231510=S S ,则公比q 等于 ( B )11A. B.22- C.2 D.-210. 已知Sn 是等差数列{an}的前n 项和,若S6=36,Sn=324,Sn -6=144(n >6),则n 等于 ( D ) A .15 B .16 C .17 D .1811. 已知8079--=n n a n ,(+∈N n ),则在数列{n a }的前50项中最小项和最大项分别是( C )A.501,a a B.81,a a C. 98,a a D.509,a a12. 已知:)()2(log *)1(Z n n a n n ∈+=+,若称使乘积n a a a a 321⋅⋅为整数的数n 为劣数,则在区间(1,2002)内所有的劣数的和为 ( A )A .2026B .2046C .1024D .1022 13. 在等差数列{}n a 中,已知a1+a3+a5=18, an-4+an-2+an=108,Sn=420,则n= .14. 在等差数列}{n a 中,公差21=d ,且6058741=++++a a a a ,则k k a a -+61(k ∈N+,k ≤60)的值为 .15. 已知*)(2142N n a S n n n ∈--=- 则 通项公式n a = .16. 已知nn n S a a 2311+==-且,则n a = ; n S = .17. 若数列{}n a 前n 项和可表示为a s nn +=2,则{}n a 是否可能成为等比数列?若可能,求出a 值;若不可能,说明理由.18.设{an}为等差数列,{bn}为等比数列,a1=b1=1,a2+a4=b3,b2·b4=a3,分别求出{an}及{bn}的前n 项和S10及T10.19.已知数列{an}是公比为q 的等比数列,Sn 是其前n 项和,且S3,S9,S6成等差数列 (1)求证:a2 , a8, a5也成等差数列(2)判断以a2, a8, a5为前三项的等差数列的第四项是否也是数列{an}中的一项,若是求出这一项,若不是请说明理由.20.等比数列}{n a 的首项为1a ,公比为)(1-≠q q ,用m n S →表示这个数列的第n 项到第m 项共1+-n m 项的和. (Ⅰ)计算31→S ,64→S ,97→S ,并证明它们仍成等比数列;(Ⅱ)受上面(Ⅰ)的启发,你能发现更一般的规律吗?写出你发现的一般规律,并证明.21.某城市2001年末汽车保有量为30万辆,预计此后每年报废上一年末汽车保有量的6%,并且每年新增汽车数量相同.为保护城市环境,要求该城市汽车保有量不超过60万辆,那么每年新增汽车数量不应超过多少辆?参考答案 第2章 数列§2.1数列的概念与简单表示 经典例题:解:(1)(Ⅰ)55000元(Ⅱ)63000元 (2)当n<2时(Ⅰ)方案 当n=2时(Ⅰ)(Ⅱ)方案都行 当n<2时(Ⅱ)方案当堂练习:1.C;2.C;3.D;4.D;5.B;6.B;7. 46;8. ⎩⎨⎧==12b c 或⎩⎨⎧=-=63b c ; 9. 45; 10.n 1;11. 【 解】 (1) an=4n+5 (2) ⎪⎩⎪⎨⎧∈≥⨯==-),2(32)1(11+n n N n n n a12. 【 解】 (1)1,21, 31,41,51.(2)n 1.13. 【 解】 ⎪⎩⎪⎨⎧∈≥-==),2(12)1(0+n N n n n n a14. 【 解】 (1) 21 (2) an +1=43an (n ≥1,n ∈N*)(3) Sn +1=43Sn+21 (n ≥1,n ∈N*)§2.2等差数列、等比数列经典例题:(1)4022031 (2)3 (3)5928 当堂练习:1.B;2.B;3.A;4.B;5.B;6.B;7.B;8.B;9.D; 10.B;11. 1316 12. 7 13. 1 14.()12121717,n n b b b b b b n n -⋅=⋅<∈*N ……15. (1)162n n a -=-(2)1nn +16. (1) 2n a n = (2)()()12(1)(1),212(1)11n n n n n x x x S nx x x x ++=⎧⎪-=⎨-≠⎪--⎩17.(1) 第2年养鸡场的个数为26个,全县出产鸡的总只数是31.2万只 (2) 到第6年这个县的养鸡业比第1年缩小了 (3) 第2年的规模最大18.31nn --§2.3等差数列、等比数列综合运用1.C;2.C;3.C;4.B;5.D;6.D;7.D;8.D;9.C; 10.C;11. 140,85; 12.. 34 ; 13. 3; 14. 8 15、(1)略;(2)2,2n d a n ==16、(1)21n a n =-,2n S n =;(2)当12,64n a a ==时,2,6q n ==;当164,2n a a ==时,1,62q n ==17、(1)当1,231==d a 时,n n n n n S n +=-+=2212)1(23,由2)(2k k S S =得,2224)21(21k k k k +=+ ,即0)141(3=-k k ,又0≠k ,所以4=k .(2)设数列{}n a 的公差为d ,则在2)(2k kS S =中分别取2,1=k 得⎩⎨⎧==224211)()(S S S S即⎪⎩⎪⎨⎧⨯+=⨯+=211211)2122(2344 d a d a a a ,由(1)得01=a 或11=a .当01=a 时,代入(2)得:0=d 或6=d ;当0,01==d a 时,0,0==n n S a ,从而2)(2k k S S =成立;当6,01==d a 时,则)1(6-=n a n ,由183=S ,216,324)(923==S S 知, 239)(S S ≠,故所得数列不符合题意;当11=a 时,0=d 或2=d ,当11=a ,0=d 时,n S a n n ==,1,从而2)(2k k S S = 成立;当11=a , 2=d 时,则2,12n S n a n n =-=,从而2)(2k k S S =成立,综上共有3个满足条件的无穷等差数列;0=n a 或1=n a 或12-=n a n .另解:由2)(2k k S S =得22221111[(1)][(1)]22k a k d k a k d +-=+-,整理得12222211111111()()()042242d d k d a d k a a d d d a -+-+-++-=对于一切正整数k 都成立,则有12212211110421*******d d da d a a d d da ⎧-=⎪⎪⎪-=⎨⎪⎪-++-=⎪⎩解之得:100d a =⎧⎨=⎩或101d a =⎧⎨=⎩或121d a =⎧⎨=⎩所以所有满足条件的数列为:0=n a 或1=n a 或12-=n a n .18. (I )设甲超市第n 年的年销售量为 n a 2)2(2+-=n n P S n 2≥∴n 时2]2)1()1[(2)2(221+----+-=-=-n n P n n P S S a n n n P n )1(-=又 1=n 时,P a =1. ⎩⎨⎧=≥-=∴)1()2()1(n P n P n a n设乙超市第n 年的年销售量为n b ,112--=-n n n P b b 2212---=-∴n n n Pb b3322---=-nn n P b b … … 212Pb b =-以上各式相加得: )212121(121-⋅⋅⋅++=-n n P b b)212()2121211(112---=+⋅⋅⋅+++=∴n n n P P b(II )显然P b n 2< 3>∴n 时 n n b a > , 故乙超市将被早超市收购.令 n n b a >51 得 )212(511-->-n P P n 得12511-->n n10=n 时9251110->不成立. 而11=n 时10251111->成立.即 n=11时 111151b a > 成立. 答:这个情况将在2011年出现,且是甲超市收购乙超市.数列单元检测1.D;2.B;3.D;4.A;5.B;6.B;7.D;8.B;9.B; 10.D;11.C;12.A;13. 20; 14. 7;15.12-=n n n a ;16.⎩⎨⎧⋅+=-22)32(3n n n a )2()1(≥=n n 12)12(-+=n n n S . 17. 【 解】 因{}n a 的前n 项和a s nn+=2,故1a =a s +=21,)2(1≥-=-n s s a n n n ,an=2n+a -2n -1-a=2n -1(2≥n ).要使1a 适合2≥n 时通项公式,则必有1,220-==+a a , 此时)(21*-∈=N n a n n , 22211==-+n nn n a a ,故当a=-1时,数列{}n a 成等比数列,首项为1,公比为2,1-≠a 时,{}n a 不是等比数列.18. 【 解】 ∵{an}为等差数列,{bn}为等比数列,∴a2+a4=2a3,b2·b4=b32,已知a2+a4=b3,b2·b4=a3,∴b3=2a3,a3=b32, 得b3=2b32,∵b3≠0,∴b3=21,a3=41. 由a1=1,a3=41,知{an}的公差d=-83, ∴S10=10a1+2910⨯d=-855. 由b1=1,b3=21,知{bn}的公比q=22或q=-22,1010111010(1)(1)3131,(2,(2132132b q b q q T q T q q --======--当当19. 【 解】 (1)S3=3a1, S9=9a1, S6=6a1, 而a1≠0,所以S3,S9,S6不可能成等差数列……2分所以q ≠1,则由公式q q a q q a q q a q q a S n n --+--=----=1)1(1)1(1)1(2,1)1(6131911得 即2q6=1+q3 ∴2q6a1q=a1q+q3a1q , ∴2a8=a2+a5 所以a2, a8, a5成等差数列(2)由2q6=1+q3=-21要以a2, a8, a5为前三项的等差数列的第四项是数列{an}中的第k 项,必有ak -a5=a8-a2,所以1632-=-q q a a k 所以,45)21(,45,453222-=--=-=--k k k q a a 所以所以 由k 是整数,所以45)21(32-=--k 不可能成立,所以a2, a8, a5 为前三项的等差数列的第四项不可能也是数列{an}中的一项.20. 【 解】 (Ⅰ))1(2131q q a S ++=→,)1(23164q q q a S ++=→,)1(26197q q q a S ++=→因为331646497q S S S S ==→→→→, 所以976431S →→→、、S S 成等比数列.(Ⅱ)一般地mr r m p p S S +→+→+→、、m n n S 、n r p +=2(且m 、n 、p 、r 均为正整数)也成等比数列,)q 1(m 211++++=-+→ q q q a S n m n n ,)q 1(m 211++++=-+→ q q q a S p m p p ,)q 1(m 211++++=-+→ q q q a S r m r r ,np m n n m p p m p p mr r q S S S S -+→+→+→+→==)(n r p +=2所以mr r m p p S S +→+→+→、、m n n S 成等比数列.21. 【 解】 设2001年末汽车保有量为1b 万辆,以后各年末汽车保有量依次为2b 万辆,3b 万辆,……,每年新增汽车x 万辆,则 301=b ,x b b n n +=+94.01所以,当2≥n 时,x b b n n+=-194.0,两式相减得:()1194.0-+-=-n n n n b b b b(1)显然,若012=-b b ,则011==-=--+ n n n n b b b b ,即301===b b n ,此时.8.194.03030=⨯-=x (2)若012≠-b b ,则数列{}n n b b -+1为以8.106.0112-=-=-x b x b b 为首项,以94.0为公比的等比数列,所以,()8.194.01-⋅=-+x b b n n n .(i )若012<-b b ,则对于任意正整数n ,均有01<-+n n b b ,所以,3011=<<<+b b b n n ,此时,.8.194.03030=⨯-<x(ii )当万8.1>x 时,012>-b b ,则对于任意正整数n ,均有01>-+n n b b ,所以,3011=>>>+b b b n n ,由()8.194.01-⋅=-+x b b n n n ,得()()()()()3094.0194.01112112211+---=+-++-+-=----n n n n n n b b b b b b b b b b()()3006.094.018.11+--=-n x ,要使对于任意正整数n ,均有60≤n b 恒成立, 即()()603006.094.018.11≤+---n x对于任意正整数n 恒成立,解这个关于x 的一元一次不等式 , 得8.194.018.1+-≤n x ,上式恒成立的条件为:上的最小值在N n n x ∈⎪⎭⎫ ⎝⎛+-≤8.194.018.1,由于关于n 的函数()8.194.018.1+-=n n f 单调递减,所以,6.3≤x .。