第二章 第九节 函数与方程
第2章 第9节 函数与方程 课件(共63张PPT)
第九节 函数与方程
1
2
3
4
走进教材·夯实基础 细研考点·突破题型 核心素养 课后限时集训
01
走进教材·夯实基础
梳理·必备知识 激活·必备技能
第九节 函数与方程
1
2
3
4
走进教材·夯实基础 细研考点·突破题型 核心素养 课后限时集训
1.函数的零点 (1)函数零点的定义 对于函数 y=f(x)(x∈D),把使___f(_x_)=__0___的实数 x 叫做函数 y= f(x)(x∈D)的零点.
第九节 函数与方程
1
2
3
4
走进教材·夯实基础 细研考点·突破题型 核心素养 课后限时集训
(4)二次函数y=ax2+bx+c在b2-4ac<0时没有零点.( ) (5)只要函数有零点,我们就可以用二分法求出零点的近似 值.( ) [答案] (1)× (2)× (3)× (4)√ (5)×
第九节 函数与方程
=0
C.若f(a)f(b)>0,则有可能存在实数c∈(a,b),使得f(c)=0
D.若f(a)f(b)<0,则有可能不存在实数c∈(a,b),使得f(c)=0
1234
第九节 函数与方程
1
2
3
4
走进教材·夯实基础 细研考点·突破题型 核心素养 课后限时集训
ABD [对函数f(x)=x2,f(-1)f(1)>0,但f(0)=0,故A错;对于 函数f(x)=x3-x,f(-2)f(2)<0,但f(0)=f(-1)=f(1)=0,故B错;函 数f(x)=x2满足C,故C正确;由零点存在性定理知D错.]
C.2
D.3
第九节 函数与方程
1
2
3
4
函数与方程教案苏教版必修
函数与方程教案苏教版必修一、教学目标1. 理解函数与方程之间的关系,掌握函数的概念和性质。
2. 学会解一元一次方程、一元二次方程、不等式等基本数学问题。
3. 能够运用函数与方程的知识解决实际生活中的问题。
二、教学内容1. 函数的概念与性质函数的定义与表示方法函数的域与值域函数的单调性、奇偶性、周期性2. 一元一次方程与一元二次方程一元一次方程的解法一元二次方程的解法方程的根的判别式3. 不等式与不等式组不等式的性质一元一次不等式的解法一元二次不等式的解法4. 函数的图像与解析式函数图像的性质函数解析式的求法函数与方程的图像关系5. 函数与方程的应用函数与方程在实际生活中的应用函数与方程的数学建模函数与方程的综合练习三、教学方法1. 采用问题驱动的教学方法,引导学生通过思考和探究来理解函数与方程的概念和性质。
2. 利用数形结合的方法,通过绘制函数图像和解析式,帮助学生直观地理解函数与方程之间的关系。
3. 提供实际生活中的例子,让学生学会运用函数与方程的知识解决实际问题。
四、教学评估1. 课堂练习:每节课结束后,安排适量的练习题,巩固学生对函数与方程的理解和应用能力。
2. 课后作业:布置相关的作业题,要求学生在规定时间内完成,以检验学生对知识的掌握情况。
3. 单元测试:每个章节结束后,进行一次单元测试,全面评估学生对该章节知识的掌握程度。
五、教学资源1. 教材:苏教版必修数学教材2. 教辅资料:相关的函数与方程的辅导书籍和练习题库3. 教学软件:数学软件或教育平台,用于展示函数图像和解析式4. 实际案例:收集一些实际生活中的问题,用于教学中的应用举例六、教学内容6. 函数的性质探究函数的极值与最值函数的转折点与单调区间函数的凹凸性与拐点7. 方程的求解方法代数法求解方程图像法求解方程数值法求解方程8. 函数与方程的变换函数的平移与拉伸函数的旋转与翻转函数的复合与分解9. 函数与方程的应用案例经济增长模型药物浓度变化模型运动物体轨迹模型10. 函数与方程的综合练习综合性的函数与方程问题函数与方程的实际应用题函数与方程的数学竞赛题七、教学方法1. 采用案例教学法,通过分析实际案例,引导学生理解和掌握函数与方程的性质和应用。
2024年高考数学总复习第二章函数的概念与基本初等函数真题分类10函数与方程
由于f1(1)=0,当n≥2时,fn(1)=212+312+…+n12>0,故fn(1)≥0.
第5页
返回层目录 返回目录
真题分类10 函数与方程
又fn23=-1+23+k∑=n 223k2k ≤-13+14k∑=n 223k =-13+14·23211--2323n-1 =-13·23n-1<0, 所以存在唯一的xn∈23,1,满足fn(xn)=0.
第9页
返回层目录 返回目录
真题分类10 函数与方程
高考·数学
答案:C
(1-a)x,x<0, 由题意,b=f(x)-ax=13x3-12(a+1)x2,x≥0.
(1-a)x,x<0, 设 y=b,g(x)=13x3-12(a+1)x2,x≥0.
即以上两个函数的图象恰有 3 个交点,根据选项进行讨论.
高考·数学
第2页
返回目录
真题分类10 函数与方程
高考·数学
Ⅰ.函数零点存在定理法判断函数零点所在区间 Ⅱ.数形结合法Fra bibliotek断函数零点所在区间
01 判断函数在某个区间上是否存在零点的方法
(1)解方程:当函数对应的方程易求解时,可通过解方程判断方程是否有根落在给定区 间上.
(2)利用函数零点存在定理进行判断. (3)画出函数图象,通过观察图象与 x 轴在给定区间上是否有交点来判断.
真题分类10 函数与方程
高考·数学
第二章 函数的概念与基本初等函数
§ 2.6 函数与方程
真题分类10 函数与方程
C1.函数零点所在区间的判断 C2.函数零点个数的判断 C3.函数零点求和的问题 C4.零点与参数的综合问题
函数与方程课件
06
函数与方程的未来发展
函数与方程在其他学科中的应用
数学建模
函数与方程在数学建模中扮演着 重要的角色,通过建立数学模型 ,可以描述现实世界中的各种现 象,如物理、化学、生物等学科
中的问题。
计算机科学
在计算机科学中,函数与方程被 广泛应用于算法设计、数据结构 、离散概率论等领域,为计算机 科学的发展提供了重要的理论支
函数与方程ppt课件
• 函数的概念与性质 • 方程的种类与解法 • 函数与方程的关系 • 函数的应用 • 方程的应用 • 函数与方程的未来发展
01
函数的概念与性质
函数的定义
函数是数学上的一个概念,它描述了两个集合之间的对应关系。具体来说,对于 给定的集合X中的每一个元素x,按照某种规则,总有集合Y中的唯一一个元素y与 之对应。这种关系通常用符号f表示,即f: X→Y。
03
函数与方程的关系
函数图像与方程解的关系
函数图像是方程解在坐标系中的 表现形式,通过观察函数图像可 以直观地了解方程的解的情况。
函数图像的交点表示方程的根, 函数图像的极值点也可能对应方
程的根。
通过函数图像的变化可以推测方 程解的变化趋势。
函数的最值与方程根的关系
函数的最值点可能是方程的根,因为函数在极值点附近的导数会发生变化,导致函 数值发生突变。
如果函数在某区间内单调递增或递减,那么该区间内函数的最大值或最小值可能对 应方程的一元一次根。
对于多元函数,最值问题可能转化为方程组问题,需要利用方程组的解来判断最值 的存在性和性质。
函数图像的变换与方程解的变换
函数图像的平移、伸缩、旋转 等变换会影响函数的值,从而 影响方程的解。
通过对方程进行变量替换或参 数调整,可以改变方程的形式 和结构,从而影响方程的解。
高考数学一轮总复习第二章函数导数及其应用2.9函数模型及其应用课件理
第二章 函数(hánshù)、导数及其应用
第九节 函数模型(móxíng)及其应用
第一页,共33页。
栏
考情分析 1
(fēnxī)
目
基础自主(zìzhǔ) 2
3 考点疑难(yí
nán)突破
导
梳理
航
4 课时跟踪检测
第二页,共33页。
1
考情分析
第三页,共33页。
考点分布
考纲要求
第十三页,共33页。
3.生产一定数量的商品的全部费用称为生产成本,某企业一个月生产某种商品 x 万件时的生产成本为 C(x)=12x2+2x+20(万元).一万件售价是 20 万元,为获取更大 利润,该企业一个月应生产该商品数量为________万件.
解析:利润 L(x)=20x-C(x)=-12(x-18)2+142,当 x=18 时,L(x)有最大值. 答案:18
第三十页,共33页。
指数函数与对数函数模型的应用技巧 (1)与指数函数、对数函数两类函数模型有关的实际问题,在求解时,要先学会 合理选择模型,在两类模型中,指数函数模型是增长速度越来越快(底数大于 1)的一 类函数模型,与增长率、银行利率有关的问题都属于指数函数模型. (2)在解决指数函数、对数函数模型问题时,一般先需要通过待定系数法确定函 数解析式,再借助函数的图象求解最值问题.
二次函数模型
f(x)=ax2+bx+c (a,b,c 为常数,a≠0)
第六页,共33页。
f(x)=bax+c 指数函数模型
(a,b,c 为常数,b≠0,a>0 且 a≠1)
对数函数模型
f(x)=blogax+c
(a,b,c 为常数,b≠0,a>0 且 a≠1)
高中数学各章节知识点汇总
高中数学各章节知识点汇总高中数学各章节知识点汇总名目第一章集合与命题 (1)一、集合 (1)二、四种命题的形式 (2)三、充分条件与必要条件 (2)第二章别等式 (1)第三章函数的基本性质 (2)第四章幂函数、指数函数和对数函数(上) (3)一、幂函数 (3)二、指数函数 (3)三、对数 (3)四、反函数 (4)五、对数函数 (4)六、指数方程和对数方程 (4)第五章三角比 (5)一、任意角的三角比 (5)二、三角恒等式 (5)三、解歪三角形 (7)第六章三角函数的图像与性质 (8)一、周期性 (8)第七章数列与数学归纳法 (9)一、数列 (9)二、数学归纳法 (10)第八章平面向量的坐标表示 (12)第九章矩阵和行列式初步 (14)一、矩阵 (14)二、行列式 (14)第十章算法初步 (16)第十一章坐标平面上的直线 (17)第十二章圆锥曲线 (19)第十三章复数 (21)第一章集合与命题一、集合1.1 集合及其表示办法集合的概念1、把可以确切指定的一些对象组成的整体叫做集合简称集2、集合中的各个对象叫做那个集合的元素3、假如a是集合A的元素,就记做a∈A,读作“a属于A”4、假如a别是集合A的元素,就记做a ? A,读作“a别属于A”5、数的集合简称数集:全体自然数组成的集合,即自然数集,记作N别包括零的自然数组成的集合,记作N*全体整数组成的集合,即整数集,记作Z全体有理数组成的集合,即有理数集,记作Q全体实数组成的集合,即实数集,记作R我们把正整数集、负整数集、正有理数、负有理数、正实数集、负实数集表示为Z+、Z-、Q+、Q-、R+、R-6、把含有有限个数的集合叫做有限集、含有无限个数的集合叫做无限极7、空集是指别用含有任何元素的集合,记作?集合的表示办法1、在大括号内先写出那个集合的元素的普通形式,再画一条竖线,在竖线之后写上集合中元素所共同具有的特性,这种集合的表示办法叫做描述法1.2 集合之间的关系子集1、关于两个集合A和B,假如集合A中任何一具元素都属于集合B,这么集合A叫做集合B 的子集,记做A?B或B?A,读作“A包含于B”或“B包含A”2、空集包含于任何一具集合,空集是任何集合的子集3、用平面区域来表示集合之间关系的办法叫做集合的图示法,所用图叫做文氏图相等的集合1、关于两个集合A和B,假如A?B,且B?A,这么叫做集合A与集合B相等,记作“A=B”,读作“集合A等于集合B”,假如两个集合所含元素彻底相同,这么这两个集合相等1.3 集合的运算交集1、由交集A和交集B的所有公共元素的集合叫做A与B的交集,记作A∩B,读作A交B并集1、由所有属于集合A或者属于集合B的元素组成的集合叫做集合A、B 的并集,记作A∪B,读作A并B补集1、在研究集合与集合之间的关系时,这些集合往往是某个给定集合的子集,那个确定的集合叫做全集2、U是全集,A是U的子集。
函数与方程详细讲解
例题:
• 例:求函数f(x)=lnx+2x-6 的零点个数。 • 解法:数形结合的思想。
x12 3 4 5 6 7 8 f(x) -4 -1.3069 1.0986 3.3869 5.6094 7.7918 9.9459 12.079
小结:
• 1.一个概念、一种关系、一 条判定。
• 2. 三种思想。
问题2:能否把二次函数与一元二次 方程的关系推广到一般的函数与方 程的关系上呢?假设能具体的关系 是什么?〔设:函数y=f(x),方程 f(x)=0)
• 方程f(x)=0根的个数 函数 y=f(x)的图象与x轴的交点个数。
二、函数的零点。
函数零点的概念:
• 函数y=f(x)的零点就是方程 f(x)=0的实数根,也就是函数 y=f(x)的图象与x轴的交点的 横坐标。
• 如果函数y=f(x)在区间[a,b]上的图 象是连续不断的一条曲线,并且有 f(a)f(b)<0,那么y=f(x)在区间〔a,b) 内有零点。即存在c∈(a,b),使 f(c)=0,这个c也就是f(x)=0的根.
y
1 y=x
1
-2 -1 0 1 2 3 4
x
-3
练习:
• 判断以下函数在〔0.5,8〕上 是否存在零点。
课前检测:
求出以下方程的根及函数图象与x轴的交 点。
方程
实数根
函数
x2-2x-3=0 x2-2x+1=0 x2-2x+3=0
X1=-1, X2=3
X1=X2=-1 无实数根
y=x2-2x-3 y=x2-2x+1 y=x2-2x+3
方程与函数课件ppt课件ppt课件
方程与函数在数学竞赛中的应用
方程与函数是数学竞赛中常见的考点,涉及的知识点包括 一元一次方程、一元二次方程、分式方程、三角函数、指 数函数、对数函数等。通过解决这些方程与函数的题目, 可以锻炼学生的逻辑思维、推理能力和数学运算能力。
例如,在数学竞赛中,经常出现一些涉及方程与函数的题 目,要求考生利用方程与函数的知识点来求解未知数或者 判断函数的单调性、奇偶性等性质。
方程与函数在实际生活中有着广泛的应用,例如在金融、经 济、工程、科技等领域。通过建立数学模型,将实际问题转 化为数学问题,利用方程与函数来求解,可以得到更精确的 解决方案。
例如,在金融领域,投资者可以通过建立股票价格的函数模 型,利用方程求解出股票的买入和卖出价格;在经济领域, 政府可以通过建立税收的方程模型,利用函数求解出最优的 税收方案。
函数的周期性
总结词
周期性对函数性质的影响。
详细描述
周期性对函数的性质有一定的影响。例如,周期函数的最大值和最小值出现的次 数是有限的,且相邻最大值或最小值之间的距离为周期。此外,周期函数的图像 还可以通过平移得到其他形式的周期函数图像。
函数的图像绘制
总结词
绘制函数图像是理解函数性质的重要手段。
详细描述
函数的定义与性质
函数的定义
函数是数学中表示两个变量之间关系 的一种方法,它描述了一个输入值对 应一个输出值的关系。
函数的性质
函数的性质包括函数的定义域、值域 、单调性、奇偶性、周期性等。
方程与函数的关系
方程可以看作是函数的一种特殊情况 ,即函数值为0的情况。
方程和函数在数学和实际问题中都有 广泛的应用,它们是相互联系和相互 转化的。
三角函数的应用
三角函数在解决几何问题、振动和波动等现象中有着广 泛的应用。
函数函数与方程课件pptx
03
方程的种类与求解方法
线性方程
定义与形式
线性方程是一类基本的数学方程,其形式通常为 ax+by+c=0,其中a、b、c为常数。
求解方法
对于线性方程,可以使用高斯消元法或逆矩阵法求解。
非线性方程
定义与形式
非线性方程是指方程中未知数的最高次数大于1的方程,如x^2+y^2=1。
求解方法
非线性方程的求解方法比较复杂,常见的有牛顿法、二分法、迭代法等。
可导性
函数在某一点上可以求导,即可以 求得该点上的切线斜率。
函数的分类
• 常数函数:输出值与输入值无关的函数,如f(x)=5。 • 一次函数:输出值与输入值成一次关系的函数,如f(x)=2x+3。 • 二次函数:输出值与输入值的二次方成正比的函数,如f(x)=x^2。 • 幂函数:输出值与输入值的某次幂成正比的函数,如f(x)=x^3。 • 指数函数:输出值与输入值的指数成正比的函数,如f(x)=2^x。 • 对数函数:输出值与输入值的对数成正比的函数,如f(x)=log(x)。 • 三角函数:输出值与输入值的三角函数成正比的函数,如f(x)=sin(x)。
利用函数的性质解方程
函数的性质包括单调性、奇偶性、周期性等,这些性质可以帮助我们解决一 些与方程有关的问题。例如,利用函数的单调性判断方程根的存在性或比较 根的大小。
利用方程求解函数
利用方程求函数的表达式
通过已知的变量和关系式,利用方程求解出函数的表达式。例如,在知道一些点 对距离的情况下,通过解方程组得到函数的表达式。
利用方程判断函数的性质
通过已知的方程和函数的表达式,利用方程可以判断出一些函数的性质。例如, 通过解出函数的极值点或零点来判断函数的单调性或奇偶性。
方程与函数课件
本ppt课件将介绍方程与函数的定义,包括方程的类型和函数的特点,以及它 们之间的关系。还会探讨解方程和求函数值的方法,以及方程和函数在各个 应用领域中的重要性。
方程的类型
1 一元一次方程
形如ax + b = 0的方程,其中a和b是已知数,x是未知数。
2 一元二次方程
形如ax^2 + bx + c = 0的方程,其中a、b、c是已知数,x是未知数。
3 函数的性质和分类
函数可以具有不同的性质, 如单调性、连续性和可导 性等。函数可以根据其性 质和图像特征进行分类。
方程与函数的关系
1 方程和函数的解
2 方程与函数的图像
方程的解是满足方程的自变量和因变量的值, 而函数的解是满足函数的自变量和因变量的 值。
方程和函数的图像可以相互对应,通过图像 可以得到方程或函数的一些性质。
解方程和求函数值的方法
1 代入法
将已知的值代入方程或函 数,求解未知的值。
2 消元法
3 图像法
通过将方程中的变量相互 消去,得到一个只含有一 个变量的方程,然后求解。
通过观察方程或函数的图 像,找到满足条件的自变 量和因变量的值。
方程和函数的应用领域
1 自然科学中的方程与 2 工程技术中的方程与 3 经济管理中的方程与
函数
函数
函数
方程和函数在物理、化学 等自然科学领域中起着重 要作用,用于描述物理规 律和化学反应。
方程和函数在工程技术领 域中广泛应用,用于建模、 优化和计算等方面。
方程和函数在经济学和管 理学中有广泛的应用,用 于分析市场行为、经济增 长和企业决策等。
总结和展望
通过学习方程与函数,我们能够深入理解数学在各个领域中的重要性和应用。 未来,我们可以进一步探索更多数学知识,拓宽我们的思维和能力。
2017届高考数学(理)一轮复习同步基础训练第2章-第9课时《函数与方程》(通用版含解析)
第二章 第9课时【A 级】 基础训练1.(2015·山东淄博模拟)若方程xlg(x +2)=1的实根在区间(k ,k +1)(k ∈Z)上,则k 等于( )A .-2B .1C .-2或1D .0解析:由题意知,x≠0,则原方程即为lg(x +2)=1x ,在同一直角坐标系中作出函数y =lg(x +2)与y =1x 的图像,如图所示,由图像可知,原方程有两个根,一个在区间(-2,-1)上,一个在区间(1,2)上,所以k =-2或k =1.故选C.答案:C2.(2015·北京海淀模拟)函数f(x)=log 2x -1x 的零点所在区间为( )A .(0,12)B .(12,1)C .(1,2)D .(2,3)解析:∵f(12)=log 212-2=-3<0,f(1)=log 21-1=-1<0,f(2)=log 22-12=12>0,∴函数f(x)=log 2x -1x 的零点所在区间为(1,2),故应选C. 答案:C3.(2013·高考湖南卷)函数f(x)=ln x 的图像与函数g(x)=x 2-4x +4的图像的交点个数为( )A .0B .1C .2D .3解析:作出两个函数的图像,利用数形结合思想求解.g(x)=x 2-4x +4=(x -2)2,在同一平面直角坐标系内画出函数f(x)=ln x 与g(x)=(x -2)2的图像(如图).由图可得两个函数的图像有2个交点.答案:C4.函数f(x)=⎩⎪⎨⎪⎧x 2-2|x|+12,x≤0|lgx|-1,x>0的零点个数为________.解析:作出函数f(x)的图像,从图像中可知函数f(x)的零点有4个. 答案:45.已知函数f(x)=log a x +x -b(a>0,且a≠1).当2<a<3<b<4时,函数f(x)的零点x 0∈(n ,n +1),n ∈N +,则n =________.解析:∵2<a<3<b<4,当x =2时,f(2)=log a 2+2-b<0;当x =3时,f(3)=log a 3+3-b>0,∴f(x)的零点x 0在区间(2,3)内,∴n =2. 答案:26.(2014·高考天津卷)已知函数f(x)=|x 2+3x|,x ∈R.若方程f(x)-a|x -1|=0恰有4个互异的实数根,则实数a 的取值范围为________.解析:在同一坐标系中,分别作出y 1=|x 2+3x|,y 2=a|x -1|的图像,将方程根的个数问题转化为两图像交点的个数问题求解.设y 1=f(x)=|x 2+3x|,y 2=a|x -1|,在同一直角坐标系中作出y 1=|x 2+3x|,y 2=a|x -1|的图像如图所示.由图可知f(x)-a|x -1|=0有4个互异的实数根等价于y 1=|x 2+3x|与y 2=a|x -1|的图像有4个不同的交点,且4个交点的横坐标都小于1,所以⎩⎪⎨⎪⎧y =-x 2-3x ,y =-有两组不同解.消去y 得x 2+(3-a)x +a =0有两个不等实根, 所以Δ=(3-a)2-4a>0,即a 2-10a +9>0, 解得a<1或a>9.又由图像得a>0,∴0<a<1或a>9. 答案:(0,1)∪(9,+∞)7.(2015·岳阳模拟)已知函数f(x)=4x+m·2x+1有且仅有一个零点,求m 的取值范围,并求出该零点.解:∵f(x)=4x+m·2x+1有且仅有一个零点, 即方程(2x )2+m·2x +1=0仅有一个实根. 设2x=t(t >0),则t 2+mt +1=0.当Δ=0时,即m2-4=0,∴m=-2时,t=1;m=2时,t=-1(不合题意,舍去),∴2x=1,x=0符合题意.当Δ>0时,即m>2或m<-2时,t2+mt+1=0有两正或两负根,即f(x)有两个零点或没有零点.∴这种情况不符合题意.综上可知:m=-2时,f(x)有唯一零点,该零点为x=0.8.(2015·海淀区高三期末)已知函数f(x)=e x(x2+ax-a),其中a是常数.(1)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)若存在实数k,使得关于x的方程f(x)=k在[0,+∞)上有两个不相等的实数根,求k的取值范围.解:(1)由f(x)=e x(x2+ax-a)可得f′(x)=e x[x2+(a+2)x].当a=1时,f(1)=e,f′(1)=4e.所以曲线y=f(x)在点(1,f(1))处的切线方程为y-e=4e(x-1),即y=4ex-3e.(2)令f′(x)=e x[x2+(a+2)x]=0,解得x=-(a+2)或x=0.当-(a+2)≤0,即a≥-2时,在区间[0,+∞)上,f′(x)≥0,所以f(x)是[0,+∞)上的增函数,所以方程f(x)=k在[0,+∞)上不可能有两个不相等的实数根.当-(a+2)>0,即a<-2时,f′(x),f(x)随x的变化情况如下表:-.由上表可知函数f(x)在[0,+∞)上的最小值为f(-(a+2))=e a+2因为函数f(x)是(0,-(a+2))上的减函数,是(-(a+2),+∞)上的增函数,且当x≥-a时,有f(x)≥e-a·(-a)>-a,又f(0)=-a.所以要使方程f(x)=k在[0,+∞)上有两个不相等的实数根,k的取值范围是⎝ ⎛⎦⎥⎤a +4e a +2,-a . 【B 级】 能力提升1.(2015·沈阳四校联考)已知函数f(x)=a x+x -b 的零点x 0∈(n ,n +1)(n ∈Z),其中常数a ,b 满足2a=3,3b=2,则n 的值是( )A .-2B .-1C .0D .1解析:依题意得,a >1,0<b <1,则f(x)为R 上的单调递增函数,又f(-1)=1a -1-b<0,f(0)=1-b >0,f(-1)·f(0)<0,因此x 0∈(-1,0),n =-1,选B.答案:B2.(2015·豫西五校联考)已知符号函数sgn(x)=⎩⎪⎨⎪⎧1,x >00,x =0-1,x <0,则函数f(x)=sgn(lnx)-ln 2x 的零点个数为( )A .1B .2C .3D .4解析:依题意得,当x >1时,ln x >0,sgn(ln x)=1,f(x)=sgn(ln x)-ln 2x =1-ln 2x ,令1-ln 2x =0,得x =e 或x =1e ,结合x >1,得x =e ;当x =1时,ln x =0,sgn(ln x)=0,f(x)=-ln 2x ,令-ln 2x =0,得x =1,符合;当0<x <1时,ln x <0,sgn(ln x)=-1,f(x)=-1-ln 2x ,令-1-ln 2x =0,得ln 2x =-1,此时无解.因此,函数f(x)=sgn(ln x)-ln 2x 的零点个数为2.答案:B3.(2014·高考山东卷)已知函数f(x)=|x -2|+1,g(x)=kx.若方程f(x)=g(x)有两个不相等的实根,则实数k 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,12B.⎝ ⎛⎭⎪⎫12,1 C .(1,2)D .(2,+∞)解析:作出函数的图像,用数形结合思想求解.先作出函数f(x)=|x -2|+1的图像,如图所示,当直线g(x)=kx 与直线AB 平行时斜率为1,当直线g(x)=kx 过A 点时斜率为12,故f(x)=g(x)有两个不相等的实根时,k 的范围为⎝ ⎛⎭⎪⎫12,1. 答案:B4.若函数f(x)的图像是连续不断的,根据下面的表格,可断定f(x)的零点所在的区间为________(只填序号).①(-∞,1] ②[1,2] ③[2,3] ④[3,4] ⑤[4,5] ⑥[5,6] ⑦[6,+∞)间.答案:③④⑤5.若函数f(x)=x 2+ax +b 的两个零点是-2和3,则不等式af(-2x)>0的解集是________.解析:∵f(x)=x 2+ax +b 的两个零点是-2,3. ∴-2,3是方程x 2+ax +b =0的两根,由根与系数的关系知⎩⎪⎨⎪⎧-2+3=-a ,-2×3=b ,∴⎩⎪⎨⎪⎧a =-1,b =-6,∴f(x)=x 2-x -6. ∵不等式af(-2x)>0,即-(4x 2+2x -6)>0⇔2x 2+x -3<0,解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ -32<x<1.答案:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-32<x<16.(2014·高考江苏卷)已知f(x)是定义在R 上且周期为3的函数,当x ∈[0,3)时,f(x)=⎪⎪⎪⎪⎪⎪x 2-2x +12.若函数y =f(x)-a 在区间[-3,4]上有10个零点(互不相同),则实数a 的取值范围是________.解析:作出函数y =f(x)与y =a 的图像,根据图像交点个数得出a 的取值范围. 作出函数y =f(x)在[-3,4]上的图像,f(-3)=f(-2)=f(-1)=f(0)=f(1)=f(2)=f(3)=f(4)=12,观察图像可得0<a<12.答案:⎝ ⎛⎭⎪⎫0,127.已知函数f(x)=|x|x +2,如果关于x 的方程f(x)=kx 2有四个不同的实数解,求实数k的取值范围.解:∵f(x)=|x|x +2,∴原方程即|x|x +2=kx 2.(*)①x =0恒为方程(*)的一个解.②当x<0且x≠-2时,若方程(*)有解,则-x x +2=kx 2,kx 2+2kx +1=0.当k =0时,方程kx 2+2kx +1=0无解; 当k≠0时,Δ=4k 2-4k≥0,即k<0或k≥1时, 方程kx 2+2kx +1=0有解.设方程kx 2+2kx +1=0的两个根分别是x 1、x 2, 则x 2+x 2=-2,x 1x 2=1k.当k>1时,方程kx 2+2kx +1=0有两个不等的负根; 当k =1时,方程kx 2+2kx +1=0有两个相等的负根; 当k<0时,方程kx 2+2kx +1=0有一个负根. ③当x>0时,若方程(*)有解, 则x x +2=kx 2,kx 2+2kx -1=0. 当k =0时,方程kx 2+2kx -1=0无解;当k≠0时,Δ=4k 2+4k≥0,即k≤-1或k>0时, 方程kx 2+2kx -1=0有解.设方程kx 2+2kx -1=0的两个根分别是x 3、x 4, 则x 3+x 4=-2,x 3x 4=-1k.当k>0时,方程kx 2+2kx -1=0有一个正根; 当k≤-1时,方程kx 2+2kx -1=0没有正根.综上可得,当k ∈(1,+∞)时,方程f(x)=kx 2有四个不同的实数解.。
高中数学 2.9函数与方程配套课件 苏教版
x 函数f(x)=
-cosx是增函2数,又因为f(0)=-21,fx( )=
>0,
所以f(x)=
x -cosx在x∈(0,
)上有 且只有一个零点(línɡ2 diǎn2).
综上,f(x)= x-cosx在[0,+∞2)内有且仅有一个零点(línɡ diǎn).
x 答案:1
第十八页,共39页。
【反思·感悟】在判断函数y=f(x)零点(línɡ diǎn)个数时,若方程f(x)=0 易解,则用解方程法求解;否则若可转化为两熟悉函数图象的交点,就 用图象法求解,但图象画得太粗糙易出现失误,若图象不易画则可利用 零点(línɡ diǎn)存在的判定定理及函数的性质综合求解.
图所示,显然两函数的图象的交点有且只有一个(yī ɡè),所以函
数
x
f(x)= -cosx在[0,+∞)内有且仅有一个(yī ɡè)零点;
第十六页,共39页。
y
4 2
y x
-1 o 1
5
-2
y=cosx
10 x
第十七页,共39页。
方-法co二sx:>当0;x当∈x[∈(0,2+, ∞])时时 ,,f′(x>)=1,cxos+x≤si1n,x所>1以0,f所(x以)=
f 2 0
7
4
t 0 ,解得
f 0 0 f 1 0 f 2 0
<t<5.
7 4
第三十五页,共39页。
2.(2011·浙江高考(ɡāo kǎo)改编)设函数xf2x(,,xxx)=00
.若
f(a)=4,
则实数a=________.
【解析】当a≤0时,f(a)=-a=4,a=-4;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章第九节函数与方程
1.若函数f(x)在区间[-f(x)在(-2,2)内有一个零点,则f(-2)·f(2)的值() A.大于0B.小于0
C.等于0 D.不能确定
解析:若函数f(x)在(-2,2)内有一个零点,
则该零点是变号零点,则f(-2)f(2)<0.若不是变号零点,
则f(-2)f(2)>0.
答案:D
2.设f(x)=3x-x2,则在下列区间中,使函数f(x)有零点的区间是() A.[0,1] B.[1,2]
C.[-2,-1] D.[-1,0]
解析:∵f(-1)=3-1-(-1)2=1
3
-1=-
2
3
<0,
f(0)=30-0=1>0,
∴函数f(x)=3x-x2在区间[-1,0]内存在零点.答案:D
3.函数f(x)=(x-1)ln x
x-3
()
A.0个B.1个C.2个D.3个
解析:由f(x)=(x-1)ln x
x-3
=0得:x=1,
∴f(x)=(x-1)ln x
x-3
只有一个零点.
答案:B
4.设函数f(x)=x3+bx+c是[-1,1]上的增函数,且f(-1
2
)·f(
1
2
)<0,则方程f(x)=0在[-
1,1]内() A.可能有3个实数根B.可能有2个实数根
C.有唯一的实数根D.没有实数根
解析:∵f (x )在[-1,1]上是增函数且f (-12)·f (1
2)<0,
∴f (x )在[-12,1
2]上有唯一实根,
∴f (x )在[-1,1]上有唯一实根. 答案:C
5.设f (x )=3x
+3x -8,用二分法求方程3x
+3x -8=0在x ∈(1,2)内近似解的过程中得
f (1)<0,f (1.5)>0,f (1.25)<0,则方程的根落在区间 ( ) A .(1.25,1.5) B .(1,1.25) C .(1.5,2) D .不能确定
解析:依题意知,f (x )是一连续不断的曲线且f (1.25)·f (1.5)<0,∴根在(1.25,1.5)之内. 答案:A
6.(2009·福建高考)的零点之差的绝对值不超过0.25,则f (x )可以是 ( ) A .f (x )=4x -1 B .f (x )=(x -1)2
C .f (x )=e x -1
D .f (x )=ln(x -12)
解析:∵4个选项中的零点是确定的. A :x =14;B :x =1;C :x =0;D :x =3
2.
又∵g (0)=40
+2×0-2=-1<0, g (12)=1
24+2×1
2
-2=1>0, ∴g (x )=4x +2x -2的零点介于(0,1
2)之间.
答案:A
7.用二分法求函数f (x )=3x
-x -4的一个零点,其参考数据如下:
据此数据,可得f (x )=3x -x -4的一个零点的近似值(精确到0.01)为____________. 解析:由表中f (1.562 5)=0.003,f (1.556 2)=-0.029,可知零点近似值为1.56. 答案:1.56
8.设函数f (x )=2
22
[1,)
,2(,1)
x x x x
x -∈+∞⎧⎨-∈-∞⎩则函数F (x )=f (x )-1
4________.
解析:当x ≥1时,f (x )-14=2x -2-14=2x -9
40,
∴x =9
8
.
当x <1时,x 2-2x -1
4=0,
∵Δ=4+1>0, ∴x =
2±4+12=2±52,又∵x <1,∴x =2-5
2
. ∴函数F (x )=f (x )-14有两个零点98和2-5
2.
答案:98,2-5
2
9.若二次函数y =ax 2+ ( ) A .1个 B .2个 C .0个 D .不确定 解析:∵c =f (0),∴ac =a ·f (0)<0. ∴a 与f (0)异号,即⎩⎨
⎧
a >0,
f (0)<0
或⎩⎨
⎧
a <0,f (0)>0.
∴函数必有两个零点. 答案:B
10.(2009·天津高考)设函数f (x )=1
3
x -ln x (x >0),则y =f (x ) ( )
A .在区间(1
e ,1),(1,e)内均有零点
B .在区间(1
e
,1),(1,e)内均无零点
C .在区间(1
e ,1)内有零点,在区间(1,e)内无零点
D .在区间(1
e ,1)内无零点,在区间(1,e)内有零点
解析:f (1e )=13e +1>0,f (1)=1
3-0>0,
f (e)=e 3-1<0,∵f ′(x )=13-1x =x -3
3x
,
∴f (x )在(0,3)上是减函数.根据闭区间上根的存在性定理与函数的单调性作出判断. 答案:D
11.(2009·山东高考)若函数f (x )=a x -x -a (a >0,且a ≠1)有两个零点,则实数a 的取值
范围是________.
解析:函数f (x )的零点的个数就是函数y =a x
与函数y =x +a 交点的个数,由函数的图象可知a >1时两函数图象有两个交点,0<a <1时两函数图象有唯一交点,故a >1.
答案:(1,+∞)
12.已知关于x 的二次函数f (x )=x 2+(2t -1)x +1-2t .
(1)求证:对于任意t ∈R ,方程f (x )=1必有实数根;
(2)若12t <34,求证:方程f (x )=0在区间(-1,0)及(0,1
2)内各有一个实数根.
解:(1)证明:由f (1)=1知f (x )=1必有实数根. (2)当12t <34时,因为f (-1)=3-4t =4(3
4-t )>0,
f (0)=1-2t =2(1
2
t )<0,
f (12)=14+12(2t -1)+1-2t =3
4
-t >0, 所以方程f (x )=0在区间(-1,0)及(0,1
2)内各有一个实数根.。