职高高二数学教案坐标变换与参数方程(供参考)

合集下载

直角坐标系坐标系与参数方程数学教案

直角坐标系坐标系与参数方程数学教案

直角坐标系坐标系与参数方程数学教案【教案名称】:直角坐标系与参数方程的转化及应用【教学目标】:1.理解直角坐标系和参数方程的概念;2.掌握直角坐标系与参数方程之间的转化方法;3.能够应用直角坐标系与参数方程解决实际问题。

【教学重点】:1.直角坐标系与参数方程的概念;2.直角坐标系与参数方程的转化方法。

【教学难点】:【教学准备】:1.教师准备:投影仪、电脑;2.学生准备:纸和笔。

【教学过程】:一、引入(10分钟)1.教师通过投影仪展示直角坐标系的图片,让学生了解直角坐标系的概念和基本原理。

2.教师解释参数方程的概念,并通过实例引导学生理解参数方程代表了一种曲线的轨迹。

二、直角坐标系与参数方程的转化(30分钟)1.教师以一个简单的直角坐标系方程为例,将其转化为参数方程,详细解释转化的步骤和方法。

2.教师给学生讲解如何从参数方程反推回直角坐标系的方程,引导学生理解直角坐标系与参数方程之间的关系。

3.教师设计相关练习,让学生通过实践巩固掌握直角坐标系与参数方程的转化方法。

三、直角坐标系与参数方程的应用(40分钟)1.教师通过实际问题引导学生探究直角坐标系与参数方程的应用场景,如天梯问题、抛体运动问题等。

2.教师解答学生在探究过程中遇到的问题,引导学生分析解决问题的思路和方法。

3.教师设计相关练习,让学生通过实际应用问题的解决,巩固直角坐标系与参数方程的转化技巧。

四、归纳总结(10分钟)1.教师与学生一起总结直角坐标系与参数方程的转化方法和应用场景。

2.教师强调掌握直角坐标系与参数方程的转化方法对于解决实际问题的重要性。

【教学延伸】:教师可以引导有兴趣的学生进一步学习极坐标系与参数方程之间的转化方法和应用。

【板书设计】:x轴、y轴x=f(t)y=g(t)x=f(y)y=g(x)x=f(t)y=g(t)【教学反思】:本节课通过引入直角坐标系和参数方程的概念,让学生对两者有了初步的了解。

通过演示和实例讲解,学生能够理解直角坐标系和参数方程之间的转化方法。

参数方程》教案(新人教选修

参数方程》教案(新人教选修

“参数方程》教案(新人教选修)”一、教学目标1. 理解参数方程的定义和特点。

2. 学会将直角坐标方程转换为参数方程。

3. 能够解参数方程并将其转换回直角坐标方程。

4. 掌握参数方程在实际问题中的应用。

二、教学内容1. 参数方程的定义和特点引入参数方程的概念,解释参数方程中的参数意义。

分析参数方程与直角坐标方程的关系。

2. 参数方程的转换教授如何将直角坐标方程转换为参数方程。

练习将给定的直角坐标方程转换为参数方程。

3. 解参数方程讲解参数方程的解法步骤。

练习解给定的参数方程并将其转换回直角坐标方程。

4. 参数方程的应用通过实际问题引入参数方程的应用。

练习解决实际问题,运用参数方程。

三、教学方法1. 讲授法:讲解参数方程的定义、特点和转换方法。

2. 练习法:通过练习题让学生巩固参数方程的转换和解法。

3. 问题解决法:通过实际问题引导学生运用参数方程解决实际问题。

四、教学准备1. 教学PPT:制作参数方程的相关PPT课件。

2. 练习题:准备一些参数方程的练习题供学生练习。

3. 实际问题:准备一些实际问题供学生解决。

五、教学过程1. 引入参数方程的概念,解释参数方程中的参数意义。

2. 讲解如何将直角坐标方程转换为参数方程,并进行练习。

3. 讲解参数方程的解法步骤,并进行练习。

4. 通过实际问题引入参数方程的应用,并进行练习。

教学反思:在课后对教学效果进行反思,观察学生对参数方程的理解程度和应用能力。

根据学生的反馈情况进行调整教学方法和教学内容,以便更好地达到教学目标。

六、教学评估1. 课堂问答:通过提问学生,了解他们对参数方程的理解程度。

2. 练习题:布置一些参数方程的练习题,评估学生的掌握情况。

3. 实际问题解决:让学生解决一些实际问题,观察他们运用参数方程的能力。

七、拓展与延伸1. 讲解参数方程在实际应用中的更深入例子,如工程、物理等领域。

2. 介绍参数方程与其他数学概念的联系,如极坐标方程。

3. 引导学生进行参数方程的相关研究项目,加深对参数方程的理解。

坐标变换与参数方程1坐标轴的平移与旋转1坐标轴的平移

坐标变换与参数方程1坐标轴的平移与旋转1坐标轴的平移

3二题,如果不移动图像,移动坐 标轴,该如何平移?
正好与上面图像平移方向相反
导学
圆心在O1(2,1),半径为1的圆的方程为
(x2)2(y1)21.
对应图形如图所示.如果不改变坐标轴的方
向和单位长度,将坐标原点移至点O 1 处,那
么,对于新坐标系x1 O 1 y 1,该圆的方程就是
这是以点(-2,1)为圆心,3为半径的圆.平移坐标轴,
使得新坐标原点在点O(1 -2,1),
由公式2.1,得
x y
x1 y1
2, 1.
将上式代入圆的方程,得 x12 y12 9.
这就是新坐标 x 1 O 1 y 1 中圆的方程. 新坐标系和圆的图形如图所示.
练习与评价
1.平移坐标轴,把坐标原点移至O (1 -1,-3),求下列 各点的新坐标:
x12 y12 1.
导学
只改变坐标原点的位置,而不改变坐标轴的方向和单位长度的 坐标系的变换,叫做坐标轴的平移.
下面研究坐标轴平移前后,同一个点在两个坐标系中的坐标之 间的关系.反映这种关系的式子叫做坐标变换公式.
导学
如图所示,把原坐标系x O y 平移至新坐标系x1O1y1,O1在原坐标 系中的坐标为(x0,y0 ).设原坐标系 x O y 两个坐标轴的单位向量分别 为i和j,则新坐标系x1 O 1 y 1 的单位向量也分别为i和j,
所以方程简化为 x12 y12 11, 新坐标系的原点为 ( 3,2 ).
课堂总结
本次课学了哪些内容?
重点和难点各是什么?
课外能力强化
1、书面作业: 课本习题2.1.1(必做题) 习题集2.1.1(选做题) 学习与训练2.1(选做题)
2、实践作业: 实践指导2.1

高中数学选修4-4坐标系与参数方程完整教案(精选.)

高中数学选修4-4坐标系与参数方程完整教案(精选.)

选修4-4 教案教案1 平面直角坐标系(1 课时)教案2 平面直角坐标系中的伸缩变换(1 课时)教案3 极坐标系的的概念(1 课时)教案4 极坐标与直角坐标的互化(1 课时)教案5 圆的极坐标方程(2 课时)教案6 直线的极坐标方程(2 课时)教案7 球坐标系与柱坐标系(2 课时)教案8 参数方程的概念(1 课时)教案9 圆的参数方程及应(2 课时)教案10 圆锥曲线的参数方程(1 课时)教案11圆锥曲线参数方程的应用(1 课时)教案12 直线的参数方程(2 课时)教案13 参数方程与普通方程互化(2 课时)教案14 圆的渐开线与摆线(1 课时)课题:1、平面直角坐标系教学目的:知识与技能:回顾在平面直角坐标系中刻画点的位置的方法能力与与方法:体会坐标系的作用情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识教学重点:体会直角坐标系的作用教学难点:能够建立适当的直角坐标系,解决数学问题授课类型:新授课12 坐标系的作用————教学过程————复习回顾和预习检查1 平面直角坐标系中刻画点的位置的方法情境1:为了确保宇宙飞船在预定的轨道上运行,并在按计划完成科学考察任务后,安全、准确的返回地球,从火箭升空的时刻开始,需要随时测定飞船在空中的位置机器运动的轨迹。

情境2:运动会的开幕式上常常有大型团体操的表演,其中不断变化的背景图案是由看台上座位排列整齐的人群不断翻动手中的一本画布构成的。

要出现正确的背景图案,需要缺点不同的画布所在的位置。

刻画一个几何图形的位置,需要设定一个参照系1、数轴它使直线上任一点P都可以由惟一的实数x 确定2、平面直角坐标系在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。

它使平面上任一点P 都可以由惟一的实数对(x,y)确定3、空间直角坐标系在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。

高中数学选修4-4_坐标系与参数方程教学案

高中数学选修4-4_坐标系与参数方程教学案

数学选修4-4 坐标系与参数方程导学案本章考试说明要求:1.坐标系的有关概念 2.简单图形(如过极点的直线、过极点或圆心在极点的圆)的极坐标方程 3.极坐标方程与直角坐标方程的互化 4.参数方程 5.直线、圆和椭圆的参数方程 6.参数方程与普通方程的互化 7.参数方程的简单应用 本章具体内容:一、坐标系的有关概念1.平面直角坐标系的建立:在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系.2.空间直角坐标系的建立:在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系.3.极坐标系的建立:在平面上取一个定点O ,自点O 引一条射线OX ,同时确定一个单位长度和计算角度的正方向(通常取 方向为正方向),这样就建立了一个极坐标系。

(其中O 称为 ,射线OX 称为 )如图,设M 是平面上的任一点,ρ表示OM 的长度,θ表示以射线OX 为始边,射线OM 为终边所成的角。

那么有序数对(,)ρθ称为点M 的极坐标。

其中ρ称为 ,θ称为 . 由极径的意义可知0ρ≥.当极角θ的取值范围是[)0,2π时,平面上的点(除去极点)就与极坐标()(),0ρθρ≠建立一一对应的关系.约定:极点的极坐标是ρ=0,θ可以取任意角. 4.极坐标的统一形式一般地,如果(),ρθ是点M 的极坐标,那么 或 ()k Z ∈,都可以作为点M 的极坐标. 二、简单图形的极坐标方程1.直线的极坐标方程:若直线过点00(,)M ρθ,且极轴到此直线的角为α,则它的方程为: .注:几个特殊位置的直线的极坐标方程 (1)直线过极点方程: 图:(2)直线过点)0,(a M 且垂直于极轴 方程: 图:(3)直线过(,)2M b π且平行于极轴方程: 图: 练习:按下列条件写出直线的极坐标方程:①经过极点,且倾斜角为6π的直线; ②经过点2,4A π⎛⎫⎪⎝⎭,且垂直于极轴的直线; ③经过点3,3B π⎛⎫-⎪⎝⎭,且平行于极轴的直线; ④经过点()4,0C ,且倾斜角为34π的直线. 2.圆的极坐标方程: 若圆心为00(,)M ρθ,半径为r 的圆方程为: .注:几个特殊位置的圆的极坐标方程 (1)当圆心位于极点方程: 图: (2)当圆心位于(,0)M r方程: 图: (3)当圆心位于(,)2M r π方程: 图: 练习:按下列条件写出圆的极坐标方程: ①以()2,0A 为圆心,2为半径的圆; ②以4,2B π⎛⎫⎪⎝⎭为圆心,4为半径的圆; ③以()5,C π为圆心,且过极点的圆;④以4D π⎫⎪⎭为圆心,1为半径的圆. 三、极坐标方程与直角坐标方程的互化以直角坐标系的O 为极点,x 轴正半轴为极轴,且在两坐标系中取相同的单位长度平面内的任一点P 的直角坐标极坐标分别为(x ,y )和(,)ρθ,则x =2ρ=y = tan θ=练习:①将下列各点的极坐标化为直角坐标:4π⎫⎪⎭= ; 6,3π⎛⎫- ⎪⎝⎭= ; 112,6π⎛⎫- ⎪⎝⎭= ; ()5,π= ; 34,2π⎛⎫- ⎪⎝⎭= ; 34π⎛⎫- ⎪⎝⎭= . ②将下列各点的直角坐标化为极坐标:)= ;()1,1--= ;()3,0-= ;()0,5= ;(4,-= ;()= .考点1 极坐标与直角坐标互化例1 在极坐标中,求两点)4,2(),4,2(ππ-QP之间的距离以及过它们的直线的极坐标方程.练习1 已知圆C:22(1)(1x y++=,则圆心C的极坐标为__(0,02)ρθπ>≤<练习2 在极坐标中,求两点间的距离:(1))215,12(),35,5(00BA(2))125,8(),12,3(ππBA(3))0,0)(,(),,(212211>>ρρθρθρBA练习3 (1)在极坐标中,点),(θρP关于极轴的对称点的坐标为;(2)在极坐标中,求点)6,5(πM关于直线4πθ=的对称点的坐标为.考点2 极坐标方程与直角坐标方程互化例2 已知曲线C的极坐标方程是4sinρθ=.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的方程是40x y--=,点P是曲线C上的动点,点Q是直线l上的动点,求PQ的最小值.练习1 在极坐标系中,圆2cos=θρ与直线1cos=θρ的位置关系是.练习2 在极坐标系中,圆2ρ=上的点到直线()6sin3cos=+θθρ的距离的最小值是_____ .练习3在极坐标系中,过点4π⎛⎫⎪⎝⎭作圆4sinρθ=的切线,则切线的极坐标方程是.练习4 设过原点O的直线与圆C:22(1)1x y-+=的一个交点为P,点M为线段OP的中点.(1)求圆C的极坐标方程;(2)求点M轨迹的极坐标方程,并说明它是什么曲线.极坐标系强化训练1.点M的直角坐标是(1-,则点M的极坐标为()A.(2,)3πB.(2,)3π-C.2(2,)3πD.(2,2),()3k k Zππ+∈2.极坐标方程cos2sin2ρθθ=表示的曲线为()A.一条射线和一个圆B.两条直线C.一条直线和一个圆D.一个圆3.在极坐标系中,直线24sin=⎪⎭⎫⎝⎛+πθρ被圆4=ρ截得的弦长为__ .4.设(A2,32π),(B3,3π)是极坐标系上两点,则AB= _.5.已知某圆锥曲线C的极坐标方程是22225916cosρθ=+,则曲线C的离心率为()A.45B.53C.35D.456.在极坐标系中,已知曲线)3,1(.cos4:)3cos(:21-∈==+mCmC若和θρπθρ,则曲线C1与C2的位置关系是A.相切B.相交C.相离D.不确定7.在极坐标系中,直线21cos=θρ与曲线θρcos2=相交于A、B两点,O为极点,则∠AOB= 23π8.与曲线01cos=+θρ关于4πθ=对称的曲线的极坐标方程是01sin=+θρ9.以坐标原点为极点,横轴的正半轴为极轴的极坐标系下,有曲线C:4cosρθ=,过极点的直线θϕ=(Rϕ∈且ϕ是参数)交曲线C于两点AO,,令OA的中点为M.(1)求点M在此极坐标下的轨迹方程(极坐标形式).(2)当53πϕ=时,求M点的直角坐标.10.已知直线lkkCl若直线和圆),0)(4cos(2:4)4sin(:≠+⋅==-πθρπθρ上的点到圆C上的点的最小距离等于2。

高中数学参数与坐标教案

高中数学参数与坐标教案

高中数学参数与坐标教案教学目标:1. 了解参数方程和坐标的基本概念;2. 学会根据参数方程确定图形的特点和性质;3. 掌握参数方程与坐标系之间的转换方法;4. 能够应用参数方程和坐标系解决实际问题。

教学重点:1. 参数方程的理解和应用;2. 参数方程与坐标之间的转换;3. 解决实际问题的能力。

教学难点:1. 参数方程与坐标系之间的转换方法;2. 实际问题的解决方法。

教学过程:一、导入(5分钟)教师引导学生回顾直角坐标系和极坐标系的基本概念,并提出参数方程与坐标系的关系。

二、讲解参数方程(15分钟)1. 介绍参数方程的定义和表示方法;2. 通过例题讲解参数方程与图形的关系;3. 引导学生思考参数方程的应用场景。

三、讲解坐标与参数方程的转换(20分钟)1. 介绍参数方程与坐标系的转换方法;2. 通过实例演示参数方程转换为直角坐标系和极坐标系的过程;3. 练习相应的题目巩固知识点。

四、实际问题解决(15分钟)1. 给出实际问题,要求学生利用参数方程和坐标系解决;2. 引导学生分析问题、建立参数方程和运用坐标系解决问题。

五、总结与评价(5分钟)1. 整理本节课的主要内容和重点知识;2. 要求学生对本节课进行自我评价,并提出问题和建议。

六、作业布置(5分钟)老师布置适当数量的习题作业,以巩固学生对参数方程与坐标的理解和运用。

教学反思:1. 每个环节的时间控制要合理,确保学生能够充分理解和消化所学知识;2. 老师应该引导学生积极思考,培养学生的问题解决能力;3. 作业的布置要有针对性,既巩固知识点又提高学生的解决问题的能力。

参数方程教案

参数方程教案

参数方程教案教案名称:参数方程教学案教学目标:1. 了解参数方程的概念和基本性质。

2. 掌握参数方程与直角坐标系之间的转换。

3. 学习如何绘制和分析参数方程描述的曲线。

教学重点:1. 参数方程的定义和表示。

2. 参数方程与直角坐标系之间的转换方法。

3. 使用参数方程绘制和分析曲线的技巧。

教学难点:1. 参数方程与直角坐标系之间的转换。

2. 如何使用参数方程绘制和分析曲线。

教学准备:1. 教师准备示例题和练习题,以及相应的教学材料。

2. 学生准备笔记本和作业本,以及绘图工具。

教学过程:Step 1:导入引导学生回顾直角坐标系中的函数和曲线方程的概念,并提问是否存在其他表示方式。

Step 2:引入参数方程概念1. 向学生解释参数方程的定义和含义:参数方程是一组用参数表示的方程,参数的变化会导致曲线的形状和位置改变。

2. 提供示例方程,比如x = cos(t),y = sin(t),引导学生理解参数t的作用。

Step 3:参数方程与直角坐标系的转换1. 介绍如何将参数方程转换为直角坐标系中的函数方程:通过消元参数的方法,将参数方程中的参数表示为变量和常数的关系。

2. 通过示例方程,如x = 2t,y = t + 1,演示如何将参数方程转换为直角坐标系中的函数方程。

Step 4:使用参数方程绘制曲线1. 要求学生在笔记本上记录示例方程,并按照给定的参数范围,计算对应的坐标点。

2. 使用计算的坐标点,绘制曲线,并分析曲线的形状和特点。

Step 5:练习与巩固1. 发放练习题,让学生自主练习,提醒他们注意平面几何的知识,在绘制曲线时进行相应的分析。

2. 教师对学生的练习结果进行讲评,解答疑惑。

Step 6:拓展与应用1. 介绍参数方程在物理学和工程学中的应用,如描述运动轨迹和曲线造型等。

2. 提供更复杂的参数方程练习题,让学生进行拓展和应用。

Step 7:总结与归纳1. 教师对参数方程的概念和性质进行总结,并与学生一起归纳常见的参数方程形式。

坐标系与参数方程教案

坐标系与参数方程教案

坐标系与参数方程教案教案标题:坐标系与参数方程教案教案目标:1. 了解坐标系和参数方程的基本概念;2. 掌握坐标系和参数方程在二维图形中的应用;3. 能够根据给定的图形要求,构建相应的坐标系和参数方程。

教案步骤:一、导入(5分钟)1. 利用实例引入坐标系的概念,例如使用座标系向学生解释地理位置的界定等。

二、概念讲解(15分钟)1. 介绍笛卡尔坐标系,解释坐标轴、坐标点、坐标等基本概念;2. 解释参数方程的概念,讲解参数和参数方程的含义。

三、练习与巩固(20分钟)1. 学生通过练习在二维平面上标出给定点的坐标;2. 学生尝试画出给定的直线或曲线。

四、拓展应用(15分钟)1. 通过示例演示参数方程的使用,例如绘制心形线等特殊图形;2. 学生自主思考如何用参数方程绘制其他图形。

五、深入探究(15分钟)1. 学生讨论和探究坐标系和参数方程在三维空间中的应用;2. 学生尝试绘制立体图形的参数方程。

六、总结与评价(5分钟)1. 老师对学生学习的情况进行总结和评价;2. 学生发表对这次学习的体会和收获。

七、作业布置(5分钟)1. 布置相关的课后作业,如绘制给定图形的坐标系和参数方程。

教学资源:1. 教材《数学教材》;2. 讲义/课件。

评价方法:1. 课堂练习和教师观察:观察学生在练习和巩固环节的表现;2. 学生讨论和发言:评估学生在深入探究环节中的参与程度;3. 课后作业评分:评估学生对于坐标系和参数方程的独立应用能力。

教案备注:根据教学时间的具体安排和学生的实际情况,可以适当调整每个环节的时间分配。

同时,教师可以根据学生的学习进度和理解情况,加入适当的示例讲解,提高教学灵活性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十二课时:坐标轴的平移(一)【教学目标】知识目标:(1)理解坐标轴平移的坐标变换公式;(2)掌握点在新坐标系中的坐标和在原坐标系中的坐标的计算;能力目标:通过对坐标轴平移的坐标变换公式的学习,使学生的计算技能与计算工具使用技能得到锻炼和提高.【教学重点】坐标轴平移中,点的新坐标系坐标和原坐标系坐标的计算.【教学难点】坐标轴平移的坐标变换公式的运用.【教学设计】学生曾经学习过平移图形.平移坐标轴和平移图形是两种相关的变化方式,从平移的运动过程上看,平移坐标轴和平移图形是两种相反的过程.向左平移图形的效果相当于将坐标轴向右平移相同的单位;向上平移图形的效果相当于将坐标轴向下平移相同单位.要强调坐标轴平移只改变坐标原点的位置,而不改变坐标轴的方向和单位长度.坐标轴平移的坐标变换公式,教材中是利用向量来进行推证的,教学时要首先复习向量的相关知识.例1是利用坐标轴平移的坐标变换公式求点的新坐标系坐标的知识巩固性题目,教学中要强调公式中各量的位置,可以根据学生情况,适当补充求点在原坐标系中坐标的题目.例2是利用坐标轴平移的坐标变换公式化简曲线方程的知识巩固性题目.教学中要强调新坐标系原点设置的原因,让学生理解为什么要配方.【课时安排】1课时.【教学过程】揭示课题2.1坐标轴的平移与旋转创设情境 兴趣导入在数控编程和机械加工中,经常出现工件只作旋转运动(主运动),而刀具发生与工件相对的进给运动.为了保证切削加工的顺利进行,经常需要变换坐标系.例如,圆心在O 1(2,1),半径为1的圆的方程为1)1()2(22=-+-y x .对应图形如图2-1所示.如果不改变坐标轴的方向和单位长度,将坐标原点移至点1O 处,那么,对于新坐标系111x O y ,该圆的方程就是12121=+y x .图2-1动脑思考 探索新知只改变坐标原点的位置,而不改变坐标轴的方向和单位长度的坐标系的变换,叫做坐标轴的平移.下面研究坐标轴平移前后,同一个点在两个坐标系中的坐标之间的关系,反映这种关系的式子叫做坐标变换公式.图2-2如图2-2所示,把原坐标系xOy 平移至新坐标系111x O y ,1O 在原坐标系中的坐标为),(00y x .设原坐标系xOy 两个坐标轴的单位向量分别为i 和j ,则新坐标系111x O y 的单位向量也分别为i 和j ,设点P 在原坐标系中的坐标为),(y x ,在新坐标系中的坐标为),(11y x ,于是有OP =x i +y j ,1O P =x 1i +y 1 j , 1OO =x 0i +y o j ,因为 11OP OO O P =+, 所以 0011 x y x y x y +=+++i j i j i j ,即 0101 )()x y x x y y +=+++i j i j (.(转下节)第二十三课时:坐标轴的平移(二)【教学目标】知识目标:(1)理解坐标轴平移的坐标变换公式;(2会利用坐标轴平移化简曲线方程.(3)掌握点在新坐标系中的坐标和在原坐标系中的坐标的计算;能力目标:通过对坐标轴平移的坐标变换公式的学习,使学生的计算技能与计算工具使用技能得到锻炼和提高.【教学重点】坐标轴平移中,点的新坐标系坐标和原坐标系坐标的计算.【教学难点】坐标轴平移的坐标变换公式的运用.【教学设计】学生曾经学习过平移图形.平移坐标轴和平移图形是两种相关的变化方式,从平移的运动过程上看,平移坐标轴和平移图形是两种相反的过程.向左平移图形的效果相当于将坐标轴向右平移相同的单位;向上平移图形的效果相当于将坐标轴向下平移相同单位.要强调坐标轴平移只改变坐标原点的位置,而不改变坐标轴的方向和单位长度.坐标轴平移的坐标变换公式,教材中是利用向量来进行推证的,教学时要首先复习向量的相关知识.例1是利用坐标轴平移的坐标变换公式求点的新坐标系坐标的知识巩固性题目,教学中要强调公式中各量的位置,可以根据学生情况,适当补充求点在原坐标系中坐标的题目.例2是利用坐标轴平移的坐标变换公式化简曲线方程的知识巩固性题目.教学中要强调新坐标系原点设置的原因,让学生理解为什么要配方.【课时安排】1课时.【教学过程】 (接上节)于是得到坐标轴平移的坐标变换公式⎩⎨⎧+=+=.,1010y y y x x x (2.1) 或 ⎩⎨⎧-=-=.,0101y y y x x x (2.2) 【想一想】公式(2.1)和公式(2.2)的区别在哪里?使用公式要注意些什么问题?巩固知识 典型例题例1 平移坐标轴,将坐标原点移至1O (2,-1),求下列各点的新坐标:O (0,0),A (2,1),B (-1,2),C (2,-4),D (-3,-1),E (0,5).解 由公式(2.2),得将各点的原坐标依次代入公式,得到各点的新坐标分别为O (-2,1),A (0,2),B (-3,3),C (0,-3),D (-5,0),E (-2,6).例2 利用坐标轴的平移化简圆042422=--++y x y x 的方程,并画出新坐标系和圆. 解 将方程的左边配方,得9)1()2(22=-++y x .这是以点(-2,1)为圆心,3为半径的圆.平移坐标轴,使得新坐标原点在点1O (-2,1),由公式(2.1)得112,1.x x y y =-⎧⎨=+⎩ 将上式代入圆的方程,得 92121=+y x . 这就是新坐标系111x O y 中,圆的方程.新坐标系和圆的图形如图2-3所示.运用知识 强化练习1.平移坐标轴,把坐标原点移至1O (-1,-3),求下列各点的新坐标:A (3,2),B (-5,4),C (6,-2),D (1,-3),E (-5,-1).2.利用平移坐标轴,化简方程226420x y x y ++-+=,并指出新坐标系原点的坐标. 继续探索 活动探究(1)读书部分:教材(2)书面作业:教材习题2.1(必做);学习与训练检测题2.1(选做)第二十四课时:坐标轴的旋转(一)【教学目标】知识目标:(1)理解坐标轴旋转的坐标变换公式,(2)掌握点在新坐标系中的坐标和在原坐标系中的坐标的计算.能力目标:通过坐标轴旋转的坐标变换公式的学习,使学生的计算技能与计算工具使用技能得到锻炼和提高.【教学重点】坐标轴旋转中,点在新坐标系中的坐标和在原坐标系中的坐标的计算.【教学难点】坐标轴旋转的坐标变换公式的运用.【教学设计】强调坐标轴的旋转不改变坐标原点的位置和单位长度,只改变坐标轴方向.教材中采用数形结合的方式,结合一种比较直观的位置来进行介绍,并利用两角差的三角函数公式来推导坐标变换公式.这个公式也适用于其他类型的位置关系.要分析坐标轴旋转的两组公式的形式特点,帮助学生来进行记忆.两组公式的形式基本相近,符号可以用“新减加,原加减”来进行记忆.分清公式1111cos sin ,cos sin .x x y y y x θθθθ=-⎧⎨=+⎩和公式11cos sin ,cos sin .x x y y y x θθθθ=+⎧⎨=-⎩的不同意义,前者是用新坐标系相对原坐标系的旋转角θ和点的新坐标系坐标表示原坐标系的坐标,适用于求点的原坐标系坐标;后者是用新坐标系相对原坐标系的旋转角θ和点的原坐标系坐标表示新坐标系的坐标,适用于求点的新坐标系坐标.例3是利用坐标轴平移的坐标变换公式求点的新坐标系坐标的知识巩固性题目,教学中要强调公式中各量的位置,可以根据学生情况,适当补充求原坐标系坐标的题目.例4是综合使用坐标轴变换的题目,首先进行坐标轴平移,然后进行坐标轴旋转.这类问题虽然比较复杂,但是在实际生产中会遇到.通过这类问题的解决,可以培养学生的有序思维习惯,从而提高学生的数学素养.【课时安排】1课时.【教学过程】动脑思考 探索新知不改变坐标原点的位置和单位长度,只改变坐标轴方向的坐标系的变换,叫做坐标轴的旋转.设点M 在原坐标系xOy 中的坐标为(x,y),对应向量OM 的模为r ,幅角为α.将坐标轴绕坐标原点,按照逆时针方向旋转角θ形成新坐标系11x Oy ,点M 在新坐标系11x Oy 中的坐标为),(11y x (如图2-4),则cos ,sin x r y r αα==,),cos(1θα-=r x )sin(1θα-=r y ,于是1sin cos cos sin cos sin y r r y x αθαθθθ=-=-.由此得到坐标轴的旋转的坐标变换公式⎩⎨⎧-=+=.sin cos ,sin cos 11θθθθx y y y x x (2.3) 将新坐标系看作原坐标系,则旋转角度为θ-,代入公式(2.3)得图2-4 x⎩⎨⎧+=-=.sin cos ,sin cos 1111θθθθx y y y x x (2.4) 【想一想】公式(2.3)和公式(2.4)的区别在哪里?使用公式要注意些什么问题?(转下节)第二十五课时:坐标轴的旋转(二)【教学目标】知识目标:(1)理解坐标轴旋转的坐标变换公式,(2)掌握点在新坐标系中的坐标和在原坐标系中的坐标的计算.能力目标:通过坐标轴旋转的坐标变换公式的学习,使学生的计算技能与计算工具使用技能得到锻炼和提高.【教学重点】坐标轴旋转中,点在新坐标系中的坐标和在原坐标系中的坐标的计算.【教学难点】坐标轴旋转的坐标变换公式的运用.【教学设计】强调坐标轴的旋转不改变坐标原点的位置和单位长度,只改变坐标轴方向.教材中采用数形结合的方式,结合一种比较直观的位置来进行介绍,并利用两角差的三角函数公式来推导坐标变换公式.这个公式也适用于其他类型的位置关系.要分析坐标轴旋转的两组公式的形式特点,帮助学生来进行记忆.两组公式的形式基本相近,符号可以用“新减加,原加减”来进行记忆.分清公式1111cos sin ,cos sin .x x y y y x θθθθ=-⎧⎨=+⎩和公式11cos sin ,cos sin .x x y y y x θθθθ=+⎧⎨=-⎩的不同意义,前者是用新坐标系相对原坐标系的旋转角θ和点的新坐标系坐标表示原坐标系的坐标,适用于求点的原坐标系坐标;后者是用新坐标系相对原坐标系的旋转角θ和点的原坐标系坐标表示新坐标系的坐标,适用于求点的新坐标系坐标.例3是利用坐标轴平移的坐标变换公式求点的新坐标系坐标的知识巩固性题目,教学中要强调公式中各量的位置,可以根据学生情况,适当补充求原坐标系坐标的题目.例4是综合使用坐标轴变换的题目,首先进行坐标轴平移,然后进行坐标轴旋转.这类问题虽然比较复杂,但是在实际生产中会遇到.通过这类问题的解决,可以培养学生的有序思维习惯,从而提高学生的数学素养.【课时安排】1课时.巩固知识 典型例题例3 将坐标轴旋转π3,求点A (2,1),B (-1,2),C (0,5)的新坐标(如图2-5). 解 由公式(2.3)得将各点的原坐标分别代入公式,得到各点的新坐标分别为A ,21-3),B (-21+3,1+23),C (235,25). 例4 设点M 在原坐标系xOy 中的坐标为(x,y),首先平移坐标轴,将坐标原点移至)(0,01y x O ,构成坐标系111x O y ,然后再将坐标轴绕点1O 旋转θ角构成新坐标系212x O y ,求点M 在新坐标系212x O y 中的坐标.解 设点M 在坐标系111x O y 中的坐标为),(11y x ,点M 在新坐标系212x O y 中的坐标为),(22y x ,则由公式(2.2)得⎩⎨⎧-=-=.,0101y y y x x x 由公式(2.3) 得 ⎩⎨⎧-=+=.sin cos ,sin cos 112112θθθθx y y y x x 因此得理论升华 整体建构⎩⎨⎧-=+=.sin cos ,sin cos 11θθθθx y y y x x (2.3) ⎩⎨⎧+=-=.sin cos ,sin cos 1111θθθθx y y y x x (2.4) 继续探索 活动探究(1)读书部分:阅读教材 (2)书面作业:教材习题2.1(必做);学习与训练检测题2.1(选做)第二十六课时: 参数方程(一)【教学目标】知识目标:(1)理解曲线的参数方程的概念.(2)理解参变量的概念,会由参变量的取值范围确定函数的定义域.(3)会用“描点法”做出简单的参数方程的图像.能力目标:(1)通过参数方程的学习,了解通过选取适当的参变量来研究曲线的特征的方法.(2)提高分析和解决问题的能力.参数方程的概念及用“描点法”画出参数方程所表示的曲线.【教学难点】难点是用“描点法”画出参数方程所表示的曲线.【教学设计】对求曲线的参数方程不做过多的叙述.例题1的作用在于完成求曲线的参数方程与解析几何中求曲线的方程相衔接.参变量选取的不同,曲线会有不同形式的参数方程.由于学生的工作岗位是技能型岗位,遇到的问题中,参变量一般都是给定的,所以不要在“为什么选这个量作参变量”上下工夫.例1中,结合图形介绍选θ为参变量即可.例题2是用“描点法”做出简单的参数方程的图像.用“描点法”作图关键是如何选点,一般都需要讨论范围和对称性,然后再选取一些点来用于描图.考虑到参数方程中,一般都已经确定参变量的取值范围,从中可以确定曲线的范围,而且讨论图形的对称性比较复杂,在实际作图中,只要求指明定义域,而不要求讨论对称性.对于基础比较好的学生可以在教师的指导下,做关于对称性的研讨.【课时安排】1课时.【教学过程】创设情境兴趣导入如图2-6所示,质点M从点(1,0)出发,沿着与x轴成60º角的方向,以10 m/s的速度运动.质点所做的运动是匀速直线运动,其运动轨迹是经过点(1,0),倾斜角为60º的直线(x 轴上方的部分).容易求得其方程为M【想一想】为什么要附加条件1x>?动脑思考探索新知但是,这个方程不能直接反映出运动轨迹与时间t 的关系.为此,我们分别研究运动轨迹上的点M ),(y x 的坐标与时间t 的关系,得即 51,(0)x t t y =+⎧⎪>⎨=⎪⎩时间t 确定后,点M ),(y x 的位置也就随之确定.【想一想】为什么要附加条件0>t ?由此看到,曲线上动点M (x ,y )的坐标 x 和y ,可以分别表示为一个新变量t 的函数.即可以用方程组⎩⎨⎧==).(),(t y y t x x (2.5) 来表示质点的运动轨迹.我们把方程(2.5)叫做曲线的参数方程,变量t 叫做参变量.相应地把以前所学过的曲线方程f (x ,y )=0叫做普通方程.(转下节)第二十七课时: 参数方程(二)【教学目标】知识目标:(1)理解曲线的参数方程的概念.(2)理解参变量的概念,会由参变量的取值范围确定函数的定义域.(3)会用“描点法”做出简单的参数方程的图像.能力目标:(1)通过参数方程的学习,了解通过选取适当的参变量来研究曲线的特征的方法.(2)提高分析和解决问题的能力.【教学重点】参数方程的概念及用“描点法”画出参数方程所表示的曲线.【教学难点】难点是用“描点法”画出参数方程所表示的曲线.【教学设计】对求曲线的参数方程不做过多的叙述.例题1的作用在于完成求曲线的参数方程与解析几何中求曲线的方程相衔接.参变量选取的不同,曲线会有不同形式的参数方程.由于学生的工作岗位是技能型岗位,遇到的问题中,参变量一般都是给定的,所以不要在“为什么选这个量作参变量”上下工夫.例1中,结合图形介绍选θ为参变量即可.例题2是用“描点法”做出简单的参数方程的图像.用“描点法”作图关键是如何选点,一般都需要讨论范围和对称性,然后再选取一些点来用于描图.考虑到参数方程中,一般都已经确定参变量的取值范围,从中可以确定曲线的范围,而且讨论图形的对称性比较复杂,在实际作图中,只要求指明定义域,而不要求讨论对称性.对于基础比较好的学生可以在教师的指导下,做关于对称性的研讨.【课时安排】1课时.【教学过程】巩固知识 典型例题例1 写出圆心在坐标原点,半径为r 的圆的参数方程.解 如图2-7所示,设圆上任意点P (x ,y )联结OP ,设角θ为参变量,则cos sin x r y r θθ=⎧⎨=⎩为所求的圆的参数方程.与普通方程相类似,作参数方程所表示的曲线的图形时依然采用“描点法”.首先选取参变量的取值范围内的一些值,求出相应的x 与y 的对应值,以每一数对(x ,y )作为点的坐标描出相应的点,最后将这些点连成光滑的曲线就是所求的图形.例2 作出参数方程的图形.解 由于,t ∈R 所以x ∈R .选取参变量的取值范围内的一些值,列表:以表中的每对(x ,y )的值作为点的坐标,描出各点,用光滑的曲线联结各点得到图形,如图2-8所示.【想一想】如果例2中的参变量t 换为θsin ,那么,曲线的范围会不会发生变化?继续探索 活动探究(1)读书部分:教材t … -2.5 -2 -1.5 -1 0 1 1.5 2 2.5 … x … -15.63 -8 -3.38 -1 0 1 3.38 8 15.63 …y … 6.25 4 2.25 1 0 1 2.25 4 6.25 … 图2-7(2)书面作业:教材习题2.2(必做);学习指导2.2(选做)(3)实践调查:辨识专业课本上的参数方程并指出参数方程中的参数.第二十八课时:参数方程与普通方程互化(一)【教学目标】知识目标:(1)掌握由曲线参数方程求曲线普通方程的基本方法,会将简单的参数方程化为普通方程.(2)掌握圆心为坐标原点半径为R的圆的参数方程.了解椭圆及其的参数方程,了解圆的渐开线、摆线的参数方程.能力目标:通过参数方程的学习,了解通过选取适当的参变量来研究曲线的特征的方法,提高分析和解决问题的能力.【教学重点】把曲线的参数方程化为普通方程.【教学难点】难点是曲线的参数方程化为普通方程.【教学设计】参数方程与普通方程的互化的重点是将参数方程化为普通方程.这是本章的教学重点和难点.有些参数方程是无法化为普通方程的.我们只能将一些简单的参数方程化为普通方程.常用的方法是代入消元法和加减消元法,加减消元法中经常使用一些三角恒等式.例题3的(1)和(2),在消去参数化为普通方程后,取值范围并没有改变.(3)中给出了参变量的取值范围,化为普通方程后,必须对变量x或y的取值进行限制,以保证方程是等价变换,不改变方程所表示图形的范围.生产实际中,会遇到用参数方程表示的曲线和用普通方程表示的曲线的交点的问题.解决这类问题的一般的方法是将参数方程代入普通方程,求出对应参变量的值.然后,再将参变量的取值代入参数方程,从而求出交点的坐标.需要注意的是,将参数方程代入普通方程求参变量的值时,必须考虑到各种情况,不要丢解.另一种方法是将参数方程化为普通方程,再联立两个普通方程为方程组,求方程组的解.椭圆、渐开线、摆线是与生产实际相联系的内容.在教学中,要特别注意不要加大难度和添加过多的内容,要考虑到学生的实际水平和生产的实际需要.【课时安排】课时.【教学过程】动脑思考探索新知实际应用中,主要是将参数方程化为普通方程.其核心是消去参变量,常用的方法是加减消元法、代入消元法.巩固知识 典型例题例3 将下列参数方程化为普通方程.(1)1,3x t y t⎧=⎪⎨⎪=⎩;(2)3cos ,3sin x y αα=⎧⎨=⎩;(3)51,(0)x t t y =+⎧⎪>⎨=⎪⎩. 解 (1)由11x t t x==得,代入3y t =,得 3y x=. (2)由3cos x α=得22cos 9x α=, 由3sin y α=得22sin 9y α=. 将上面的两个等式两边分别相加,利用三角恒等式22sin cos 1αα+=,得229x y +=.【小提示】对于含有三角函数的参数方程,在利用加减消元法消去参数时,利用三角恒等式是经常使用的方法。

相关文档
最新文档